Science.gov

Sample records for single viral particles

  1. LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA.

    PubMed Central

    Weeks, R; Aline, R F; Myler, P J; Stuart, K

    1992-01-01

    The 32-nm-diameter spherical viral particles found in the cytoplasm of Leishmania guyanensis CUMC1-1A sediment at 130S and have a buoyant density of approximately 1.4 g/ml in cesium chloride gradients. These particles contain a 5.3-kb double-stranded RNA, while single-stranded RNA that corresponds to the viral positive strand is associated with less-dense particles. These results suggest a conservative and sequential mode of LRV1 viral RNA replication that is exemplified by the ScV L-A virus of yeast. Images PMID:1738198

  2. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  3. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  4. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  5. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 104 particles ml-1. The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  6. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    PubMed

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  7. A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system.

    PubMed

    Brown, Matthew R; Johnson, Sarah A; Brorson, Kurt A; Lute, Scott C; Roush, David J

    2017-01-21

    Multi-modal anion exchange resins combine properties of both anion exchange and hydrophobic interaction chromatography for commercial protein polishing and may provide some viral clearance as well. From a regulatory viral clearance claim standpoint, it is unclear if multi-modal resins are truly orthogonal to either single-mode anion exchange or hydrophobic interaction columns. To answer this, a strategy of solute surface assays and High Throughput Screening of resin in concert with a scale-down model of large scale chromatography purification was employed to determine the predominant binding mechanisms of a panel of bacteriophage (i.e., PR772, PP7, and ϕX174) to multi-modal and single mode resins under various buffer conditions. The buffer conditions were restricted to buffer environments suggested by the manufacturer for the multi-modal resin. Each phage was examined for estimated net charge expression and relative hydrophobicity using chromatographic based methods. Overall, PP7 and PR772 bound to the multimodal resin via both anionic and hydrophobic moieties, while ϕX174 bound predominantly by the anionic moiety. Biotechnol. Bioeng. 2017;9999: 1-8. © 2017 Wiley Periodicals, Inc.

  8. Trapping mammalian protein complexes in viral particles

    PubMed Central

    Eyckerman, Sven; Titeca, Kevin; Van Quickelberghe, Emmy; Cloots, Eva; Verhee, Annick; Samyn, Noortje; De Ceuninck, Leentje; Timmerman, Evy; De Sutter, Delphine; Lievens, Sam; Van Calenbergh, Serge; Gevaert, Kris; Tavernier, Jan

    2016-01-01

    Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. PMID:27122307

  9. A single particle energies

    SciTech Connect

    Bodmer, A.R. |; Usmani, Q.N.; Sami, M.

    1993-09-01

    We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.

  10. Exploring viral infection using single-cell sequencing.

    PubMed

    Rato, Sylvie; Golumbeanu, Monica; Telenti, Amalio; Ciuffi, Angela

    2016-11-02

    Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication.

  11. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  12. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  13. Immunological and Biochemical Characterization of Coxsackie Virus A16 Viral Particles

    PubMed Central

    Chong, Pele; Guo, Meng-Shin; Lin, Fion Hsiao-Yu; Hsiao, Kuang-Nan; Weng, Shu-Yang; Chou, Ai-Hsiang; Wang, Jen-Ren; Hsieh, Shih-Yang; Su, Ih-Jen; Liu, Chia-Chyi

    2012-01-01

    Background Coxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available. Principal Finding In this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >106 the tissue culture's infectious dose (TCID50) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10−5 was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24–28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35–38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176–190. Conclusion These results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary. PMID:23226233

  14. Functional Role of Infective Viral Particles on Metal Reduction

    SciTech Connect

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans and the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.

  15. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter.

    PubMed

    Brady-Estévez, Anna S; Nguyen, Thanh H; Gutierrez, Leonardo; Elimelech, Menachem

    2010-07-01

    This study investigates the effectiveness of a single-walled carbon nanotube (SWNT) filter for removal of viruses from water. MS2 bacteriophage viral removal was examined over a range of environmentally relevant solution chemistries, spanning various ionic strengths, monovalent and divalent salts, pH, and natural organic matter (NOM) concentrations. Viral removal by the SWNT filter was governed by physicochemical (depth) filtration. The removal of viruses increased at higher ionic strengths (NaCl) due to suppression of repulsive electrostatic interactions between viruses and SWNTs. Addition of divalent salts, however, had varying impacts. While CaCl(2) increased virus removal, likely due to complexation of calcium ions to viral surfaces, addition of MgCl(2) reduced viral removal by the SWNT filter. Solution pH also had significant impact on viral removal as the interactions between viral particles and SWNTs changed from attractive below the virus isoelectric point (about pH 3.9) to repulsive at higher pH. Suwannee River NOM was shown to be detrimental to filter viral removal. Reduction of viral removal by NOM was attributed to adsorption of NOM macromolecules to viruses and SWNTs, thereby resulting in steric repulsive forces. Modifications of the filter to incorporate thicker SWNT layers mitigate the negative impacts of NOM on filter performance. This study has shown that while it is possible to attain high levels of viral removal over a broad range of solution chemistries, the extent of viral removal will be highly dependent on the specific solution chemistry of the treated water.

  16. Quantitative real-time single particle analysis of virions

    SciTech Connect

    Heider, Susanne; Metzner, Christoph

    2014-08-15

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. - Highlights: • We introduce four methods for virus particle-based quantification of viruses. • They allow for quantification of a wide range of samples in under an hour time. • The additional measurement of size and zeta potential is possible for some.

  17. Saha equation, single and two particle states

    NASA Technical Reports Server (NTRS)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  18. {Lambda} single-particle energies

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1995-08-01

    We are continuing our work on the {Lambda} hyperon single-particle (s.p.) energies and their interpretation in terms of the basic {Lambda}-nuclear interactions. In particular we are interpreting the results obtained by S.C. Pieper, A. Usmani and Q.N. Usmani. We obtain about 30 MeV for the repulsive contribution of the three-body {Lambda}NN forces in nuclear matter. We are able to exclude purely {open_quotes}dispersive{close_quotes} {Lambda}NN forces. We are investigating the mix of dispersive and two-pion-exchange {Lambda}NN forces which provide a fit to the s.p. data. For interactions, which provide a fit to the s.p. data, the {Lambda} binding energy as a function of the nuclear matter density shows characteristic saturation features with a maximum at a density not very different from that of normal nuclear matter. We obtain a more precise measure of the space-exchange part of the {Lambda}-nuclear force than was previously available, corresponding to an exchange parameter {approx_equal} 0.32. The space-exchange force is rather directly related to the effective mass of a {Lambda} in the nuclear medium and turns out to be about 70% of its free mass. As a result, we also obtain a much better value for the p-state {Lambda}-nucleus potential which is about 40% of the s-state potential. The A binding to nuclear matter is determined to be {approx_equal} 28 MeV.

  19. Hydrodynamic trap for single particles and cells

    PubMed Central

    Tanyeri, Melikhan; Johnson-Chavarria, Eric M.; Schroeder, Charles M.

    2010-01-01

    Trapping and manipulation of microscale and nanoscale particles is demonstrated using the sole action of hydrodynamic forces. We developed an automated particle trap based on a stagnation point flow generated in a microfluidic device. The hydrodynamic trap enables confinement and manipulation of single particles in low viscosity (1–10 cP) aqueous solution. Using this method, we trapped microscale and nanoscale particles (100 nm–15 μm) for long time scales (minutes to hours). We demonstrate particle confinement to within 1 μm of the trap center, corresponding to a trap stiffness of ∼10−5–10−4 pN∕nm. PMID:20585593

  20. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    SciTech Connect

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  1. Single particle raster image analysis of diffusion.

    PubMed

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS.

  2. Gene Expression Correlates with the Number of Herpes Viral Genomes Initiating Infection in Single Cells

    PubMed Central

    Cohen, Efrat M.

    2016-01-01

    Viral gene expression varies significantly among genetically identical cells. The sources of these variations are not well understood and have been suggested to involve both deterministic host differences and stochastic viral host interactions. For herpesviruses, only a limited number of incoming viral genomes initiate expression and replication in each infected cell. To elucidate the effect of this limited number of productively infecting genomes on viral gene expression in single cells, we constructed a set of fluorescence-expressing genetically tagged herpes recombinants. The number of different barcodes originating from a single cell is a good representative of the number of incoming viral genomes replicating (NOIVGR) in that cell. We identified a positive correlation between the NOIVGR and viral gene expression, as measured by the fluorescent protein expressed from the viral genome. This correlation was identified in three distinct cell-types, although the average NOIVGR per cell differed among these cell-types. Among clonal single cells, high housekeeping gene expression levels are not supportive of high viral gene expression, suggesting specific host determinants effecting viral infection. We developed a model to predict NOIVGR from cellular parameters, which supports the notion that viral gene expression is tightly linked to the NOIVGR in single-cells. Our results support the hypothesis that the stochastic nature of viral infection and host cell determinants contribute together to the variability observed among infected cells. PMID:27923068

  3. Single particle maximum likelihood reconstruction from superresolution microscopy images.

    PubMed

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation.

  4. Assembly of viral particles in Xenopus oocytes: pre-surface-antigens regulate secretion of the hepatitis B viral surface envelope particle.

    PubMed Central

    Standring, D N; Ou, J H; Rutter, W J

    1986-01-01

    Infection with hepatitis B virus (HBV) is associated with the production of a viral envelope particle that contains membrane lipids, surface antigen (S), and two presurface-antigens (pre-S) comprised of the entire S moiety with approximately 55 (pre-S2) and 174 (pre-S1) additional NH2-terminal amino acids. We show here that Xenopus oocytes injected with synthetic S mRNA assemble and secrete characteristic 22-nm viral envelope particles. In contrast, pre-S1 and pre-S2 antigens are synthesized but not secreted. By coinjecting mRNAs, we found that synthesis of high levels of pre-S proteins specifically inhibits S antigen secretion. On the other hand, high levels of S synthesis can drive the secretion of small amounts of either pre-S antigen. These observations are consistent with a model for viral envelope assembly in which both S and pre-S proteins are incorporated into a multimeric particle, presumably via interactions between the S protein domains, while the pre-S amino-terminal moieties regulate the secretion of this structure. Our results indicate that Xenopus oocytes will provide a powerful system for studying the morphogenesis of simple structures of viral or cellular origin. Images PMID:3467308

  5. Subviral Hepatitis B Virus Filaments, like Infectious Viral Particles, Are Released via Multivesicular Bodies

    PubMed Central

    Jiang, Bingfu; Himmelsbach, Kiyoshi; Ren, Huimei; Boller, Klaus

    2015-01-01

    ABSTRACT In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies. PMID:26719264

  6. Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population

    PubMed Central

    Rupar, Matevž; Gutierrez-Aguirre, Ion; Curk, Tomaž; Kreuze, Jan F.

    2015-01-01

    ABSTRACT RNA viruses exist within a host as a population of mutant sequences, often referred to as quasispecies. Within a host, sequences of RNA viruses constitute several distinct but interconnected pools, such as RNA packed in viral particles, double-stranded RNA, and virus-derived small interfering RNAs. We aimed to test if the same representation of within-host viral population structure could be obtained by sequencing different viral sequence pools. Using ultradeep Illumina sequencing, the diversity of two coexisting Potato virus Y sequence pools present within a plant was investigated: RNA isolated from viral particles and virus-derived small interfering RNAs (the derivatives of a plant RNA silencing mechanism). The mutational landscape of the within-host virus population was highly similar between both pools, with no notable hotspots across the viral genome. Notably, all of the single-nucleotide polymorphisms with a frequency of higher than 1.6% were found in both pools. Some unique single-nucleotide polymorphisms (SNPs) with very low frequencies were found in each of the pools, with more of them occurring in the small RNA (sRNA) pool, possibly arising through genetic drift in localized virus populations within a plant and the errors introduced during the amplification of silencing signal. Sequencing of the viral particle pool enhanced the efficiency of consensus viral genome sequence reconstruction. Nonhomologous recombinations were commonly detected in the viral particle pool, with a hot spot in the 3′ untranslated and coat protein regions of the genome. We stress that they present an important but often overlooked aspect of virus population diversity. IMPORTANCE This study is the most comprehensive whole-genome characterization of a within-plant virus population to date and the first study comparing diversity of different pools of viral sequences within a host. We show that both virus-derived small RNAs and RNA from viral particles could be used for

  7. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research

    PubMed Central

    Weinbauer, M.G.; Bettarel, Y.; Cattaneo, R.; Luef, B.; Maier, C.; Motegi, C.; Peduzzi, P.; Mari, X.

    2016-01-01

    Viral abundance and processes in the water column and sediments are well studied for some systems; however, we know relatively little about virus–host interactions on particles and how particles influence these interactions. Here we review virus–prokaryote interactions on inorganic and organic particles in the water column. Profiting from recent methodological progress, we show that confocal laser scanning microscopy in combination with lectin and nucleic acid staining is one of the most powerful methods to visualize the distribution of viruses and their hosts on particles such as organic aggregates. Viral abundance on suspended matter ranges from 105 to 1011 ml−1. The main factors controlling viral abundance are the quality, size and age of aggregates and the exposure time of viruses to aggregates. Other factors such as water residence time likely act indirectly. Overall, aggregates appear to play a role of viral scavengers or reservoirs rather than viral factories. Adsorption of viruses to organic aggregates or inorganic particles can stimulate growth of the free-living prokaryotic community, e.g. by reducing viral lysis. Such mechanisms can affect microbial diversity, food web structure and biogeochemical cycles. Viral lysis of bacterio- and phytoplankton influences the formation and fate of aggregates and can, for example, result in a higher stability of algal flocs. Thus, viruses also influence carbon export; however, it is still not clear whether they short-circuit or prime the biological pump. Throughout this review, emphasis has been placed on defining general problems and knowledge gaps in virus–particle interactions and on providing avenues for further research, particularly those linked to global change. PMID:27478304

  8. Quantum fingerprinting with a single particle

    SciTech Connect

    Massar, S.

    2005-01-01

    We show that the two-slit experiment in which a single quantum particle interferes with itself can be interpreted as a quantum fingerprinting protocol: the interference pattern exhibited by the particle contains information about the environment it encountered in the slits which would require much more communication to learn classically than is required quantum mechanically. An extension to the case where the particle has many internal degrees of freedom is suggested, and its interpretation is discussed. The interpretation of these results is discussed in detail, and a possible experimental realization is proposed.

  9. Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell

    PubMed Central

    Akpinar, Fulya; Inankur, Bahar

    2016-01-01

    ABSTRACT When viruses infect their host cells, they can make defective virus-like particles along with intact virus. Cells coinfected with virus and defective particles often exhibit interference with virus growth caused by the competition for resources by defective genomes. Recent reports of the coexistence and cotransmission of such defective interfering particles (DIPs) in vivo, across epidemiological length and time scales, suggest a role in viral pathogenesis, but it is not known how DIPs impact infection spread, even under controlled culture conditions. Using fluorescence microscopy, we quantified coinfections of vesicular stomatitis virus (VSV) expressing a fluorescent reporter protein and its DIPs on BHK-21 host cell monolayers. We found that viral gene expression was more delayed, infections spread more slowly, and patterns of spread became more “patchy” with higher DIP inputs to the initial cell. To examine how infection spread might depend on the behavior of the initial coinfected cell, we built a computational model, adapting a cellular automaton (CA) approach to incorporate kinetic data on virus growth for the first time. Specifically, changes in observed patterns of infection spread could be directly linked to previous high-throughput single-cell measures of virus-DIP coinfection. The CA model also provided testable hypotheses on the spatial-temporal distribution of the DIPs, which remain governed by their predator-prey interaction. More generally, this work offers a data-driven computational modeling approach for better understanding of how single infected cells impact the multiround spread of virus infections across cell populations. IMPORTANCE Defective interfering particles (DIPs) compete with intact virus, depleting host cell resources that are essential for virus growth and infection spread. However, it is not known how such competition, strong or weak, ultimately affects the way in which infections spread and cause disease. In this study

  10. Nanoscale three-dimensional single particle tracking

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélie; Lamb, Don C.

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for

  11. Small synthetic ligands for the enrichment of viral particles pseudotyped with amphotropic murine leukemia virus envelope.

    PubMed

    Fernandes, Cláudia S M; Castro, Rute; Coroadinha, Ana Sofia; Roque, A Cecília A

    2016-03-18

    Retroviral vectors gained popularity toward other viral vectors as they integrate their genome into hosts' genome, a characteristic required for the modification of stem cells. However, the production of viable particles for gene therapy is hampered by the low ratio of infectious to non-infectious viral particles after purification, low titers and limited number of competent viral receptors. We have developed de novo two fully synthetic triazine-based ligands that can selectively bind retroviral particles pseudotyped with amphotropic murine leukemia virus envelope (AMPHO4070A). A 78-membered library of triazine-based ligands was designed in silico and was virtually screened against the modeled structure of the AMPHO4070A protein. Ligands displaying the highest energy of binding were synthesized on cross-linked agarose and experimentally tested. Adsorbents containing ligands A5A10 and A10A11 showed selectivity toward viral particles containing the target protein (VLP-AMPHO), binding 19 ± 5 μg/g support and 47 ± 13 μg/g support, respectively. The elution conditions for both ligands were mild and with high recovery yields (80-100%), in comparison with common purification practices. These results were based on a lab-scale experimental setting with VLP integrity being confirmed through TEM. In particular, the elution buffer containing 12 mM imidazole allowed the recovery of intact amphotropic viral particles.

  12. Localization and force analysis at the single virus particle level using atomic force microscopy

    SciTech Connect

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  13. Single Particle Tomography in EMAN2

    PubMed Central

    Galaz-Montoya, Jesús G.; Flanagan, John; Schmid, Michael F.; Ludtke, Steven J.

    2015-01-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. PMID:25956334

  14. Active cAMP-dependent protein kinase incorporated within highly purified HIV-1 particles is required for viral infectivity and interacts with viral capsid protein.

    PubMed

    Cartier, Christine; Hemonnot, Bénédicte; Gay, Bernard; Bardy, Martine; Sanchiz, Céline; Devaux, Christian; Briant, Laurence

    2003-09-12

    Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein.

  15. Single particle sources and quantum heat fluctuations

    NASA Astrophysics Data System (ADS)

    Battista, F.

    2014-10-01

    The miniaturisation of electronic devices has been a well-known trend in engineering over almost 50 years. The technological advancement in the field can now provide an astonishing control of charge transport in mesoscopic structures. Single particle pumping, namely the control in time and space of the flow of an arbitrarily small number of electrons or holes, has been realised in various kind of structure with, in some cases, very high accuracies. The first half of the manuscript provides a brief overview of different experimental realisations of single particle sources. Though these devices allow to minimise charge fluctuations in the charge current, because of Heisenberg's uncertainty principle, the emitted particles are characterised by energy fluctuations. The consequences of it are of great relevance and presented in the second part of the paper.

  16. Chemotherapy targeting by DNA capture in viral protein particles

    PubMed Central

    Agadjanian, Hasmik; Chu, David; Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Rentsendorj, Altan; Song, Lei; Valluripalli, Vinod; Lubow, Jay; Ma, Jun; Sharifi, Behrooz; Farkas, Daniel L; Medina-Kauwe, Lali K

    2012-01-01

    Aim This study tests the hypothesis that DNA intercalation and electrophilic interactions can be exploited to noncovalently assemble doxorubicin in a viral protein nanoparticle designed to target and penetrate tumor cells through ligand-directed delivery. We further test whether this new paradigm of doxorubicin targeting shows therapeutic efficacy and safety in vitro and in vivo. Materials & methods We tested serum stability, tumor targeting and therapeutic efficacy in vitro and in vivo using biochemical, microscopy and cytotoxicity assays. Results Self-assembly formed approximately 10-nm diameter serum-stable nanoparticles that can target and ablate HER2+ tumors at >10× lower dose compared with untargeted doxorubicin, while sparing the heart after intravenous delivery. The targeted nanoparticle tested here allows doxorubicin potency to remain unaltered during assembly, transport and release into target cells, while avoiding peripheral tissue damage and enabling lower, and thus safer, drug dose for tumor killing. Conclusion This nanoparticle may be an improved alternative to chemical conjugates and signal-blocking antibodies for tumor-targeted treatment. PMID:22385197

  17. Single-domain intrabodies against hepatitis C virus core inhibit viral propagation and core-induced NFκB activation.

    PubMed

    Suzuki, Ryosuke; Saito, Kenji; Matsuda, Mami; Sato, Mitsuru; Kanegae, Yumi; Shi, Guoli; Watashi, Koichi; Aizaki, Hideki; Chiba, Joe; Saito, Izumu; Wakita, Takaji; Suzuki, Tetsuro

    2016-04-01

    Hepatitis C virus (HCV) core plays a key role in viral particle formation and is involved in viral pathogenesis. Here, constructs for single-domain intrabodies consisting of variable regions derived from mouse mAbs against HCV core were established. Expressed single-domain intrabodies were shown to bind to HCV core, and inhibit the growth of cell culture-produced HCV derived from JFH-1 (genotype 2a) and a TH (genotype 1b)/JFH-1 chimera. Adenovirus vectors expressing intrabodies were also capable of reducing HCV propagation. Intrabody expression did not affect viral entry or genome replication of single-round infectious trans-complemented HCV particles. However, intrabody expression reduced intracellular and extracellular infectious titres in CD81-defective Huh7-25 cells transfected with the HCV genome, suggesting that these intrabodies impair HCV assembly. Furthermore, intrabody expression suppressed HCV core-induced NFκB promoter activity. These intrabodies may therefore serve as tools for elucidating the role of core in HCV pathogenesis.

  18. Single-particle states in transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  19. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  20. Efficiency of single-particle engines

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian

    2015-09-01

    We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

  1. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly.

    PubMed

    Wang, Robert Y L; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone.

  2. Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units

    PubMed Central

    Combe, Marine; Garijo, Raquel; Geller, Ron; Cuevas, José M.; Sanjuán, Rafael

    2015-01-01

    Summary Genetic diversity enables a virus to colonize novel hosts, evade immunity, and evolve drug resistance. However, viral diversity is typically assessed at the population level. Given the existence of cell-to-cell variation, it is critical to understand viral genetic structure at the single-cell level. By combining single-cell isolation with ultra-deep sequencing, we characterized the genetic structure and diversity of a RNA virus shortly after single-cell bottlenecks. Full-length sequences from 881 viral plaques derived from 90 individual cells reveal that sequence variants pre-existing in different viral genomes can be co-transmitted within the same infectious unit to individual cells. Further, the rate of spontaneous virus mutation varies across individual cells, and early production of diversity depends on the viral yield of the very first infected cell. These results unravel genetic and structural features of a virus at the single-cell level, with implications for viral diversity and evolution. PMID:26468746

  3. Viral genome segmentation can result from a trade-off between genetic content and particle stability.

    PubMed

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-03-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.

  4. Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    PubMed Central

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C.; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-01-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. PMID:21437265

  5. Cryo-electron microscopy single particle reconstruction of virus particles using compressed sensing theory

    NASA Astrophysics Data System (ADS)

    Kim, Min Woo; Choi, Jiyoung; Yu, Liu; Lee, Kyung Eun; Han, Sung-Sik; Ye, Jong Chul

    2007-02-01

    Sparse object supports are often encountered in many imaging problems. For such sparse objects, recent theory of compressed sensing tells us that accurate reconstruction of objects are possible even from highly limited number of measurements drastically smaller than the Nyquist sampling limit by solving L I minimization problem. This paper employs the compressed sensing theory for cryo-electron microscopy (cryo-EM) single particle reconstruction of virus particles. Cryo-EM single particle reconstruction is a nice application of the compressed sensing theory because of the following reasons: 1) in some cases, due to the difficulty in sample collection, each experiment can obtain micrographs with limited number of virus samples, providing undersampled projection data, and 2) the nucleic acid of a viron is enclosed within capsid composed of a few proteins; hence the support of capsid in 3-D real space is quite sparse. In order to minimize the L I cost function derived from compressed sensing, we develop a novel L I minimization method based on the sliding mode control theory. Experimental results using synthetic and real virus data confirm that the our algorithm provides superior reconstructions of 3-D viral structures compared to the conventional reconstruction algorithms.

  6. Single port access holographic particle image velocimetry

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.; Cha, D.J.

    1995-07-01

    An optical system, which requires only a single optical window mounted on a test volume, is proposed for holographic particle image velocimetry (HPIV). The optical system is a derivative of the double-exposure, double-reference-beam, off-axis HPIV system, but the innovative idea behind the system is to use back scattered light from the particles as the object wave. A 45{degree} beam splitter inserted in front of the window serves to admit the illuminating beam and extract the back scattered light. This concept can be of great engineering interest because optical access is often limited to one window in practical devices. The preliminary results of the technique appear quite promising, with current studies aimed at defining the optical resolution capabilities.

  7. Stochastic magnetization dynamics in single domain particles

    NASA Astrophysics Data System (ADS)

    Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2013-06-01

    Magnetic particles are largely utilized in several applications ranging from magnetorheological fluids to bioscience and from nanothechnology to memories or logic devices. The behavior of each single particle at finite temperature (under thermal stochastic fluctuations) plays a central role in determining the response of the whole physical system taken into consideration. Here, the magnetization evolution is studied through the Landau-Lifshitz-Gilbert formalism and the non-equilibrium statistical mechanics is introduced with the Langevin and Fokker-Planck methodologies. As result of the combination of such techniques we analyse the stochastic magnetization dynamics and we numerically determine the convergence time, measuring the velocity of attainment of thermodynamic equilibrium, as function of the system temperature.

  8. Single-particle study of protein assembly

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2001-10-01

    A study of protein assembly in solution with single-particle imaging and reconstruction techniques using cryoelectron microscopy is reported. The human glutamine synthetase enzyme, important in brain metabolism, and previously assumed to be assembled into a homogeneous quaternary structure, is found to be heterogeneous, with three oligomeric states that co-exist at room temperature. This result corrects an old structural and kinetic model determined by ensemble averaging techniques that assumed a homogeneous system. Unexpectedly fast protein dissociation kinetics results from a stabilized transition state.

  9. Carnot process with a single particle

    NASA Astrophysics Data System (ADS)

    Hoppenau, J.; Niemann, M.; Engel, A.

    2013-06-01

    We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. BJPCBFK1520-610610.1021/jp0455428 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.

  10. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles

    PubMed Central

    Hoffmann, Marco; Zeisel, Mirjam B.; Jilg, Nikolaus; Paranhos-Baccalà, Glaucia; Stoll-Keller, Françoise; Wakita, Takaji; Hafkemeyer, Peter; Blum, Hubert E.; Barth, Heidi; Henneke, Philipp; Baumert, Thomas F.

    2009-01-01

    Toll-like receptors (TLRs) are pathogen recognition molecules activating the innate immune system. Cell surface expressed TLRs, such as TLR2 and TLR4 have been shown to play an important role in human host defenses against viruses through sensing of viral structural proteins. In this study, we aimed to elucidate whether TLR2 and TLR4 participate in inducing antiviral immunity against hepatitis C virus by sensing viral structural proteins. We studied TLR2 and TLR4 activation by cell-culture derived infectious virions (HCVcc) and serum-derived virions in comparison to purified recombinant HCV structural proteins and enveloped virus-like particles. Incubation of TLR2 or TLR4 transfected cell lines with recombinant core protein resulted in activation of TLR2-dependent signaling. In contrast, neither infectious virions nor enveloped HCV-like particles triggered TLR2 and TLR4 signaling. These findings suggest that monomeric HCV core protein but not intact infectious particles are sensed by TLR2. Impairment of core-TLR interaction in infectious viral particles may contribute to escape from innate antiviral immune responses. PMID:20375602

  11. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  12. Performance of single mechanoluminescent particle as ubiquitous light source.

    PubMed

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order.

  13. Secondary particle emission from sapphire single crystal

    NASA Astrophysics Data System (ADS)

    Minnebaev, K. F.; Khvostov, V. V.; Zykova, E. Yu.; Tolpin, K. A.; Colligon, J. S.; Yurasova, V. E.

    2015-07-01

    Secondary ion emission from sapphire single crystal has been studied experimentally and by means of computer simulation. The particular oscillations of secondary ion energy spectra and two specific maxima of O+ and Al+ ions were observed under irradiation of (0001) sapphire face by 1 and 10 keV Ar+ ions. We have explained this by the interplay of the charge exchange processes between moving particles and solids. The existence of two maxima in energy spectra of O+ and Al+ secondary ions can be also connected with special features of single-crystal sputtering: the low-energy peak can be formed by random sputtering and the high-energy peak from focusing collisions. In addition some similarity was found between the positions of low-energy maximum in energy spectra of Al+ ions emitted from sapphire and the principal maxima of Al+ ions ejected from the aluminum single crystal. This indicates a possibility to explain the presence of low-energy maximum in energy spectra of secondary ions ejecting from sapphire by emission of Al+ ions from aluminum islands appearing in a number of cases on the sapphire surface due to preferential sputtering of oxygen. These different mechanisms of creating the energy spectra of ions emitted from sapphire should be taken in account.

  14. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  15. Single-particle stochastic heat engine.

    PubMed

    Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  16. Single-particle stochastic heat engine

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  17. Single Nanopores in Silicon Nitride Membranes with Applications to Viral Sensing

    SciTech Connect

    Davenport, M W; Healy, K; Teslich, N; Letant, S E; Siwy, Z S

    2012-03-29

    While current viral sensing methods are extremely sensitive, there is still a need for platforms capable of detecting engineered viruses and being integrated into device architectures for point-of-care assessments. Nanopores could provide a single pathway to achieve these goals.

  18. Single-particle machine for quantum thermalization

    SciTech Connect

    Liao Jieqiao; Dong, H.; Sun, C. P.

    2010-05-15

    The long time accumulation of the random actions of a single particle 'reservoir' on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and 'coherently heated' as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.

  19. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph; Flounders, Albert W.; Hughes, Robert C.; Ricco, Antonio J.; Wally, Karl; Kravitz, Stanley H.; Janek, Richard P.

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  20. Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles.

    PubMed Central

    Furlong, D B; Nibert, M L; Fields, B N

    1988-01-01

    Electron microscopy revealed structures consisting of long fibers topped with knobs extending from the surfaces of virions of mammalian reoviruses. The morphology of these structures was reminiscent of the fiber protein of adenovirus. Fibers were also seen extending from the reovirus top component and intermediate subviral particles but not from cores, suggesting that the fibers consist of either the mu 1C or sigma 1 outer capsid protein. Amino acid sequence analysis predicts that the reovirus cell attachment protein sigma 1 contains an extended fiber domain (R. Bassel-Duby, A. Jayasuriya, D. Chatterjee, N. Sonenberg, J. V. Maizell, Jr., and B. N. Fields, Nature [London] 315:421-423, 1985). When sigma 1 protein was released from viral particles with mild heat and subsequently obtained in isolation, it was found to have a morphology identical to that of the fiber structures seen extending from the viral particles. The identification of an extended form of sigma 1 has important implications for its function in cell attachment. Other evidence suggests that sigma 1 protein may occur in virions in both an extended and an unextended state. Images PMID:3275434

  1. Methods for forming particles from single source precursors

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  2. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing.

    PubMed

    McWilliam Leitch, E Carol; McLauchlan, John

    2013-12-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  3. Accumulation of defective interfering viral particles in only a few passages in Vero cells attenuates mumps virus neurovirulence.

    PubMed

    Šantak, Maja; Markušić, Maja; Balija, Maja Lang; Kopač, Sandra Keć; Jug, Renata; Örvell, Claes; Tomac, Jelena; Forčić, Dubravko

    2015-03-01

    Immunization programs have implemented live attenuated mumps vaccines which reduced mumps incidence ≥97%. Some of the vaccine strains were abandoned due to unwanted side effects and the genetic marker of attenuation has not been identified so far. Our hypothesis was that non-infectious viral particles, in particular defective interfering particles (DIPs), contribute to neuroattenuation. We showed that non-infectious particles of the mumps vaccine L-Zagreb attenuated neurovirulence of wild type mumps virus 9218/Zg98. Then, we attenuated recent wild type mumps virus MuVi/Zagreb.HRV/28.12 in Vero cells through 16 passages but already the fifth passage (p5) showed accumulation of DIPs and attenuated neurovirulence in a newborn rat model when compared to the second passage (p2). Sequence analysis of the p2 and p5 revealed a single mutation in the 5' untranslated region of the HN gene. Analysis of the expression level of the HN protein showed that this mutation does not affect the expression of the protein. We conclude that the passages of MuVi/Zagreb.HRV/28.12 in Vero cells for only three passages accumulated DIPs which attenuate neurovirulence. These findings reveal DIPs as a very promising and general neuroattenuating factor which should be considered in the rational design of the new mumps vaccine.

  4. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  5. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  6. Automated data collection in single particle electron microscopy.

    PubMed

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S; Carragher, Bridget

    2016-02-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed.

  7. Single particle states in the heaviest elements

    SciTech Connect

    Ahmad, I.; Chasman, R.R.

    1995-08-01

    The search for superheavy elements was a major theme of nuclear structure research for the past twenty years. Theoretical predictions of the stability of superheavy elements depend crucially on the single-particle energy level spacings in the vicinity of 114 protons and 184 neutrons. The approach that we are taking is to learn as much as possible about these levels from spectroscopic studies of nuclides in the A = 250 region. This is possible because there are members of the relevant spherical multiplets that drop rapidly in energy with increasing deformation, and are fairly close to ground in the strongly deformed nuclides near A = 250. The orbitals that are important for fixing the shell corrections near N = 184 are the h{sub 11/2}, j{sub 13/2} and k{sub 17/2} spherical states. For each of these spherical orbitals, there is a corresponding deformed orbital whose energy in the A = 250 region is quite sensitive to one of these spherical states, e. g. the 1/2-[761] orbital was already identified in {sup 251}Cf is quite sensitive to the spherical j{sub 13/2} orbital. The position of the 1/2+[880] deformed orbital is very sensitive to the k{sub 17/2} spherical state. According to our calculations, this state should be found at {approximately}1500 KeV in {sup 251}Cf and should be populated in a one-nucleon transfer reaction using an ({alpha},{sup 3}He) reaction. We calculated signatures for the low-lying states in {sup 251}Cf and the calculated energies and signatures are in good agreement with the experimentally observed (d,p) spectrum. We expect to see the high-j states in an ({alpha},{sup 3}He) study. Our analysis of low-lying states in {sup 251}Cf was published. The ({alpha},{sup 3}He) experiment was approved, and is waiting on the preparation of a target.

  8. Analysis of population structures of viral isolates using single-strand conformation polymorphism method.

    PubMed

    Delaunay, Agnès; Rolland, Mathieu; Jacquot, Emmanuel

    2009-01-01

    The analysis of viral populations requires the use of techniques that describe characteristics of individuals. The single-strand conformation polymorphism (SSCP) makes possible the identification of genetic differences between viral sequences and constitutes an alternative to the expensive and time-consuming cloning and sequencing strategies. Applied to small genomic regions (from 100 to 500 bases in length), SSCP patterns could describe, under appropriate experimental conditions, single nucleotide variations in the studied sequence. The different steps of a complete SSCP procedure, from sampling to pattern analysis (including nucleic acid extraction, RT-PCR amplification, double-stranded DNA quantification, polyacrylamide gel preparation, electrophoresis conditions, and staining procedures), are described using a region (500 bases) of the barley yellow dwarfvirus-PAV (BYDV-PAV, Luteovirus) genome as molecular target.

  9. Principles of cryo-EM single-particle image processing

    PubMed Central

    Sigworth, Fred J.

    2016-01-01

    Single-particle reconstruction is the process by which 3D density maps are obtained from a set of low-dose cryo-EM images of individual macromolecules. This review considers the fundamental principles of this process and the steps in the overall workflow for single-particle image processing. Also considered are the limits that image signal-to-noise ratio places on resolution and the distinguishing of heterogeneous particle populations. PMID:26705325

  10. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  11. Virus-Like Particles Exhibit Potential as a Pan-Filovirus Vaccine for Both Ebola and Marburg Viral Infections

    DTIC Science & Technology

    2007-11-02

    viral replication and severe hemorrhagic fever. Previously, we showed that expression of the h v T F t a t t T h P K 1 a t A ( d a j s 0 d omologous...unimpeded viral replication and severe hemorrhagic fever. Previously, we showed that expression of the homologous glycoprotein (GP) and matrix protein VP40... replication -deficient particles (VRP) expressing filovirus proteins have been used with varying degree of success in the mouse and guinea pig models of

  12. Tracking single particle rotation: Probing dynamics in four dimensions

    DOE PAGES

    Anthony, Stephen Michael; Yu, Yan

    2015-04-29

    Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.

  13. Determining the Cellular Diversity of Hepatitis C Virus Quasispecies by Single-Cell Viral Sequencing

    PubMed Central

    McLauchlan, John

    2013-01-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants. PMID:24049174

  14. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss

    NASA Astrophysics Data System (ADS)

    Lawrence, Scott A.; Davy, Joanne E.; Aeby, Greta S.; Wilson, William H.; Davy, Simon K.

    2014-09-01

    Porites tissue loss is a common disease of Porites compressa on Hawaiian reefs. Despite its prevalence, to date, the aetiological agent of the disease has not been found. The apparent lack of a microbial causative agent in the similar disease Porites bleaching with tissue loss, as well as increasing evidence of viral infections in scleractinian corals and Symbiodinium, led us to hypothesise that a virus may be responsible. Electron microscopy revealed the presence of numerous and varied virus-like particles (VLPs) in healthy and diseased P. compressa colonies. While overall virus numbers were similar in all samples, the abundance of a group of icosahedral VLPs differed significantly between healthy and diseased colonies. While not conclusive, these results suggest that viruses may play a role in this disease, and provide a basis for further studies.

  15. Exploiting virus-like particles as innovative vaccines against emerging viral infections.

    PubMed

    Jeong, Hotcherl; Seong, Baik Lin

    2017-03-01

    Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.

  16. Intracerebroventricular and Intravascular Injection of Viral Particles and Fluorescent Microbeads into the Neonatal Brain.

    PubMed

    Kawasaki, Hideya; Kosugi, Isao; Sakao-Suzuki, Makiko; Meguro, Shiori; Tsutsui, Yoshihiro; Iwashita, Toshihide

    2016-07-24

    In the study on the pathogenesis of viral encephalitis, the infection method is critical. The first of the two main infectious routes to the brain is the hematogenous route, which involves infection of the endothelial cells and pericytes of the brain. The second is the intracerebroventricular (ICV) route. Once within the central nervous system (CNS), viruses may spread to the subarachnoid space, meninges, and choroid plexus via the cerebrospinal fluid. In experimental models, the earliest stages of CNS viral distribution are not well characterized, and it is unclear whether only certain cells are initially infected. Here, we have analyzed the distribution of cytomegalovirus (CMV) particles during the acute phase of infection, termed primary viremia, following ICV or intravascular (IV) injection into the neonatal mouse brain. In the ICV injection model, 5 µl of murine CMV (MCMV) or fluorescent microbeads were injected into the lateral ventricle at the midpoint between the ear and eye using a 10-µl syringe with a 27 G needle. In the IV injection model, a 1-ml syringe with a 35 G needle was used. A transilluminator was used to visualize the superficial temporal (facial) vein of the neonatal mouse. We infused 50 µl of MCMV or fluorescent microbeads into the superficial temporal vein. Brains were harvested at different time points post-injection. MCMV genomes were detected using the in situ hybridization method. Fluorescent microbeads or green fluorescent protein expressing recombinant MCMV particles were observed by fluorescent microscopy. These techniques can be applied to many other pathogens to investigate the pathogenesis of encephalitis.

  17. Tracking single-particle rotation during macrophage uptake†

    PubMed Central

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen M.; Yi, Yi

    2015-01-01

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation. PMID:26059797

  18. Tracking single-particle rotation during macrophage uptake

    SciTech Connect

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; Yi, Yi; Yu, Yan

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.

  19. Single-particle mechanism of magnetostriction in magnetoactive elastomers

    NASA Astrophysics Data System (ADS)

    Kalita, Viktor M.; Snarskii, Andrei A.; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  20. Observation of Rotational Motion of Single Dusty Particle

    SciTech Connect

    Karasev, V. Yu.; Dzlieva, E. S.; Eikhval'd, A. I.; Ermolenko, M. A.; Golubev, M. S.

    2008-09-07

    Dust particle mechanical condition studying is important for question of dust structure stability and phase transitions in complex plasmas, and for ambient plasmas and dust particles parameters diagnostics. The rotation of single dust particles has been observed, followed with the range of theoretical papers, analyzing possible mechanisms, involving particles into rotation. We are observing single dust grains in stratified glow discharge. Rotation is detected with help of direct laser illumination, when the particle surface defects are lighted. Our observations show, that the majority of dust particles has stationary rotation with frequency about hundred Hz. Also it was founded, that there is frequency dependence on the discharge current by linear law. Qualitative interpretation of investigated phenomena is presented.

  1. Single-particle mechanism of magnetostriction in magnetoactive elastomers.

    PubMed

    Kalita, Viktor M; Snarskii, Andrei A; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  2. Growth of single-crystalline particles of metallic copper

    NASA Astrophysics Data System (ADS)

    Guo, Jinlei; Shen, Shaobo; Zhao, Yingshi; Wang, Fuming

    2016-10-01

    Most of ultrafine particles of metallic copper reported so far were of polycrystalline structures. Here, some ultrafine particles of metallic copper of single-crystalline structure were synthesized in gas phase. Some mixtures of a raw copper powder (about 79 μm) and sodium chloride powder were used as the precursor materials. The materials were chlorinated by dry chlorine at 400 °C. Some anhydrous eutectics composed of copper chlorides and sodium chloride were thus obtained. The eutectics were first heated in situ up to 900 °C and then carried to a gas space by evaporation using a flowing Argon, where they met H2 and were reduced to metallic copper particles. It was found that all these copper particles prepared were of single-crystalline structure irrespective of the molar ratio of raw copper and sodium chloride. When the molar ratio of NaCl to Cu in the precursor materials was 1 to 3, some dispersed octahedral particles of single-crystalline copper with an average size of 776 nm were prepared. However, when the ratio was increased to 4 to 1, some dispersed spherical particles of single-crystalline copper with a size of 92 nm were obtained. No impurities from the two shapes of copper particles were detected. The mechanisms involved in controlling the shape and size of copper particles were proposed.

  3. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5 by single particle aerosol mass spectrometry.

    PubMed

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-03-24

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (dva) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles.

  4. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    PubMed Central

    Labonté, Jessica M.; Field, Erin K.; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K. Eric; Kieft, Thomas L.; Onstott, Tullis C.; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  5. Quantum heat fluctuations of single-particle sources.

    PubMed

    Battista, F; Moskalets, M; Albert, M; Samuelsson, P

    2013-03-22

    Optimal single electron sources emit regular streams of particles, displaying no low-frequency charge current noise. Because of the wave packet nature of the emitted particles, the energy is, however, fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single-particle wave function properties and display strong nonclassical features.

  6. Single particle structure and shapes of exotic Sr isotopes

    NASA Astrophysics Data System (ADS)

    Cruz, Steffen; S1389 Team

    2016-09-01

    States within a nucleus that have different shapes that are close in energy are referred to as shape coexisting. A dramatic occurrence of shape coexisting states is observed in nuclei in the vicinity of Z=40, N=60, which is the subject of substantial current experimental and theoretical effort. An important aspect in this context is the evolution of single particle structure for N < 60 leading up to the shape transition region, which can be calculated with modern large scale shell model calculations using a 78Ni core or Beyond Mean Field Models. One-neutron transfer reactions are a proven tool to study single-particle energies as well as occupation numbers. Here we report on the study of the single-particle structure in 96Sr via (d,p) one-neutron transfer reaction in inverse kinematics. The experiment presented was performed in the ISAC facility using the TIGRESS gamma-ray spectrometer in conjunction with the SHARC charged-particle detector. A thorough analysis of single particle states will improve our understanding of the onset of these unique structures, encouraging the ongoing theoretical discussions. Results discussed in the context of the evolution of single-particle structure will be presented. Work supported by the National Research Council of Canada, the Science and Technology Facilities Council of the United Kingdom, the Natural Sciences and the Engineering Research Council of Canada and the National Science Foundation, USA.

  7. Tracking single-particle rotation during macrophage uptake

    DOE PAGES

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; ...

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particlemore » rotation.« less

  8. Single-particle hydrodynamics in DPD: A new formulation

    NASA Astrophysics Data System (ADS)

    Pan, W.; Pivkin, I. V.; Karniadakis, G. E.

    2008-10-01

    We present a new formulation of dissipative particle dynamics (DPD) that leads to correct hydrodynamics in flows around bluff bodies represented by a single particle. In particular, we introduce a shear drag coefficient and a corresponding term in the dissipative force, which along with the angular momentum incorporate non-central shear forces between particles and preserve angular momentum. We consider several prototype flows to verify the performance of the proposed formulation with comparisons against theoretical and continuum-based simulation results. Our method is similar to the Fluid Particle Method (FPM) of Espanol (Phys. Rev. E, 57 (1998) 2930) and it has the computational and implementation simplicity of the standard DPD approach.

  9. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  10. Magnetophoretic circuits for digital control of single particles and cells

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  11. Magnetophoretic circuits for digital control of single particles and cells.

    PubMed

    Lim, Byeonghwa; Reddy, Venu; Hu, XingHao; Kim, KunWoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B; Kim, CheolGi

    2014-05-14

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  12. Triboelectricity evaluation of single toner particle by electron holography

    NASA Astrophysics Data System (ADS)

    Okada, H.; Shindo, D.; Kim, J. J.; Murakami, Y.; Kawase, H.

    2007-09-01

    Understanding electrification is particularly important in materials science since the use of charged particles, e.g., the electrophotographic printer with toner particles, is one of the most successful applications of electrification. However, the charge generation mechanism still remains unclear due to the lack of an appropriate method for evaluating individual fine particles. In this study, we describe an approach for determining the charge of a single toner particle that uses electron holography in combination with a shielding technique. Two long-standing problems in holographic studies—namely, perturbation of the reference electron wave and unwanted charging by illumination—have been overcome by introducing two types of shields in a microscope. Using this method, the amount of charge on a single toner particle was determined, and the surface charge distribution was found to be inhomogeneous. Furthermore, an in situ observation of triboelectricity was conducted inside the microscope.

  13. Triboelectricity evaluation of single toner particle by electron holography

    SciTech Connect

    Okada, H.; Shindo, D.; Kim, J. J.; Murakami, Y.; Kawase, H.

    2007-09-01

    Understanding electrification is particularly important in materials science since the use of charged particles, e.g., the electrophotographic printer with toner particles, is one of the most successful applications of electrification. However, the charge generation mechanism still remains unclear due to the lack of an appropriate method for evaluating individual fine particles. In this study, we describe an approach for determining the charge of a single toner particle that uses electron holography in combination with a shielding technique. Two long-standing problems in holographic studies--namely, perturbation of the reference electron wave and unwanted charging by illumination--have been overcome by introducing two types of shields in a microscope. Using this method, the amount of charge on a single toner particle was determined, and the surface charge distribution was found to be inhomogeneous. Furthermore, an in situ observation of triboelectricity was conducted inside the microscope.

  14. Optical manipulation of a single human virus for study of viral-cell interactions.

    PubMed

    Hou, Ximiao; DeSantis, Michael C; Tian, Chunjuan; Cheng, Wei

    2016-08-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  15. Optical manipulation of a single human virus for study of viral-cell interactions

    PubMed Central

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-01-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses. PMID:27746582

  16. Optical manipulation of a single human virus for study of viral-cell interactions

    NASA Astrophysics Data System (ADS)

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-09-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  17. A Novel Role of the Potyviral Helper Component Proteinase Contributes To Enhance the Yield of Viral Particles

    PubMed Central

    Gallo, Araíz; Calvo, María; Pérez, José de Jesús

    2014-01-01

    ABSTRACT The helper component proteinase (HCPro) is an indispensable, multifunctional protein of members of the genus Potyvirus and other viruses of the family Potyviridae. This viral factor is directly involved in diverse steps of viral infection, such as aphid transmission, polyprotein processing, and suppression of host antiviral RNA silencing. In this paper, we show that although a chimeric virus based on the potyvirus Plum pox virus lacking HCPro, which was replaced by a heterologous silencing suppressor, caused an efficient infection in Nicotiana benthamiana plants, its viral progeny had very reduced infectivity. Making use of different approaches, here, we provide direct evidence of a previously unknown function of HCPro in which the viral factor enhances the stability of its cognate capsid protein (CP), positively affecting the yield of virions and consequently improving the infectivity of the viral progeny. Site-directed mutagenesis revealed that the ability of HCPro to stabilize CP and enhance the yield of infectious viral particles is not linked to any of its previously known activities and helped us to delimit the region of HCPro involved in this function in the central region of the protein. Moreover, the function is highly specific and cannot be fulfilled by the HCPro of a heterologous potyvirus. The importance of this novel requirement in regulating the sorting of the viral genome to be subjected to replication, translation, and encapsidation, thus contributing to the synchronization of these viral processes, is discussed. IMPORTANCE Potyviruses form one of the most numerous groups of plant viruses and are a major cause of crop loss worldwide. It is well known that these pathogens make use of virus-derived multitasking proteins, as well as dedicated host factors, to successfully infect their hosts. Here, we describe a novel requirement for the proper yield and infectivity of potyviral progeny. In this case, such a function is performed by the

  18. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    SciTech Connect

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  19. New instrument for tribocharge measurement due to single particle impacts

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  20. New instrument for tribocharge measurement due to single particle impacts

    SciTech Connect

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.

    2007-02-15

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as {approx}100 {mu}m impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  1. New instrument for tribocharge measurement due to single particle impacts.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  2. A microfluidic-based hydrodynamic trap for single particles.

    PubMed

    Johnson-Chavarria, Eric M; Tanyeri, Melikhan; Schroeder, Charles M

    2011-01-21

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  3. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  4. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  5. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  6. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  7. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  8. Detection of Bioaerosols using Single Particle Thermal Emission Spectroscopy

    DTIC Science & Technology

    2013-03-01

    the optical void(s) created by the aberration. Particle materials successfully trapped include carbon, silica, ragweed pollen , albumin, and...of-concept study will yield similar results when applied to a larger set of biologically derived materials, e.g., pollen , amino acids, proteins...Chang, R. Dual-excitation- wavelength Fluorescence and Elastic Scattering for Differentiation of Single Airborne Pollen and Fungal Particles

  9. Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model

    NASA Astrophysics Data System (ADS)

    Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi

    2016-12-01

    Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.

  10. Manipulation and Confinement of Single Particles using Fluid Flow

    PubMed Central

    Tanyeri, Melikhan; Schroeder, Charles M.

    2013-01-01

    High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2-D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research. PMID:23682823

  11. Manipulation and confinement of single particles using fluid flow.

    PubMed

    Tanyeri, Melikhan; Schroeder, Charles M

    2013-06-12

    High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional (2D) manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research.

  12. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels

    PubMed Central

    2016-01-01

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement. PMID:27960495

  13. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists

    PubMed Central

    Esparo, Nicolle M.; Child, Stephanie J.; Geballe, Adam P.

    2016-01-01

    During millions of years of coevolution with their hosts, cytomegaloviruses (CMVs) have succeeded in adapting to overcome host-specific immune defenses, including the protein kinase R (PKR) pathway. Consequently, these adaptations may also contribute to the inability of CMVs to cross species barriers. Here, we provide evidence that the evolutionary arms race between the antiviral factor PKR and its CMV antagonist TRS1 has led to extensive differences in the species-specificity of primate CMV TRS1 proteins. Moreover, we identify a single residue in human PKR that when mutated to the amino acid present in African green monkey (Agm) PKR (F489S) is sufficient to confer resistance to HCMVTRS1. Notably, this precise molecular determinant of PKR resistance has evolved under strong positive selection among primate PKR alleles and is positioned within the αG helix, which mediates the direct interaction of PKR with its substrate eIF2α. Remarkably, this same residue also impacts sensitivity to K3L, a poxvirus-encoded pseudosubstrate that structurally mimics eIF2α. Unlike K3L, TRS1 has no homology to eIF2α, suggesting that unrelated viral genes have convergently evolved to target this critical region of PKR. Despite its functional importance, the αG helix exhibits extraordinary plasticity, enabling adaptations that allow PKR to evade diverse viral antagonists while still maintaining its critical interaction with eIF2α. PMID:27780231

  14. Single-Molecule Studies of the Temperature Dependence of Viral DNA Packaging Motors

    NASA Astrophysics Data System (ADS)

    White, Michael; Raymer, Dorian; Rickgauer, Peter; Fuller, Derek; Grimes, Shelley; Jardine, Paul; Anderson, Dwight; Smith, Doug

    2007-03-01

    A key step in the assembly of many viruses is the packaging of dsDNA into a preformed capsid by the action of a portal molecular motor complex. We have developed methods for directly measuring viral DNA translocation at the single molecule level using optical tweezers and applied these methods to study bacteriophages φ29, lambda, and T4. Our previous measurements with φ29 were performed at room temperature. Here we report that the rate of DNA translocation is strongly temperature dependent. Preliminary measurements indicate that the motor velocity increases ˜2-fold, to ˜250-300 bp/s when the temperature is increased from ˜20 to 30 degrees C. As the viral packaging motors are enzymes that catalyze ATP hydrolysis, such a trend with increasing temperature is to be expected, at least up to the point where the motor complex is thermally dissociated or denatured. However, the detailed form of the temperature dependence is difficult to quantify using standard bulk assay methods. We have installed a heating/cooling system in our optical tweezers instrument that allows us to precisely control the temperature in our sample chamber. This system allows us to systematically study the temperature dependence of the DNA translocation rate.

  15. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  16. Generalized single-particle cryo-EM--a historical perspective.

    PubMed

    Frank, Joachim

    2016-02-01

    This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.

  17. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.

    PubMed

    Quan, Qimin; Floyd, Daniel L; Burgess, Ian B; Deotare, Parag B; Frank, Ian W; Tang, Sindy K Y; Ilic, Rob; Loncar, Marko

    2013-12-30

    We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

  18. Compressive Characterization of Single Porous SiC Hollow Particles

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Zeltmann, Steven E.; Gupta, Nikhil; Strbik, Oliver M.

    2014-06-01

    Silicon carbide hollow spheres are compression tested to understand their energy absorption characteristics. Two types of particles having tap densities of 440 kg/m3 and 790 kg/m3 (referred to as S1 and S2, respectively) were tested in the present study. The process used to fabricate the hollow spheres leads to porosity in the walls, which affects the mechanical properties of the hollow spheres. The porosity in the walls helps in obtaining mechanical bonding between the matrix material and the particle when such particles are used as fillers in composites. The single-particle compression test results show that the S1 and S2 particles had fracture energies of 0.38 × 10-3 J and 3.18 × 10-3 J, respectively. The modulus and fracture energy of the particles were found to increase with increasing diameter. However, the increasing trend shows variations because the wall thickness can vary as an independent parameter. Hollow particle fillers are used in polymer and metal matrices to develop porous composites called syntactic foams. The experimentally measured properties of these particles can be used in theoretical models to design syntactic foams with the desired set of properties for a given application.

  19. The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ϕ11 Plays a Structural Role in the Viral Particle

    PubMed Central

    Rodríguez-Rubio, Lorena; Quiles-Puchalt, Nuria; Martínez, Beatriz; Rodríguez, Ana; Penadés, José R.

    2013-01-01

    The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage ϕ11, is not essential for phage growth but stabilizes the viral particles. ϕ11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype. PMID:23892745

  20. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  1. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  2. QUANTITATIVE SCREENING OF SINGLE COPIES OF HUMAN PAPILLOMA VIRAL DNA WITHOUT AMPLIFICATION

    PubMed Central

    Li, Jiangwei; Lee, Ji-Young; Yeung, Edward S.

    2008-01-01

    We describe a novel quantitative viral screening method based on single-molecule detection that does not require amplification. DNA of human papilloma virus (HPV), the major etiological agent of cervical cancer, served as the screening target in this study. Eight 100-nucleotide (nt) single-stranded (ss)-DNA probes were designed complementary to the E6-E7 gene of HPV-16 DNA. The probes were covalently stained with Alexa Fluor 532 and hybridized to the target in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell, and had a linear dynamic range of over six orders of magnitude. In the dual-color mode, we employed fluorescence resonance energy transfer (FRET) and added YOYO-3 dye as the acceptor. The two colors from Alexa Fluor 532 and YOYO-3 were dispersed by a transmission grating located in front of the ICCD. With this reinforced criteria for identifying the hybridized molecules, zero false-positive count was achieved. We also showed that DNA extracts from Pap test specimens did not interfere with the measurements. PMID:16970325

  3. Computational modeling of single particle scattering over large distances

    NASA Astrophysics Data System (ADS)

    Rapp, Rebecca; Plumley, Rajan; McCracken, Michael

    2016-09-01

    We present a Monte Carlo simulation of the propagation of a single particle through a large three-dimensional volume under the influence of individual scattering events. In such systems, short paths can be quickly and accurately simulated using random walks defined by individual scattering parameters, but the simulation time greatly increases as the size of the space grows. We present a method for reducing the overall simulation time by restricting the simulation to a cube of unit length; each `cell' is characterized by a set of parameters which dictate the distributions of allowable step lengths and polar scattering angles. We model propagation over large distances by constructing a lattice of cells with physical parameters that depend on position, such that the full set would represent a space within the entire volume available to the particle. With these, we propose the use of Markov chains to determine a probable path for the particle, thereby removing the need to simulate every step in the particle's path. For a single particle with constant velocity, we can use the step statistics to determine the travel time of the particle. We investigate the effect of scattering parameters such as average step distance and possible scattering angles on the probabilities of a cell.

  4. Single particle density of trapped interacting quantum gases

    SciTech Connect

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  5. Single Particle Orientation and Rotational Tracking (SPORT) in biopysical studies

    SciTech Connect

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-08-02

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  6. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  7. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  8. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    PubMed

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  9. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.

    PubMed

    Abdulkarim, Muthanna; Agulló, Nuria; Cattoz, Beatrice; Griffiths, Peter; Bernkop-Schnürch, Andreas; Borros, Salvador Gómez; Gumbleton, Mark

    2015-11-01

    Multiple particle tracking (MPT) methodology was used to dissect the impact of nanoparticle surface charge and size upon particle diffusion through freshly harvested porcine jejunum mucus. The mucus was characterised rheologically and by atomic force microscopy. To vary nanoparticle surface charge we used a series of self-assembly polyelectrolyte particles composed of varying ratios of the negatively charged polyacrylic acid polymer and the positively charged chitosan polymer. This series included a neutral or near-neutral particle to correspond to highly charged but near-neutral viral particles that appear to effectively permeate mucus. In order to negate the confounding issue of self-aggregation of such neutral synthetic particles a sonication step effectively reduced particle size (to less than 340 nm) for a sufficient period to conduct the tracking experiments. Across the polyelectrolyte particles a broad and meaningful relationship was observed between particle diffusion in mucus (×1000 difference between slowest and fastest particle types), particle size (104-373 nm) and particle surface charge (-29 mV to +19.5 mV), where the beneficial characteristic promoting diffusion was a neutral or near-neutral charge. The diffusion of the neutral polyelectrolyte particle (0.02887 cm S(-1)×10(-9)) compared favourably with that of a highly diffusive PEGylated-PLGA particle (0.03182 cm(2) S(-1)×10(-9)), despite the size of the latter (54 nm diameter) accommodating a reduced steric hindrance with the mucin network. Heterogeneity of particle diffusion within a given particle type revealed the most diffusive 10% sub-population for the neutral polyelectrolyte formulation (5.809 cm(2) S(-1)×10(-9)) to be faster than that of the most diffusive 10% sub-populations obtained either for the PEGylated-PLGA particle (4.061 cm(2) S(-1)×10(-9)) or for a capsid adenovirus particle (1.922 cm(2) S(-1)×10(-9)). While this study has used a simple self-assembly polyelectrolyte system

  10. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters.

    PubMed

    Splettstoesser, Janine; Moskalets, Michael; Büttiker, Markus

    2009-08-14

    We propose a mesoscopic circuit in the quantum Hall effect regime comprising two uncorrelated single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes, which allows us in a controllable way to produce orbitally entangled electrons. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. The two-particle correlations manifest themselves as an Aharonov-Bohm effect in noise, while the current is insensitive to magnetic fluxes. In an appropriate time interval the concurrence reaches a maximum and a Bell inequality is violated.

  11. Combustion of a single magnesium particle in water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ya; Xia, Zhi-Xun; Zhang, Wei-Hua; Huang, Xu; Hu, Jian-Xin

    2015-09-01

    The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified. Project supported by the National Natural Science Foundation of China (Grant No. 51406231).

  12. [Study of the encapsulation and transport of several proteins to different organs by means of liposomal type particles of viral origin].

    PubMed

    Repanovici, R; Iliescu, R; Popa, L M

    1987-01-01

    Liposomal particles may be more efficiently incorporated by cells through mechanisms still incompletely elucidated. This property allowed to use them as a vehicle for macromolecules. Research was conducted to obtain liposomal type particles of viral origin charged with various proteins (bovine serum albumin, ovalbumin, ribosomes, human 125I-immunoglobulin G) and to establish the distribution of proteins encapsulated in viral envelopes among various organs after inoculation to laboratory animals.

  13. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    PubMed Central

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-01-01

    In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50–100 nm prohead shells1, 2. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions3. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems4–8. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles5 we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.9, 10 PMID:27540410

  14. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging.

    PubMed

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2016-08-01

    In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells(1, 2). Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions(3). Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems(4-8). Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles(5) we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.(9, 10).

  15. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-08-01

    In many viruses, molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.

  16. Two-Particle Nonlocal Aharonov-Bohm Effect from Two Single-Particle Emitters

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Janine

    2010-03-01

    High-frequency single-particle emitters have been realized experimentally in the integer quantum Hall effect regime [1]: the particles are injected into edge states, operating as wave guides, and encounter splitters realized by quantum point contacts. These tools allow for the implementation of complex interferometers in mesoscopic systems showing two-particle interference effects. An example for tunable two-particle correlations is manifest in the electronic analogue of the Hong-Ou-Mandel interferometer [2], where a noise suppression is found due to the Pauli principle. In the work presented here we explore the entanglement production from two uncorrelated sources. We therefore propose a mesoscopic circuit in the quantum Hall effect regime comprising two independent single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes. This and the tunability of the single-particle sources allow in a controllable way to produce orbitally entangled electrons [3]. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. While the current in this setup is insensitive to the magnetic flux, the two-particle correlations manifest themselves as an Aharonov-Bohm effect in the noise. In an appropriate time-interval the concurrence reaches a maximum and a Bell inequality is violated, proving the existence of time-bin entanglement.[4pt] [1] G. Fève, A. Mah'e, J.-M. Berroir, T. Kontos, B. Placais, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, Science 316, 1169 (2007).[0pt] [2] S. Ol'Khovskaya, J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett. 101, 166802 (2008).[0pt] [3] J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett.103, 076804 (2009).

  17. Single particle behaviour at (and away from) stability

    NASA Astrophysics Data System (ADS)

    Duflo, J.; Zuker, A. P.

    1998-12-01

    Short of proposing a full microscopic mass formula, we outline the steps that should make it possible. The construction rests on defining the nuclear monopole Hamiltonian, Hm that has to be extracted phenomenologically because of the bad saturation properties of the realistic forces. We propose a preliminary form of Hm that makes clear the origin of shell effects, and with only three paraters, reproduces the known spectra of particle and hole states on doubly magic cores to within 300 keV. Predictions are made for the yet unobserved levels around 132Sn, and those associated to 22O, 34,42Si, 68,78Ni, 100Sn and for the particle-hole gaps in these nuclei. Finally we analyze the single particle gaps for the N=50 and 82 isotones, to conclude that the major closures are likely to persist away from stability.

  18. A Primer to Single-Particle Cryo-Electron Microscopy

    PubMed Central

    Cheng, Yifan; Grigorieff, Nikolaus; Penczek, Pawel A.; Walz, Thomas

    2015-01-01

    Summary Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners. PMID:25910204

  19. Holding forces of single-particle dielectrophoretic traps.

    PubMed Central

    Voldman, J; Braff, R A; Toner, M; Gray, M L; Schmidt, M A

    2001-01-01

    We present experimental results and modeling on the efficacy of dielectrophoresis-based single-particle traps. Dielectrophoretic forces, caused by the interaction of nonuniform electric fields with objects, have been used to make planar quadrupole traps that can trap single beads. A simple experimental protocol was then used to measure how well the traps could hold beads against destabilizing fluid flows. These were compared with predictions from modeling and found to be in close agreement, allowing the determination of sub-piconewton forces. This not only validates our ability to model dielectrophoretic forces in these traps but also gives insight into the physical behavior of particles in dielectrophoresis-based traps. Anomalous frequency effects, not explainable by dielectrophoretic forces alone, were also encountered and attributed to electrohydrodynamic flows. Such knowledge can now be used to design traps for cell-based applications. PMID:11159423

  20. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  1. Single particle friction tests with cellulose acetate sphere samples

    SciTech Connect

    Tuezen, U.

    1989-05-31

    This reporter represents a detailed account of all the experimental work carried out for LLNL using the ''single particle shear cell'' in the department of Chemical Process Engineering of Surrey University, Guildford, United Kingdom. Experimental work with two spheres in contact was performed. Particles were positioned into the specially made sample holders by the micro screws. The contact centres were lined up under the magnifying glass. The behavior of the interparticle contact region between the two spheres was examined by performing the following series of tests: (i) normal force versus normal displacement test, (ii) tangential force limit at gross sliding with increased normal load and decreasing normal load, (iii) tangential force versus micro displacement during initial loading to friction limit and during unloading from friction limit. Work was also performed on single sphere against a flat wall surface. Results are discussed. 34 figs.

  2. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  3. Single-File Escape of Colloidal Particles from Microfluidic Channels.

    PubMed

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-15

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15}  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  4. Tracking single fluorescent particles in three dimensions via extremum seeking

    PubMed Central

    Ashley, Trevor T.; Gan, Eric L.; Pan, Jane; Andersson, Sean B.

    2016-01-01

    The ability to track single fluorescent particles in three-dimensions with sub-diffraction limit precision as well as sub-millisecond temporal resolution has enabled the understanding of many biophysical phenomena at the nanometer scale. While there are several techniques for achieving this, most require complicated experimental setups that are expensive to implement. These methods can offer superb performance but their complexity may be overwhelming to the end-user whose aim is only to understand the feature being imaged. In this work, we describe a method for tracking a single fluorescent particle using a standard confocal or multi-photon microscope configuration. It relies only on the assumption that the relative position of the measurement point and the particle can be actuated and that the point spread function has a global maximum that coincides with the particle’s position. The method uses intensity feedback to calculate real-time position commands that “seek” the extremum of the point spread function as the particle moves through its environment. We demonstrate the method by tracking a diffusing quantum dot in a hydrogel on a standard epifluorescent confocal microscope. PMID:27699104

  5. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  6. Phonon-particle coupling effects in the single-particle energies of semi-magic nuclei

    NASA Astrophysics Data System (ADS)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2016-11-01

    A method is presented to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei. In such nuclei, always there is a collective low-lying 2+ phonon, and a strong mixture of single-particle and particle-phonon states often occurs. As in magic nuclei the so-called g L 2 approximation, where g L is the vertex of the L-phonon creation, can be used for finding the PC correction δΣPC(ɛ) to the initial mass operator Σ0. In addition to the usual pole diagram, the phonon "tadpole" diagram is also taken into account. In semi-magic nuclei, the perturbation theory in δΣPC(ɛ) with respect to Σ0 is often invalid for finding the PC-corrected single-particle energies. Instead, the Dyson equation with the mass operator Σ(ɛ) = Σ0 + δΣPC(ɛ) is solved directly, without any use of the perturbation theory. Results for a chain of semi-magic Pb isotopes are presented.

  7. Automated single particle detection and tracking for large microscopy datasets

    PubMed Central

    Wilson, Rhodri S.; Yang, Lei; Dun, Alison; Smyth, Annya M.; Duncan, Rory R.; Rickman, Colin

    2016-01-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates. PMID:27293801

  8. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  9. Drift correction of the dissolved signal in single particle ICPMS.

    PubMed

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  10. A single viral gene determines lethal cross-species neurovirulence of baboon herpesvirus HVP2.

    PubMed

    Black, Darla; Ohsawa, Kazutaka; Tyler, Shaun; Maxwell, Lara; Eberle, R

    2014-03-01

    Alpha-herpesviruses can produce more severe infections in non-natural host species than in their natural host. Isolates of the baboon alpha-herpesvirus Papiine herpesvirus 2 (HVP2) are either very neurovirulent in mice (subtype nv) or non-virulent (subtype ap), but no such difference is evident in the natural baboon host. Comparative genome sequencing was used to identify subtype-specific sequence differences (SSDs) between HVP2nv and HVP2ap isolates. Some genes were identified that despite exhibiting sequence variation among isolates did not have any SSDs, while other genes had comparatively high levels of SSDs. Construction of genomic recombinants between HVP2nv and HVP2ap isolates mapped the mouse neurovirulence determinant to within three genes. Construction of gene-specific recombinants demonstrated that the UL39 ORF is responsible for determining the lethal neurovirulence phenotype of HVP2 in mice. These results demonstrate that differences in a single viral gene can determine the severity of herpesvirus infection in a non-natural host species.

  11. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    PubMed

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  12. Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy

    NASA Astrophysics Data System (ADS)

    Graeser, M.; Bente, K.; Buzug, T. M.

    2015-06-01

    The dynamical behaviour of superparamagnetic iron oxide nanoparticles (SPIONs) is not yet fully understood. In magnetic particle imaging (MPI) SPIONs are used to determine quantitative real-time medical images of a tracer material distribution. For reaching spatial resolution in the sub-millimetre range, MPI requires a well engineered instrumentation providing a magnetic field gradient exceeding 2 T m{}-{1} . However, as the particle performance strongly affects the sensitivity of the imaging process, optimization of the particle parameters is a crucial factor, which is not easy to address. Today most simulations of MPI use the Langevin model to describe the particle behaviour. In equilibrium, the model matches the measured data. If alternating fields in the mid kHz frequency range are applied, the dynamic behaviour of the particles differs from the Langevin theory due to anisotropy effects, particle-particle-interactions and/or exchange interaction in case of multi-core particles. In this paper a model based on previous work is introduced, which was adopted to include crystal and shape anisotropy of immobilised mono-domain single-core particles. The model is applied to typical MPI frequencies and field strengths with different possible superposition of the anisotropy effects, leading to differences in the particle response. It is shown that, despite comparatively high anisotropy constants, the magnetocrystalline anisotropy energy does not quench the signal response for MPI. The constructive superposition of shape and crystal anisotropy leads to the best performance in terms of sensitivity and resolution of the associated imaging modality and slightly reduces the energy barriers compared to a sole-shape anisotropy.

  13. Simultaneous Single-Particle Superlocalization and Rotational Tracking

    SciTech Connect

    Gu, Yan; Wang, Gufeng; Fang, Ning

    2013-01-30

    Superlocalization of single molecules and nanoparticles has become an essential procedure to bring new insights into nanoscale structures and dynamics of biological systems. In the present study, superlocalization is combined with the newly introduced differential interference contrast (DIC) microscopy-based single-particle orientation and rotational tracking. The new technique overcomes the difficulty in localization of the antisymmetric DIC point spread function by using a dual-modality microscope configuration for simultaneous rotational tracking and localization of single gold nanorods with nanometer-scale precision. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment. This technique has great potential in the study of biological processes where both localization and rotational information are required.

  14. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  15. Characterization of individual fine and ultrafine particles with a real-time single particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Reinard, Melissa S.

    2008-10-01

    Designed to analyze aerosols in ambient settings, the Real-Time Single Particle Mass Spectrometer (RSMS) provides a highly time-resolved measurement of the physical and chemical properties of individual fine (<2.5 mum dia.) and ultrafine (<0.1 mum dia.) particles. Understanding aerosols within this size range is crucial as these particles greatly impact both human health and the environment. Data collected by RSMS can be used identify particle sources and atmospheric processes. RSMS was deployed to Wilmington, DE during 2005-2006 as part of E-DATAS (Enhanced Delaware Air Toxics Assessment Study), a collaboration with the Delaware Department of Natural Resources (DNREC), the Environmental Protection Agency (EPA) and Duke University. Mass spectra acquired by RSMS were compared to a Scanning Mobility Particle Sizer (SMPS) to give a quantitative estimate of the chemical composition of PM1.0 (particulate matter <1.0 mum dia.) impacting the city. A method to collect and analyze particles directly from emission stacks of industrial facilities was developed to help identify sources of PM. Single particle mass spectrometry, in general, has remained primarily a qualitative technique due to several instrumental limitations which affect the data. First, the shot-to-shot variation in the laser pulse caused inconsistencies between the mass spectra of particles with the same composition. To determine whether this variation was systematic or random, the covariance between ions was calculated for laboratory generated aerosols. Second, RSMS was found to be highly sensitive to specific chemical species such as ammonium nitrate and transition/alkali metals. When these compounds are present in a particle they dominate the mass spectra and dwarf other the signal from other components to the baseline. To explore this bias, data collected by RSMS in Wilmington, DE was compared to data also collected in Wilmington by the quantitative NanoAerosol Mass Spectrometer (NAMS). Finally, a light

  16. Life and death of a single catalytic cracking particle

    PubMed Central

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  17. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    PubMed

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation.

  18. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  19. Inclusive photoproduction of single charged particles at high p T

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Voigtlaender-Tetzner, A.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1989-03-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.0< p T <5.0 GeV/c and 0.0< x F <1.0 at incident momenta from 70 to 170 GeV/c. The comparison between photon- and hadron-induced data indicates a relative excess of particles with p T >1.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.

  20. Hierarchical Ag mesostructures for single particle SERS substrate

    NASA Astrophysics Data System (ADS)

    Xu, Minwei; Zhang, Yin

    2017-01-01

    Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250-500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 106.

  1. Replicating Viral Particles and other Shape-controlled, Functional Particles for Targeted Delivery Applications Using Nano-molding Techniques

    DTIC Science & Technology

    2007-10-23

    are not toxic to B6 mice, don’t interfere with a PnP induced humeral response and don’t sequester themselves in a compartment that is...aminoethylmethacrylate incorporated (see Figure 6). We have reacted those amine groups on the surface with 2,4,6-trinitrobenzene 1-sulfonic acid ( TNBS ...solution containing amine-functionalized PRINT particles with TNBS (Figure 7). NP (nitrophenol)-decorated PRINT particles (conjugated to the surface

  2. Single-radial-immunodiffusion as an in vitro potency assay for human inactivated viral vaccines.

    PubMed

    Williams, M S

    1993-11-01

    Single-radial-immunodiffusion (SRID) assays have been used to determine the potency of all human inactivated influenza virus vaccines licensed by the Food and Drug Administration for use in the United States since 1978. SRID replaced less reliable tests which were based on the aggregation of erythrocytes by the hemagglutinins of influenza viruses. Similar SRID assays have been used experimentally to determine the potency of inactivated polio and rabies vaccines. In each case, the assays are based on the diffusion of viral antigen into an agarose gel containing specific antibodies to the antigen being measured. For influenza and rabies, disruption of the virions with a detergent is necessary to permit the diffusion of the appropriate antigens, where as with polio, intact virions are allowed to diffuse. The interaction between antigen and antibody produces a zone of precipitation whose size is directly proportional to the amount of antigen applied. A potency value for unknowns is obtained by comparing the sizes of zones produced by unknown preparations to the sizes of zones obtained with a calibrated reference of known antigen content. Once the specific reference antigens and antibodies are prepared and the test standardized, it is a remarkably simple technique which unlike agglutination assays is very reproducible, relatively unaffected by minor variations in test conditions and is far less time consuming and cumbersome than in vivo assays for potency such as those done by inoculating mice or monkeys. More importantly, clinical studies demonstrate that standardization of influenza vaccines by SRID provides a better correlate of human immunogenicity than previous methods.

  3. Nature of single-particle states in disordered graphene

    NASA Astrophysics Data System (ADS)

    Nag, Sabyasachi; Garg, Arti; Ramakrishnan, T. V.

    2016-06-01

    We analyze the nature of the single-particle states, away from the Dirac point in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. For a disorder potential V (r ⃗) =V0exp(-| r ⃗-r⃗imp|2/ξ2) , we demonstrate that not only the Dirac state but all the single-particle states remain extended for weak-enough disorder. Based on our numerical calculations of inverse participation ratio, dc conductivity, diffusion coefficient, and the localization length from time evolution dynamics of the wave packet, we show that the threshold Vth required to localize a single-particle state of energy E (k ⃗) is minimum for the states near the band edge and is maximum for states near the band center, implying a mobility edge starting from the band edge for weak disorder and moving towards the band center as the disorder strength increases. This can be explained in terms of the low-energy Hamiltonian at any point k ⃗ which has the same nature as that at the Dirac point. From the nature of the eigenfunctions, it follows that a weak long-range impurity will cause weak antilocalization effects, which can be suppressed, giving localization if the strength of impurities is sufficiently large to cause intervalley scattering. The intervalley spacing 2 | k ⃗| increases as one moves in from the band edge towards the band center, which is reflected in the behavior of Vth and the mobility edge.

  4. Microswimmers - From Single Particle Motion to Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gompper, Gerhard; Bechinger, Clemens; Herminghaus, Stephan; Isele-Holder, Rolf; Kaupp, U. Benjamin; Löwen, Hartmut; Stark, Holger; Winkler, Roland G.

    2016-11-01

    Locomotion of autonomous microswimmers is a fascinating field at the cutting edge of science. It combines the biophysics of self-propulsion via motor proteins, artificial propulsion mechanisms, swimming strategies at low Reynolds numbers, the hydrodynamic interaction of swimmers, and the collective motion and synchronisation of large numbers of agents. The articles of this Special Issue are based on the lecture notes of an international summer school, which was organized by the DFG Priority Programme 1726 "Microswimmers - From Single Particle Motion to Collective Behaviour" in the fall of 2015. The minireviews provide a broad overview of the field, covering both elementary and advanced material, as well as selected areas from current research.

  5. Stability and single-particle properties of bosonized Fermi liquids

    NASA Astrophysics Data System (ADS)

    Houghton, A.; Kwon, H.-J.; Marston, J. B.

    1994-07-01

    We study the stability and single-particle properties of Fermi liquids in spatial dimensions greater than one via bosonization. For smooth nonsingular Fermi-liquid interactions we obtain Shankar's renormalization-group flows to second order in the BCS coupling and reproduce well-known results for quasiparticle lifetimes. We demonstrate by explicit calculation that spin-charge separation does not occur when the Fermi-liquid interactions are regular. We also explore the relationship between quantized bosonic excitations and zero-sound modes and present a concise derivation of both the spin and the charge collective-mode equations. Finally we discuss some aspects of singular Fermi-liquid interactions.

  6. Single-particle cryo-EM at crystallographic resolution

    PubMed Central

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  7. Relativistic symmetries in nuclear single-particle spectra

    NASA Astrophysics Data System (ADS)

    Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui

    Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.

  8. Lagrangian Description for Particle Interpretations of Quantum Mechanics: Single-Particle Case

    NASA Astrophysics Data System (ADS)

    Sutherland, Roderick I.

    2015-11-01

    A Lagrangian description is presented which can be used in conjunction with particle interpretations of quantum mechanics. A special example of such an interpretation is the well-known Bohm model. The Lagrangian density introduced here also contains a potential for guiding the particle. The advantages of this description are that the field equations and the particle equations of motion can both be deduced from a single Lagrangian density expression and that conservation of energy and momentum are assured. After being developed in a general form, this Lagrangian formulation is then applied to the special case of the Bohm model as an example. It is thereby demonstrated that such a Lagrangian description is compatible with the predictions of quantum mechanics.

  9. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    NASA Astrophysics Data System (ADS)

    Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.

    2016-05-01

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  10. Modeling Single Particle Transport in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hudson, Ben; Fiksel, Gennady; Prager, Stewart

    2001-10-01

    Single particle transport in a stochastic magnetic field is simulated via code ION and RIO. Developed in collaboration with a group in Novosibirsk, Russia, they simulate both single ion and multiple ion trajectories in a stochastic magnetic field. A sharp decrease in the relative diffusion of ions to magnetic field lines is seen in two gyro-radii regimes. One is explainable from the unbroken flux surfaces near the edge of the plasma. The other is thought to be due to a "gyro-averaging" effect that occurs when the gyro-radius exceeds the radial correlation length of the field lines. The simulations indicate a decrease in expected transport, most strongly as a function of gyro-radius, which will be tested experimentally with the MST neutral beam injector.

  11. Towards single particle imaging of human chromosomes at SACLA

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-12-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.

  12. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  13. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; ...

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  14. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  15. Single Event Rates for Devices Sensitive to Particle Energy

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.; Scheick, L. Z.; Banker, M. W.

    2012-01-01

    Single event rates (SER) can include contributions from low-energy particles such that the linear energy transfer (LET) is not constant. Previous work found that the environmental description that is most relevant to the low-energy contribution to the rate is a "stopping rate per unit volume" even when the physical mechanisms for a single-event effect do not require an ion to stop in some device region. Stopping rate tables are presented for four heavy-ion environments that are commonly used to assess device suitability for space applications. A conservative rate estimate utilizing limited test data is derived, and the example of SEGR rate in a power MOSFET is presented.

  16. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  17. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  18. Chiral imprinting of diblock copolymer single-chain particles.

    PubMed

    Njikang, Gabriel; Liu, Guojun; Hong, Liangzhi

    2011-06-07

    This Article reports the molecular imprinting of polymer single-chain particles that have a radius ∼3.7 nm. For this, the template L-phenylalanine anilide or L-ΦAA and a diblock copolymer PtBA-b-P(CEMA-r-CA) were used. Here, PtBA denotes poly(tert-butyl acrylate), and P(CEMA-r-CA) denotes a random block consisting of cinnamoyloxyethyl methacrylate (CEMA) and carboxyl-bearing (CA) units. In CHCl(3)/cyclohexane (CHX) with 64 vol % of CHX or at f(CHX) = 64%, a block-selective solvent for PtBA, PtBA-b-P(CEMA-r-CA) formed spherical micelles. The core consisted of the insoluble P(CEMA-r-CA) block and L-ΦAA, which complexed with the CA groups. Pumping slowly this micellar solution into stirred CHCl(3)/(CHX) at f(CHX) = 64% triggered micelle dissociation into single-chain micelles, which comprised presumably a solubilized PtBA tail and a collapsed P(CEMA-r-CA)/L-ΦAA head. Because the solvent reservoir was under constant UV irradiation, the photo-cross-linkable units in the P(CEMA-r-CA) head cross-linked, and the single-chain micelles were converted into cross-linked single-chain micelles or tadpoles. Synchronizing the micelle addition and photoreaction rates allowed the preparation, from this protocol, of essentially pure tadpoles at high final polymer concentrations. Imprinted tadpoles were procured after L-ΦAA was extracted from the tadpole heads. Under optimized conditions, the produced imprinted tadpoles had exceptionally high binding capacity and high selectivity for L-ΦAA. In addition, the rates of L-ΦAA release from and rebinding by the particles were high.

  19. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  20. Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Han, Bingxue; Bi, Xinhui; Dai, Shouhui; Huang, Wei; Chen, Duohong; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Zhou, Zhen

    2015-02-01

    Continuous ambient measurement of atmospheric aerosols was performed with a single particle aerosol mass spectrometer (SPAMS) in Guangzhou during summer of 2012. The aerosols mainly consisted of carbonaceous particles as major compositions in submicrometer range, including K-rich (29.8%), internally mixed organics and elemental carbon (ECOC, 13.5%), organic carbon-rich (OC, 18.5%), elemental carbon (EC, 12.3%) and high molecular OC (HMOC, 3.2%), and inorganic types (e.g., Na-rich Na-K, Fe-rich, V-rich, and Cu-rich) as major ones in supermicrometer range. Results show that carbonaceous particles were commonly internally mixed with sulfate and nitrate through atmospheric processing, in particular, with sulfate; inorganic types were dominantly internally mixed with nitrate rather than sulfate, indicative of different evolution processes for carbonaceous and inorganic particles in the atmosphere. It was observed that variations of these particle types were significantly influenced by air mass back trajectories (BTs). Under the influence of continental BTs, carbonaceous types were prevalent, while Na-K and Na-rich types considerably increased when the BTs originated from south marine regions. Number fraction of carbonaceous types exhibited obvious diurnal variation throughout the sampling period, which reflects their relatively stable emission and atmospheric processes. Two EC particle types LC-EC and NaK-EC showed different diurnal distributions, suggesting their different origins. The obtained information on the mixing state and the temporal variation of particle types is essential for developing an understanding on the origin and evolution processes of atmospheric aerosols.

  1. Probing Black Carbon-containing Particle Microphysics with the Single-Particle Soot Photometer (SP2)

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lewis, E. R.; Onasch, T. B.; Lambe, A. T.; Davidovits, P.; Kleinman, L. I.

    2012-12-01

    Knowledge of the structure and mixing state of black-carbon containing particles is important for calculating their radiative forcing and provides insight into their source and life cycle. Recently analysis of black carbon-containing particles has demonstrated that for a fraction of such particles, the black carbon may reside on or near the surface of the particle as opposed to the traditional core-shell configuration typically assumed in which the black carbon core is surrounded by a shell of non-refractory material. During the DOE-sponsored Aerosol Lifecycle field campaign held in summer, 2011 at Brookhaven National Laboratory on Long Island, NY, episodes were encountered in which a high fraction of particles containing black carbon had such configurations, and these episodes corresponded to air masses that contained biomass burning plumes (Sedlacek et al., 2012). Subsequent analysis found other episodes in field campaigns in Colorado and California in which high fractions this configuration corresponded to biomass burning plumes. In an effort to evaluate this interpretation and explore formation mechanisms, a series of laboratory-based experiments examining the coagulation of regal black (surrogate for collapsed soot) with model non-refractory coatings [dioctyl sebacate (surrogate for organic aerosols with liquid-like character) and deliquesced ammonium sulfate (solid)] were carried out. The results of these experiments and their potential implications on black carbon radiative forcing will be discussed. Sedlacek, III, Arthur, E. R. Lewis, L. I. Kleinman, J. Xu and Q. Zhang (2012), Determination of and Evidence for Non-core-shell structure of particles containing black carbon using the single particle soot photometer (SP2). Geophys. Res. Lett., 39 L06802, doi:10.1029/2012GL050905

  2. Optimal estimation of diffusion coefficients from single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  3. Optimal estimation of diffusion coefficients from single-particle trajectories.

    PubMed

    Vestergaard, Christian L; Blainey, Paul C; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  4. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity

    PubMed Central

    Mamede, Joao I.; Hope, Thomas J.

    2016-01-01

    Summary Live cell imaging is a valuable technique that allows the characterization of the dynamic processes of the HIV-1 life-cycle. Here, we present a method of production and imaging of dual-labeled HIV viral particles that allows the visualization of two events. Varying release of the intravirion fluid phase marker reveals virion fusion and the loss of the integrity of HIV viral cores with the use of live wide-field fluorescent microscopy. PMID:26714704

  5. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  6. HBV/HCV dual infection impacts viral load, antibody response, and cytokine expression differently from HBV or HCV single infection

    PubMed Central

    Chen, Fei; Zhang, Jian; Wen, Bo; Luo, Shan; Lin, Yingbiao; Ou, Wensheng; Guo, Fengfan; Tang, Ping; Liu, Wenpei; Qu, Xiaowang

    2016-01-01

    Hepatitis B virus/hepatitis C virus (HBV/HCV) dual infection is common among high-risk individuals. To characterize the virological and immunological features of patients with HBV/HCV dual infection, we enrolled 1,049 individuals who have been identified as injection drug users. Patients were divided into single and dual infection groups according to the serological markers. We found the average HCV RNA level was significantly lower; however, HBV viral load was significantly higher in HBV/HCV dual-infected patients (n = 42) comparing HCV single infection (n = 340) or HBV single infection (n = 136). The level of anti-HBs in patients who experienced spontaneous HBV clearance was higher than that in HCV single-infected patients with HBV spontaneous clearance. The level of anti-HCV E2 in HBV/HCV dual infection was lower than that detected in HCV single infection. Serum levels of IL-6, IL-8, and TNF-α were significantly lower in HBV/HCV dual-infected patients than in patients infected with HBV or HCV alone. Taken together, two viral replications are imbalanced in dual infected patients. The anti-HBs and anti-HCV E2 antibody production were impaired and proinflammatory IL-6, IL-8, and TNF-α also downregulated due to dual infection. These findings will help further understanding the pathogenesis of HBV/HCV dual infection. PMID:28009018

  7. Three-dimensional single-particle tracking in live cells: news from the third dimension

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gorelashvili, M.; Schüller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D.

    2013-07-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased.

  8. Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis

    PubMed Central

    Wang, Chun-Yan; Zhang, Qin-Fen; Gao, Yuan-Zhu; Xie, Li; Li, Hong-Mei; Hong, Jian; Zhang, Chuan-Xi

    2015-01-01

    Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit. PMID:26442593

  9. Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution.

    PubMed

    Asbahi, Mohamed; Mehraeen, Shafigh; Wang, Fuke; Yakovlev, Nikolai; Chong, Karen S L; Cao, Jianshu; Tan, Mei Chee; Yang, Joel K W

    2015-09-09

    Directed self-assembly of nanoparticles (DSA-n) holds great potential for device miniaturization in providing patterning resolution and throughput that exceed existing lithographic capabilities. Although nanoparticles excel at assembling into regular close-packed arrays, actual devices on the other hand are often laid out in sparse and complex configurations. Hence, the deterministic positioning of single or few particles at specific positions with low defect density is imperative. Here, we report an approach of DSA-n that satisfies these requirements with less than 1% defect density over micrometer-scale areas and at technologically relevant sub-10 nm dimensions. This technique involves a simple and robust process where a solvent film containing sub-10 nm gold nanoparticles climbs against gravity to coat a prepatterned template. Particles are placed individually into nanoscale cavities, or between nanoposts arranged in varying degrees of geometric complexity. Brownian dynamics simulations suggest a mechanism in which the particles are pushed into the template by a nanomeniscus at the drying front. This process enables particle-based self-assembly to access the sub-10 nm dimension, and for device fabrication to benefit from the wealth of chemically synthesized nanoparticles with unique material properties.

  10. Single-particle mapping of nonequilibrium nanocrystal transformations

    NASA Astrophysics Data System (ADS)

    Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; Chen, Qian; Powers, Alexander S.; Ercius, Peter; Dunn, Gabriel; Rotskoff, Grant M.; Nguyen, Son C.; Adiga, Vivekananda P.; Zettl, Alex; Rabani, Eran; Geissler, Phillip L.; Alivisatos, A. Paul

    2016-11-01

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.

  11. Single-particle mapping of nonequilibrium nanocrystal transformations.

    PubMed

    Ye, Xingchen; Jones, Matthew R; Frechette, Layne B; Chen, Qian; Powers, Alexander S; Ercius, Peter; Dunn, Gabriel; Rotskoff, Grant M; Nguyen, Son C; Adiga, Vivekananda P; Zettl, Alex; Rabani, Eran; Geissler, Phillip L; Alivisatos, A Paul

    2016-11-18

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.

  12. Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5'-noncoding region of the viral RNA.

    PubMed

    Racaniello, V R; Meriam, C

    1986-12-01

    The effect on viral replication of deleting nucleotide 10 of the poliovirus RNA genome was determined. This deletion, which removes a base pair from a predicted hairpin structure in the viral RNA, was introduced into full-length cDNA. Virus recovered after transfection of HeLa cells with the mutated cDNA contained the expected deletion and was temperature sensitive for plaque formation. Analysis of viral replication by one-step growth experiments indicated that mutant virus production at the nonpermissive temperature was at least 100 times less than that of wild type virus, and release of virus from mutant-infected cells was delayed. The synthesis of positive- and negative-strand viral RNA in mutant virus-infected cells was temperature sensitive. Virus-specific protein synthesis in mutant virus-infected cells was not temperature sensitive but occurred at a slower rate than that of wild type virus at permissive and nonpermissive temperatures. Replication of the mutant virus was sensitive to actinomycin D, in contrast to the wild type parent virus, which was resistant to the drug. Mutant virus stocks contained a small percentage of ts+ viruses that were able to form plaques at the nonpermissive temperature. Nucleotide sequence analysis of genomic RNA from these ts+ viruses revealed a single base change at position 34 from a G to U. In the positive RNA strand, the effect of this mutation is to restore to the hairpin structure the single base pair whose formation was prevented by the original deletion. The ts+ pseudorevertants replicated to similar titers as wild type virus at 33 and 38.5 degrees and were partially sensitive to actinomycin D.

  13. Binding of Norwalk virus viral-like particles to veins of romaine lettuce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses (NoV) annually cause millions of cases of gastrointestinal disease in the United States. NoV are associated with raw shellfish outbreaks, particularly oysters, which are thought to bioaccumulate NoV particles during the filter feeding process. NoV outbreaks, however, have been known to o...

  14. Demonstration of human papillomavirus (HPV) genomic amplification and viral-like particles from CaSki cell line in SCID mice.

    PubMed

    Wu, T C; Hsieh, S T; Purow, B W; Kurman, R J

    1997-05-01

    We demonstrate that from the CaSki cervical cancer cell line, integrated HPV-16 genome was amplified and viral-like particles were generated in an in vivo SCID mouse model. The in vivo tumor growth of several HPV-containing cell lines and 2 HPV-negative cell lines was examined in SCID mice. Tumor growth was noted with the HeLa, CaSki, ME-180, and MS751 cell lines within 2 months after subcutaneous injection. Squamous differentiation was appreciated in focal areas of tumors derived from CaSki and ME-180. In the CaSki tumors, DNA in situ hybridization revealed homogeneous staining of nuclei in some cells in the differentiated areas, suggesting HPV genomic amplification. In contrast, punctate or speckled patterns of hybridization were identified in the less differentiated areas, suggesting continued integration of the HPV genome. Immunocytochemical staining for HPV-16 L1 capsid protein showed it to be concentrated in cells from the differentiated areas, correlating with the results of hybridization. Electron microscopic studies revealed 50 nm uniform particles, consistent with HPV viral-like particles, in the nuclei of some cells in well-differentiated areas. Furthermore, Southern transfer and hybridization of the Hirt's extract from the CaSki tumors was positive for HPV-16 DNA, indicating non-integrated, low molecular weight HPV-16 DNA. Our results show HPV genomic amplification of integrated viral DNA and generation of HPV viral-like particles in CaSki cancer cells in SCID mice and that viral DNA amplification and the formation of viral-like particles are coupled to cellular differentiation. This experimental model provides a potential system for studying the molecular pathogenesis of HPV infections.

  15. Single-file diffusion of macroscopic charged particles.

    PubMed

    Coste, C; Delfau, J-B; Even, C; Saint Jean, M

    2010-05-01

    In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.

  16. Optical microresonators as single-particle absorption spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.; Thakkar, Niket; Horak, Erik H.; Quillin, Steven C.; Cherqui, Charles; Knapper, Kassandra A.; Masiello, David J.; Goldsmith, Randall H.

    2016-12-01

    Optical measurements of nanoscale objects offer major insights into fundamental biological, material and photonic properties. In absorption spectroscopy, sensitivity limits applications at the nanoscale. Here, we present a new single-particle double-modulation photothermal absorption spectroscopy method that employs on-chip optical whispering-gallery-mode (WGM) microresonators as ultrasensitive thermometers. Optical excitation of a nanoscale object on the microresonator produces increased local temperatures that are proportional to the absorption cross-section of the object. We resolve photothermal shifts in the resonance frequency of the microresonator that are smaller than 100 Hz, orders of magnitude smaller than previous WGM sensing schemes. The application of our new technique to single gold nanorods reveals a dense array of sharp Fano resonances arising from the coupling between the localized surface plasmon of the gold nanorod and the WGMs of the resonator, allowing for the exploration of plasmonic-photonic hybridization. In terms of the wider applicability, our approach adds label-free spectroscopic identification to microresonator-based detection schemes.

  17. Charge cluster distribution in nanosites traversed by a single ionizing particle An experimental approach

    NASA Astrophysics Data System (ADS)

    Pszona, S.; Bantsar, A.; Kula, J.

    2008-11-01

    A method for modeling charge cluster formation by a single ionizing particle in nanoelectronic structures of few nanometres size is presented. The method is based on experimental modeling of charge formation in the equivalent gaseous nanosites irradiated by single charged particles and the subsequent scaling procedure to a needed medium. Propane irradiated by alpha particles is presented as an example.

  18. Multi-party quantum summation without a trusted third party based on single particles

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen; Huang, Qiong; Yang, Pingle

    We propose multi-party quantum summation protocols based on single particles, in which participants are allowed to compute the summation of their inputs without the help of a trusted third party and preserve the privacy of their inputs. Only one participant who generates the source particles needs to perform unitary operations and only single particles are needed in the beginning of the protocols.

  19. Purification and Characterization of Enterovirus 71 Viral Particles Produced from Vero Cells Grown in a Serum-Free Microcarrier Bioreactor System

    PubMed Central

    Liu, Chia-Chyi; Guo, Meng-Shin; Lin, Fion Hsiao-Yu; Hsiao, Kuang-Nan; Chang, Kate Hsuen-Wen; Chou, Ai-Hsiang; Wang, Yu-Chao; Chen, Yu-Ching; Yang, Chung-Shi; Chong, Pele Choi-Sing

    2011-01-01

    Background Enterovirus 71 (EV71) infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD) and can cause neurological disease during acute infection. Principal Finding In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >106 TCID50/mL by 6 days post infection when a MOI of 10−5 was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24–28% sucrose fractions had an icosahedral structure 30–31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3) were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35–38% sucrose were 33–35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211–225). Conclusion These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification. PMID:21603631

  20. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE PAGES

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; ...

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  1. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    SciTech Connect

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.

  2. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    PubMed Central

    Pearson, Victoria M.; Caudle, S. Brian

    2016-01-01

    Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae), and model organisms for genetics and evolution studies (Microviridae). Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group. PMID:27781171

  3. Nanoscale structural features determined by AFM for single virus particles

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  4. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  5. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  6. Single particle fluorescence burst analysis of epsin induced membrane fission.

    PubMed

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  7. Single-particle and collective excitations in Ni62

    DOE PAGES

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; ...

    2016-09-01

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf7/2 and νg9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg(48Ca,2α4nγ)62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. As a result, two collectivemore » bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7/2 protons and g9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  8. Structured dark-field imaging for single nano-particles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gao, Kun; Wang, Zhi-Li; Yun, Wen-Bing; Wu, Zi-Yu

    2015-08-01

    In this work, we extensively describe and demonstrate the structured dark-field imaging (SDFI). SDFI is a newly proposed x-ray microscopy designed for revealing the fine features below Rayleigh resolution, in which different orders of scattered x-ray photons are collected by changing the numerical aperture of the condenser. Here, the samples of single particles are discussed to extend the scope of the SDFI technique reported in a previous work (Chen J, Gao K, Ge X, et al. 2013 Opt. Lett. 38 2068). In addition, the details of the newly invented algorithm are explained, which is able to calculate the intensity of any pixel on the image plane rapidly and reliably. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the National Natural Science Foundation of China (Grant No. 11321503), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42), and the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, and 11305173).

  9. A Single-Cell Platform for Monitoring Viral Proteolytic Cleavage in Different Cellular Compartments

    PubMed Central

    Abbadessa, Darin; Smurthwaite, Cameron A.; Reed, Connor W.; Wolkowicz, Roland

    2015-01-01

    Infectious diseases affect human health despite advances in biomedical research and drug discovery. Among these, viruses are especially difficult to tackle due to the sudden transfer from animals to humans, high mutational rates, resistance to current treatments, and the intricacies of their molecular interactions with the host. As an example of these interactions, we describe a cell-based approach to monitor specific proteolytic events executed by either the viral-encoded protease or by host proteins on the virus. We then emphasize the significance of examining proteolysis within the subcellular compartment where cleavage occurs naturally. We show the power of stable expression, highlighting the usefulness of the cell-based multiplexed approach, which we have adapted to two independent assays previously developed to monitor (a) the activity of the HIV-1-encoded protease or (b) the cleavage of the HIV-1-encoded envelope protein by the host. Multiplexing was achieved by mixing cells each carrying a different assay or, alternatively, by engineering cells expressing two assays. Multiplexing relies on the robustness of the individual assays and their clear discrimination, further enhancing screening capabilities in an attempt to block proteolytic events required for viral infectivity and spread. PMID:27688710

  10. Characterization of aerodynamic drag force on single particles: Final report

    SciTech Connect

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  11. Proton Single-Particle States In The Heaviest Actinide Nuclei

    SciTech Connect

    Ahmad, I.; Kondev, F.G.; Moore, E.F.; Chasman, R.R.; Carpenter, M.P.; Greene, J.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Hoff, R.W.; Evans, J.E.; Lougheed, R.W.; Porter, C.E.; Felker, L.K.

    2005-04-05

    The level structure of 249Bk has been investigated by measuring the {gamma}-ray spectra following the {alpha} decay of a chemically and isotopically pure 253Es sample. Alpha-gamma coincidence measurement was performed using a Si detector for {alpha} particles and a 25% Ge detector for {gamma} rays. A gamma-gamma coincidence measurement was performed with the Gammasphere spectrometer. The Es sample was obtained by extracting the 253Es which grew in a 253Cf source material produced in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Additional information on the 249Bk levels was obtained from the study of {gamma} rays produced in the {beta}- decay of 249Cm. The 249Cm sample was produced by neutron irradiation of 248Cm. Using the results of the present study and the results of previous 248Cm({alpha},t) and 248Cm(3He,d) reaction spectra, the following single-particle states have been identified in 249Bk: 7/2+[633], 0.0 keV; 3/2-[521], 8.78 keV; 1/2+[400], 377.55 keV: 5/2+[642], 389.17 keV; 1/2-[530], 569.19 keV; 1/2-[521], 643.0 keV; 5/2-[523], 672.8 keV; 9/2+[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7 and 1223.0 keV with tentative assignments of {l_brace}7/2+[633]x1-{r_brace}9/2-, {l_brace}7/2+[633]x0-{r_brace}7/2-, {l_brace}7/2+[633]x1-{r_brace}5/2- and {l_brace}7/2+[633]x0+{r_brace}7/2+, respectively.

  12. Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei

    SciTech Connect

    Litvinova, E. V.; Afanasjev, A. V.

    2011-07-15

    The impact of particle-vibration coupling and polarization effects due to deformation and time-odd mean fields on single-particle spectra is studied systematically in doubly magic nuclei from low-mass {sup 56}Ni up to superheavy ones. Particle-vibration coupling is treated fully self-consistently within the framework of the relativistic particle-vibration coupling model. Polarization effects due to deformation and time-odd mean field induced by odd particle are computed within covariant density functional theory. It has been found that among these contributions the coupling to vibrations makes a major impact on the single-particle structure. The impact of particle-vibration coupling and polarization effects on calculated single-particle spectra, the size of the shell gaps, the spin-orbit splittings and the energy splittings in pseudospin doublets is discussed in detail; these physical observables are compared with experiment. Particle-vibration coupling has to be taken into account when model calculations are compared with experiment since this coupling is responsible for observed fragmentation of experimental levels; experimental spectroscopic factors are reasonably well described in model calculations.

  13. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  14. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  15. Single point mutation in tick-borne encephalitis virus prM protein induces a reduction of virus particle secretion.

    PubMed

    Yoshii, Kentarou; Konno, Akihiro; Goto, Akiko; Nio, Junko; Obara, Mayumi; Ueki, Tomotaka; Hayasaka, Daisuke; Mizutani, Tetsuya; Kariwa, Hiroaki; Takashima, Ikuo

    2004-10-01

    Flaviviruses are assembled to bud into the lumen of the endoplasmic reticulum (ER) and are secreted through the vesicle transport pathway. Virus envelope proteins play important roles in this process. In this study, the effect of mutations in the envelope proteins of tick-borne encephalitis (TBE) virus on secretion of virus-like particles (VLPs), using a recombinant plasmid expression system was analysed. It was found that a single point mutation at position 63 in prM induces a reduction in secretion of VLPs. The mutation in prM did not affect the folding of the envelope proteins, and chaperone-like activity of prM was maintained. As observed by immunofluorescence microscopy, viral envelope proteins with the mutation in prM were scarce in the Golgi complex, and accumulated in the ER. Electron microscopic analysis of cells expressing the mutated prM revealed that many tubular structures were present in the lumen. The insertion of the prM mutation at aa 63 into the viral genome reduced the production of infectious virus particles. This data suggest that prM plays a crucial role in the virus budding process.

  16. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.

    PubMed

    Redding, Brandon; Schwab, Mark; Pan, Yong-le

    2015-08-04

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  17. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  18. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  19. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.

  20. Single-crystal YBa2Cu3O7 particle formation by aerosol decomposition

    NASA Astrophysics Data System (ADS)

    Kodas, Toivo; Datye, Abhaya; Lee, Victor; Engler, Edward

    1989-03-01

    Single-crystal YBa2Cu3O7 particles have been formed in a carbon-free gaseous flow system by thermally decomposing droplets containing the nitrate salts of Y, Ba, and Cu in water followed by calcining and annealing in the gas phase. The electron diffraction pattern for particles ranging in size from 0.1 to 1.5 μm corresponded to single crystals of orthorhombic YBa2Cu3O7 while the powder x-ray diffraction pattern confirmed the presence of single-phase material. Energy dispersive spectroscopy showed a similar composition for all particles examined. Iodometric titration showed that the particles were fully oxygenated. Two types of single-crystal particles were observed, equiaxed and elongated. Formation of solid single-crystal particles is favored by operation near the melting point of the material and by long reactor-residence times.

  1. Particle-verification for single-particle, reference-based reconstruction using multivariate data analysis and classification.

    PubMed

    Shaikh, Tanvir R; Trujillo, Ramon; LeBarron, Jamie S; Baxter, William T; Frank, Joachim

    2008-10-01

    As collection of electron microscopy data for single-particle reconstruction becomes more efficient, due to electronic image capture, one of the principal limiting steps in a reconstruction remains particle-verification, which is especially costly in terms of user input. Recently, some algorithms have been developed to window particles automatically, but the resulting particle sets typically need to be verified manually. Here we describe a procedure to speed up verification of windowed particles using multivariate data analysis and classification. In this procedure, the particle set is subjected to multi-reference alignment before the verification. The aligned particles are first binned according to orientation and are binned further by K-means classification. Rather than selection of particles individually, an entire class of particles can be selected, with an option to remove outliers. Since particles in the same class present the same view, distinction between good and bad images becomes more straightforward. We have also developed a graphical interface, written in Python/Tkinter, to facilitate this implementation of particle-verification. For the demonstration of the particle-verification scheme presented here, electron micrographs of ribosomes are used.

  2. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  3. Viral protein requirements for assembly and release of human parainfluenza virus type 3 virus-like particles.

    PubMed

    Bracken, Megan K; Hayes, Brandon C; Kandel, Suresh R; Scott-Shemon, Deja; Ackerson, Larissa; Hoffman, Michael A

    2016-06-01

    To understand the roles of human parainfluenza virus 3 (HPIV3) proteins in assembly and release, viral proteins were expressed individually and in combination in 293T cells. Expression of the matrix (M) protein triggered release of enveloped, matrix-containing virus-like particles (VLPs) from cells. When M was co-expressed with the nucleocapsid (N), fusion (F) or haemagglutinin-neuraminidase (HN) proteins, VLPs that contained M+N, M+F and M+HN, respectively, were generated, suggesting that M can independently interact with each protein to facilitate assembly and release. Additionally, expression of N protein enabled incorporation of the phosphoprotein (P) into VLPs, likely due to known N-P interactions. Finally, the HPIV3 C protein did not enhance VLP release, in contrast to observations with the related Sendai virus. These findings reinforce the central importance of the M protein in virus assembly and release, but also illustrate the variable roles of other paramyxovirus proteins during these processes.

  4. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities.

    PubMed

    Guo, Yang; Kragelund, Birthe B; White, Malcolm F; Peng, Xu

    2015-06-19

    The majority of archaeal viral genes are of unknown function hindering our understanding of the virus life cycle and viral interactions with their host. Here, we first describe functional characterization of ORF131b (gp17) and ORF436 (gp18) of Sulfolobus islandicus rod-shaped virus 2 (SIRV2), both encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5' → 3' ssDNA exonuclease activity, in addition to the previously demonstrated ssDNA endonuclease activity. Further, in vitro pull-down assay demonstrated interactions between gp17 and gp18 and between gp18 and gp19 with the former being mediated by the intrinsically disordered C-terminus of gp17. The strand-displacement replication mode proposed previously for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair.

  5. Single-Dose Immunization with Virus Replicon Particles Confers Rapid Robust Protection against Rift Valley Fever Virus Challenge

    PubMed Central

    Dodd, Kimberly A.; Metcalfe, Maureen G.; Nichol, Stuart T.; Albariño, César G.

    2012-01-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRPRVF) vaccine candidate. Using a mouse model, we show that VRPRVF immunization provides the optimal balance of safety and single-dose robust efficacy. VRPRVF can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRPRVF proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRPRVF, although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD50). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRPRVF immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection. PMID:22345465

  6. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-06-02

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.

  7. Mechanisms of influenza viral membrane fusion.

    PubMed

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-12-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.

  8. Single-Beam Optical Conveyor Belt for Chiral Particles

    NASA Astrophysics Data System (ADS)

    Fernandes, David E.; Silveirinha, Mário G.

    2016-07-01

    A different paradigm is proposed to selectively manipulate and transport small engineered chiral particles and discriminate different enantiomers using unstructured chiral light. It is theoretically shown that the response of a chiral metamaterial particle may be tailored to enable an optical conveyor-belt operation with no optical traps, such that for a fixed incident light helicity the nanoparticle is either steadily pushed towards the direction of the photon flow or steadily pulled against the photon flow, independent of its position. Our findings create distinct opportunities for unconventional optical manipulations of tailored nanoparticles and may have applications in sorting racemic mixtures of artificial chiral molecules and in particle delivery.

  9. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  10. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  11. Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji

    2015-04-01

    By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.

  12. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  13. Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles: application to viral nucleic acid extraction from serum.

    PubMed

    Sun, Ning; Deng, Congliang; Liu, Yi; Zhao, Xiaoli; Tang, Yan; Liu, Renxiao; Xia, Qiang; Yan, Wenlong; Ge, Guanglu

    2014-01-17

    We present a detailed study of nucleic acid adsorption onto silica-coated magnetic particles in the presence of guanidinium thiocyanate, and extraction of nucleic acid from two important transfusion-transmitted viruses using these particles. Silica-coated magnetic particles were prepared by encapsulating Fe3O4 nanoparticles with tetraethylorthosilicate (TEOS) hydrolysis. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrating sample magnetometer (VSM) were used for particle characterization. The results indicate that silica-coated magnetic particles are spheroid with a narrow hydrodynamic size distribution of about 500nm. VSM data indicates that these particles display paramagnetic behavior with saturation magnetization of about 30emu/g. The adsorption capacities were evaluated with DNA from salmon sperm and RNA of Escherichia coli strain JM109 in the presence of guanidinium thiocyanate. The maximum of adsorption is up to 10.6mg DNA or 7.7mg RNA per 1g of silica-coated magnetic particles with 4M guanidinium thiocyanate (GTC) at pH 5.5 without adding ethanol. The influencing factors were analyzed in term of the adsorption of nucleic acids onto silica-coated magnetic particles. The adsorption capacity in acidic condition is found to be larger than that in alkaline condition and increases with adding equivalent volume of ethanol. A simple method was therefore established to extract nucleic acids of two important transfusion-transmitted viruses from serum and compared with the commercial kits. The results indicate that the extraction method based on silica-coated magnetic particles can be adapted to rapidly and facilely isolate viral nucleic acid for diagnosis of viral infection from serum within 30min, irrespective of genome compositions of virus.

  14. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  15. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  16. Detection of infectious viral particles in plant protoplasts inoculated with transcripts of full-length shallot virus X cDNA.

    PubMed

    Vishnichenko, V K; Zavriev, S K

    2001-01-01

    Flexible filamentous shallot virus X (ShVX) particles were detected in extracts of Beta vulgaris protoplasts inoculated with transcripts from a full-length ShVX cDNA. Extracts from ShVX-infected protoplast were infectious for ShVX-healthy shallot seedlings. Western blot analysis of inoculated plants revealed the accumulation of the ShVX coat protein, while electron microscopy confirmed the presence of ShVX virions. The results suggest that the in vitro RNA transcripts from full-length ShVX cDNA give rise to infectious viral particles.

  17. Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    NASA Technical Reports Server (NTRS)

    Wiscombe, W. J.; Mugnai, A.

    1986-01-01

    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.

  18. Chaotic orbit effects in a stationary single particle probabilistic density

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Leoncini, Xavier; Vittot, Michel; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-10-01

    Chaotic particle orbit effects in a stationary density function or macroscopic quantities are investigated. A considered field consists with static magnetic field and null electric field in a cylinder, then a test particle is driven by the Lorentz force. We firstly consider an axisymmetric magnetic field, where three integrals of motion coexist. So that the test particle motion is completely integrable, and its Hamiltonian is reduced to an effective one degree of freedom Hamiltonian. For some initial states, the effective potential of this reduced Hamiltonian has a saddle point and a separatrix bringing about some chaos when a perturbation is added to the magnetic field. We investigate how this chaos modifies the stationary density function. We acknowledge support of the A *MIDEX project (n ∘ ANR-11- IDEX-0001-02) funded by the ``investissements d'Avenir'' French Government program, managed by the French National Research Agency (ANR).

  19. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  20. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  1. Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals.

    PubMed

    Cai, Y; Peng, W P; Kuo, S J; Lee, Y T; Chang, H C

    2002-01-01

    High-resolution mass spectra of single submicrometer-sized particles are obtained using an electrospray ionization source in combination with an audio frequency quadrupole ion-trap mass spectrometer. Distinct from conventional methods, light scattering from a continuous Ar-ion laser is detected for particles ejected out of the ion trap. Typically, 10 particles are being trapped and interrogated in each measurement. With the audio frequency ion trap operated in a mass-selective instability mode, analysis of the particles reveals that they all differ in mass-to-charge ratio (m/z), and the individual peak in the observed mass spectrum is essentially derived from one single particle. A histogram of the spectra acquired in 10(2) repetitions of the experiment is equivalent to the single spectrum that would be observed when an ion ensemble of 10(3) particles is analyzed simultaneously using the single-particle mass spectrometer (SPMS). To calibrate such single-particle mass spectra, secular frequencies of the oscillatory motions of the individual particle within the trap are measured, and the trap parameter qz at the point of ejection is determined. A mass resolution exceeding 10(4) can readily be achieved in the absence of ion ensemble effect. We demonstrate in this work that the SPMS not only allows investigations of monodisperse polystyrene microspheres, but also is capable of detecting diamond nanoparticles with a nominal diameter of 100 nm, as well.

  2. Low aspect ratio micropores for single-particle and single-cell analysis.

    PubMed

    Goyal, Gaurav; Mulero, Rafael; Ali, Jamel; Darvish, Armin; Kim, Min Jun

    2015-05-01

    This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis.

  3. Mass Spectrometric Analysis of Soot Particles: Combining Bulk and Single Particle Instrumentation

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Mensah, A. A.; Corbin, J. C.

    2011-12-01

    Soot aerosols are of major interest in current atmospheric research in part because they absorb radiation and influence cloud formation and precipitation by acting as cloud condensation and ice nuclei. In order to predict the properties of atmospheric soot particles, a thorough understanding of their chemical composition and mixing state is of major importance. While freshly emitted soot is initially hydrophobic and externally mixed, it can become internally mixed by coagulating with other particles or by condensation of secondary species such as sulfate, ammonium, organics, nitrate and water. Via these mechanisms, a large fraction of BC is expected to be in an internally mixed state in the atmosphere. Additionally, the combustion process itself leads to a high variability in the chemical composition of the emitted soot particles, depending on the burnt fuel and the burning process. The Soot Particle Aerosol Mass Spectrometer (SP-AMS) is a new instrument especially suited for the chemical characterization of soot particles and their surface coatings. We report on experiments using the SP-AMS for the investigation of soot and black carbon particles produced under well-defined laboratory conditions. The focus of the study is put on a detailed characterization of the new SP-AMS instrument and its capabilities to detect and quantify the mass of the particle's soot core and eventually that of surface coatings. Different soot sources, e.g. particles produced by the miniCAST (Combustion Aerosol STandard) propane burner or aerosolized by an atomizer, are studied. The coating of aerosol particles is achieved by using a laminar flow tube in which secondary species can condense on their surface. The SP-AMS is characterized in conjunction with measurements from an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) that is deployed in parallel. The ATOFMS is capable of sizing and analyzing aerosol particles individually, and gives insight into the mixing state of the analyzed

  4. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also

  5. Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods

    PubMed Central

    Watanabe, Tomonobu M.; Fujii, Fumihiko; Jin, Takashi; Umemoto, Eiji; Miyasaka, Masayuki; Fujita, Hideaki; Yanagida, Toshio

    2013-01-01

    Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees. PMID:23931303

  6. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly

    PubMed Central

    Tomko, Robert J.; Taylor, David W.; Chen, Zhuo A.; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-01-01

    Summary Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. PMID:26451487

  7. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly.

    PubMed

    Tomko, Robert J; Taylor, David W; Chen, Zhuo A; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-10-08

    Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes.

  8. Prospects for single-particle imaging at XFELs

    SciTech Connect

    Chapman, H N; Hau-Riege, S P; London, R A; Marchesini, S; Noy, A; Szoke, A; Szoke, H; Ingerman, E; Hajdu, J; Huldt, G; Howells, M R; He, H; Spence, J H; Weierstall, U

    2004-04-25

    X-ray free-electron lasers will produce pulses of x-rays that are 10 orders of magnitude brighter than today's undulator sources at synchrotrons. This may enable atomic resolution imaging of single macromolecules.

  9. Copackaging of Multiple Adeno-Associated Viral Vectors in a Single Production Step

    PubMed Central

    Doerfler, Phillip A.; Byrne, Barry J.

    2014-01-01

    Abstract Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing. PMID:25143183

  10. Laboratory and Ambient Studies Using an Automated Semi-Continuous Single-Particle Aerosol Raman Spectrometer

    NASA Astrophysics Data System (ADS)

    Doughty, D., III; Hill, S. C.

    2015-12-01

    Single-particle Raman spectra can yield extensive information about in-situ ambient particulate composition. However, Raman spectral measurements of individual aerosol particles typically require collection of samples in the field followed by offline Raman spectral measurements in a laboratory. The process requires considerable operator time. We report results obtained with an automated, single-particle Aerosol Raman Spectrometer built by Battelle, which is the core of Battelle's Resource Effective Bioidentification System (REBS). This instrument collects aerosol particles onto a metallized polymer tape and simultaneously measures Raman spectra of particles obtained during the previous collection period. At the end of each collection period (typically 15 minutes), the tape is advanced and the next collection and measurement period is begun. In this way, particles are semi-continuously sampled and their Raman spectra are measured. We show laboratory data from different sizes of polystyrene latex spheres. We also show results from calcium sulfate particles, vehicular emission soot, and other particles. We discuss the influence of imaging time on the quality of the Raman spectra measured and on the ability of the instrument to resolve aerosol particles. Finally, we present results from an outdoor sampling period during the summer of 2015 where the instrument ran unattended for more than one week collecting particles and measuring their Raman spectra. We suggest that the routine use of such an automated particle-sampling instrument should increase our understanding of inorganic and organic aerosols including biological aerosols and sources and fates of these particles.

  11. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  12. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    NASA Astrophysics Data System (ADS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-09-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle-cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  13. An instrument for charge measurement due to a single collision between two spherical particles

    NASA Astrophysics Data System (ADS)

    Xie, L.; Bao, N.; Jiang, Y.; Han, K.; Zhou, J.

    2016-01-01

    It universally exists in moving particular systems that particles can be electrified, in which the particles are chemically identical, just as toner particles, coal dust, and pharmaceutical powders. However, owing to the limit of experimental instruments, so far, there are yet no experiments to illustrate whether a particle can be electrified due to a single collision between two spherical particles, and there are also no experiments to measure the charge carried by a single particle due to a single collision between two particles. So we have developed an instrument for charge measurement due to a single collision between two spheres. The instrument consists of two-sphere collision device, collision charge measurement apparatus, and particles' trajectory tracking system. By using this instrument, we can investigate the collision contact electrification due to a single collision between two spheres and simultaneously record the moving trajectories of spheres after the collision to calculate the rebound angles to identify the contribution of the triboelectrification due to the rubbing between the contact surfaces and the collision contact electrification due to the normal pressure between the contact surfaces.

  14. An instrument for charge measurement due to a single collision between two spherical particles.

    PubMed

    Xie, L; Bao, N; Jiang, Y; Han, K; Zhou, J

    2016-01-01

    It universally exists in moving particular systems that particles can be electrified, in which the particles are chemically identical, just as toner particles, coal dust, and pharmaceutical powders. However, owing to the limit of experimental instruments, so far, there are yet no experiments to illustrate whether a particle can be electrified due to a single collision between two spherical particles, and there are also no experiments to measure the charge carried by a single particle due to a single collision between two particles. So we have developed an instrument for charge measurement due to a single collision between two spheres. The instrument consists of two-sphere collision device, collision charge measurement apparatus, and particles' trajectory tracking system. By using this instrument, we can investigate the collision contact electrification due to a single collision between two spheres and simultaneously record the moving trajectories of spheres after the collision to calculate the rebound angles to identify the contribution of the triboelectrification due to the rubbing between the contact surfaces and the collision contact electrification due to the normal pressure between the contact surfaces.

  15. Identification of volume phase transition of a single microgel particle using optical tweezers

    NASA Astrophysics Data System (ADS)

    Karthickeyan, D.; Gupta, Deepak K.; Tata, B. V. R.

    2016-10-01

    Poly (N-isopropyl acrylamide-co-acrylic acid) (PNIPAM-co-Aac) microgel particles are pH responsive and exhibit volume phase transition (VPT) upon variation of pH. Dynamic light scattering (DLS) is used conventionally to identify VPT and requires a dilute suspension with particle concentration ˜107 particles cm-3 and if particles are polydisperse in nature, DLS data interpretation is relatively difficult. Here we show that optical tweezers allow one to measure the VPT of a single microgel particle by measuring the optical trap stiffness, κ of trapped particle as a function of pH. We report here a sudden change in κ at VPT, which is shown to arise from a sudden decrease in particle diameter with a concomitant increase in the refractive index of the particle at VPT.

  16. ACMEV-SP2 (Single Particle Soot Photometer)

    DOE Data Explorer

    Sedlacek, Arthur

    2015-06-01

    The SP2 provides information on the amounts of rBC (refractory black carbon) and of other, non-refractory substances associated with individual rBC containing particles by simultaneously measuring the scattering and incandescence signals of such particles that are directed through the cavity of a 1064 nm Nd:YAG laser. (refractory Black Carbon) rBC mixing ratio (ng/Kg) and number size distribution time series collected during the DOE-ARM sponsored ACME-V field campaign held from June 1 to September 15, 2015 rBC mixing ratio is reported at STP conditions Time resolution: 10 sec Uncertainty: ~ 30% SP2 Unit: 25 Location: Deadhorse, AK Location: N 70-degree 11' 41'' - W 148-degress. 27' 55'' SP2_dateTime: UTC rBC concentration is in units of ng/Kg - dry air. Mass Equivalent Diameters [MED] used for size distribution (SP2_min; SP2_geo; and SP2_max) are in units of micrometers dN/dlogDp counts for a given size bin (SP2_geo) listed as 'SP2_cnts_0 - SP2_cnts_199' and are in units of #/cc. Column naming convention: 'SP2_cnts_X' are the number of particles in bin number _X. , where _X is the row number within the 'SP2_geo' size bin column that contains the mass equivalent diameter (e.g., SP2_cnts_0 = 0.01 microns; SP2_cnts_10 = 0.060 microns, etc.). The dN/dlogDp data is time-resolved where a given row is associated with the timestamp for that row. Note that the rBC column length is one field shorter than the SP2_datetime column. Last time field is not relevant to the rBC time series (see comment below on length of SP2_datetime column) Lengths for SP2_max; SP2_min; SP2_geo are one field longer then the number of SP2_cnts_XX columns . This is to provide bounds for image plots (if desired). Length for SP2_datetime is one field longer than that length of the SP2_cnts_XX columns This is to provide bounds for image plots (if desired) SP2 Calibration: Fullerene soot with corrrection applied for particle density as a function of particle size. No correction for OC content in

  17. Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection.

    PubMed

    Betts, Gareth; Poyntz, Hazel; Stylianou, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew; Hill, Adrian; McShane, Helen

    2012-01-01

    The Bacillus Calmette - Guerin (BCG) vaccine provides a critical but limited defense against Mycobacterium tuberculosis (M.tb). More than 60 years after the widespread introduction of BCG, there is an urgent need for a better vaccine. A large body of pre-clinical research continues to support ongoing clinical trials to assess whether viral vectors expressing M.tb antigens that are shared by BCG and M.tb, can be used alongside BCG to enhance protection. A major focus involves using multiple unique viral vectors to limit anti-vector immunity and thereby enhance responses to the insert antigen delivered. The successful introduction of viral vector vaccines to target M.tb and other pathogens will be reliant on reducing the costs when using multiple vectors and inhibiting the development of unwanted anti-vector responses that interfere with the response to insert antigen. This study examines methods to reduce the logistical costs of vaccination by mixing different viral vectors that share the same insert antigen in one vaccine; and whether combining different viral vectors reduces anti-vector immunity to improve immunogenicity to the insert antigen. Here we show that a homologous prime-boost regimen with a mixture of MVA (Modified Vaccinia virus Ankara) and Ad5 (human adenovirus type 5) vectors both expressing Ag85A in a single vaccine preparation is able to reduce anti-vector immunity, compared with a homologous prime-boost regimen with either vector alone. However, the level of immunogenicity induced by the homologous mixture remained comparable to that induced with single viral vectors and was less immunogenic than a heterologous Ad5 prime-MVA-boost regimen. These findings advance the understanding of how anti-vector immunity maybe reduced in viral vector vaccination regimens. Furthermore, an insight is provided to the impact on vaccine immunogenicity from altering vaccination methods to reduce the logistical demands of using separate vaccine preparations in the

  18. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of < 20 %. While these could be explained as IPR by ice break-up, for INP their IN-ability pathway is less clear. After removal of the contamination artifacts, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH

  19. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  20. Experimental Test of Nonclassicality for a Single Particle

    DTIC Science & Technology

    2008-08-01

    R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer ,” Phys. Rev. A 41, 2910-2913 (1990). 9. T. E. Kiess, Y. H...M. D. Eisaman, E. A. Goldschmidt, J. Chen, J. Fan, and A. Migdall, “Experimental test of nonlocal realism using a fiber -based source of polarization...experiment, photons in the heralding arm are routed by a single-mode fiber (SMF) to a Si-single-photon Avalanche Diode (SPAD) operating in Geiger mode, while

  1. Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Corbin, J. C.; Mensah, A. A.; Keller, A.; Kim, J.; Petzold, A.; Sierau, B.

    2012-07-01

    The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL). It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2. Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5-10 nm). It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total particle mass

  2. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  3. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  4. Fabrication of Discrete Nanosized Cobalt Particles Encapsulated Inside Single-Walled Carbon Nanotubes

    SciTech Connect

    Zoican Loebick, C.; Majewska, M; Ren, F; Haller, G; Pfefferle, L

    2010-01-01

    Single-walled carbon nanotubes (SWNT) with encapsulated nanosized cobalt particles have been synthesized by a facile and scalable method. In this approach, SWNT were filled with a cobalt acetylacetonate solution in dichloromethane by ultrasonication. In a second step, exposure to hydrogen at different temperatures released discrete cobalt particles of controllable size inside the SWNT cavity. The SWNT-Co particles systems were characterized by transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, and thermal gravimetric analysis.

  5. [Atomic force microscopy: a tool to analyze the viral cycle].

    PubMed

    Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine

    2015-05-01

    Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level.

  6. Controlling High-Frequency Collective Electron Dynamics via Single-Particle Complexity

    NASA Astrophysics Data System (ADS)

    Alexeeva, N.; Greenaway, M. T.; Balanov, A. G.; Makarovsky, O.; Patanè, A.; Gaifullin, M. B.; Kusmartsev, F.; Fromhold, T. M.

    2012-07-01

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  7. Controlling high-frequency collective electron dynamics via single-particle complexity.

    PubMed

    Alexeeva, N; Greenaway, M T; Balanov, A G; Makarovsky, O; Patanè, A; Gaifullin, M B; Kusmartsev, F; Fromhold, T M

    2012-07-13

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  8. Enhanced single-particle brightness and photostability of semiconductor polymer dots by enzymatic oxygen scavenging system

    NASA Astrophysics Data System (ADS)

    Liu, Zhihe; Yang, Yingkun; Sun, Zezhou; Wu, Changfeng

    2016-12-01

    Semiconductor polymer dots (Pdots) are emerging as an excellent fluorescent probe in biology and medicine. However, the photostability of Pdots can't meet the requirements of long term single-particle imaging and tracking applications. Here we describe the enhanced single-particle brightness and photostability of Pdots by using an efficient enzymatic oxygen scavenging system (OSS). Pdots with particle diameters of 21 nm and 43 nm (PFBT21 and PFBT43) were prepared by a nanoprecipitation method. Single-particle imaging and photobleaching were performed to investigate the effect of OSS on the per-particle brightness and photostability of Pdots. Our results indicate that the single-particle brightness of the PFBT21 Pdots in OSS was enhanced nearly two times as compare to the PFBT21 Pdots in water. The photobleaching percentages of PFBT21 and PFBT43 in OSS were determined to be 29% and 33%, respectively. These values are decreased by 2-3 times as compared to those of the same Pdots in water, indicating the significantly improved photostability of Pdots by OSS. This study provides a promising approach for enhancing photostability of Pdots in long term single-particle tracking.

  9. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    PubMed Central

    Greulich, Karl Otto

    2010-01-01

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise—only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified. PMID:20162017

  10. Single molecule experiments challenge the strict wave-particle dualism of light.

    PubMed

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  11. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    PubMed

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  12. Analysis of the ideal phase-Doppler System: Limitations imposed by the single-particle constraint

    SciTech Connect

    Edwards, C.F.; Marx, K.D.

    1991-06-01

    This paper explores the effects of particles statistics on the ability of a phase-Doppler system (or any single-particle diagnostic) to make accurate measurements of complex particle flows. This is accomplished by analyzing the response of an ideal phase-Doppler system to a postulated particle flux. The ideal system defined here senses particles of all sizes and velocities with perfect accuracy, but is subject to one constraint: in order for a measurement to be considered valid there must be only one particle in the probe volume at a time. A consequence of this constraint is that the measured flux of particles is similar to the true flux, but reduced by passage through two stages of filters. The first rejects particles for insufficient spacing and is controlled by a spatial Poisson process, while the second rejects particles for excessive residence time and is driven by a temporal Poisson process. The key filter parameters are the expected values of the number of particles in the probe volume and the number of particles entering the probe region during the residence time of a previous particle. Only if these values are kept below order 10{sup {minus}2} can the measured joint distribution function, flux rate, and derived quantities, be assumed to reflect the true nature of the flow. 8 refs., 30 figs., 2 tabs.

  13. Silencing Viral MicroRNA as a Novel Antiviral Therapy?

    PubMed Central

    Moens, Ugo

    2009-01-01

    Viruses are intracellular parasites that ensure their existence by converting host cells into viral particle producing entities or into hiding places rendering the virus invisible to the host immune system. Some viruses may also survive by transforming the infected cell into an immortal tumour cell. MicroRNAs are small non-coding transcripts that function as posttranscriptional regulators of gene expression. Viruses encode miRNAs that regulate expression of both cellular and viral genes, and contribute to the pathogenic properties of viruses. Hence, neutralizing the action of viral miRNAs expression by complementary single-stranded oligonucleotides or so-called anti-miRNAs may represent a strategy to combat viral infections and viral-induced pathogenesis. This review describes the miRNAs encoded by human viruses, and discusses the possible therapeutic applications of anti-miRNAs against viral diseases. PMID:19704916

  14. Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice.

    PubMed

    Gil, Lázaro; López, Carlos; Lazo, Laura; Valdés, Iris; Marcos, Ernesto; Alonso, Ruby; Gambe, Ailyn; Martín, Jorge; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-10-01

    Virus-like particles are a highly effective type of subunit vaccine that mimics the overall structure of virus particles without containing infectious genetic material. In this work, a particulate form of the recombinant capsid protein from dengue-2 was evaluated in mice to determine the level of protection against viral challenge and to measure the antigen-induced cell-mediated immunity (CMI). The nucleocapsid-like particles (NLPs) adjuvanted with alum did not induce antiviral antibodies. However, splenocytes from the immunized animals secreted high levels of IFN-gamma upon virus stimulation, and a significant protection rate was achieved after challenge with lethal dengue-2 virus. Finally, both IFN-gamma secretion and protection against viral encephalitis were demonstrated to be dependent on CD4(+) and CD8(+) cells. This study provides new evidences regarding the protective role of the CMI in the mouse model without the induction of neutralizing antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.

  15. Simultaneous Measurement of Size, Composition, Hygroscopicity, and Density of Single Ambient Particles

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Han, J.; Oatis, S.

    2003-12-01

    The holly grail in aerosol climate interaction is a roadmap that takes one from emissions of aerosol and aerosol precursors through aerosol transformations, to optical and cloud effects and finally to climate impacts. A critical element on this path must be the behavior of aerosol as a function of atmospheric relative humidity, which in turn requires an understanding of the correlation between aerosol composition and hygroscopicity. For single component particles this problem is tractable and reasonably understood. But, the vast majority of particles in the real atmosphere are internal mixtures of hygroscopic salts, organic acids and or bases, long chain hydrocarbons, soot, mineral dust and the list go on. Hundreds of organic compounds with highly varying hygroscopicities can be found in single particles. It would be unrealistic to expect global climate models to include and track each of these compounds. A similar problem faces the experimental world, where measuring the size, detailed molecular composition and hygroscopicity of individual particles although, in principle possible, is impractical. Single particle mass spectroscopy can be used to classify particles as organics mixed with sulfate, for example. Or in some cases pinpoint the class of some of the organics found in the mixture. But it cannot yield a quantitative measure of relative amounts. In an attempt to address this issue we have developed the method to measure simultaneously hygroscopicity, size, and composition of individual ambient particles. However, the data from Long Island NY, where the vast majority of particles were internally mixed sulfate with organics, the correlation between composition and hygroscopicity was rather weak. This is due to the fact that single-laser single particle mass spectra cannot quantitatively measure the ratio of organics to sulfates. In contrast, we found a very clear correlation between hygroscopicity and particle density for a given class of particles. In this

  16. Efficient Induction of Nuclear Aggresomes by Specific Single Missense Mutations in the DNA-binding Domain of a Viral AP-1 Homolog*

    PubMed Central

    Park, Richard; Wang'ondu, Ruth; Heston, Lee; Shedd, Duane; Miller, George

    2011-01-01

    Nuclear aggresomes induced by proteins containing an expanded polyglutamine (polyQ) tract are pathologic hallmarks of certain neurodegenerative diseases. Some GFP fusion proteins lacking a polyQ tract may also induce nuclear aggresomes in cultured cells. Here we identify single missense mutations within the basic DNA recognition region of Bam HI Z E B virus replication activator (ZEBRA), an Epstein-Barr virus (EBV)-encoded basic zipper protein without a polyQ tract, that efficiently induced the formation of nuclear aggresomes. Wild-type (WT) ZEBRA was diffusely distributed within the nucleus. Four non-DNA-binding mutants, Z(R179E), Z(R183E), Z(R190E), and Z(K178D) localized to the periphery of large intranuclear spheres, to discrete nuclear aggregates, and to the cytoplasm. Other non-DNA-binding mutants, Z(N182K), Z(N182E), and Z(S186E), did not exhibit this phenotype. The interior of the spheres contained promyelocytic leukemia and HSP70 proteins. ZEBRA mutants directly induced the nuclear aggresome pathway in cells with and without EBV. Specific cellular proteins (SC35 and HDAC6) and viral proteins (WT ZEBRA, Rta, and BMLF1) but not other cellular or viral proteins were recruited to nuclear aggresomes. Co-transfection of WT ZEBRA with aggresome-inducing mutants Z(R183E) and Z(R179E) inhibited late lytic viral protein expression and lytic viral DNA amplification. This is the first reported instance in which nuclear aggresomes are induced by single missense mutations in a viral or cellular protein. We discuss conformational changes in the mutant viral AP-1 proteins that may lead to formation of nuclear aggresomes. PMID:21233201

  17. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  18. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.

    PubMed

    Rakcheev, Denis; Philippe, Allan; Schaumann, Gabriele E

    2013-11-19

    Studying the environmental fate of engineered or natural colloids requires efficient methods for measuring their size and quantifying them in the environment. For example, an ideal method should maintain its correctness, accuracy, reproducibility, and robustness when applied to samples contained in complex matrixes and distinguish the target particles from the natural colloidal background signals. Since it is expected that a large portion of nanoparticles will form homo- or heteroagglomerates when released into environmental media, it is necessary to differentiate agglomerates from primary particles. At present, most sizing techniques do not fulfill these requirements. In this study, we used online coupling of two promising complementary sizing techniques: hydrodynamic chromatography (HDC) and single-particle ICPMS analysis to analyze gold nanoparticles agglomerated under controlled conditions. We used the single-particle mode of the ICPMS detector to detect single particles eluted from an HDC-column and determine a mass and an effective diameter for each particle using a double calibration approach. The average agglomerate relative density and fractal dimension were calculated using these data and used to follow the morphological evolution of agglomerates over time during the agglomeration process. The results demonstrate the ability of HDC coupled to single-particle analysis to identify and characterize nanoparticle homoagglomerates and is a very promising technique for the analysis of colloids in complex media.

  19. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  20. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance

    PubMed Central

    Wang, Shaopeng; Shan, Xiaonan; Patel, Urmez; Huang, Xinping; Lu, Jin; Li, Jinghong; Tao, Nongjian

    2010-01-01

    We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm2). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles. PMID:20798340

  1. Discrimination between spheres and spheroids in a detection system for single particles based on polarization characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Zhai, Mengran; Sun, Jinlu; Zhou, Ye; Jia, Dagong; Liu, Tiegen; Zhang, Yimo

    2017-01-01

    The polarization characteristics of light scattered by particles are sensitive to the morphology of the scatterers. In this study, we employed the finite element method (FEM) with a finite element software (COMSOL multiphysics) to retain the potentiality to extend the theoretical study of scattering in this work to single particles with more complex morphology and arbitrary orientation. The angular distribution profiles of the scattering field components perpendicular and parallel to the incident polarization direction are obtained for spherical and spheroidal particles. By comparison with the spheres' preservation of the polarization, cross-polarization effects for differently oriented spheroidal particles are revealed. The question how to experimentally discriminate the particles with smooth surface moving freely in the detected area at single-particle level according to polarization is addressed. To this end, polarizing devices are inserted into an interference particle imaging (IPI) system. By detecting the orthogonally polarized components of the light, the preservation of the polarization state after scattering by spheres and the occurrence of cross-polarization effects after scattering by spheroids are verified experimentally with the fringes in the IPI system as a reference. A feasible method for distinguishing a spheroidal from a spherical shape at the single-particle level based on the existence of a cross-polarized component of the scattered light is proposed.

  2. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiu-Lin; Liu, Wei

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  3. Progress report of the single particle irradiation system to cell (SPICE)

    NASA Astrophysics Data System (ADS)

    Imaseki, Hitoshi; Ishikawa, Takahiro; Iso, Hiroyuki; Konishi, Teruaki; Suya, Noriyoshi; Hamano, Takeshi; Wang, Xufei; Yasuda, Nakahiro; Yukawa, Masae

    2007-07-01

    At the National Institute of Radiological Sciences (NIRS), we constructed a microbeam system in 2003, the single particle irradiation to cell, SPICE. From the beginning of 2005, we redesigned it to improve the stability of the optical alignment of the system, and obtained an reduction of the beam size proportional to the vertical dimension of the object slits. As a result, SPICE is now capable of producing a beam size of approximately 10 μm diameter, and the particle numbers controllable to an intensity as low as single particles per second, and therefore a single particle irradiation facility has been successfully implemented. Moreover, these conditions can be easily reproduced with a employing a routine procedure. We describe in detail the modifications of the beam line and results, demonstrating the improvements. In addition, results from our first biological experiments are shown.

  4. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K.; Yeh, H.-C.

    2015-10-01

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  5. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    SciTech Connect

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K. E-mail: tim.yeh@austin.utexas.edu; Yeh, H.-C. E-mail: tim.yeh@austin.utexas.edu

    2015-10-12

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  6. Analysis and Interpretation of Superresolution Single-Particle Trajectories

    PubMed Central

    Holcman, D.; Hoze, N.; Schuss, Z.

    2015-01-01

    A large number (tens of thousands) of single molecular trajectories on a cell membrane can now be collected by superresolution methods. The data contains information about the diffusive motion of molecule, proteins, or receptors and here we review methods for its recovery by statistical analysis of the data. The information includes the forces, organization of the membrane, the diffusion tensor, the long-time behavior of the trajectories, and more. To recover the long-time behavior and statistics of long trajectories, a stochastic model of their nonequilibrium motion is required. Modeling and data analysis serve extracting novel biophysical features at an unprecedented spatiotemporal resolution. The review presents data analysis, modeling, and stochastic simulations applied in particular on surface receptors evolving in neuronal cells. PMID:26536253

  7. A new coincidence model for single particle counters, Part II: Advances and applications.

    PubMed

    Knapp, J Z; Lieberman, A; Abramson, L R

    1994-01-01

    Accuracy, acceptance limits and methods for U.S.P. (788) contaminating particle assays published in the XXII Revision are refined in U.S.P. XXIII. In both Revisions, although different numerical values and methods are employed, particle contamination limits remain constants for all S.V.I. container volumes. The effect of this quality standard is high particle concentration acceptance limits in the smallest S.V.I. container sizes. The effect of these high concentrations is to introduce both undercount errors and false counts into U.S.P. (788) SVI contaminating particle assays. There is general agreement that the count of high concentrations of particles by a single particle light extinction counter result in an increase of the average size of the distribution of particles reported and a decrease in their total number. The error mechanism is termed "signal coincidence." Understanding and control of both these problems is unified with the introduction of the count efficiency parameter. Part I of this paper makes available two core concepts with which evaluation and control of coincidence error in single particle counters can be accurately quantified. These two core concepts are the "Particle Triggered Poisson Model," a new more accurate statistical model of the particle counting process and a concentration measure that includes the effect of particle size on the counting capability of a detector. Use of these concepts make it possible to evaluate particle detector count efficiency capability from experimental data of the coincidence effect. This is an application paper. It combines the theory in the Part I paper with the replicability of particle counters into a simple test protocol. The test results can be used to calculate a contour of particle size and count within which both undercount errors and the introduction of false counts into U.S.P. (788) particle assays are controlled. From the data analyzed it can be seen that any single particle size test cannot

  8. A Single Particle Soot Photometer for the Measurement of Aerosol Black Carbon

    NASA Astrophysics Data System (ADS)

    Kok, G. L.; Baumgardner, D.; Spuler, S.

    2002-12-01

    A Single Particle Soot Photometer (SP2) has been developed for the measurement of black carbon mass in single particles. The analytical technique is the incandescence of light absorbing particles. An aerosol stream is directed intra-cavity across the beam of a Nd:YAG laser where the laser intensity is in excess of 1 MW/cm2. Non-light absorbing particles only scatter light but particles containing black carbon absorb sufficient energy to heat and incandesce as they vaporize. Four optical detectors are used to measure the scattered and incandescence radiation from the particles. One measures the scattered, 1064 nm radiation while the other three detectors measure the light of incandescence over different wavelength regions. The ratio of intensities at the different wavelengths yields the temperature at which the particle incandesced whereas the absolute intensity is proportional to the carbon mass. The minimum size of non-incandescing particles that can be measured is approximately 100 nm and for incandescing particles it is 80 nm. Data will be presented on the operation of the instrumentation and examples of ambient measurements of black carbon.

  9. Study of the comminution characteristics of coal by single particle breakage test device

    SciTech Connect

    Sahoo, R.

    2005-09-01

    Single-particle breakage tests of South Blackwater and Ensham coal from the Bowen Basin area in Queensland were conducted by a computer-monitored twin-pendulum device to measure the energy utilization pattern of the breakage particles. Three particle sizes (-16.0+13.2mm, -13.2+11.2mm, -11.2+9.5mm) of each coal were tested by a pendulum device at five input energy levels to measure the specific comminution energy. When particles were tested at constant input energy, the variation of comminution energy between the same size broken particles of Ensham coal was minimal, because Ensham coal is a softer and higher friability coal, which absorbs more input energy than harder coal during breakage tests. For different particle sizes, the specific comminution energy increases linearly with the input energy and the fineness of the breakage products increases with the specific comminution energy. The size distribution graphs are curved but approach linearity in the finer region. At a constant input energy, the twin pendulum breakage product results show that the fineness of the products increases with decrease in particle size and South Blackwater coal produced finer products than the Ensham coal. The t-curves are the family of size distribution curves, which can describe the product size distribution of the breakage particles during single-particle breakage tests.

  10. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  11. ORBXYZ: A 3D single-particle orbit code for following charged particle trajectories in equilibrium magnetic fields

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Cohen, R. H.; Ferguson, J. R.; Johnston, B. M.; Sharp, C. B.; Willmann, P. A.

    1981-06-01

    The single particle orbit code, TIBRO, was modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications.

  12. Digital atom interferometer with single particle control on a discretized space-time geometry.

    PubMed

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  13. Single particle detection: Phase control in submicron Hall sensors

    NASA Astrophysics Data System (ADS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-11-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ ≈108 μB has been achieved with a 600 nm-wide sensor.

  14. Competing single-particle and collective behavior in 71Se

    NASA Astrophysics Data System (ADS)

    Howe, A. R.; Haring-Kaye, R. A.; Döring, J.; Baker, N. R.; Kuhn, S. J.; Tabor, S. L.; Arora, S. R.; Bruckman, J. K.; Hoffman, C. R.

    2012-07-01

    The high-spin decay of 71Se was studied using the 54Fe(23Na,αpn) reaction at 80 MeV and the Florida State University Compton-suppressed Ge array consisting of three clover detectors and seven single-crystal detectors. Based on prompt γ-γ coincidences measured in the experiment, the known level scheme was enhanced and extended to higher spin with 19 new transitions. A band that was previously suggested to have positive parity was reassigned as the “missing” signature partner of an existing negative-parity band. Spins were assigned based on directional correlation of oriented nuclei ratios. Lifetimes of 17 excited states were measured using the Doppler-shift attenuation method. Experimental Qt values imply an intermediate degree of collective behavior for 71Se at high spin. Theoretical Qt values determined from cranked Woods-Saxon (CWS) calculations show better agreement with the experimental ones for the positive-parity states than the negative-parity states. Shape competition and γ softness characterize the low-spin states of the lowest positive- and negative-parity bands based on the CWS calculations. At high spin, triaxial shapes with γ>0∘ are predicted.

  15. Studying biofuel aerosol evaporation rates with single particle manipulation

    NASA Astrophysics Data System (ADS)

    Corsetti, S.; Miles, R. E. H.; Reid, J. P.; Kiefer, J.; McGloin, D.

    2014-09-01

    The significant increase in the air pollution, and the impact on climate change due to the burning of fossil fuel has led to the research of alternative energies. Bio-ethanol obtained from a variety of feedstocks can provide a feasible solution. Mixing bio-ethanol with gasoline leads to a reduction in CO emission and in NOx emissions compared with the use of gasoline alone. However, adding ethanol leads to a change in the fuel evaporation. Here we present a preliminary investigation of evaporation times of single ethanol-gasoline droplets. In particular, we investigated the different evaporation rate of the droplets depending on the variation in the percentage of ethanol inside them. Two different techniques have been used to trap the droplets. One makes use of a 532nm optical tweezers set up, the other of an electrodynamics balance (EDB). The droplets decreasing size was measured using video analysis and elastic light scattering respectively. In the first case measurements were conducted at 293.15 K and ambient humidity. In the second case at 280.5 K and a controlled environment has been preserved by flowing nitrogen into the chamber. Binary phase droplets with a higher percentage of ethanol resulted in longer droplet lifetimes. Our work also highlights the advantages and disadvantages of each technique for such studies. In particular it is challenging to trap droplets with low ethanol content (such as pure gasoline) by the use of EDB. Conversely such droplets are trivial to trap using optical tweezers.

  16. Single particle detection: Phase control in submicron Hall sensors

    SciTech Connect

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-11-15

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 {mu}m. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of {mu}{approx_equal}10{sup 8} {mu}{sub B} has been achieved with a 600 nm-wide sensor.

  17. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  18. Coexisting single-particle and collective excitations in 70As

    NASA Astrophysics Data System (ADS)

    Haring-Kaye, R. A.; Elder, R. M.; Döring, J.; Tabor, S. L.; Volya, A.; Allegro, P. R. P.; Bender, P. C.; Medina, N. H.; Morrow, S. I.; Oliviera, J. R. B.; Tripathi, V.

    2015-10-01

    High-spin states in 70As were studied using the 55Mn(18O,3 n ) fusion-evaporation reaction at a beam energy of 50 MeV. Prompt γ -γ coincidences were measured using the Florida State University Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. A reinvestigation of the known level scheme resulted in the addition of 32 new transitions and the rearrangement of 10 others. The high-spin decay pattern of yrast negative-parity states was modified and enhanced extensively. Spins were assigned based on directional correlation of oriented nuclei ratios. Lifetimes of seven excited states were measured using the Doppler-shift attenuation method. The B (E 2 ) rates inferred from the lifetimes of states in the yrast positive-parity band imply substantial collectivity, in agreement with the results of previous studies. Substantial signature splitting and large alternations in the B (M 1 ) strengths were observed in this band as well, supporting the interpretation of an aligned π g9 /2⊗ν g9 /2 intrinsic configuration for this structure beginning at the lowest 9+ state. Large-scale shell-model calculations performed for 70As reproduce the relative energy differences between adjacent levels and the B (M 1 ) rates in the yrast positive-parity band rather well, but underestimate the B (E 2 ) strengths. The g9 /2 orbital occupancies for the lowest 9+ state predicted by the shell-model calculations provide additional evidence of a stretched π g9 /2⊗ν g9 /2 configuration for this state.

  19. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    PubMed

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated.

  20. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  1. Single crystal structure analysis of a single Sm{sub 2}Fe{sub 17}N{sub 3} particle

    SciTech Connect

    Inami, Nobuhito Takeichi, Yasuo; Saito, Kotaro; Sagayama, Ryoko; Kumai, Reiji; Ono, Kanta; Ueno, Tetsuro

    2014-05-07

    We performed single crystal structure analysis of Sm{sub 2}Fe{sub 17}N{sub 3} using X-ray diffraction. A pick-up system combined with a micromanipulation tool driven by piezoelectric actuators and a microgripper was used. A single Sm{sub 2}Fe{sub 17}N{sub x} particle with the diameter of about 20 μm was picked up, and X-ray diffraction was measured using an X-ray diffractometer at the synchrotron radiation beamline at the Photon Factory, KEK. Single crystal structure analysis of a Sm{sub 2}Fe{sub 17}N{sub 3} particle was performed and the structure was successfully determined from X-ray diffraction patterns. The space group and the lattice constants were determined to be R-3m (number sign166) a = b = 8.7206 Å and c = 12.6345 Å, respectively. Atomic positions of Sm and Fe atoms were accurately determined by single crystal structure analysis of only one particle.

  2. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  3. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  4. High Precision Density Measurements of Single Particles: The Density of Metastable Phases

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Chieffo, Logan; Imre, Dan G.

    2005-10-01

    We describe a system designed to measure the size, composition and density of individual particles in real-time. It uses a DMA to select a monodisperse particle population and the single particle mass spectrometer to measure individual particle mass spectrometer to measure individual particle aerodynamic diameter and composition. Mobility and aerodynamic diameters are used to extract particle density. The addition of individual particle density to the mass spectrum is intended to improve the data classification process. In the present paper we demonstrate that the system has the requisite accuracy and resolution to make this approach practicable. We also present a high precision variant that uses an internal calibrant to remove any of the systematic errors and significantly improves the measurement quality. The high precision scheme is most suitable for laboratory studies making it possible to follow slight changes in particle density. An application of the system to measure the density of hygroscopic particles of atmospheric importance in metastable phases near zero relative humidity is presented. The density data are consistent with conclusions reached in a number of other studies that some particle systems of atmospheric significance once deliquesced persist as droplets down to near zero relative humidity.

  5. The magic nature of 132Sn explored through the single-particle states of 133Sn

    SciTech Connect

    Jones, K. L.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Harlin, Christopher W; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian; Nesaraja, Caroline D; Nunes, F. M.; Pain, S. D.; Patterson, N. P.; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.

    2010-05-01

    Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lies outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.

  6. Conversion of bacteriophage G4 single-stranded viral DNA to double-stranded replicative form in dna mutants of Escherichia coli.

    PubMed

    Kodaira, K I; Taketo, A

    1977-05-17

    Host functions involved in synthesis of parental replicative form of bacteriophage G4 were investigated using various replication mutants of Escheria coli. In dna+ bacteria, conversion of single-stranded viral DNA to replicative form DNA was insensitive to 200 microng/ml of rifampicin or 25 microng/ml of chloramphenicol. At high temperature, synthesis of parental replicative form was unaffected in mutants thermosensitive for dnaA, dnaB, dnaC(D), dnaE or dnaH. In dnaG or dnaZ mutants, however, parental replicative from DNA synthesis was clearly thermosensitive at 43 degrees C. Although the host rep product was essential for viral multiplication, the conversion of single stranded to replicative form was independent of the rep function.

  7. Achieving Size Independent Hit-Rate in Single Particle Mass Spectrometry

    SciTech Connect

    Zelenyuk, Alla; Yang, Juan; Imre, Dan G.; Choi, Eric Y.

    2009-04-01

    Recent improvements in single particle mass spectrometers make it possible to optically detect, size, and characterize the compositions of individual particles with diameters larger than a micron and smaller than 100 nm. Based on particle detection in two stages of optical detection these instruments generate a precisely timed trigger pulse, which is used to fire the ion generation laser or lasers. Practical experience shows that the wide size range results in small, but significant differences in laser trigger timing between small and large particles. If not treated, the instrument hit-rate becomes size dependent and instrument operator is forced to optimize the instrument for the desired size range, while having to contend with a lower hit-rate for the other. The present paper presents an analysis of the problem, demonstrating that size dependence of laser trigger timing stems from the differences in the particle position within the detection laser beam at the instant of detection. It shows that it is possible to compensate for these differences by generation a laser trigger delay coefficient for individual particles as a function of particle time of flight, i.e. its size. The study also shows that a single function can be used to characterize particles with a wide range of densities.

  8. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  9. Single-Particle Composition Measured in an Alpine Valley: Wood Smoke, EC and BC

    NASA Astrophysics Data System (ADS)

    Liepmann, C.; Gross, D. S.; Benzaid, S.; Christensen, J.; Turetsky, E.; Musicant, D.; Sandradewi, J.; Prevot, A.; Baltensperger, U.

    2007-12-01

    Particulate pollution is an issue of concern in today's society. Current regulations focus on the mass of particulate matter (PM) per volume of air, and not the source or chemical composition of the PM. Here we will present results from the AEROWOOD campaign in Roveredo, Switzerland where we investigated the PM composition measured using a single-particle mass spectrometer (TSI 3800 ATOFMS) to identify the sources of ambient particles. The goal was to differentiate wood smoke particles from diesel emissions. Roveredo is located in a deep alpine valley with strong wintertime thermal inversions, trapping the emissions. Local homes are predominantly heated by wood fires, and the village is located along a motorway that crosses the Swiss alps, providing two distinct particle sources. The particles sampled with the ATOFMS have been analyzed in a variety of ways with a focus on the temporal trends of the different particle types identified. Of particular interest is the distinction made between elemental carbon (EC) and black carbon (BC). During AEROWOOD, EC was measured chemically using real- time thermo/optical methods. BC was recorded directly by absorption, using an aethalometer. Regression models have been constructed to predict the EC and BC values using the single-particle mass spectra, providing chemical insight into the differences in these quantities. Additionally, comparing the timeline plots of EC, BC and the particle types found from the ATOFMS data should provide an idea as to the sources of EC and BC in this location.

  10. Sensing, capturing, and interrogation of single virus particles with solid state nanopores

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Kim, Minjun

    2015-05-01

    Solid-state nanopores have gained much attention as a bioanalytical platform. By virtue of their tunable nanoscale dimensions, nanopore sensors can a spatial resolution that spans a wide range of biological species from a single-molecule to a single virus or microorganism. Several groups have already used solid-state nanopores for tag-free detection of viruses. However, no one has reported use of nanopores to capture a single virus for further interrogation by the electric field inside nanopores. In this paper we will report detection of single HIV-1 particle with solid-state nanopores and demonstrate the ability to trap a single HIV-1 particle on top of a nanopore and force it to squeeze through the pore using an electric field.

  11. Fabs enable single particle cryoEM studies of small proteins.

    PubMed

    Wu, Shenping; Avila-Sakar, Agustin; Kim, JungMin; Booth, David S; Greenberg, Charles H; Rossi, Andrea; Liao, Maofu; Li, Xueming; Alian, Akram; Griner, Sarah L; Juge, Narinobu; Yu, Yadong; Mergel, Claudia M; Chaparro-Riggers, Javier; Strop, Pavel; Tampé, Robert; Edwards, Robert H; Stroud, Robert M; Craik, Charles S; Cheng, Yifan

    2012-04-04

    In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM.

  12. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  13. Analysis of proton single-particle properties of zinc and germanium isotopes

    SciTech Connect

    Bespalova, O. V. Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2014-12-15

    Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.

  14. NA49 Results on Single Particle and Correlation Measurements in Central PB+PB Collisions

    SciTech Connect

    Wang, F.

    1998-12-01

    Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.

  15. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    PubMed

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  16. Carbon Nanotube-Quantum Dot Nanohybrids: Coupling with Single-Particle Control in Aqueous Solution.

    PubMed

    Attanzio, Antonio; Sapelkin, Andrei; Gesuele, Felice; van der Zande, Arend; Gillin, William P; Zheng, Ming; Palma, Matteo

    2017-02-10

    A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.

  17. Accounting for changes in particle charge, dry mass and composition occurring during studies of single levitated particles.

    PubMed

    Haddrell, Allen E; Davies, James F; Yabushita, Akihiro; Reid, Jonathan P

    2012-10-11

    The most used instrument in single particle hygroscopic analysis over the past thirty years has been the electrodynamic balance (EDB). Two general assumptions are made in hygroscopic studies involving the EDB. First, it is assumed that the net charge on the droplet is invariant over the time scale required to record a hygroscopic growth cycle. Second, it is assumed that the composition of the droplet is constant (aside from the addition and removal of water). In this study, we demonstrate that these assumptions cannot always be made and may indeed prove incorrect. The presence of net charge in the humidified vapor phase reduces the total net charge retained by the droplet over prolonged levitation periods. The gradual reduction in charge limits the reproducibility of hygroscopicity measurements made on repeated RH cycles with a single particle, or prolonged experiments in which the particle is held at a high relative humidity. Further, two contrasting examples of the influence of changes in chemical composition changes are reported. In the first, simple acid-base chemistry in the droplet leads to the irreversible removal of gaseous ammonia from a droplet containing an ammonium salt on a time scale that is shorter than the hygroscopicity measurement. In the second example, the net charge on the droplet (<100 fC) is high enough to drive redox chemistry within the droplet. This is demonstrated by the reduction of iodic acid in a droplet made solely of iodic acid and water to form iodine and an iodate salt.

  18. Single-crystal CVD diamond detector for high-resolution particle spectrometry

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Murakami, H.; Shimaoka, T.; Tsubota, M.; Kaneko, J. H.

    2014-11-01

    The performance of a single-crystal diamond detector, grown by chemical vapour deposition, as an energy spectrometer for charged particles was studied. The detector was able to identify four different energies of 241\\text{Am} α -particles (5.389, 5.443, 5.486, and 5.545 MeV) thanks to a superior intrinsic energy resolution of ˜0.4{%} (full width at half maximum). The electrode configuration, specifically the electric field configuration inside the diamond crystal, and the electrode materials, strongly affect the energy resolution for charged particles. The charge collection efficiency inside the diamond crystal was ˜97{%} for both electrons and holes.

  19. Integrated particles sensor formed on single substrate using fringes formed by diffractive elements

    NASA Technical Reports Server (NTRS)

    Gharib, Morteza (Inventor); Fourguette, Dominique (Inventor); Modarress, Darius (Inventor); Taugwalder, Frederic (Inventor); Forouhar, Siamak (Inventor)

    2005-01-01

    Integrated sensors are described using lasers on substrates. In one embodiment, a first sensor forms a laser beam and uses a quartz substrate to sense particle motion by interference of the particles with a diffraction beam caused by a laser beam. A second sensor uses gradings to produce an interference. In another embodiment, an integrated sensor includes a laser element, producing a diverging beam, and a single substrate which includes a first diffractive optical element placed to receive the diverging beam and produce a fringe based thereon, a scattering element which scatters said fringe beam based on particles being detected, and a second diffractive element receiving scattered light.

  20. Electrical detection of single pollen allergen particles using electrode-embedded microchannels

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Chihiro; Noda, Tetsuya; Tsutsui, Makusu; Taniguchi, Masateru; Kawano, Satoyuki; Kawai, Tomoji

    2012-04-01

    We report on the development of a microfluidic system for the electrical detection of single pollen allergen particles. Our device consists of 500 nm electrode gaps fabricated in an 800 nm wide fluidic channel. We flowed pollen allergen particles of average size 330 nm along the channel via fluid pumping and simultaneously monitored temporal change in dc current flowing through the sensing electrodes. Current spikes were detected, which can be attributed to a capacitance discharging upon trapping/detrapping of single allergens in the electrode gap. This sensing mechanism may open new avenues for a highly sensitive pollen allergen sensor.

  1. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  2. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  3. Wavelength resolved polarized elastic scatter measurements from micron-sized single particles

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Czege, Jozsef; Eversole, Jay D.

    2013-05-01

    The goal of this project is to investigate correlations of polarimetric angular scattering patterns from individual aerosol particles with the particles' physical structure and composition. Such signature patterns may be able to provide particle classification capability, such as, for example, discrimination between man-made and naturally occurring aerosols. If successful, this effort could improve current detection methods for biological warfare (BW) agent aerosols. So far, we have demonstrated an experimental arrangement to measure polarization-state resolved, multi-angle, scattering intensities from single aerosol particles on-the-fly. Our novel approach is a radical departure from conventional polarimetric measurement methods, and a key factor is the use of a multiple-order retarder to prepare different polarization states, depending on the wavelength of the incident light. This novel experimental technique uses a supercontinuum light source, an array of optical fibers, an imaging spectrometer and an EMCCD camera to simultaneously acquire wavelength and angle dependent particle light scattering data as a two-dimensional snapshot. Mueller matrix elements were initially measured from individual particles held in an optical trap (at 405 nm). Since particles can be stably trapped for long periods (hours), we were able to change the optical configuration to acquire multiple Mueller matrix element measurements on a single particle. We have computationally modeled these measurements at specific angles, and the comparison with experimental measurements shows good agreement. Similar measurements have also been made on slowly falling particles, and our current efforts are focused on improving experimental technique sufficiently to make such measurements on flowing particles.

  4. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes.

    PubMed

    Ewers, Helge; Smith, Alicia E; Sbalzarini, Ivo F; Lilie, Hauke; Koumoutsakos, Petros; Helenius, Ari

    2005-10-18

    The lateral mobility of individual murine polyoma virus-like particles (VLPs) bound to live cells and artificial lipid bilayers was studied by single fluorescent particle tracking using total internal reflection fluorescence microscopy. The particle trajectories were analyzed in terms of diffusion rates and modes of motion as described by the moment scaling spectrum. Although VLPs bound to their ganglioside receptor in lipid bilayers exhibited only free diffusion, analysis of trajectories on live 3T6 mouse fibroblasts revealed three distinct modes of mobility: rapid random motion, confined movement in small zones (30-60 nm in diameter), and confined movement in zones with a slow drift. After binding to the cell surface, particles typically underwent free diffusion for 5-10 s, and then they were confined in an actin filament-dependent manner without involvement of clathrin-coated pits or caveolae. Depletion of cholesterol dramatically reduced mobility of VLPs independently of actin, whereas inhibition of tyrosine kinases had no effect on confinement. The results suggested that clustering of ganglioside molecules by the multivalent VLPs induced transmembrane coupling that led to confinement of the virus/receptor complex by cortical actin filaments.

  5. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes

    PubMed Central

    Ewers, Helge; Smith, Alicia E.; Sbalzarini, Ivo F.; Lilie, Hauke; Koumoutsakos, Petros; Helenius, Ari

    2005-01-01

    The lateral mobility of individual murine polyoma virus–like particles (VLPs) bound to live cells and artificial lipid bilayers was studied by single fluorescent particle tracking using total internal reflection fluorescence microscopy. The particle trajectories were analyzed in terms of diffusion rates and modes of motion as described by the moment scaling spectrum. Although VLPs bound to their ganglioside receptor in lipid bilayers exhibited only free diffusion, analysis of trajectories on live 3T6 mouse fibroblasts revealed three distinct modes of mobility: rapid random motion, confined movement in small zones (30–60 nm in diameter), and confined movement in zones with a slow drift. After binding to the cell surface, particles typically underwent free diffusion for 5–10 s, and then they were confined in an actin filament-dependent manner without involvement of clathrin-coated pits or caveolae. Depletion of cholesterol dramatically reduced mobility of VLPs independently of actin, whereas inhibition of tyrosine kinases had no effect on confinement. The results suggested that clustering of ganglioside molecules by the multivalent VLPs induced transmembrane coupling that led to confinement of the virus/receptor complex by cortical actin filaments. PMID:16219700

  6. Comparison of the localization of an electron as determined by the two-particle distribution function and by the single-particle sharing index.

    PubMed

    Fulton, Robert L

    2006-11-09

    A comparison of the measure of the delocalization of a particle based on the two-particle distribution function and that based on the single-particle density matrix is made using a simple set of wave functions which span states ranging from single determinant ground and doubly excited states through states mimicking correlated states and which include the singly excited state for electrons and for bosons replacing electrons in H2. The comparison further includes an analysis of the application of the measures to a classical ideal gas and a compressible fluid. It is found that the values of the integrated atom-atom measures agree for a range of wave functions involving combinations of the two single determinant (and equivalent Bose) wave functions but disagree for a different range of these wave functions and for the singly excited wave functions. Aside from the single determinant (and equivalent Bose) wave functions, the two sets of point-point measures that underlie the integrated measures all differ. For the sets of wave functions considered, the values of the measures are identical for electrons and bosons. When applied to a closed classical ideal gas and to a closed compressible fluid, the delocalization measure based on the two-particle distribution has a residual long range term, whereas the sharing index in the classical limit gives a completely localized particle. In general, the two measures describe different aspects of the behavior of the particles. The measures based on the two-particle distribution function give only two-particle properties and the single-particle density, and the sharing quantities give only single-particle properties. The latter includes, however, the quantitative measures of the delocalization of a single particle, the point-point sharing index and the sharing amplitude.

  7. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  8. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions

    NASA Astrophysics Data System (ADS)

    Cordes, Thorben; Blum, Suzanne A.

    2013-12-01

    In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.

  9. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions.

    PubMed

    Cordes, Thorben; Blum, Suzanne A

    2013-12-01

    In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.

  10. Measuring molecular motions inside single cells with improved analysis of single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Rowland, David J.; Biteen, Julie S.

    2017-04-01

    Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.

  11. Single- and double-stranded viral RNAs in plants infected with the potexviruses papaya mosaic virus and foxtail mosaic virus.

    PubMed

    Mackie, G A; Johnston, R; Bancroft, J B

    1988-01-01

    Three classes of viral RNA were recovered from polyribosomes purified from papaya leaves infected with papaya mosaic virus (PapMV) and from barley leaves infected with foxtail mosaic virus (FoMV): full-length viral RNAs [6.8 and 6.2 kilobases (kb), respectively]; less abundant intermediate subgenomic RNAs (2.2 and 1.9 kb), and abundant, small subgenomic RNAs (1 and 0.9 kb). Small amounts of the PapMV-specified 1.0-kb subgenomic RNA were encapsidated, whereas no encapsidated subgenomic RNAs could be found in preparations of FoMV. Immunoprecipitation of the products of in vitro translation of the small subgenomic RNA of both viruses showed that it codes for the corresponding viral coat protein. FoMV genomic RNA isolated from polyribosomes also directed the efficient synthesis of a 37- to 38-kilodalton protein which was immunoprecipitated by an antiserum raised against the coat protein. We presume this product to be a readthrough protein initiated to the 5' side of and in the same reading frame as the coat protein-coding sequences in FoMV RNA. The predominant double-stranded viral-specified RNAs in tissues infected with PapMV, FoMV, and clover yellow mosaic virus were genome sized (6.8, 6.2, and 7.0 kb pairs, respectively). If double-stranded RNAs corresponding to coat protein subgenomic RNAs exist, they must be present in much lower relative abundances.

  12. Dynamic wetting: status and prospective of single particle based experiments and simulations.

    PubMed

    Cappelli, S; Xie, Q; Harting, J; de Jong, A M; Prins, M W J

    2015-09-25

    The fundamental molecular and microscopic properties of materials leading to dynamic wetting and relaxation effects have been subject to numerous studies in the past decades, but a thorough understanding is still missing. While most previous experiments utilize fluids deposited on planar substrates, this article focuses on an attractive alternative based on single colloidal particles: colloidal particles have the ability to strongly interact with fluid-fluid interfaces and the behavior strongly depends on the surface properties of the particles and the fluids used. Recent progress in the manipulation and synthesis of colloidal particles with well-defined surface properties and shapes makes them ideal candidates to probe the fundamental surface properties leading to dynamic wetting effects. In this paper we review and discuss the status of experimental and numerical techniques to characterize the dynamic wetting of single particles at fluid-fluid interfaces, with the aim to assist scientists and engineers in the design of new experimental techniques and particle-based (bio)analytical tools.

  13. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry.

    PubMed

    Degueldre, C; Favarger, P-Y

    2004-04-19

    Thorium colloid analysis in water has been carried out by a single particle mode using inductively coupled plasma mass spectrometry (ICP-MS). The flash of ions due to the ionisation of a thorium colloidal particle in the plasma torch can be detected and measured in a time scan for (232)Th (+ ) or (248)[ThO] (+ ) according to the sensitivity required by the mass spectrometer. The peaks of the recorded intensity of the MS signal can be analysed as a function of the particle size or fraction of the studied element in the colloid phase. The frequency of the flashes is directly proportional to the concentration of particles in the colloidal suspension. After discussing Th colloid detection, on the basis of the intensity of the ion flashes generated in the plasma torch, tests were performed on thorium dioxide colloidal particles. This feasibility study also describes the experimental conditions and the limitation of the plasma design to detect thorium colloids in a single particle analysis mode down to about 10fg.

  14. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation

    NASA Astrophysics Data System (ADS)

    Hapke, Bruce

    2012-11-01

    The measured volume-average single particle angular scattering functions of a large number of types of particle of interest for planetary regoliths in the visible-near-IR wavelength region can be represented to a reasonable approximation by two-parameter, double Henyey-Greenstein functions. When the two parameters of this function are plotted against one another they are found to be inversely correlated and lie within a restricted zone shaped like a hockey stick within the parameter space. The centroid of the zone is a curve that can be represented by a simple empirical equation. The wide variety of types of particles used to construct the plot implies that this equation may represent most of the particles found in regoliths. This means that when modeling the bidirectional reflectance of a regolith it may be possible to reduce the number of parameters necessary to specify the reflectance, and also to characterize the entire single particle phase function from observations at phase angles less than 90°. Even if the hockey stick relation has a finite width, rather than being a line, it restricts the parameter space that must be searched when fitting data. The curve should also be useful for forward modeling particle phase functions.

  15. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  16. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    SciTech Connect

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  17. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    SciTech Connect

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  18. Single-particle electron microscopy in the study of membrane protein structure.

    PubMed

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date.

  19. Labelling and imaging of single endogenous messenger RNA particles in vivo.

    PubMed

    Spille, Jan-Hendrik; Kubitscheck, Ulrich

    2015-10-15

    RNA molecules carry out widely diverse functions in numerous different physiological processes in living cells. The RNA life cycle from transcription, through the processing of nascent RNA, to the regulatory function of non-coding RNA and cytoplasmic translation of messenger RNA has been studied extensively using biochemical and molecular biology techniques. In this Commentary, we highlight how single molecule imaging and particle tracking can yield further insight into the dynamics of RNA particles in living cells. In the past few years, a variety of bright and photo-stable labelling techniques have been developed to generate sufficient contrast for imaging of single endogenous RNAs in vivo. New imaging modalities allow determination of not only lateral but also axial positions with high precision within the cellular context, and across a wide range of specimen from yeast and bacteria to cultured cells, and even multicellular organisms or live animals. A whole range of methods to locate and track single particles, and to analyze trajectory data are available to yield detailed information about the kinetics of all parts of the RNA life cycle. Although the concepts presented are applicable to all types of RNA, we showcase here the wealth of information gained from in vivo imaging of single particles by discussing studies investigating dynamics of intranuclear trafficking, nuclear pore transport and cytoplasmic transport of endogenous messenger RNA.

  20. Evaluation of viral clearance in the production of HPV-16 L1 virus-like particles purified from insect cell cultures.

    PubMed

    Jeong, Hye-Sung; Shin, Jin-Ho; Choi, Jung-Yun; Kim, Young-Lim; Bae, Jei-Jun; Kim, Byoung-Guk; Ryu, Seung-Rel; Kim, Soon-Nam; Min, Hong-Ki; Kim, Hong-Jin; Park, Sue-Nie

    2006-12-01

    Biopharmaceutical products produced from cell cultures have a potential for viral contamination from cell sources or from adventitious introduction during production. The objective of this study was to assess viral clearance in the production of insect cell-derived recombinant human papillomavirus (HPV)-16 type L1 virus-like particles (VLPs). We selected Japanese encephalitis virus (JEV), bovine viral diarrhea virus (BVDV), and minute virus of mice (MVM) as relevant viruses to achieve the aim of this study. A downstream process for the production of purified HPV-16 L1 VLPs consisted of detergent lysis of harvested cells, sonication, sucrose cushion centrifugation, and cesium chloride (CsCl) equilibrium density centrifugation. The capacity of each purification/treatment step to clear viruses was expressed as reduction factor by measuring the difference in log virus infectivity of sample pools before and after each process. As a result, detergent treatment (0.5% v/v, Nonidet P-40/phosphate-buffered saline) was effective for inactivating enveloped viruses such as JEV and BVDV, but no significant reduction (< 1.0 log(10)) was observed in the non-enveloped MVM. The CsCl equilibrium density centrifugation was fairly effective for separating all three relevant adventitious viruses with different CsCl buoyant density from that of HPV-16 L1 VLPs (JEV, BVDV, and MVM = 4.30, 3.10, > or = 4.40 log(10) reductions). Given the study conditions we used, overall cumulative reduction factors for clearance of JEV, BVDV, and MVM were > or = 10.50, > or = 9.20, and > or = 6.40 log(10) in 150 ml of starting cell cultures, respectively.

  1. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    NASA Astrophysics Data System (ADS)

    Bilski, P.; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F2 and F3+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  2. Beam test results on the detection of single particles and electromagnetic showers with microchannel plates

    NASA Astrophysics Data System (ADS)

    Barnyakov, A.; Barnyakov, M.; Brianza, L.; Cavallari, F.; Ciriolo, V.; Del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Govoni, P.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pigazzini, S.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli de Fatis, T.

    2017-02-01

    I-MCP is an R&D project aimed at the exploitation of secondary emission of electrons from the surface of micro-channel plates (MCP) for single ionizing particles and fast timing of showers in high rate environments. Results from tests with electrons with energies up to 50 GeV of MCP devices with different characteristics are presented. In particular detection efficiency and time resolution are measured for a range of MCP prototypes: different MCP channel diameter and layers configuration are studied. Devices operated in I-MCP configuration, where the particle detection proceed through direct ionization of the MCP layers, are studied in comparison with the more usual PMT-MCP configuration. The results show efficiencies up to 70% for single charge particle detection for I-MCP devices with a time resolution of about 40 ps. The efficiency raise to 100% in response to high energy electromagnetic showers.

  3. Linear viral load increase of a single HPV-type in women with multiple HPV infections predicts progression to cervical cancer.

    PubMed

    Depuydt, Christophe E; Thys, Sofie; Beert, Johan; Jonckheere, Jef; Salembier, Geert; Bogers, Johannes J

    2016-11-01

    Persistent high-risk human papillomavirus (HPV) infection is strongly associated with development of high-grade cervical intraepithelial neoplasia or cancer (CIN3+). In single type infections, serial type-specific viral-load measurements predict the natural history of the infection. In infections with multiple HPV-types, the individual type-specific viral-load profile could distinguish progressing HPV-infections from regressing infections. A case-cohort natural history study was established using samples from untreated women with multiple HPV-infections who developed CIN3+ (n = 57) or cleared infections (n = 88). Enriched cell pellet from liquid based cytology samples were subjected to a clinically validated real-time qPCR-assay (18 HPV-types). Using serial type-specific viral-load measurements (≥3) we calculated HPV-specific slopes and coefficient of determination (R(2) ) by linear regression. For each woman slopes and R(2) were used to calculate which HPV-induced processes were ongoing (progression, regression, serial transient, transient). In transient infections with multiple HPV-types, each single HPV-type generated similar increasing (0.27copies/cell/day) and decreasing (-0.27copies/cell/day) viral-load slopes. In CIN3+, at least one of the HPV-types had a clonal progressive course (R(2)  ≥ 0.85; 0.0025copies/cell/day). In selected CIN3+ cases (n = 6), immunostaining detecting type-specific HPV 16, 31, 33, 58 and 67 RNA showed an even staining in clonal populations (CIN3+), whereas in transient virion-producing infections the RNA-staining was less in the basal layer compared to the upper layer where cells were ready to desquamate and release newly-formed virions. RNA-hybridization patterns matched the calculated ongoing processes measured by R(2) and slope in serial type-specific viral-load measurements preceding the biopsy. In women with multiple HPV-types, serial type-specific viral-load measurements predict the natural history of the

  4. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells

    PubMed Central

    Jose, Joyce; Tang, Jinghua; Taylor, Aaron B.; Baker, Timothy S.; Kuhn, Richard J.

    2015-01-01

    Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions. PMID:26633461

  5. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  6. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells.

    PubMed

    Hei, T K; Wu, L J; Liu, S X; Vannais, D; Waldren, C A; Randers-Pehrson, G

    1997-04-15

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  7. Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and de novo-synthesized virus particles.

    PubMed

    Li, H; Haviv, Y S; Derdeyn, C A; Lam, J; Coolidge, C; Hunter, E; Curiel, D T; Blackwell, J L

    2001-12-10

    Conditionally replicative adenovirus (CRAd) vectors are designed for specific oncolytic replication in tumor tissues with concomitant sparing of normal cells. As such, CRAds offer an unprecedented level of anticancer potential for malignancies that have been refractory to previous cancer gene therapy interventions. CRAd efficacy may, however, be compromised by inefficient dispersion of the replicating vector within the tumor tissue. To address this issue, we evaluated the utility of a fusogenic membrane glycoprotein (FMG), which induces the fusion of neighboring cellular membranes to form multinucleated syncytia. We hypothesized that the FMG-mediated syncytia would facilitate dispersion of the adenovirus (Ad) gene products and viral progeny. To test this, human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, which induce syncytia in the presence of CD4+ target cells, were expressed by an Ad (Ad5HIVenv) in permissive (CD4-positive) and nonpermissive (CD4-negative) cell lines. After validating this Ad-FMG model, the efficiency of Ad replication in the presence or absence of syncytia was evaluated. The results demonstrated that syncytium formation was compatible with Ad replication and dramatically increased the dispersion of virus gene products within the cytoplasm of the syncytia as well as viral particles in the nuclei of the syncytial mass. Moreover, progeny virions were released more efficiently from syncytia compared with nonsyncytial cells. These data demonstrate the utility of FMGs as a dispersion agent and suggest that FMGs can improve the efficacy of CRAd gene therapy.

  8. How does breathing frequency affect the performance of an N95 filtering facepiece respirator and a surgical mask against surrogates of viral particles?

    PubMed

    He, Xinjian; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2014-01-01

    Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. "Faceseal leakage-to-filter" (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p < 0.05) on Pfilter and TIL. Increasing breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects.

  9. A single particle model to simulate the dynamics of entangled polymer melts

    NASA Astrophysics Data System (ADS)

    Kindt, P.; Briels, W. J.

    2007-10-01

    We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.

  10. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    PubMed

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques.

  11. Online Aerosol Mass Spectrometry of Single Micrometer-Sized Particles Containing Poly(ethylene glycol)

    SciTech Connect

    Bogan, M J; Patton, E; Srivastava, A; Martin, S; Fergenson, D; Steele, P; Tobias, H; Gard, E; Frank, M

    2006-10-25

    Analysis of poly(ethylene glycol)(PEG)-containing particles by online single particle aerosol mass spectrometers equipped with laser desorption ionization (LDI) is reported. We demonstrate that PEG-containing particles are useful in the development of aerosol mass spectrometers because of their ease of preparation, low cost, and inherently recognizable mass spectra. Solutions containing millimolar quantities of PEGs were nebulized and, after drying, the resultant micrometer-sized PEG containing particles were sampled. LDI (266 nm) of particles containing NaCl and PEG molecules of average molecular weight <500 generated mass spectra reminiscent of mass spectra of PEG collected by other MS schemes including the characteristic distribution of positive ions (Na{sup +} adducts) separated by the 44 Da of the ethylene oxide units separating each degree of polymerization. PEGs of average molecular weight >500 were detected from particles that also contained t the tripeptide tyrosine-tyrosine-tyrosine or 2,5-dihydroxybenzoic acid, which were added to nebulized solutions to act as matrices to assist LDI using pulsed 266 nm and 355 nm lasers, respectively. Experiments were performed on two aerosol mass spectrometers, one reflectron and one linear, that each utilize two time-of-flight mass analyzers to detect positive and negative ions created from a single particle. PEG-containing particles are currently being employed in the optimization of our bioaerosol mass spectrometers for the application of measurements of complex biological samples, including human effluents, and we recommend that the same strategies will be of great utility to the development of any online aerosol LDI mass spectrometer platform.

  12. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking.

    PubMed

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W E

    2017-02-02

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.

  13. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  14. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  15. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Zeng, Dechang; Liu, Zhongwu

    2016-04-01

    Single domain strontium ferrite particles (SrFe12O19) with hexagonal morphology were synthesized by conventional ceramic process. Effects of Fe/Sr mole ratio and milling time on structure, morphology and magnetic properties of the strontium ferrite particles have been systematically studied. Single phase SrFe12O19 was successfully synthesized in a large composition range of Fe/Sr ratio (Fe/Sr = 9-11). The particle size refinement effect and the morphology change were observed with the increase of Fe/Sr ratio. It was also found that the change of Fe/Sr ratio had little effect on the magnetization curve. However, the magnetization process was significantly influenced with different milling time. The optimal magnetic properties obtained at Fe/Sr = 11 with 6 h milling are 68.2 emu g-1 and 5540 Oe for saturation magnetization (M S) and intrinsic coercivity (H C), respectively. The high performance single domain strontium hexaferrite particles obtained in this paper would greatly facilitate the application in the permanent magnet industry.

  16. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments

    NASA Astrophysics Data System (ADS)

    Kepten, Eldad; Bronshtein, Irena; Garini, Yuval

    2013-05-01

    The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

  17. Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Pixley, J. H.; Deng, Dong-Ling; Ganeshan, Sriram; Das Sarma, S.

    2016-05-01

    We study the many-body localization aspects of single-particle mobility edges in fermionic systems. We investigate incommensurate lattices and random disorder Anderson models. Many-body localization and quantum nonergodic properties are studied by comparing entanglement and thermal entropy, and by calculating the scaling of subsystem particle-number fluctuations, respectively. We establish a nonergodic extended phase as a generic intermediate phase (between purely ergodic extended and nonergodic localized phases) for the many-body localization transition of noninteracting fermions where the entanglement entropy manifests a volume law (hence, "extended"), but there are large fluctuations in the subsystem particle numbers (hence, "nonergodic"). Based on the numerical results, we expect such an intermediate phase scenario may continue to hold even for the many-body localization in the presence of interactions as well. We find for many-body fermionic states in noninteracting one-dimensional Aubry-André and three-dimensional Anderson models that the entanglement entropy density and the normalized particle-number fluctuation have discontinuous jumps at the localization transition where the entanglement entropy is subthermal but obeys the "volume law." In the vicinity of the localization transition, we find that both the entanglement entropy and the particle-number fluctuations obey a single parameter scaling based on the diverging localization length. We argue using numerical and theoretical results that such a critical scaling behavior should persist for the interacting many-body localization problem with important observable consequences. Our work provides persuasive evidence in favor of there being two transitions in many-body systems with single-particle mobility edges, the first one indicating a transition from the purely localized nonergodic many-body localized phase to a nonergodic extended many-body metallic phase, and the second one being a transition

  18. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  19. Metal oxide superconducting powder comprised of flake-like single crystal particles

    DOEpatents

    Capone, Donald W.; Dusek, Joseph

    1994-01-01

    Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice.

  20. Metal oxide superconducting powder comprised of flake-like single crystal particles

    DOEpatents

    Capone, D.W.; Dusek, J.

    1994-10-18

    Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice. 3 figs.

  1. Purification of single-wall carbon nanotubes by using ultrafine gold particles

    NASA Astrophysics Data System (ADS)

    Nihey, Fumiyuki; Mizoguti, Eiji; Yudasaka, Masako; Iijima, Sumio; Ichihashi, Toshinari; Nakamura, Kazuo

    2000-03-01

    The purification of single-wall carbon nanotubes (SWNTs) is needed to enable detailed characterization and some application of this material. We report a purification method utilizing ultrafine gold particles as catalysts to selectively oxidize carbonaceous impurities in SWNT soot. The ultrafine gold particles with a diameter of 20 nm were dispersed in the soot in combination with benzalkonium chloride as surfactant. Thermogravimetric analyses and electron microscopy observations revealed that oxidation occured at about 330^circC for carbonaceous impurities and at about 410^circC for SWNTs. This selective oxidation enabled us to purify SWNTs and make the quantitative analyses of SWNTs.

  2. ClusterSculptor: Software for Expert-Steered Classification of Single Particle Mass Spectra

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Nam, Eun Ju; Han, Yiping; Mueller, Klaus

    2008-08-01

    To take full advantage of the vast amount of highly detailed data acquired by single particle mass spectrometers requires that the data be organized according to some rules that have the potential to be insightful. Most commonly statistical tools are used to cluster the individual particle mass spectra on the basis of their similarity. Cluster analysis is a powerful strategy for the exploration of high-dimensional data in the absence of a-priori hypotheses or data classification models, and the results of cluster analysis can then be used to form such models. More often than not, when examining the data clustering results we find that many clusters contain particles of different types and that many particles of one type end up in a number of separate clusters. Our experience with cluster analysis shows that we have a vast amount of non-compiled knowledge and intuition that should be brought to bear in this effort. We will present new software we call ClusterSculptor that provides comprehensive and intuitive framework to aid scientists in data classification. ClusterSculptor uses k-means as the overall clustering engine, but allows tuning its parameters interactively, based on a non-distorted compact visual presentation of the inherent characteristics of the data in high-dimensional space. ClusterSculptor provides all the tools necessary for a high-dimensional activity we call cluster sculpting. ClusterSculptor is designed to be coupled to SpectraMiner, our data mining and visualization software package. The data are first visualized with SpectraMiner and identified problems are exported to ClusterSculptor, where the user steers the reclassification and recombination of clusters of tens of thousands particle mass spectra in real-time. The resulting sculpted clusters can be then imported back into SpectraMiner. Here we will greatly improved single particle chemical speciation in an example of application of this new tool to a number of particle types of atmospheric

  3. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  4. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  5. 2D Images Recorded With a Single-Sided Magnetic Particle Imaging Scanner.

    PubMed

    Grafe, Ksenija; von Gladiss, Anselm; Bringout, Gael; Ahlborg, Mandy; Buzug, Thorsten M

    2016-04-01

    Magnetic Particle Imaging is a new medical imaging modality, which detects superparamagnetic iron oxide nanoparticles. The particles are excited by magnetic fields. Most scanners have a tube-like measurement field and therefore, both the field of view and the object size are limited. A single-sided scanner has the advantage that the object is not limited in size, only the penetration depth is limited. A single-sided scanner prototype for 1D imaging has been presented in 2009. Simulations have been published for a 2D single-sided scanner and first 1D measurements have been carried out. In this paper, the first 2D single-sided scanner prototype is presented and the first calibration-based reconstruction results of measured 2D phantoms are shown. The field free point is moved on a Lissajous trajectory inside a 30 × 30 mm2 area. Images of phantoms with a maximal distance of 10 mm perpendicular to the scanner surface have been reconstructed. Different cylindrically shaped holes of phantoms have been filled with 6.28 μl undiluted Resovist. After the measurement and image reconstruction of the phantoms, particle volumes could be distinguished with a distance of 2 mm and 6 mm in vertical and horizontal direction, respectively.

  6. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    PubMed

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  7. Viral Meningitis

    MedlinePlus

    ... have severe illness from viral meningitis. Causes Non-polio enteroviruses are the most common cause of viral ... following viruses spread by visiting CDC’s websites: Non-polio enteroviruses Mumps virus Herpesviruses, including Epstein-Barr virus , ...

  8. Viral Infections

    MedlinePlus

    ... from medicines, which usually move through your bloodstream. Antibiotics do not work for viral infections. There are a few antiviral medicines available. Vaccines can help prevent you from getting many viral diseases. NIH: National Institute of Allergy and Infectious Diseases

  9. Characterization of lead-containing aerosol particles in Xiamen during and after Spring Festival by single-particle aerosol mass spectrometry.

    PubMed

    Zhao, Shuhui; Chen, Liqi; Yan, Jinpei; Chen, Hangyu

    2017-02-15

    To comparatively analyze lead (Pb)-containing particles during and after the Chinese Spring Festival (SF), real-time single-particle aerosol mass spectrometry (SPAMS) was conducted in Xiamen during February 9-19 and March 4-14, 2013. Pb-containing particles were found in 2.4% and 5.3% of the total particle numbers during and after SF, respectively. Based on the SPAMS mass spectral results, the Pb-containing particles were classified into three major types and 11 subtypes: Pb-rich particles comprising Pb-nitrate, Pb-sulfate and Pb-chloride; K-rich particles comprising K-nitrate, K-sulfate, K-metal, K-carbonaceous, K-phosphate, and K-chloride; and metal particles including Fe-rich and Mn-nitrate particles. During SF, lower contributions of Pb-containing particles were due to the effect of the SF holiday. Firework emissions contributed little to the Pb-containing particles. K-rich particles were a major contribution to Pb-containing particles during SF, accounting for approximately 70% of the total number of Pb-containing particles. After SF, significantly increased Pb-containing particles were observed, coincided with NO2 and SO2, due to increased industrial activities and other anthropogenic activities, and Pb-rich particles increased to approximately 50.3% of the total number of Pb-containing particles. Local industrial emissions and the stagnant meteorological conditions resulted in the higher concentrations of Pb-containing particles in the early morning after SF, especially Pb-nitrate particles. This study provides data on the in-situ monitoring of Pb emissions during and after SF and could be helpful for the mitigation of Pb pollution.

  10. Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow

    SciTech Connect

    Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias; Henn, Tobias R.; Sprau, Peter; Laskin, Alexander; Uematsu, Mitsuo; Gilles, Marry K.

    2012-04-04

    Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. The mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.

  11. Determination of single particle mass spectral signatures from light-duty vehicle emissions.

    PubMed

    Sodeman, David A; Toner, Stephen M; Prather, Kimberly A

    2005-06-15

    In this study, 28 light-duty gasoline vehicles (LDV) were operated on a chassis dynamometer at the California Air Resources Board Haagen-Smit Facility in El Monte, CA. The mass spectra of individual particles emitted from these vehicles were measured using aerosol time-of-flight mass spectrometry (ATOFMS). A primary goal of this study involves determining representative size-resolved single particle mass spectral signatures that can be used in future ambient particulate matter source apportionment studies. Different cycles were used to simulate urban driving conditions including the federal testing procedure (FTP), unified cycle (UC), and the correction cycle (CC). The vehicles were selected to span a range of catalytic converter (three-way, oxidation, and no catalysts) and engine technologies (vehicles models from 1953 to 2003). Exhaust particles were sampled directly from a dilution and residence chamber system using particle sizing instruments and an ATOFMS equipped with an aerodynamic lens (UF-ATOFMS) analyzing particles between 50 and 300 nm. On the basis of chemical composition, 10 unique chemical types describe the majority of the particles with distinct size and temporal characteristics. In the ultrafine size range (between 50 and 100 nm), three elemental carbon (EC) particle types dominated, all showing distinct EC signatures combined with Ca, phosphate, sulfate, and a lower abundance of organic carbon (OC). The relative fraction of EC particle types decreased as particle size increased with OC particles becoming more prevalent above 100 nm. Depending on the vehicle and cycle, several distinct OC particle types produced distinct ion patterns, including substituted aromatic compounds and polycyclic aromatic hydrocarbons (PAH), coupled with other chemical species including ammonium, EC, nitrate, sulfate, phosphate, V, and Ca. The most likely source of the Ca and phosphate in the particles is attributed to the lubricating oil. Significant variability was

  12. Viral pneumonia

    MedlinePlus

    ... Names Pneumonia - viral; Walking pneumonia - viral Images Lungs Respiratory system References Lee FE, Treanor JJ. Viral infections. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  13. Viral Carcinogenesis.

    PubMed

    Smith, A J; Smith, L A

    2016-01-01

    Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human

  14. Non-plaque-forming virions of Modified Vaccinia virus Ankara express viral genes.

    PubMed

    Lülf, Anna-Theresa; Freudenstein, Astrid; Marr, Lisa; Sutter, Gerd; Volz, Asisa

    2016-12-01

    In cell culture infections with vaccinia virus the number of counted virus particles is substantially higher than the number of plaques obtained by titration. We found that standard vaccine preparations of recombinant Modified Vaccinia virus Ankara produce only about 20-30% plaque-forming virions in fully permissive cell cultures. To evaluate the biological activity of the non-plaque-forming particles, we generated recombinant viruses expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters. Live cell imaging and automated counting by fluorescent microscopy indicated that virtually all virus particles can enter cells and switch on viral gene expression. Although most of the non-plaque-forming infections are arrested at the level of viral early gene expression, we detected activation of late viral transcription in 10-20% of single infected cells. Thus, non-plaque-forming particles are biologically active, and likely contribute to the immunogenicity of vaccinia virus vaccines.

  15. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  16. Operational characteristics of single-particle heat engines and refrigerators with time-asymmetric protocol

    NASA Astrophysics Data System (ADS)

    Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2016-09-01

    We have studied the single-particle heat engine and refrigerator driven by time-asymmetric protocol of finite duration. Our system consists of a particle in a harmonic trap with time-periodic strength that drives the particle cyclically between two baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. The system works in irreversible mode of operation even in the quasistatic regime. This is indicated by finite entropy production even in the large cycle time limit. Consequently, Carnot efficiency for heat engine or Carnot coefficient of performance (COP) for refrigerators is not achievable. We further analyzed the phase diagram of heat engines and refrigerators. They are sensitive to time-asymmetry of the protocol. Phase diagram shows several interesting features, often counterintuitive. The distribution of stochastic efficiency and COP is broad and exhibits power-law tails.

  17. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-06-13

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  18. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  19. Optimization of probe-laser focal offsets for single-particle tracking.

    PubMed

    Chang, Ai-Tang; Chang, Yi-Ren; Chi, Sien; Hsu, Long

    2012-08-10

    In optical tweezers applications, tracking a trapped particle is essential for force measurement. One of the most popular techniques for single-particle tracking is achieved by analyzing the forward and backward light pattern, scattered by the target particle trapped by a trap laser beam, of an additional probe-laser beam with different wavelength whose focus is slightly apart from the trapping center. However, the optimized focal offset has never been discussed. In this paper, we investigate the tracking range and sensitivity as a function of the focal offset between the trapping and the probe-laser beams. As a result, the optimized focal offsets are a 3.3-fold radius ahead and a 2.0-fold radius behind the trapping laser focus in the forward tracking and the backward tracking, respectively. The experimental result agrees well with a theoretical prediction using the Mie scattering theory.

  20. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  1. Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles

    PubMed Central

    Gilbert, Leona; Toivola, Jouni; Välilehto, Outi; Saloniemi, Taija; Cunningham, Claire; White, Daniel; Mäkelä, Anna R; Korhonen, Eila; Vuento, Matti; Oker-Blom, Christian

    2006-01-01

    Fluorescence correlation spectroscopy (FCS) monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids) were fused to the C-terminus of the enhanced green fluorescent protein (EGFP). The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic radii of 7, 20 and 14 nm, respectively. These results show that the non-truncated EGFP-VP2 fusion protein and the EGFP-VP2 constructs truncated by 23 and by as much as 40 amino acids were able to form virus-like particles (VLPs). The fluorescent VLP, harbouring VP2 truncated by 23 amino acids, showed a somewhat larger hydrodynamic radius compared to the non-truncated EGFP-VP2. In contrast, the construct containing EGFP-VP2 truncated by 14 amino acids was not able to assemble into VLP-resembling structures. Formation of capsid structures was confirmed by confocal and electron microscopy. The number of fluorescent fusion protein molecules present within the different VLPs was determined by FCS. In conclusion, FCS provides a novel strategy to analyze virus assembly and gives valuable structural information for strategic development of parvovirus-like particles. PMID:17156442

  2. Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles.

    PubMed

    Gilbert, Leona; Toivola, Jouni; Välilehto, Outi; Saloniemi, Taija; Cunningham, Claire; White, Daniel; Mäkelä, Anna R; Korhonen, Eila; Vuento, Matti; Oker-Blom, Christian

    2006-12-08

    Fluorescence correlation spectroscopy (FCS) monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids) were fused to the C-terminus of the enhanced green fluorescent protein (EGFP). The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic radii of 7, 20 and 14 nm, respectively. These results show that the non-truncated EGFP-VP2 fusion protein and the EGFP-VP2 constructs truncated by 23 and by as much as 40 amino acids were able to form virus-like particles (VLPs). The fluorescent VLP, harbouring VP2 truncated by 23 amino acids, showed a somewhat larger hydrodynamic radius compared to the non-truncated EGFP-VP2. In contrast, the construct containing EGFP-VP2 truncated by 14 amino acids was not able to assemble into VLP-resembling structures. Formation of capsid structures was confirmed by confocal and electron microscopy. The number of fluorescent fusion protein molecules present within the different VLPs was determined by FCS. In conclusion, FCS provides a novel strategy to analyze virus assembly and gives valuable structural information for strategic development of parvovirus-like particles.

  3. Estimation of variance in single-particle reconstruction using the bootstrap technique.

    PubMed

    Penczek, Pawel A; Yang, Chao; Frank, Joachim; Spahn, Christian M T

    2006-05-01

    Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) variance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and accuracy of the method under conditions encountered in practical circumstances.

  4. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    PubMed Central

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-01-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707

  5. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    SciTech Connect

    Yang, Shuolong; Sobota, J. A.; Leuenberger, D.; He, Y.; Hashimoto, M.; Lu, D. H.; Eisaki, H.; Kirchmann, P. S.; Shen, Z. -X.

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  6. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  7. Single particle electron cryo-microscopy of a mammalian ion channel

    PubMed Central

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2014-01-01

    The transient receptor potential (TRP) ion channel family is large and functionally diverse, second only to potassium channels. Despite their prominence within the animal kingdom, TRP channels have resisted crystallization and structural determination for many years. This barrier was recently broken when the three-dimensional structure of the vanilloid receptor 1 (TRPV1) was determined by single particle electron cryo-microscopy (cryo-EM). Moreover, this is the first example in which the near atomic resolution structure of an integral membrane protein was elucidated by this technique and in a manner not requiring crystals, demonstrating the transformative power of single particle cryo-EM for revealing high-resolution structures of integral membrane proteins, particularly those of mammalian origin. Here we summarize technical advances, in both biochemistry and cryo-EM, that led to this major breakthrough. PMID:24681231

  8. Single-particle parity-nonconserving matrix elements in {sup 207}Pb

    SciTech Connect

    Komives, A.; Knott, J.E.; Leuschner, M.; Szymanski, J.J.; Bowman, J.D.; Jamrisk, D.

    1993-10-01

    Measurements of the helicity dependence of neutron scattering off of heavy nuclei by the TRIPLE collaboration have yielded multiple parity-nonconserving asymmetries. The asymmetries are predominantly positive, in contradiction to the zero average asymmetry predicted by the statistical model of neutron- nucleus scattering. Theoretical calculations that explain the non-zero average asymmetry require single-particle parity- nonconserving matrix elements 10-100 times larger than those predicted by meson exchange models. We are determining the single-particle parity non-conserving mixing in {sup 207}Pb by measuring the circular polarization of the 1.064 MeV {gamma} ray. The experiment uses a transmission polarimeter and a fast data acquisition system. Initial results are presented.

  9. Detecting gamma-ray bursts with the pierre auger observatory using the single particle technique

    SciTech Connect

    Allard, Denis; Parizot, E.; Bertou, Xavier; Beatty, J.; Vernois, M.Du; Nitz, D.; Rodriguez, G.

    2005-08-01

    During the past ten years, gamma-ray Bursts (GRB) have been extensively studied in the keV-MeV energy range but the higher energy emission still remains mysterious. Ground based observatories have the possibility to investigate energy range around one GeV using the ''single particle technique''. The aim of the present study is to investigate the capability of the Pierre Auger Observatory to detect the high energy emission of GRBs with such a technique. According to the detector response to photon showers around one GeV, and making reasonable assumptions about the high energy emission of GRBs, we show that the Pierre Auger Observatory is a competitive instrument for this technique, and that water tanks are very promising detectors for the single particle technique.

  10. JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles.

    PubMed

    Zhang, Junjie; Nakamura, Natsuko; Shimizu, Yuko; Liang, Nathan; Liu, Xiangan; Jakana, Joanita; Marsh, Michael P; Booth, Christopher R; Shinkawa, Takao; Nakata, Munetaka; Chiu, Wah

    2009-01-01

    The JEOL Automated Data Acquisition System (JADAS) is a software system built for the latest generation of the JEOL Transmission Electron Microscopes. It is designed to partially or fully automate image acquisition for ice-embedded single particles under low dose conditions. Its built-in flexibility permits users to customize the order of various imaging operations. In this paper, we describe how JADAS is used to accurately locate and image suitable specimen areas on a grid of ice-embedded particles. We also demonstrate the utility of JADAS by imaging the epsilon 15 bacteriophage with the JEM3200FSC electron cryo-microscope, showing that sufficient images can be collected in a single 8h session to yield a subnanometer resolution structure which agrees with the previously determined structure.

  11. Cryo-EM single particle analysis with the Volta phase plate

    PubMed Central

    Danev, Radostin; Baumeister, Wolfgang

    2016-01-01

    We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach. DOI: http://dx.doi.org/10.7554/eLife.13046.001 PMID:26949259

  12. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Wei, Haotong; Wei, Wei; Chuirazzi, William; DeSantis, Dylan; Huang, Jinsong; Cao, Lei

    2017-03-01

    Methylammonium lead tribromide (MAPbBr3) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr3 single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4-1.6)×10-3 cm2/V.

  13. Large scale water entry simulation with smoothed particle hydrodynamics on single- and multi-GPU systems

    NASA Astrophysics Data System (ADS)

    Ji, Zhe; Xu, Fei; Takahashi, Akiyuki; Sun, Yu

    2016-12-01

    In this paper, a Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) framework is presented utilizing the parallel architecture of single- and multi-GPU (Graphic Processing Unit) platforms. The program is developed for water entry simulations where an efficient potential based contact force is introduced to tackle the interaction between fluid and solid particles. The single-GPU SPH scheme is implemented with a series of optimization to achieve high performance. To go beyond the memory limitation of single GPU, the scheme is further extended to multi-GPU platform basing on an improved 3D domain decomposition and inter-node data communication strategy. A typical benchmark test of wedge entry is investigated in varied dimensions and scales to validate the accuracy and efficiency of the program. The results of 2D and 3D benchmark tests manifest great consistency with the experiment and better accuracy than other numerical models. The performance of the single-GPU code is assessed by comparing with serial and parallel CPU codes. The improvement of the domain decomposition strategy is verified, and a study on the scalability and efficiency of the multi-GPU code is carried out as well by simulating tests with varied scales in different amount of GPUs. Lastly, the single- and multi-GPU codes are further compared with existing state-of-the-art SPH parallel frameworks for a comprehensive assessment.

  14. Expectation values of single-particle operators in the random phase approximation ground state

    NASA Astrophysics Data System (ADS)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  15. Search for d3/2 single particle strength in 15N in Unbound Levels

    NASA Astrophysics Data System (ADS)

    Mertin, C. E.; Caussyn, D. D.; Crisp, A. M.; Keeley, N.; Kemper, K. W.; Momotyuk, O.; Roeder, B. T.; Volya, A.

    2013-10-01

    The population of states in the nucleus 15N provides the opportunity to investigate both single particle and cluster structures in the 1p and 2s1d shells. Single, two, three and four particle transfer reactions selectively excite states in 15N thus providing a way to explore current nuclear structure models. Narrow structures are observed in the various transfer reactions up to at least 20 MeV in excitation well above the neutron (10.8 MeV) and proton (10.2 MeV) separation energies. In the present work new results for the reaction 14N(d,p) are presented that explore possible single particle strengths up to 18 MeV in excitation. The beam energies used in the present work were between 10.5 and 16 MeV. An early work with a beam energy of 8 MeV clearly populated strong sharp levels at 10.07 and 11.23 MeV and the present work confirms their existence. In addition, very weak broader levels are populated at 12.13 and 12.5 MeV but no other structures are found experimentally at higher excitation energies. The results of shell model calculations that include the 1p and 2s1d shells will be presented. The centroid energies for the 1d5/2 and 2s1/2 single particle strength have been obtained through comparison with FRESCO calculations. This work was supported by the NSF, DOE and Florida State University.

  16. Expectation values of single-particle operators in the random phase approximation ground state.

    PubMed

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  17. Single-Particle Motion and Vortex Stretching in Three-Dimensional Turbulent Flows.

    PubMed

    Pumir, Alain; Xu, Haitao; Bodenschatz, Eberhard; Grauer, Rainer

    2016-03-25

    Three-dimensional turbulent flows are characterized by a flux of energy from large to small scales, which breaks the time reversal symmetry. The motion of tracer particles, which tend to lose energy faster than they gain it, is also irreversible. Here, we connect the time irreversibility in the motion of single tracers with vortex stretching and thus with the generation of the smallest scales.

  18. A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery.

    PubMed

    Almería, Begoña; Fahmy, Tarek M; Gomez, Alessandro

    2011-09-05

    While conventional methods for biodegradable particle production rely predominately on batch, emulsion preparation methods, an alternative process based on multiplexed electrospray (ES) can offer distinct advantages. These include enhanced encapsulation efficiency of hydrophilic and hydrophobic agents, scale-up potential, tight control over particle size and excellent particulate reproducibility. Here we developed a well-controlled ES process to synthesize coated biodegradable polymer particles. We demonstrate this process with the Poly(DL-lactic-co-glycolic acid) system encapsulating amphiphilic agents such as doxorubicin (DOX), Rhodamine B (RHO(B)) and Rhodamine B octadecyl ester perchlorate (RHO(BOEP)). We show that in a single-step flow process particles can be made encapsulating the agent with high efficiency and coated either with emulsifiers that stabilize them in solution or that may facilitate further functionalization for targeted drug delivery. The coating process allows for the surface modification of the particles without further changes in particle size or morphology, and with minimal loss of drug (>94% encapsulation efficiency). This synthesis technique is well suited for massive scale-up using microfabricated, multiplexed arrays consisting of multiple electrospray nozzles operating in parallel. A simple analytical model of the diffusion of the encapsulated agent within the polymer reveals two distinct phases in the cumulative release profile: a first phase in which the release is dominated by diffusion and a second phase with a slower release related to the erosion of the polymer matrix. The first, diffusion-driven stage is highly affected by particle agglomeration properties, whereas the second one shows a much less pronounced dependence on particle size. Modeling suggests that the size of the particles will substantially influence the initial burst in both the percentage of drug released and the rate at which it is released. It will also affect to

  19. Classification of the PALMS single particle mass spectral data from Atlanta by regression tree analysis

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Murphy, D. M.; Lee, S.; Lee, S.; Lee, S.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    During the Atlanta Supersites project in August 1999, the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument collected over 500,000 individual particle spectra. The Atlanta data were originally analyzed by examining combinations of peaks and relative peak areas [Lee et al., 2001a,b], and a wide range of particle components such as sulfate, nitrate, mineral species, metals, organic species, and elemental carbon were detected. To further study the dataset, a classification program using regression tree analysis was developed and applied. Spectral data were compressed into a lower resolution spectrum (every 0.25 mass units) of the raw data and a list of peak areas (every mass unit). Each spectrum started as a normalized classification vector by itself. If the dot product of two classification vectors was within a certain threshold, they were combined into a new classification. The new classification vector was a normalized running average of the classifications being combined. In subsequent steps, the threshold for combining classifications was continuously lowered until a reasonable number of classifications remained. After the final iteration, each spectrum was compared individually with the entire set of classification vectors. Classifications were also combined manually. The classification results from the Atlanta data are generally consistent with those determined by peak identification. However, the classification program identified specific patterns in the mass spectra that were not found by peak identification and generated new particle types. Furthermore, rare particle types that may affect human health were studied in more detail. A description of the classification program as well as the results for the Atlanta data will be presented. Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook, Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the Atlanta Supersites Project

  20. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    PubMed

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.

  1. Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging

    PubMed Central

    Bharat, Tanmay A.M.; Russo, Christopher J.; Löwe, Jan; Passmore, Lori A.; Scheres, Sjors H.W.

    2015-01-01

    Summary Recent innovations in specimen preparation, data collection, and image processing have led to improved structure determination using single-particle electron cryomicroscopy (cryo-EM). Here we explore some of these advances to improve structures determined using electron cryotomography (cryo-ET) and sub-tomogram averaging. We implement a new three-dimensional model for the contrast transfer function, and use this in a regularized likelihood optimization algorithm as implemented in the RELION program. Using direct electron detector data, we apply both single-particle analysis and sub-tomogram averaging to analyze radiation-induced movements of the specimen. As in single-particle cryo-EM, we find that significant sample movements occur during tomographic data acquisition, and that these movements are substantially reduced through the use of ultrastable gold substrates. We obtain a sub-nanometer resolution structure of the hepatitis B capsid, and show that reducing radiation-induced specimen movement may be central to attempts at further improving tomogram quality and resolution. PMID:26256537

  2. Electron Cryomicroscopy of Membrane Proteins: Specimen Preparation for Two-Dimensional Crystals and Single Particles

    PubMed Central

    Schmidt-Krey, Ingeborg; Rubinstein, John L.

    2010-01-01

    Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed. PMID:20678942

  3. The effect of model fidelity on prediction of char burnout for single-particle coal combustion

    SciTech Connect

    McConnell, Josh; Sutherland, James C.

    2016-07-09

    In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase. The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.

  4. Orbital Single Particle Tracking on a commercial confocal microscope using piezoelectric stage feedback

    PubMed Central

    Lanzanò, Luca; Gratton, Enrico

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. PMID:25419461

  5. Single-point scratching of 6061 Al alloy reinforced by different ceramic particles

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Zhang, Liangchi

    1994-11-01

    Aluminium alloys reinforced by ceramic particles have been widely used in aerospace and automotive industries for their high stiffness and wear resistance. However, the machining of such materials is difficult and would usually cause excessive tool wear. The effect of ceramic particles on the cutting mechanisms is also unclear. The purpose of this study is to investigate the cutting mechanisms and the relationship between specific energy of scratching and depth of cut (size effect). The single-point scratch test was carried out on 6061 Al and its composites reinforced by Al2O3 and SiC ceramic particles using a pyramid indenter. The results indicated that the scratch process was composed of rubbing, ploughing, plastic cutting and reinforcement fracture. A simple model was proposed to interpret the apparent size effect. The effect of reinforcement on the specific energy was correlated to the ratio of volume fraction to particle radius. The paper found that for machining MMCs, a larger depth of cut should be used to maintain a lower machining energy, especially for those with a larger ratio of volume fraction to particle radius.

  6. Effect of particle asphericity on single-scattering parameters: comparison between Platonic solids and spheres.

    PubMed

    Yang, Ping; Kattawar, George W; Wiscombe, Warren J

    2004-08-01

    The single-scattering properties of the Platonic shapes, namely, the tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron, are investigated by use of the finite-difference time-domain method. These Platonic shapes have different extents of asphericity in terms of the ratios of their volumes (or surface areas) to those of their circumscribed spheres. We present the errors associated with four types of spherical equivalence that are defined on the basis of (a) the particle's geometric dimension (b) equal surface area (A), (c) equal volume (V), and (d) equal-volume-to-surface-area ratio (V/A). Numerical results show that the derivations of the scattering properties of a nonspherical particle from its spherical counterpart depend on the definition of spherical equivalence. For instance, when the Platonic and spherical particles have the same geometric dimension, the phase function for a dodecahedron is more similar than that for an icosahedron to the spherical result even though an icosahedron has more faces than a dodecahedron. However, when the nonspherical and spherical particles have the same volume, the phase function of the icosahedral particle essentially converges to the phase function of the sphere, whereas the result for the dodecahedron is quite different from its spherical counterpart. Furthermore, the present scattering calculation shows that the approximation of a Platonic solid with a sphere based on V/A leads to larger errors than the spherical equivalence based on either volume or projected area.

  7. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2012-05-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were already discussed (Dall'Osto et al., 2009a,b; Harrison et al., 2012). In this manuscript the origins and properties of four unreported particle types postulated to be due to locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings although it could not unambiguously associated with a specific source or atmospheric process. The fourth class (Secondary Organic Aerosols - Polycyclic Aromatic Hydrocarbon; SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary aerosol production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. A comparison of ATOFMS particle class data is then made with factors obtained by Positive Matrix Factorization and PAH signatures obtained from Aerosol Mass Spectrometer (AMS) data (Allan et al., 2010). Both the Ca-EC and OC particle types correlate with primary Hydrocarbon-like Organic Aerosol (HOA, R2 = 0.65 and 0.50 respectively), and Na-EC-OC correlates weakly with the AMS

  8. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2011-02-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were accompanied by Aerosol Mass Spectrometer (AMS) quantitative aerosol mass loading measurements (Dall'Osto et al., 2009a, b). In this manuscript the origins and properties of four particle types associated with locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species, and contains both primary and secondary components. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings. The fourth class (SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. Finally, a comparison of ATOFMS particle class data is made with factors obtained by Positive Matrix Factorization from AMS data.. Both the Ca-EC and OC particle types correlate with the AMS HOA primary organic fraction (R2 = 0.65 and 0.50 respectively), and Na-EC-OC, but not SOA-PAH, which correlates weakly with the AMS OOA secondary organic aerosol factor (R2 = 0.35). A detailed analysis was conducted to identify ATOFMS particle type(s) representative

  9. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes

    NASA Astrophysics Data System (ADS)

    Mor, Flavio M.; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-01

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λem = 532 nm) at half the excitation wavelength (λex = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET).Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal

  10. Single mimivirus particles intercepted and imaged with an X-ray laser

    PubMed Central

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos

    2014-01-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1–4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  11. Quantitative study of polymer conformation and dynamics by single-particle tracking.

    PubMed Central

    Qian, H; Elson, E L

    1999-01-01

    We present a new method for analyzing the dynamics of conformational fluctuations of individual flexible polymer molecules. In single-particle tracking (SPT), one end of the polymer molecule is tethered to an immobile substratum. A microsphere attached to the other end serves as an optical marker. The conformational fluctuations of the polymer molecule can be measured by optical microscopy via the motion of the microsphere. The bead-and-spring theory for polymer dynamics is further developed to account for the microsphere, and together the measurement and the theory yield quantitative information about molecular conformations and dynamics under nonperturbing conditions. Applying the method to measurements carried out on DNA molecules provides information complementary to recent studies of single DNA molecules under extensional force. Combining high precision measurements with the theoretical analysis presented here creates a powerful tool for studying conformational dynamics of biological and synthetic macromolecules at the single-molecule level. PMID:10049340

  12. Distinguishing Micron-Sized UO2, UO3, etc. Particles from Other Common Mineral Particles by Single-Shot Fluorescence Spectra

    SciTech Connect

    Halverson, J.E.

    2003-02-05

    An optical system for detecting the single-shot fluorescence spectrum from a single flowing particle was built. With this system, the single-shot fluorescence spectrum was observed from an individual UO3 particle around 50 um in diameter. The fluorescence spectra from UO2, UO3, U3O8 were centered around 520 nm when excited by a 266 nm or 355 nm laser. The fluorescence spectra from UOx showed different peak wavelengths and different spectral profiles from those of SiO2, Al2O3, CaO, CdO, CrO3, Cr2O3, FeO, Fe2O3, Li2O, PbO, PbO2, and Pb3O4, which could be the main interfering mineral-oxide particles. These differences provide the possibility of a quick and simple method for distinguishing UO2, UO3, U3O8, and other uranium oxide particles from many common mineral-oxide particles. By measuring single-shot, single-particle fluorescence spectra, it also may be possible to monitor the ambient aerosols that are contaminated with uranium oxide in the respiratory size aerosols (1-10 um in diameter).

  13. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies.

    PubMed

    Zabel, Franziska; Mohanan, Deepa; Bessa, Juliana; Link, Alexander; Fettelschoss, Antonia; Saudan, Philippe; Kündig, Thomas M; Bachmann, Martin F

    2014-06-15

    Extensive studies have been undertaken to describe naive B cells differentiating into memory B cells at a cellular and molecular level. However, relatively little is known about the fate of memory B cells upon Ag re-encounter. We have previously established a system based on virus-like particles (VLPs), which allows tracking of VLP-specific B cells by flow cytometry as well as histology. Using allotype markers, it is possible to adoptively transfer memory B cells into a naive mouse and track responses of naive and memory B cells in the same mouse under physiological conditions. We have observed that VLP-specific memory B cells quickly differentiated into plasma cells that drove the early onset of a strong humoral IgG response. However, neither IgM(+) nor IgG(+) memory B cells proliferated extensively or entered germinal centers. Remarkably, plasma cells derived from memory B cells preferentially homed to the bone marrow earlier and secreted increased levels of Abs when compared with primary plasma cells derived from naive B cells. Hence, memory B cells have the unique phenotype to differentiate into highly effective secondary plasma cells.

  14. Wafer level fabrication of single cell dispenser chips with integrated electrodes for particle detection

    NASA Astrophysics Data System (ADS)

    Schoendube, Jonas; Yusof, Azmi; Kalkandjiev, Kiril; Zengerle, Roland; Koltay, Peter

    2015-02-01

    This work presents the microfabrication and experimental evaluation of a dispenser chip, designed for isolation and printing of single cells by combining impedance sensing and drop-on-demand dispensing. The dispenser chip features 50  ×  55 µm (width × height) microchannels, a droplet generator and microelectrodes for impedance measurements. The chip is fabricated by sandwiching a dry film photopolymer (TMMF) between a silicon and a Pyrex wafer. TMMF has been used to define microfluidic channels, to serve as low temperature (75 °C) bonding adhesive and as etch mask during 300 µm deep HF etching of the Pyrex wafer. Due to the novel fabrication technology involving the dry film resist, it became possible to fabricate facing electrodes at the top and bottom of the channel and to apply electrical impedance sensing for particle detection with improved performance. The presented microchip is capable of dispensing liquid and detecting microparticles via impedance measurement. Single polystyrene particles of 10 µm size could be detected with a mean signal amplitude of 0.39  ±  0.13 V (n=439 ) at particle velocities of up to 9.6 mm s-1 inside the chip.

  15. Quantitative measurement of atomic sodium in the plume of a single burning coal particle

    SciTech Connect

    van Eyk, P.J.; Ashman, P.J.; Alwahabi, Z.T.; Nathan, G.J.

    2008-11-15

    The release of volatile sodium during coal combustion is a significant factor in the fouling and corrosion of heat transfer surfaces within industrial coal-fired boilers. A method for measuring the temporal release of atomic sodium from a single coal particle is described. Laser absorption was used to calibrate laser-induced fluorescence measurements of atomic sodium utilising the sodium D1 line (589.59 nm) in a purpose-designed flat flame environment. The calibration was then applied to planar laser-induced fluorescence measurements of sodium atoms in the plume from a single Victorian brown coal particle (53 mg) suspended within the flat flame. The peak concentration of atomic sodium was approximately 64.1 ppb after 1080.5 s, which appears to correspond to the end of char combustion. To our knowledge this is the first in situ quantitative measurement of the concentration field of atomic sodium in the plume above a burning particle. A simple kinetic model has been used to estimate the rate of sodium decay in the post-flame gases. Comparison of the estimated and measured decay rates showed reasonable agreement. (author)

  16. Coarse-grained single-particle dynamics in two-dimensional solids and liquids.

    PubMed

    Silbermann, Jörg R; Schoen, Martin; Klapp, Sabine H L

    2008-07-01

    We consider the dynamics of a single tagged particle in a two-dimensional system governed by Lennard-Jones interactions. Previous work based on the Mori-Zwanzig projection operator formalism has shown that the single-particles dynamics can be described via a generalized Langevin equation (GLE) which is exact within the harmonic approximation, that is, for a low-temperature solid [J. M. Deutch and R. Silbey, Phys. Rev. A 3, 2049 (1971)]. In the present work we explore to what an extent the GLE reproduces the effective dynamics under thermodynamic conditions where the harmonic approximation is no longer justified. To this end we compute characteristic time autocorrelation functions for the tagged particle in molecular dynamics simulations of the full system and compare these functions with those obtained from solving the GLE. At low temperatures we find excellent agreement between both data sets. Deviations emerge at higher temperatures which are, however, surprisingly small even in the high-temperature liquid phase.

  17. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.

    PubMed

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J P; de Pablo, Pedro J; Mateu, Mauricio G

    2012-06-06

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.

  18. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    DOE PAGES

    Zhu, Feng; Men, Long; Guo, Yijun; ...

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively highermore » photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.« less

  19. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    SciTech Connect

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  20. Mechanical Disassembly of Single Virus Particles Reveals Kinetic Intermediates Predicted by Theory

    PubMed Central

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J.P.; de Pablo, Pedro J.; Mateu, Mauricio G.

    2012-01-01

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T = 1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly. PMID:22713577

  1. High-spatial-resolution mapping of catalytic reactions on single particles

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; Bechtel, Hans A.; Martin, Michael C.; Toste, F. Dean; Gross, Elad

    2017-01-01

    The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles—which contain metal atoms with low coordination numbers—are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.

  2. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  3. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  4. Optical tweezing electrophoresis of single biotinylated colloidal particles for avidin concentration measurement

    NASA Astrophysics Data System (ADS)

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Neyts, Kristiaan; Beunis, Filip

    2015-06-01

    We present a novel approach for label-free concentration measurement of a specific protein in a solution. The technique combines optical tweezers and microelectrophoresis to establish the electrophoretic mobility of a single microparticle suspended in the solution. From this mobility measurement, the amount of adsorbed protein on the particle is derived. Using this method, we determine the concentration of avidin in a buffer solution. After calibration of the setup, which accounts for electro-osmotic flow in the measurement device, the mobilities of both bare and biotinylated microspheres are measured as a function of the avidin concentration in the mixture. Two types of surface adsorption are identified: the biotinylated particles show specific adsorption, resulting from the binding of avidin molecules with biotin, at low avidin concentrations (below 0.04 μg/ml) while at concentrations of several μg/ml non-specific on both types of particles is observed. These two adsorption mechanisms are incorporated in a theoretical model describing the relation between the measured mobility and the avidin concentration in the mixture. This model describes the electrophoretic mobility of these particles accurately over four orders of magnitude of the avidin concentration.

  5. Viral arthritides.

    PubMed

    Outhred, Alexander C; Kok, Jen; Dwyer, Dominic E

    2011-05-01

    Viral infections may manifest as acute or chronic arthritis. Joint involvement arises from either direct infection of the joint, through an immunological response directed towards the virus or autoimmunity. Epidemiological clues to the diagnosis include geographic location and exposure to vector-borne, blood-borne or sexually transmitted viruses. Although not always possible, it is important to diagnose the pathogenic virus, usually by serology, nucleic acid tests or rarely, viral culture. In general, viral arthritides are self-limiting and treatment is targeted at symptomatic relief. This article focuses on the causes, clinical features, diagnosis and treatment of viral arthritides.

  6. Sensitive sandwich immunoassay based on single particle mode inductively coupled plasma mass spectrometry detection.

    PubMed

    Liu, Rui; Xing, Zhi; Lv, Yi; Zhang, Sichun; Zhang, Xinrong

    2010-11-15

    A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions ((197)Au(+)) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3 σ) of 0.1 ng mL(-1) was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL(-1) and a RSD of 8.1% (2.0 ng mL(-1)). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.

  7. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  8. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    DOE PAGES

    Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; ...

    2011-01-01

    Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore » pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less

  9. Trajectory Approach to Two-State Kinetics of Single Particles on Sculpted Energy Landscapes

    PubMed Central

    Wu, David; Ghosh, Kingshuk; Inamdar, Mandar; Lee, Heun Jin; Fraser, Scott; Dill, Ken; Phillips, Rob

    2012-01-01

    We study the trajectories of a single colloidal particle as it hops between two energy wells which are sculpted using optical traps. Whereas the dynamical behaviors of such systems are often treated by master-equation methods that focus on particles as actors, we analyze them instead using a trajectory-based variational method called maximum caliber (MaxCal). We show that the MaxCal strategy accurately predicts the full dynamics that we observe in the experiments: From the observed averages, it predicts second and third moments and covariances, with no free parameters. The covariances are the dynamical equivalents of Maxwell-like equilibrium reciprocal relations and Onsager-like dynamical relations. PMID:19792475

  10. Fast Three-Dimensional Single-Particle Tracking in Natural Brain Tissue

    PubMed Central

    Sokoll, Stefan; Prokazov, Yury; Hanses, Magnus; Biermann, Barbara; Tönnies, Klaus; Heine, Martin

    2015-01-01

    Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures. PMID:26445447

  11. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    PubMed Central

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications. PMID:27014504

  12. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    PubMed

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  13. Trajectory approach to two-state kinetics of single particles on sculpted energy landscapes.

    PubMed

    Wu, David; Ghosh, Kingshuk; Inamdar, Mandar; Lee, Heun Jin; Fraser, Scott; Dill, Ken; Phillips, Rob

    2009-07-31

    We study the trajectories of a single colloidal particle as it hops between two energy wells which are sculpted using optical traps. Whereas the dynamical behaviors of such systems are often treated by master-equation methods that focus on particles as actors, we analyze them instead using a trajectory-based variational method called maximum caliber (MaxCal). We show that the MaxCal strategy accurately predicts the full dynamics that we observe in the experiments: From the observed averages, it predicts second and third moments and covariances, with no free parameters. The covariances are the dynamical equivalents of Maxwell-like equilibrium reciprocal relations and Onsager-like dynamical relations.

  14. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments

    SciTech Connect

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; Hahn, Robert von; Klinkhamer, Vincent; Vogel, Stephen; Wolf, Andreas; Krantz, Claude; Novotný, Oldřich; Schippers, Stefan

    2015-02-15

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK’s Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  15. Single-sheet identification method of heavy charged particles using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Zaki, M. F.; Abdel-Naby, A.; Morsy, A. Ahmed

    2007-08-01

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to examine the suitability of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length vs. residual range for different heavy ions in these detectors. So, the maximum etchable ranges of heavy ions such as ^{93}Nb, ^{86}Kr and ^{4}He in CR-39 and ^{4}He and ^{132}Xe in CN-85 polycarbonate have been determined. The ranges of these ions in these detectors have also been computed theoretically using the Henke-Benton program. A reasonably good agreement has been observed between the experimentally and theoretically computed values.

  16. Interplay between single-particle and collective excitations in argon isotopes populated by transfer reactions

    SciTech Connect

    Szilner, S.; Jelavic-Malenica, D.; Soic, N.; Corradi, L.; Fioretto, E.; Sahin, E.; Silvestri, R.; Stefanini, A. M.; Valiente-Dobon, J. J.; Haas, F.; Lebhertz, D.; Bouhelal, M.; Caurier, E.; Courtin, S.; Goasduff, A.; Nowacki, F.; Ur, C. A.; Beghini, S.; Farnea, E.

    2011-07-15

    New {gamma} transitions have been identified in argon isotopes in {sup 40}Ar + {sup 208}Pb multiple transfer reactions by exploiting, in a fragment-{gamma} measurement, the new generation of magnetic spectrometers based on trajectory reconstruction coupled to large {gamma} arrays. The coupling of single-particle degrees of freedom to nuclear vibration quanta was discussed. The interpretation of the newly observed states within a particle-phonon coupling picture was used to consistently follow, via their excitation energies, the evolution of collectivity in odd Ar isotopes. The proposed level schemes are supported by the results of sd-pf shell-model calculations, which have been also employed to evaluate the strength functions of the populated states.

  17. Quasi-Particle Spectrum around a Single Vortex in Superconductors --- s-Wave Case---

    NASA Astrophysics Data System (ADS)

    Kato, M.; Maki, K.

    2000-05-01

    Making use of the Bogoliubov-de Gennes equation, we study the quasi-particle spectrum and the vortex core structure of a single vortex in quasi 2D s-wave superconductors for small pFξ0, where pF is the Fermi momentum and ξ0=vF/ Δ0 is the coherence length (hbar=1). During our numerical calculation, the particle number is conserved for each pFξ0. In particular, we find that there are only 1 or 2 bound states for pFξ0=1. Also, for pFξ0=1, the Kramer-Pesch effect ceases to exist at around T/Tc =~ 0.3.

  18. Applications of differential algebra to single-particle dynamics in storage rings

    SciTech Connect

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps.

  19. Exponential orthogonality catastrophe in single-particle and many-body localized systems

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Pixley, J. H.; Li, Xiaopeng; Das Sarma, S.

    2015-12-01

    We investigate the statistical orthogonality catastrophe (STOC) in single-particle and many-body localized systems by studying the response of the many-body ground state to a local quench. Using scaling arguments and exact numerical calculations, we establish that the STOC gives rise to a wave function overlap between the pre- and postquench ground states that has an exponential decay with the system size, in sharp contrast to the well-known power law Anderson orthogonality catastrophe in metallic systems. This exponential decay arises from a statistical charge transfer process where a particle can be effectively "transported" to an arbitrary lattice site. In a many-body localized phase, this nonlocal transport and the associated exponential STOC phenomenon persist in the presence of interactions. We study the possible experimental consequences of the exponential STOC on the Loschmidt echo and spectral function, establishing that this phenomenon might be observable in cold atomic experiments through Ramsey interference and radio-frequency spectroscopy.

  20. Single Particle Source Profiles of Gasoline and Diesel Powered Vehicles, Biomass Burning and Coal Combustion Exhaust Emissions

    NASA Astrophysics Data System (ADS)

    Suess, D. T.; Prather, K. A.; Schauer, J.; Cass, G. R.

    2001-12-01

    Vehicular exhaust, biomass burning, and coal combustion are three significant aerosol sources that have local to global impacts on the earth's atmosphere. They may also contribute to health effects as they can emit carcinogenic species such as polycyclic aromatic hydrocarbons (PAH) and trace metals including beryllium and vanadium. In these source characterization studies, combustion products were diluted to near ambient temperature and pressure using a two stage dilution source sampler. Diluted exhaust emissions were analyzed with an aerosol time-of-flight mass spectrometer (ATOFMS) obtaining real-time measurements of single particle size and chemical composition. In addition, samples were collected using a micro-orifice uniform deposit impactor (MOUDI), which was operated in a manner compatible with advanced chemical analysis techniques, for size segregated mass concentrations. Due to the importance of these particle sources to the atmosphere, differentiating these emissions from each other and other particle sources is essential. Since ATOFMS is a relatively new single particle analysis technique, source characterization experiments are needed to determine qualitative signatures of specific particulate sources for their ambient identification. ATOFMS single particle mass spectra will be discussed introducing chemically distinct single particle types emitted from these combustion sources. Numerous particle types are emitted from each source, as indicated by distinct chemical associations on the single particle level. Examples include, the chemical associations of vanadium with organic carbon (OC) in gasoline powered vehicle emissions, calcium with black carbon (BC) in diesel powered vehicle emissions, beryllium and boron with BC in coal combustion emissions, and potassium with OC from biomass burning emissions. Most importantly, the overall particle type distributions from each source differ significantly. Finally, complementary MOUDI mass distribution data will

  1. Uncoupling of the dynamics of host-pathogen interaction uncovers new mechanisms of viral interferon antagonism at the single-cell level.

    PubMed

    Rand, Ulfert; Hillebrand, Upneet; Sievers, Stephanie; Willenberg, Steffi; Köster, Mario; Hauser, Hansjörg; Wirth, Dagmar

    2014-07-01

    Antiviral defence in mammals is mediated through type-I interferons (IFNs). Viruses antagonise this process through expression of IFN antagonist proteins (IAPs). Understanding and modelling of viral escape mechanisms and the dynamics of IAP action has the potential to facilitate the development of specific and safe drugs. Here, we describe the dynamics of interference by selected viral IAPs, NS1 from Influenza A virus and NS3/4A from Hepatitis C virus. We used Tet-inducible IAP gene expression to uncouple this process from virus-driven dynamics. Stochastic activation of the IFN-β gene required the use of single-cell live imaging to define the efficacy of the inhibitors during the virus-induced signalling processes. We found significant correlation between the onset of IAP expression and halted IFN-β expression in cells where IFN-β induction had already occurred. These data indicate that IAPs not only prevent antiviral signalling prior to IFN-β induction, but can also stop the antiviral response even after it has been activated. We found reduced NF-κB activation to be the underlying mechanism by which activated IFN expression can be blocked. This work demonstrates a new mechanism by which viruses can antagonise the IFN response.

  2. Time irreversibility of the statistics of a single particle in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Frishman, Anna; Falkovich, Gregory

    2015-04-01

    We investigate time irreversibility from the point of view of a single particle in Burgers turbulence. Inspired by the recent work for incompressible flows [Xu et al., Proc. Natl. Acad. Sci. USA 111, 7558 (2014), 10.1073/pnas.1321682111], we analyze the evolution of the kinetic energy for fluid markers and use the fluctuations of the instantaneous power as a measure of time irreversibility. For short times, starting from a uniform distribution of markers, we find the scaling <[E(t ) -E (0 ) ] n>∝t and ∝Ren -1 for the power as a function of the Reynolds number. Both observations can be explained using the "flight-crash" model, suggested by Xu et al. Furthermore, we use a simple model for shocks that reproduces the moments of the energy difference, including the pre-factor for . To complete the single-particle picture for Burgers we compute the moments of the Lagrangian velocity difference and show that they are bifractal. This arises in a similar manner to the bifractality of Eulerian velocity differences. In the above setting, time irreversibility is directly manifest as particles eventually end up in shocks. We additionally investigate time irreversibility in the long-time limit when all particles are located inside shocks and the Lagrangian velocity statistics are stationary. We find the same scalings for the power and energy differences as at short times and argue that this is also a consequence of rare "flight-crash" events related to shock collisions.

  3. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles.

    PubMed

    Elmlund, Dominika; Elmlund, Hans

    2012-12-01

    The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction algorithm is tailored to asymmetrical and structurally heterogeneous single-particles. Its basis is global optimization with the use of Fourier common lines. The advance that enables ab initio reconstruction and heterogeneity analysis is the separation of the tasks of in-plane alignment and projection direction determination via bijective orientation search - a new concept in common lines-based strategies. Bijective orientation search divides the configuration space into two groups of paired parameters that are optimized separately. The first group consists of the rotations and shifts in the plane of the projection; the second group consists of the projection directions and state assignments. In SIMPLE, ab initio reconstruction is feasible because the 3D in-plane alignment is approximated using reference-free 2D rotational alignment. The subsequent common lines-based search hence searches projection directions and states only. Thousands of class averages are analyzed simultaneously in a matter of hours. Novice SIMPLE users get a head start via the well documented front-end. The structured, object-oriented back-end invites advanced users to develop new alignment and reconstruction algorithms. An overview of the package is presented together with benchmarks on simulated data. Executable binaries, source code, and documentation are available at http://simple.stanford.edu.

  4. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  5. A tensor formulation of many-electron theory in a nonorthogonal single-particle basis

    SciTech Connect

    Head-Gordon, M.; Maslen, P.E.; White, C.A.

    1998-01-01

    We apply tensor methods to formulate theories of electron correlation in nonorthogonal basis sets. The resulting equations are manifestly invariant to nonorthogonal basis transformations, between functions spanning either the occupied or virtual subspaces of the one-particle Hilbert space. The tensor approach is readily employed in either first or second quantization. As examples, second-order Mo/ller{endash}Plesset perturbation theory, and coupled cluster theory with single and double substitutions, including noniterative triples, are recast using the tensor formalism. This gives equations which are invariant to larger classes of transformations than existing expressions. Procedures for truncating these equations are discussed. {copyright} {ital 1998 American Institute of Physics.}

  6. Single-particle cryo-EM data acquisition by using direct electron detection camera

    PubMed Central

    Wu, Shenping; Armache, Jean-Paul; Cheng, Yifan

    2016-01-01

    Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as ‘movies’ made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired. PMID:26546989

  7. FAST WAVELET-BASED SINGLE-PARTICLE RECONSTRUCTION IN CRYO-EM.

    PubMed

    Vonesch, Cédric; Wang, Lanhui; Shkolnisky, Yoel; Singer, Amit

    2011-06-09

    This paper presents a novel algorithm for the 3D tomographic inversion problem that arises in single-particle electron cryo-microscopy (Cryo-EM). It is based on two key components: 1) a variational formulation that promotes sparsity in the wavelet domain and 2) the Toeplitz structure of the combined projection/back-projection operator. The first idea has proven to be very effective for the recovery of piecewise-smooth signals, which is confirmed by our numerical experiments. The second idea allows for a computationally efficient implementation of the reconstruction procedure, using only one circulant convolution per iteration.

  8. Advances in the field of single-particle cryo-electron microscopy over the last decade.

    PubMed

    Frank, Joachim

    2017-02-01

    In single-particle cryo-electron microscopy (cryo-EM), molecules suspended in a thin aqueous layer are rapidly frozen and imaged at cryogenic temperature in the transmission electron microscope. From the random projection views, a three-dimensional image is reconstructed, enabling the structure of the molecule to be obtained. In this article I discuss technological progress over the past decade, which has, in my own field of study, culminated in the determination of ribosome structure at 2.5-Å resolution. I also discuss likely future improvements in methodology.

  9. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs

    PubMed Central

    Shaikh, Tanvir R; Gao, Haixiao; Baxter, William T; Asturias, Francisco J; Boisset, Nicolas; Leith, Ardean; Frank, Joachim

    2009-01-01

    This protocol describes the reconstruction of biological molecules from the electron micrographs of single particles. Computation here is performed using the image-processing software SPIDER and can be managed using a graphical user interface, termed the SPIDER Reconstruction Engine. Two approaches are described to obtain an initial reconstruction: random-conical tilt and common lines. Once an existing model is available, reference-based alignment can be used, a procedure that can be iterated. Also described is supervised classification, a method to look for homogeneous subsets when multiple known conformations of the molecule may coexist. PMID:19180078

  10. Generalized Stoner-Wohlfarth model accurately describing the switching processes in pseudo-single ferromagnetic particles

    SciTech Connect

    Cimpoesu, Dorin Stoleriu, Laurentiu; Stancu, Alexandru

    2013-12-14

    We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.

  11. Using the Volta phase plate with defocus for cryo-EM single particle analysis

    PubMed Central

    Danev, Radostin; Tegunov, Dimitry; Baumeister, Wolfgang

    2017-01-01

    Previously, we reported an in-focus data acquisition method for cryo-EM single-particle analysis with the Volta phase plate (Danev and Baumeister, 2016). Here, we extend the technique to include a small amount of defocus which enables contrast transfer function measurement and correction. This hybrid approach simplifies the experiment and increases the data acquisition speed. It also removes the resolution limit inherent to the in-focus method thus allowing 3D reconstructions with resolutions better than 3 Å. DOI: http://dx.doi.org/10.7554/eLife.23006.001 PMID:28109158

  12. A single particle plasmon resonance study of 3D conical nanoantennas.

    PubMed

    Schäfer, Christian; Gollmer, Dominik A; Horrer, Andreas; Fulmes, Julia; Weber-Bargioni, Alexander; Cabrini, Stefano; Schuck, P James; Kern, Dieter P; Fleischer, Monika

    2013-09-07

    Metallic nanocones are well-suited optical antennas for near-field microscopy and spectroscopy, exhibiting a number of different plasmonic modes. A major challenge in using nanocones for many applications is maximizing the signal at the tip while minimizing the background from the base. It is shown that nanocone plasmon resonance properties can be shifted over a wide range of wavelengths by variation of the substrate, material, size and shape, enabling potential control over specific modes and field distributions. The individual resonances are identified and studied by correlated single particle dark field scattering and scanning electron microscopy in combination with numerical simulations.

  13. Wigglers and single-particle dynamics in the NLC damping rings

    SciTech Connect

    Venturini, Marco; Wolski, Andrzej; Dragt, Alex

    2003-05-06

    Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits.

  14. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.

    PubMed

    Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Jiang, Hongyuan

    2016-12-06

    We propose a simple, inexpensive microfluidic chip for large-scale trapping of single particles and cells based on induced-charge electroosmosis in a rotating electric field (ROT-ICEO). A central floating electrode array, was placed in the center of the gap between four driving electrodes with a quadrature configuration and used to immobilize single particles or cells. Cells were trapped on the electrode array by the interaction between ROT-ICEO flow and buoyancy flow. We experimentally optimized the efficiency of trapping single particles by investigating important parameters like particle or cell density and electric potential. Experimental and numerical results showed good agreement. The operation of the chip was verified by trapping single polystyrene (PS) microspheres with diameters of 5 and 20 μm and single yeast cells. The highest single particle occupancy of 73% was obtained using a floating electrode array with a diameter of 20 μm with an amplitude voltage of 5 V and frequency of 10 kHz for PS microbeads with a 5-μm diameter and density of 800 particles/μL. The ROT-ICEO flow could hold cells against fluid flows with a rate of less than 0.45 μL/min. This novel, simple, robust method to trap single cells has enormous potential in genetic and metabolic engineering.

  15. The effect of model fidelity on prediction of char burnout for single-particle coal combustion

    DOE PAGES

    McConnell, Josh; Sutherland, James C.

    2016-07-09

    In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less

  16. Resolving Changing Chemical and Physical Properties of SSA Particle Types during Laboratory Phytoplankton Blooms using Online Single Particle Analysis

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Prather, K. A.; Richardson, R.; Wang, X.

    2015-12-01

    Changes in the chemical composition of sea spray aerosols (SSA) can modify their climate-relevant properties. Recent studies have shown a diverse set of distinct SSA particle types, however there are conflicting reports on how and whether biological activity controls the organic fraction and mixing state of SSA. This study leverages an aerosol time-of-flight mass spectrometer to give an accounting of the temporally resolved mixing state of primary SSA (0.4 - 3 µm vacuum aerodynamic diameter), encompassing 97% of particles detected over the course of laboratory phytoplankton blooms. The influence of biological activity on the climate relevant properties of defined particle types is also investigated. Spatial chemical particle heterogeneity and particularly the surface chemical composition of particles are described along with particle type specific water-particle interactions. These online measurements in tandem with chemical composition could give new insight on the link between seawater chemistry, marine aerosols, and climate properties.

  17. Dual-wavelength-excitation single-particle fluorescence spectrometer/particle sorter for real-time measurement of organic carbon and biological aerosols

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Pinnick, Ron G.; Hill, Steven C.; Huang, Hermes; Chang, Richard K.

    2008-10-01

    We report the development of a Single-Particle Fluorescence Spectrometer (SPFS) system capable of measuring two UV-laser excited fluorescence spectra from a single particle on-the-fly. The two dispersed fluorescence spectra are obtained from excitation by two lasers at different wavelengths (263 nm and 351 nm). The SPFS samples single particles with sizes primarily in the 1-10 μm range. The fluorescence spectra are recorded from 280 nm to 600 nm (in 20 channels) for 263 nm excitation and from 370 nm to 700 nm (in 22 channels) for 351 nm excitation. The elastic scattering (channel 4 and 9) is also recorded for sizing each particle. A time stamp for single particles is marked with a variable time interval resolution from 10 ms to 10 minutes. The SPFS employs a virtual-impactor concentrator to concentrate respirable-sized particles with a resulting (size-dependent) effective flow rate of around 100 liters/min. The SPFS can measure single-particle spectra at a maximum rate of 90,000/sec, although the highest rates we have experienced for the ambient are only several hundred/sec. When the SPFS is combined with an aerodynamic deflector (puffer) to sort particles according to their fluorescence spectral characteristics, the SPFS/puffer system can selectively deflect and collect an enriched sample of targeted particles (at rates limited by the puffer) of 1200 particles/sec, for further examination. In laboratory tests, aerosol particles with similar UV-LIF spectra (e.g. B. subtilis and E.coli) are puffed into the reservoir of a micro-fluidic cell, where fluorescent-labeled antibodies bind to them and were classified by their labeled fluorescence. Measurements of the background ambient aerosol with the SPFS system made at sites with different regional climate (Connecticut, Maryland, and New Mexico) were clustered (unstructured hierarchical analysis) into 8-10 groups, with over 90% of all the fluorescent particles contained within these clusters (threshold dot product=0

  18. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    NASA Technical Reports Server (NTRS)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  19. Stochastic Particle Barcoding for Single-Cell Tracking and Multiparametric Analysis

    PubMed Central

    Castellarnau, Marc; Szeto, Gregory L.; Su, Hao-Wei; Tokatlian, Talar; Love, J. Christopher; Irvine, Darrell J.; Voldman, Joel

    2014-01-01

    This study presents stochastic particle barcoding (SPB), a method for tracking cell identity across bioanalytical platforms. In this approach, single cells or small collections of cells are co-encapsulated within an enzymatically-degradable hydrogel block along with a random collection of fluorescent beads, whose number, color, and position encode the identity of the cell, enabling samples to be transferred in bulk between single-cell assay platforms without losing the identity of individual cells. The application of SPB was demonstrated for transferring cells from a subnanoliter protein secretion/phenotyping array platform into a microtiter plate, with re-identification accuracies in the plate assay of 96±2%. Encapsulated cells were recovered by digesting the hydrogel, allowing subsequent genotyping and phenotyping of cell lysates. Finally, a model scaling was developed to illustrate how different parameters affect the accuracy of SPB and to motivate scaling of the method to 1,000's of unique blocks. PMID:25180800

  20. Particle tracking single protein-functionalized quantum dot diffusion and binding at silica surfaces.

    PubMed

    Rife, Jack C; Long, James P; Wilkinson, John; Whitman, Lloyd J

    2009-04-09

    We evaluate commercial QD585 and QD605 streptavidin-functionalized quantum dots (QDs) for single-particle tracking microscopy at surfaces using total internal reflectance fluorescence and measure single QD diffusion and nonspecific binding at silica surfaces in static and flow conditions. The QD diffusion coefficient on smooth, near-ideal, highly hydroxylated silica surfaces is near bulk-solution diffusivity, as expected for repulsive surfaces, but many QD trajectories on rougher, less-than-ideal surfaces or regions display transient adsorptions. We attribute the binding to defect sites or adsorbates, possibly in conjunction with protein conformation changes, and estimate binding energies from the transient adsorption lifetimes. We also assess QD parameters relevant to tracking, including hydrodynamic radius, charge state, signal levels, blinking reduction with reducing solutions, and photoinduced blueing and bleaching.

  1. Particle swarm optimization and its application in MEG source localization using single time sliced data

    NASA Astrophysics Data System (ADS)

    Lin, Juan; Liu, Chenglian; Guo, Yongning

    2014-10-01

    The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.

  2. Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shipley Robinson, Ellis; Onasch, Timothy B.; Worsnop, Douglas; Donahue, Neil M.

    2017-03-01

    We investigated the collection efficiency and effective ionization efficiency for secondary organic aerosol (SOA) particles made from α-pinene + O3 using the single-particle capabilities of the aerosol mass spectrometer (AMS). The mean count-based collection efficiency (CEp) for SOA across these experiments is 0.30 (±0.04 SD), ranging from 0.25 to 0.40. The mean mass-based collection efficiency (CEm) is 0.49 (±0.07 SD). This sub-unit collection efficiency and delayed vaporization is attributable to particle bounce in the vaporization region. Using the coupled optical and chemical detection of the light-scattering single-particle (LSSP) module of the AMS, we provide clear evidence that delayed vaporization is somewhat of a misnomer for these particles: SOA particles measured as a part of the AMS mass distribution do not vaporize at a slow rate; rather, they flash-vaporize, albeit often not on the initial impact with the vaporizer but instead upon a subsequent impact with a hot surface in the vaporization region. We also find that the effective ionization efficiency (defined as ions per particle, IPP) decreases with delayed arrival time. CEp is not a function of particle size (for the mobility diameter range investigated, 170-460 nm), but we did see a decrease in CEp with thermodenuder temperature, implying that oxidation state and/or volatility can affect CEp for SOA. By measuring the mean ions per particle produced for monodisperse particles as a function of signal delay time, we can separately determine CEp and CEm and thus more accurately measure the relative ionization efficiency (compared to ammonium nitrate) of different particle types.

  3. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    SciTech Connect

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  4. Bacteriophage ΦM1 of Pectobacterium evolves to escape two bifunctional Type III toxin-antitoxin and abortive infection systems through mutations in a single viral gene.

    PubMed

    Blower, Tim R; Chai, Ray; Przybilski, Rita; Chindhy, Shahzad; Fang, Xinzhe; Kidman, Samuel E; Tan, Hui; Luisi, Ben F; Fineran, Peter C; Salmond, George P C

    2017-02-03

    Some bacteria, when infected by their viral parasites (bacteriophages), undergo a suicidal response that also terminates productive viral replication (abortive infection; Abi). This response can be viewed as an altruistic act protecting the uninfected bacterial clonal population. Abortive infection can occur through the action of Type III protein-RNA toxin-antitoxin (TA) systems, such as ToxINPa from the phytopathogen, Pectobacterium atrosepticum Rare spontaneous mutants evolved in the generalized transducing phage, ΦM1, which escaped ToxINPa-mediated abortive infection in P. atrosepticum ΦM1 is a member of the Podoviridae and member of the "KMV-like viruses", a subset of the T7 supergroup. Genomic sequencing of ΦM1 escape mutants revealed single-base changes which clustered in a single open reading frame. The "escape" gene product, M1-23, was highly toxic to the host bacterium when over-expressed, but mutations in M1-23 that enabled an escape phenotype caused M1-23 to be less toxic. M1-23 is encoded within the DNA metabolism modular section of the phage genome, and when it was over-expressed, it co-purified with the host nucleotide excision repair protein, UvrA. While the M1-23 protein interacted with UvrA in co-immunoprecipitation assays, a UvrA mutant strain still aborted ΦM1, suggesting that the interaction is not critical for the Type III TA Abi activity. Additionally, ΦM1 escaped a heterologous Type III TA system (TenpINPl) from Photorhabdus luminescens (reconstituted in P. atrosepticum) through mutations in the same protein, M1-23. The mechanistic action of M1-23 is currently unknown but further analysis of this protein could provide insights into the mode of activation of both systems.

  5. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    NASA Astrophysics Data System (ADS)

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-09-01

    The long-term ``fate'' of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability.

  6. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    SciTech Connect

    Paunska, Ts.; Todorov, D. Shivarova, A.; Tarnev, Kh.

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  7. Acoustical vortices on a Chip for 3D single particle manipulation and vorticity control

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Bou Matar, Olivier; Baudoin, Michael

    Surface acoustic waves offer most of the basic functions required for on-chip actuation of fluids at small scales: efficient flow mixing, integrated pumping, particles separation, droplet displacement, atomization, division and fusion. Nevertheless some more advanced functions such as 3D particles manipulation and vorticity control require the introduction of some specific kind of waves called acoustic vortices. These helical waves propagate spinning around a phase singularity called the dark core. On the one hand, the beam angular momentum can be transferred to the fluid and create point-wise vorticity for confined mixing, and on the other the dark core can trap individual particles in an acoustic well for single object manipulation. In this presentation, I will show how acoustical vortices on-a-chip can be synthesized with a programmable electronics and an array of transducers. I will then highlight how some of their specificities can be used for acoustical tweezing and twisting. This work is supported by ANR Project No. ANR-12-BS09-0021-01 and ANR-12- BS09-0021-02, and Rgion Nord Pas de Calais.

  8. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy.

    PubMed

    Milazzo, Anna-Clare; Cheng, Anchi; Moeller, Arne; Lyumkis, Dmitry; Jacovetty, Erica; Polukas, James; Ellisman, Mark H; Xuong, Nguyen-Huu; Carragher, Bridget; Potter, Clinton S

    2011-12-01

    We report on initial results of using a new direct detection device (DDD) for single particle reconstruction of vitreous ice embedded specimens. Images were acquired on a Tecnai F20 at 200keV and a nominal magnification of 29,000×. This camera has a significantly improved signal to noise ratio and modulation transfer function (MTF) at 200keV compared to a standard CCD camera installed on the same microscope. Control of the DDD has been integrated into Leginon, an automated data collection system. Using GroEL as a test specimen, we obtained images of ∼30K particles with the CCD and the DDD from the same specimen sample using essentially identical imaging conditions. Comparison of the maps reconstructed from the CCD images and the DDD images demonstrates the improved performance of the DDD. We also obtained a 3D reconstruction from ∼70K GroEL particles acquired using the DDD; the quality of the density map demonstrates the potential of this new recording device for cryoEM data acquisition.

  9. Detecting and Number Counting of Single Engineered Nanoparticles by Digital Particle Polymerase Chain Reaction.

    PubMed

    Paunescu, Daniela; Mora, Carlos A; Querci, Lorenzo; Heckel, Reinhard; Puddu, Michela; Hattendorf, Bodo; Günther, Detlef; Grass, Robert N

    2015-10-27

    The concentrations of nanoparticles present in colloidal dispersions are usually measured and given in mass concentration (e.g. mg/mL), and number concentrations can only be obtained by making assumptions about nanoparticle size and morphology. Additionally traditional nanoparticle concentration measures are not very sensitive, and only the presence/absence of millions/billions of particles occurring together can be obtained. Here, we describe a method, which not only intrinsically results in number concentrations, but is also sensitive enough to count individual nanoparticles, one by one. To make this possible, the sensitivity of the polymerase chain reaction (PCR) was combined with a binary (=0/1, yes/no) measurement arrangement, binomial statistics and DNA comprising monodisperse silica nanoparticles. With this method, individual tagged particles in the range of 60-250 nm could be detected and counted in drinking water in absolute number, utilizing a standard qPCR device within 1.5 h of measurement time. For comparison, the method was validated with single particle inductively coupled plasma mass spectrometry (sp-ICPMS).

  10. The single-particle density matrix of a quantum bright soliton from the coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Ayet, Alex; Brand, Joachim

    2017-02-01

    We present a novel approach for computing reduced density matrices for superpositions of eigenstates of a Bethe-ansatz solvable model by direct integration of the wave function in coordinate representation. A diagrammatic approach is developed to keep track of relevant terms and identify symmetries, which helps to reduce the number of terms that have to be evaluated numerically. As a first application we compute with modest numerical resources the single-particle density matrix and its eigenvalues including the condensate fraction for a quantum bright soliton with up to N  =  10 bosons. The latter are constructed as superpositions of string-type Bethe-ansatz eigenstates of nonrelativistic bosons in one spatial dimension with attractive contact interaction. Upon delocalising the superposition in momentum space we find that the condensate fraction reaches maximum values larger than 97% with weak particle-number dependence in the range of particles studied. The presented approach is suitable for studying time-dependent problems and generalises to higher-order correlation functions.

  11. Effect of Phase Lag on Fluid Flow and Particle Dispersion in a Single Human Alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2007-11-01

    The human lung can be divided into (1) the conducting airways, and (2) the acini. The acini are responsible for gas exchange and consist of alveoli and bronchioles. The acini are useful delivery sites for inhaled therapeutic aerosols. In normal lung function the alveolus expands and contracts in phase with the bronchiole airflow oscillation. Lung diseases such as emphysema compromise the elasticity of the lung. Consequently, the alveolus may not oscillate in-phase with the oscillating bronchiole airflow. We have previously studied flow and particle transport in an alveolus for in-phase flow. The current work focuses on measuring out-of-phase airflow patterns and particle transport in an in-vitro model of a single expanding/contracting human alveolus. The model consists of a transparent, elastic, oscillating alveolus (represented by a 5/6th hemisphere) attached to a rigid circular tube. Realistic tidal breathing conditions were achieved by matching Reynolds and Womersley numbers. Flow patterns were measured using PIV; these velocity maps were subsequently used to calculate particle transport and deposition on the alveolar wall.

  12. A clock referenced to the rest mass of a single particle

    NASA Astrophysics Data System (ADS)

    Yu, Chenghui; Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; English, Damon; Brown, Justin; Hohensee, Michael; Müller, Holger

    2013-05-01

    We demonstrate the operation of a Compton clock, one whose frequency is referenced to the mass of a single particle. Though it is well known that the wave function of a massive particle accumulates phase at the Compton frequency ω0 = mc2 / ℏ in its rest frame, such oscillations are too fast to directly detect (3 ×1025 Hz for 133Cs). We use an optical frequency comb and a Ramsey-Bordé matter-wave interferometer to stabilize an oscillator to a chosen subharmonic of ω0 with a precision of 4 parts per billion (at 6 hours timescale). Although this is far below the precision of modern frequency standards, its precision is sufficient, in combination with the spheres constructed by the Avogadro Project, to calibrate macroscopic masses with an accuracy of 30 ppb, in terms of the second. This clock may be useful for testing fundamental physics by demonstrating that its frequency redshifts in a gravitational potential in the same way that conventional frequency standards do. Implementation of a clock referenced to the mass of an elementary particle, such as an electron or positron, could also enable new experimental tests of Lorentz and CPT symmetry.

  13. Accelerators for critical experiments involving single-particle upset in solid-state microcircuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1985-01-01

    Charged-particle interactions in microelectronic circuit chips (integrated circuits) present a particularly insidious problem for solid-state electronic systems due to the generation of soft errors or single-particle event upset (SEU) by either cosmic rays or other radiation sources. Particle accelerators are used to provide both light and heavy ions in order to assess the propensity of integrated circuit chips for SEU. Critical aspects of this assessment involve the ability to analytically model SEU for the prediction of error rates in known radiation environments. In order to accurately model SEU, the measurement and prediction of energy deposition in the form of an electron-hole plasma generated along an ion track is of paramount importance. This requires the use of accelerators which allow for ease in both energy control (change of energy) and change of ion species. This and other aspects of ion-beam control and diagnostics (e.g., uniformity and flux) are of critical concern for the experimental verification of theoretical SEU models.

  14. Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking

    PubMed Central

    Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue

    2015-01-01

    The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280

  15. Combustion of single and agglomerated aluminum particles in solid rocket motor flows

    NASA Astrophysics Data System (ADS)

    Melcher, John Charles, IV

    2001-07-01

    Single and agglomerated aluminum droplets were studied in a solid rocket motor (SRM) test chamber with optical access to the internal flow at 6--22 atm and 2300 K. The chamber was pressurized by burning a main grain AP/HTPB propellant, and the burning aluminum droplets were generated by a smaller aluminized solid propellant sample, center-mounted in the flow. A 35 mm camera was used with a chopper wheel to give droplet flame diameter vs. time measurements of the burning droplets in flight, from which bum-rate laws were developed. A high-speed video CCD was used with high-magnification optics in order to image the flame/smoke cloud surrounding the burning liquid droplets. The intensity profiles of the droplet images were de-convoluted using an Abel inversion to give true intensity profiles. Both single and agglomerated droplets were studied, where agglomerates are comprised of hundreds of parent particles or more. The Abel inversion results show that the relative smoke cloud size is not constant with diameter, but instead grows as the droplet shrinks, by ˜D -0.5, for both the single and agglomerated droplets. Measured diameter trajectories show that for single droplets, the diameter law is D 0.75 = DO0.75 = 8·t [mu m, msec], and for agglomerated droplets, D 1.0 = Do1.0 - 20·t, such that the single droplets burn faster than the agglomerates. For both single and agglomerated droplets, the burning rate slope k did not change significantly over the chamber pressure studied. Lastly, a model was developed to describe the oxide cap accumulation on the droplet surface from the oxide smoke cloud surrounding the droplet. Results suggest that less oxide accumulates in high-pressure SRMs when considering mass burning rates for different relative cap sizes. The thermophoretic force, which can control oxide transport only over the cap, decreases with pressure.

  16. Maskiton: Interactive, Web-based Classification of Single-Particle Electron Microscopy Images

    PubMed Central

    Yoshioka, Craig; Lyumkis, Dmitry; Carragher, Bridget; Potter, Clinton S.

    2013-01-01

    Electron microscopy (EM) is an important tool for determining the composition, arrangement and structure of biological macromolecules. When studying structurally heterogeneous samples using EM, classification is a critical step toward achieving higher resolution and identifying biologically significant conformations. We have developed an interactive, web-based tool, called Maskiton, for creating custom masks and performing 2D classifications on aligned single-particle EM images. The Maskiton interface makes it considerably easier and faster to explore the significance of heterogeneity in single-particle datasets. Maskiton features include: resumable uploads to facilitate transfer of large datasets to the server, custom mask creation in the browser, continual progress updates, and interactive viewing of classification results. To demonstrate the value of this tool, we provide examples of its use on several experimental datasets and include analyses of the independent terminus mobility within the Ltn1 E3 ubiquitin ligase, the in-vitro assembly of 30S ribosomal subunits, and classification complexity reduction within Immunoglobulin M. This work also serves as a proof-of-concept for the development of future cross-platform, interactive user interfaces for electron microscopy data processing. PMID:23428431

  17. Revealing nonergodic dynamics in living cells from a single particle trajectory

    NASA Astrophysics Data System (ADS)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  18. Interplay between plasmon and single-particle excitations in a metal nanocluster

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-01

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. This study provides guidance on improving plasmonic applications.

  19. Maskiton: Interactive, web-based classification of single-particle electron microscopy images.

    PubMed

    Yoshioka, Craig; Lyumkis, Dmitry; Carragher, Bridget; Potter, Clinton S

    2013-05-01

    Electron microscopy (EM) is an important tool for determining the composition, arrangement and structure of biological macromolecules. When studying structurally heterogeneous samples using EM, classification is a critical step toward achieving higher resolution and identifying biologically significant conformations. We have developed an interactive, web-based tool, called Maskiton, for creating custom masks and performing 2D classifications on aligned single-particle EM images. The Maskiton interface makes it considerably easier and faster to explore the significance of heterogeneity in single-particle datasets. Maskiton features include: resumable uploads to facilitate transfer of large datasets to the server, custom mask creation in the browser, continual progress updates, and interactive viewing of classification results. To demonstrate the value of this tool, we provide examples of its use on several experimental datasets and include analyses of the independent terminus mobility within the Ltn1 E3 ubiquitin ligase, the in vitro assembly of 30S ribosomal subunits, and classification complexity reduction within Immunoglobulin M. This work also serves as a proof-of-concept for the development of future cross-platform, interactive user interfaces for electron microscopy data processing.

  20. Interplay between plasmon and single-particle excitations in a metal nanocluster

    DOE PAGES

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-17

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be convertedmore » into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. Ultimately, this study provides guidance on improving plasmonic applications.« less

  1. Interplay between plasmon and single-particle excitations in a metal nanocluster

    SciTech Connect

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-17

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. Ultimately, this study provides guidance on improving plasmonic applications.

  2. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  3. Fourier transforms of single-particle wave functions in cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Rizea, M.; Carjan, N.

    2016-12-01

    A formalism and the corresponding numerical procedures that calculate the Fourier transform of a single-particle wave function defined on a grid of cylindrical (ρ, z) coordinates is presented. Single-particle states in spherical and deformed nuclei have been chosen in view of future applications in the field of nuclear reactions. Bidimensional plots of the probability that the nucleon's momentum has a given value K=√{k_{ρ}2+kz2} are produced and from them the K -distributions are deduced. Three potentials have been investigated: a) a sharp surface spherical well ( i.e., of constant depth), b) a spherical Woods-Saxon potential i.e., diffuse surface) and c) a deformed potential of Woods-Saxon type. In the first case the momenta are as well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities plots. In the second case the diffuseness allows very low momenta to be always populated thus creating tails towards the origin ( K = 0). The peaks are still present but not well separated. In the third case the deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along them. As a consequence the K-distributions have only one broad peak.

  4. Single-particle spectral function for the classical one-component plasma

    NASA Astrophysics Data System (ADS)

    Fortmann, C.

    2009-01-01

    The spectral function for an electron one-component plasma is calculated self-consistently using the GW(0) approximation for the single-particle self-energy. In this way, correlation effects that go beyond the mean-field description of the plasma are contained, i.e., the collisional damping of single-particle states, the dynamical screening of the interaction, and the appearance of collective plasma modes. Second, a nonperturbative analytic solution for the on-shell GW(0) self-energy as a function of momentum is presented. It reproduces the numerical data for the spectral function with a relative error of less than 10% in the regime where the Debye screening parameter is smaller than the inverse Bohr radius, κ<1aB-1 . In the limit of low density, the nonperturbative self-energy behaves as n1/4 , whereas a perturbation expansion leads to the unphysical result of a density-independent self-energy [Fennel and Wilfer, Ann. Phys. (Leipzig) 32, 265 (1974)]. The derived expression will greatly facilitate the calculation of observables in correlated plasmas (transport properties, equation of state) that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential, which is computed from the analytical formulas and compared to the GW(0) result. At a plasma temperature of 100eV and densities below 1021cm-3 , the two approaches deviate by less than 10% from each other.

  5. Equilibrium statistical mechanics for single waves and wave spectra in Langmuir wave-particle interaction

    SciTech Connect

    Firpo, M.-C.; Leyvraz, F.; Attuel, G.

    2006-12-15

    Under the conditions of weak Langmuir turbulence, a self-consistent wave-particle Hamiltonian models the effective nonlinear interaction of a spectrum of M waves with N resonant out-of-equilibrium tail electrons. In order to address its intrinsically nonlinear time-asymptotic behavior, a Monte Carlo code was built to estimate its equilibrium statistical mechanics in both the canonical and microcanonical ensembles. First, the single wave model is considered in the cold beam-plasma instability and in the O'Neil setting for nonlinear Landau damping. O'Neil's threshold, which separates nonzero time-asymptotic wave amplitude states from zero ones, is associated with a second-order phase transition. These two studies provide both a testbed for the Monte Carlo canonical and microcanonical codes, with the comparison with exact canonical results, and an opportunity to propose quantitative results to longstanding issues in basic nonlinear plasma physics. Then, the properly speaking weak turbulence framework is considered through the case of a large spectrum of waves. Focusing on the small coupling limit as a benchmark for the statistical mechanics of weak Langmuir turbulence, it is shown that Monte Carlo microcanonical results fully agree with an exact microcanonical derivation. The wave spectrum is predicted to collapse towards small wavelengths together with the escape of initially resonant particles towards low bulk plasma thermal speeds. This study reveals the fundamental discrepancy between the long-time dynamics of single waves, which can support finite amplitude steady states, and of wave spectra, which cannot.

  6. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:26913144

  7. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen; Serysheva, Irina I.

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:25844145

  8. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    PubMed

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series.

  9. Protein Secondary Structure Determination by Constrained Single-Particle Cryo-Electron Tomography

    PubMed Central

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-01-01

    SUMMARY Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose “constrained single-particle tomography” as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ~8 Å starting from low-dose tomographic tilt series. PMID:23217682

  10. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  11. Online single particle measurements of black carbon coatings, structure and optical properties

    NASA Astrophysics Data System (ADS)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  12. Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule.

    PubMed Central

    Yin, H; Landick, R; Gelles, J

    1994-01-01

    Schafer et al. (Nature 352:444-448 (1991)) devised the tethered particle motion (TPM) method to detect directly the movement of single, isolated molecules of a processive nucleic acid polymerase along a template DNA molecule. In TPM studies, the polymerase molecule is immobilized on a glass surface, and a particle (e.g., a 0.23 microns diameter polystyrene bead) is attached to one end of the enzyme-bound DNA molecule. Time-resolved measurements of the DNA contour length between the particle and the immobilized enzyme (the "tether length") are made by determining the magnitude of the Brownian motion of the DNA-tethered particle using light microscopy and digital image processing. We report here improved sample preparation methods that permit TPM data collection on transcript elongation by the Escherichia coli RNA polymerase at rates (approximately 10(2)-fold higher than those previously obtained) sufficient for practical use of microscopic kinetics techniques to analyze polymerase reaction mechanisms. In earlier TPM experiments, calculation of tether length from the observed Brownian motion was based on an untested