Science.gov

Sample records for single viral particles

  1. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  2. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor

    PubMed Central

    Sood, Chetan; Marin, Mariana; Mason, Caleb S.; Melikyan, Gregory B.

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment—at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH. PMID:26863211

  3. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  4. Adsorption of viral particles from the blood plasma of patients with viral hepatitis on nanodiamonds.

    PubMed

    Baron, A V; Osipov, N V; Yashchenko, S V; Kokotukha, Yu A; Baron, I J; Puzyr, A P; Olkhovskiy, I A; Bondar, V S

    2016-07-01

    Adsorption of viral particles from the blood plasma of patients with viral hepatitis B and C on modified nanodiamonds (MNDs) was shown in the in vitro experiments. PCR method showed the treatment of plasma with MNDs leads to a decrease in the viral load by 2-3 orders of magnitude or more in both cases studied. These results make it possible to predict the applicability of MNDs for the development of new technologies of hemodialysis and plasmapheresis for binding and removal of viral particles from the blood of infected patients. PMID:27599503

  5. A Rapid Method for Viral Particle Detection in Viral-Induced Gastroenteritis: A TEM Study

    NASA Astrophysics Data System (ADS)

    Hicks, M. John; Barrish, James P.; Hayes, Elizabeth S.; Leer, Laurie C.; Estes, Mary K.; Cubitt, W. D.

    1995-10-01

    Infectious gastroenteritis is a common cause of hospitalization in the pediatric population. The most frequent cause of gastroenteritis is viral in origin. The purpose of this study was to compare a rapid modified negative-staining TEM method with the conventional pseudoreplica technique in detection of viral particles in fecal samples from children with viral gastroenteritis. The modified negative-staining method resulted in a significantly higher (2.5 ± 0.5, p = 0.02) viral rating score than that for the conventional pseudoreplica technique (1.7 ± 0.4). In addition, the preparation time for the negative-staining method was approximately one fifth that for the conventional pseudoreplica technique. Rapid diagnosis of viral gastroenteritis may be made by ultrastructural detection of viral particles in fecal samples using the negative staining technique.

  6. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  7. Murine Leukemia Virus Nucleocapsid Mutant Particles Lacking Viral RNA Encapsidate Ribosomes

    PubMed Central

    Muriaux, Delphine; Mirro, Jane; Nagashima, Kunio; Harvin, Demetria; Rein, Alan

    2002-01-01

    A single retroviral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. Gag normally selects the genomic RNA of the virus with high specificity; the nucleocapsid (NC) domain of Gag plays a crucial role in this selection process. However, encapsidation of the viral RNA is completely unnecessary for particle assembly. We previously showed that mutant murine leukemia virus (MuLV) particles that lack viral RNA because of a deletion in the cis-acting packaging signal (“Ψ”) in the genomic RNA compensate for the loss of the viral RNA by incorporating cellular mRNA. The RNA in wild-type and Ψ− particles was also found to be necessary for virion core structure. In the present work, we explored the role of RNA in MuLV particles that lack genomic RNA because of mutations in the NC domain of Gag. Using a fluorescent dye assay, we observed that NC mutant particles contain the same amount of RNA that wild-type virions do. Surprisingly enough, these particles contained large amounts of rRNAs. Furthermore, ribosomal proteins were detected by immunoblotting, and ribosomes were observed inside the particles by electron microscopy. The biological significance of the presence of ribosomes in NC mutant particles lacking genomic RNA is discussed. PMID:12388701

  8. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  9. Quantitative real-time single particle analysis of virions.

    PubMed

    Heider, Susanne; Metzner, Christoph

    2014-08-01

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed-or adapted from other fields, such as nanotechnology-to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification.

  10. Functional Role of Infective Viral Particles on Metal Reduction

    SciTech Connect

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans and the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.

  11. Arc discharge-mediated disassembly of viral particles in water.

    PubMed

    Lee, Eun-Jung; Lee, Wooseong; Kim, Minwoo; Choi, Eun Ha; Kim, Yun-Ji

    2016-10-01

    In this study, we investigated the inactivation effects on murine norovirus (MNV-1) with/without purification in water using a submerged plasma reactor of arc discharge (underwater arc), which produced a shockwave, UV light, reactive oxygen species and reactive nitrogen species. Underwater arc treatments of 3 and 6 Hz at 12 kV resulted in 2.6- and 4.2-log reductions in the virus titer of non-purified MNV-1 after 1 min of treatment, respectively. The reduction of purified MNV-1 was higher than that of non-purified MNV-1 after underwater arc treatment for all applied conditions (12 or 15 kV and 3 or 6 Hz). One of the viral capsid proteins (VP1) was not detectable after underwater arc treatment, when its integrity was assessed by western blot analysis. Transmission electron microscopy analysis also revealed that MNV-1 particles were completely dissembled by the treatment. This study demonstrates that underwater arc treatment, which was capable of disintegrating the MNV-1 virion structure and the viral capsid protein, can be an effective disinfection process for the inactivation of water-borne noroviruses.

  12. Arc discharge-mediated disassembly of viral particles in water.

    PubMed

    Lee, Eun-Jung; Lee, Wooseong; Kim, Minwoo; Choi, Eun Ha; Kim, Yun-Ji

    2016-10-01

    In this study, we investigated the inactivation effects on murine norovirus (MNV-1) with/without purification in water using a submerged plasma reactor of arc discharge (underwater arc), which produced a shockwave, UV light, reactive oxygen species and reactive nitrogen species. Underwater arc treatments of 3 and 6 Hz at 12 kV resulted in 2.6- and 4.2-log reductions in the virus titer of non-purified MNV-1 after 1 min of treatment, respectively. The reduction of purified MNV-1 was higher than that of non-purified MNV-1 after underwater arc treatment for all applied conditions (12 or 15 kV and 3 or 6 Hz). One of the viral capsid proteins (VP1) was not detectable after underwater arc treatment, when its integrity was assessed by western blot analysis. Transmission electron microscopy analysis also revealed that MNV-1 particles were completely dissembled by the treatment. This study demonstrates that underwater arc treatment, which was capable of disintegrating the MNV-1 virion structure and the viral capsid protein, can be an effective disinfection process for the inactivation of water-borne noroviruses. PMID:27379726

  13. Ultrastructural Characterization of Turnip Mosaic Virus-Induced Cellular Rearrangements Reveals Membrane-Bound Viral Particles Accumulating in Vacuoles

    PubMed Central

    Wan, Juan; Basu, Kaustuv; Mui, Jeannie; Vali, Hojatollah; Zheng, Huanquan

    2015-01-01

    ABSTRACT Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus

  14. Quantitative real-time single particle analysis of virions

    SciTech Connect

    Heider, Susanne; Metzner, Christoph

    2014-08-15

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. - Highlights: • We introduce four methods for virus particle-based quantification of viruses. • They allow for quantification of a wide range of samples in under an hour time. • The additional measurement of size and zeta potential is possible for some.

  15. Herpesvirus Replication Compartments Originate with Single Incoming Viral Genomes

    PubMed Central

    Kobiler, O.; Brodersen, P.; Taylor, M. P.; Ludmir, E. B.; Enquist, L. W.

    2011-01-01

    ABSTRACT Previously we described a method to estimate the average number of virus genomes expressed in an infected cell. By analyzing the color spectrum of cells infected with a mixture of isogenic pseudorabies virus (PRV) recombinants expressing three fluorophores, we estimated that fewer than seven incoming genomes are expressed, replicated, and packaged into progeny per cell. In this report, we expand this work and describe experiments demonstrating the generality of the method, as well as providing more insight into herpesvirus replication. We used three isogenic PRV recombinants, each expressing a fluorescently tagged VP26 fusion protein (VP26 is a capsid protein) under the viral VP26 late promoter. We calculated a similar finite limit on the number of expressed viral genomes, indicating that this method is independent of the promoter used to transcribe the fluorophore genes, the time of expression of the fluorophore (early versus late), and the insertion site of the fluorophore gene in the PRV genome (UL versus US). Importantly, these VP26 fusion proteins are distributed equally in punctate virion assembly structures in each nucleus, which improves the signal-to-noise ratio when determining the color spectrum of each cell. To understand how the small number of genomes are distributed among the replication compartments, we used a two-color fluorescent in situ hybridization assay. Most viral replication compartments in the nucleus occupy unique nuclear territories, implying that they arose from single genomes. Our experiments suggest a correlation between the small number of expressed viral genomes and the limited number of replication compartments. PMID:22186611

  16. Clinical Disease Severity of Respiratory Viral Co-Infection versus Single Viral Infection: A Systematic Review and Meta-Analysis

    PubMed Central

    Asner, Sandra A.; Science, Michelle E.; Tran, Dat; Smieja, Marek; Merglen, Arnaud; Mertz, Dominik

    2014-01-01

    Background Results from cohort studies evaluating the severity of respiratory viral co-infections are conflicting. We conducted a systematic review and meta-analysis to assess the clinical severity of viral co-infections as compared to single viral respiratory infections. Methods We searched electronic databases and other sources for studies published up to January 28, 2013. We included observational studies on inpatients with respiratory illnesses comparing the clinical severity of viral co-infections to single viral infections as detected by molecular assays. The primary outcome reflecting clinical disease severity was length of hospital stay (LOS). A random-effects model was used to conduct the meta-analyses. Results Twenty-one studies involving 4,280 patients were included. The overall quality of evidence applying the GRADE approach ranged from moderate for oxygen requirements to low for all other outcomes. No significant differences in length of hospital stay (LOS) (mean difference (MD) −0.20 days, 95% CI −0.94, 0.53, p = 0.59), or mortality (RR 2.44, 95% CI 0.86, 6.91, p = 0.09) were documented in subjects with viral co-infections compared to those with a single viral infection. There was no evidence for differences in effects across age subgroups in post hoc analyses with the exception of the higher mortality in preschool children (RR 9.82, 95% CI 3.09, 31.20, p<0.001) with viral co-infection as compared to other age groups (I2 for subgroup analysis 64%, p = 0.04). Conclusions No differences in clinical disease severity between viral co-infections and single respiratory infections were documented. The suggested increased risk of mortality observed amongst children with viral co-infections requires further investigation. PMID:24932493

  17. {Lambda} single-particle energies

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1995-08-01

    We are continuing our work on the {Lambda} hyperon single-particle (s.p.) energies and their interpretation in terms of the basic {Lambda}-nuclear interactions. In particular we are interpreting the results obtained by S.C. Pieper, A. Usmani and Q.N. Usmani. We obtain about 30 MeV for the repulsive contribution of the three-body {Lambda}NN forces in nuclear matter. We are able to exclude purely {open_quotes}dispersive{close_quotes} {Lambda}NN forces. We are investigating the mix of dispersive and two-pion-exchange {Lambda}NN forces which provide a fit to the s.p. data. For interactions, which provide a fit to the s.p. data, the {Lambda} binding energy as a function of the nuclear matter density shows characteristic saturation features with a maximum at a density not very different from that of normal nuclear matter. We obtain a more precise measure of the space-exchange part of the {Lambda}-nuclear force than was previously available, corresponding to an exchange parameter {approx_equal} 0.32. The space-exchange force is rather directly related to the effective mass of a {Lambda} in the nuclear medium and turns out to be about 70% of its free mass. As a result, we also obtain a much better value for the p-state {Lambda}-nucleus potential which is about 40% of the s-state potential. The A binding to nuclear matter is determined to be {approx_equal} 28 MeV.

  18. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    SciTech Connect

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  19. Tagged Particle in Single-File Diffusion

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.; Mallick, Kirone; Sadhu, Tridib

    2015-08-01

    Single-file diffusion is a one-dimensional interacting infinite-particle system in which the order of particles never changes. An intriguing feature of single-file diffusion is that the mean-square displacement of a tagged particle exhibits an anomalously slow sub-diffusive growth. We study the full statistics of the displacement using a macroscopic fluctuation theory. For the simplest single-file system of impenetrable Brownian particles we compute the large deviation function and provide an independent verification using an exact solution based on the microscopic dynamics. For an arbitrary single-file system, we apply perturbation techniques and derive an explicit formula for the variance in terms of the transport coefficients. The same method also allows us to compute the fourth cumulant of the tagged particle displacement for the symmetric exclusion process.

  20. Distribution of lead in single atmospheric particles

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-03-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  1. Distribution of lead in single atmospheric particles

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  2. Single particle dynamics in circular accelerators

    SciTech Connect

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  3. Multiplex single particle analysis in microfluidics.

    PubMed

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  4. Subviral Hepatitis B Virus Filaments, like Infectious Viral Particles, Are Released via Multivesicular Bodies

    PubMed Central

    Jiang, Bingfu; Himmelsbach, Kiyoshi; Ren, Huimei; Boller, Klaus

    2015-01-01

    ABSTRACT In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies. PMID:26719264

  5. Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell

    PubMed Central

    Akpinar, Fulya; Inankur, Bahar

    2016-01-01

    ABSTRACT When viruses infect their host cells, they can make defective virus-like particles along with intact virus. Cells coinfected with virus and defective particles often exhibit interference with virus growth caused by the competition for resources by defective genomes. Recent reports of the coexistence and cotransmission of such defective interfering particles (DIPs) in vivo, across epidemiological length and time scales, suggest a role in viral pathogenesis, but it is not known how DIPs impact infection spread, even under controlled culture conditions. Using fluorescence microscopy, we quantified coinfections of vesicular stomatitis virus (VSV) expressing a fluorescent reporter protein and its DIPs on BHK-21 host cell monolayers. We found that viral gene expression was more delayed, infections spread more slowly, and patterns of spread became more “patchy” with higher DIP inputs to the initial cell. To examine how infection spread might depend on the behavior of the initial coinfected cell, we built a computational model, adapting a cellular automaton (CA) approach to incorporate kinetic data on virus growth for the first time. Specifically, changes in observed patterns of infection spread could be directly linked to previous high-throughput single-cell measures of virus-DIP coinfection. The CA model also provided testable hypotheses on the spatial-temporal distribution of the DIPs, which remain governed by their predator-prey interaction. More generally, this work offers a data-driven computational modeling approach for better understanding of how single infected cells impact the multiround spread of virus infections across cell populations. IMPORTANCE Defective interfering particles (DIPs) compete with intact virus, depleting host cell resources that are essential for virus growth and infection spread. However, it is not known how such competition, strong or weak, ultimately affects the way in which infections spread and cause disease. In this study

  6. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research

    PubMed Central

    Weinbauer, M.G.; Bettarel, Y.; Cattaneo, R.; Luef, B.; Maier, C.; Motegi, C.; Peduzzi, P.; Mari, X.

    2016-01-01

    Viral abundance and processes in the water column and sediments are well studied for some systems; however, we know relatively little about virus–host interactions on particles and how particles influence these interactions. Here we review virus–prokaryote interactions on inorganic and organic particles in the water column. Profiting from recent methodological progress, we show that confocal laser scanning microscopy in combination with lectin and nucleic acid staining is one of the most powerful methods to visualize the distribution of viruses and their hosts on particles such as organic aggregates. Viral abundance on suspended matter ranges from 105 to 1011 ml−1. The main factors controlling viral abundance are the quality, size and age of aggregates and the exposure time of viruses to aggregates. Other factors such as water residence time likely act indirectly. Overall, aggregates appear to play a role of viral scavengers or reservoirs rather than viral factories. Adsorption of viruses to organic aggregates or inorganic particles can stimulate growth of the free-living prokaryotic community, e.g. by reducing viral lysis. Such mechanisms can affect microbial diversity, food web structure and biogeochemical cycles. Viral lysis of bacterio- and phytoplankton influences the formation and fate of aggregates and can, for example, result in a higher stability of algal flocs. Thus, viruses also influence carbon export; however, it is still not clear whether they short-circuit or prime the biological pump. Throughout this review, emphasis has been placed on defining general problems and knowledge gaps in virus–particle interactions and on providing avenues for further research, particularly those linked to global change. PMID:27478304

  7. Validating maps from single particle electron cryomicroscopy.

    PubMed

    Rosenthal, Peter B; Rubinstein, John L

    2015-10-01

    Progress in single particle cryo-EM, most recently due to the introduction of direct detector devices, has made the high-resolution structure determination of biological assemblies smaller than 500kDa more routine, but has also increased attention on the need for tools to demonstrate the validity of single particle maps. Although map validation is a continuing subject of research, some consensus has been reached on procedures that reduce model bias and over-fitting during map refinement as well as specific tests that demonstrate map validity. Tilt-pair analysis may be used as a method for demonstrating the consistency at low resolution of a map with image data. For higher-resolution maps, new procedures for more robust resolution assessment and for validating the refinement of atomic coordinate models into single particle maps have been developed.

  8. Validating maps from single particle electron cryomicroscopy.

    PubMed

    Rosenthal, Peter B; Rubinstein, John L

    2015-10-01

    Progress in single particle cryo-EM, most recently due to the introduction of direct detector devices, has made the high-resolution structure determination of biological assemblies smaller than 500kDa more routine, but has also increased attention on the need for tools to demonstrate the validity of single particle maps. Although map validation is a continuing subject of research, some consensus has been reached on procedures that reduce model bias and over-fitting during map refinement as well as specific tests that demonstrate map validity. Tilt-pair analysis may be used as a method for demonstrating the consistency at low resolution of a map with image data. For higher-resolution maps, new procedures for more robust resolution assessment and for validating the refinement of atomic coordinate models into single particle maps have been developed. PMID:26605834

  9. Dual color single particle tracking via nanobodies

    NASA Astrophysics Data System (ADS)

    Albrecht, David; Winterflood, Christian M.; Ewers, Helge

    2015-06-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity.

  10. Localization and force analysis at the single virus particle level using atomic force microscopy

    SciTech Connect

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  11. Single-domain intrabodies against hepatitis C virus core inhibit viral propagation and core-induced NFκB activation.

    PubMed

    Suzuki, Ryosuke; Saito, Kenji; Matsuda, Mami; Sato, Mitsuru; Kanegae, Yumi; Shi, Guoli; Watashi, Koichi; Aizaki, Hideki; Chiba, Joe; Saito, Izumu; Wakita, Takaji; Suzuki, Tetsuro

    2016-04-01

    Hepatitis C virus (HCV) core plays a key role in viral particle formation and is involved in viral pathogenesis. Here, constructs for single-domain intrabodies consisting of variable regions derived from mouse mAbs against HCV core were established. Expressed single-domain intrabodies were shown to bind to HCV core, and inhibit the growth of cell culture-produced HCV derived from JFH-1 (genotype 2a) and a TH (genotype 1b)/JFH-1 chimera. Adenovirus vectors expressing intrabodies were also capable of reducing HCV propagation. Intrabody expression did not affect viral entry or genome replication of single-round infectious trans-complemented HCV particles. However, intrabody expression reduced intracellular and extracellular infectious titres in CD81-defective Huh7-25 cells transfected with the HCV genome, suggesting that these intrabodies impair HCV assembly. Furthermore, intrabody expression suppressed HCV core-induced NFκB promoter activity. These intrabodies may therefore serve as tools for elucidating the role of core in HCV pathogenesis. PMID:26861864

  12. Single particle tomography in EMAN2.

    PubMed

    Galaz-Montoya, Jesús G; Flanagan, John; Schmid, Michael F; Ludtke, Steven J

    2015-06-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures.

  13. Single Particle Tomography in EMAN2

    PubMed Central

    Galaz-Montoya, Jesús G.; Flanagan, John; Schmid, Michael F.; Ludtke, Steven J.

    2015-01-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. PMID:25956334

  14. Sulfur speciation of single aerosol particles

    SciTech Connect

    Neubauer, K.R.; Sum, S.T.; Johnston, M.V.; Wexler, A.S.

    1995-12-31

    Sulfur enters the atmosphere as gaseous species emitted from both natural and anthropogenic sources. These species can undergo a variety of oxidation reactions that ultimately yield hexavalent sulfur aerosols. Since the final products play an important role in acid rain production and the earth`s energy balance, it is important to distinguish tetravalent and hexavalent sulfur aerosols, as well as differentiate those arising from natural and anthropogenic sources. To attain these goals the authors chose to examine five target compounds that are present in the atmosphere: sodium sulfate, ammonium sulfate, ammonium sulfite, methanesulfonic acid (MSA), and the sodium salt of hydroxymethanesulfonic acid (NaHMSA). Sodium sulfate is observed in oceanic aerosols, while both ammonium salts are observed over land. MSA is found only in the marine environment and originates solely from natural emissions, while HMSA is formed in urban hazes and primarily arises from anthropogenic sources. Thus, MSA and HMSA serve as tracers for distinguishing natural and anthropogenic sulfur emissions. To differentiate these compounds, the authors used Rapid Single-Particle Mass Spectrometry (RSMS), a method that allows single particles to be analyzed on-line and in real time. With RSMS, particles are drawn directly into the source region of a reflectron time-of-flight mass spectrometer where they are detected by light scattering of a continuous laser beam and then ablated by an excimer laser pulse. With this sequence of events, each mass spectrum results from a single laser pulse ablating a single particle.

  15. Classification of capped tubular viral particles in the family of Papovaviridae

    NASA Astrophysics Data System (ADS)

    Keef, T.; Taormina, A.; Twarock, R.

    2006-04-01

    A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Viral capsids are usually spherical, and for a significant number of viruses they exhibit overall icosahedral symmetry. The corresponding surface lattices, that encode the locations of the capsid proteins and intersubunit bonds, can be modelled by viral tiling theory. It has been shown in vitro that under a variation of the experimental boundary conditions, such as the pH value and salt concentration, tubular particles may appear instead of, or in addition to, spherical ones. In order to develop models that describe the simultaneous assembly of both spherical and tubular variants, and hence study the possibility of triggering tubular malformations as a means of interference with the replication mechanism, viral tiling theory has to be extended to include tubular lattices with end caps. We focus here on the case of Papovaviridae, which play a distinguished role from the viral structural point of view as they correspond to all pentamer lattices, i.e. lattices formed from clusters of five protein subunits throughout. These results pave the way for a generalization of recently developed assembly models.

  16. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  17. Single particle X-ray diffractive imaging.

    PubMed

    Bogan, Michael J; Benner, W Henry; Boutet, Sébastien; Rohner, Urs; Frank, Matthias; Barty, Anton; Seibert, M Marvin; Maia, Filipe; Marchesini, Stefano; Bajt, Sasa; Woods, Bruce; Riot, Vincent; Hau-Riege, Stefan P; Svenda, Martin; Marklund, Erik; Spiller, Eberhard; Hajdu, Janos; Chapman, Henry N

    2008-01-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  18. Efficiency of single-particle engines.

    PubMed

    Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian

    2015-09-01

    We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

  19. Efficiency of single-particle engines

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian

    2015-09-01

    We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

  20. Nanoscale microcavity sensor for single particle detection.

    PubMed

    Lee, Mindy R; Fauchet, Philippe M

    2007-11-15

    Recently we demonstrated a biosensor based on a two-dimensional photonic crystal microcavity for detection of proteins. We present a theoretical and experimental study of a modified structure for single particle detection. With an active sensing volume of approximately 0.15 microm(3), the device is capable of detecting approximately 1 fg of matter. Its performance is tested with latex spheres with sizes that fall in the size range of a variety of viruses. PMID:18026281

  1. Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    PubMed Central

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C.; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-01-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. PMID:21437265

  2. Annexin V Incorporated into Influenza Virus Particles Inhibits Gamma Interferon Signaling and Promotes Viral Replication

    PubMed Central

    Berri, Fatma; Haffar, Ghina; Lê, Vuong Ba; Sadewasser, Anne; Paki, Katharina; Lina, Bruno; Wolff, Thorsten

    2014-01-01

    ABSTRACT During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes. PMID

  3. Transmission of single and multiple viral variants in primary HIV-1 subtype C infection.

    PubMed

    Novitsky, Vladimir; Wang, Rui; Margolin, Lauren; Baca, Jeannie; Rossenkhan, Raabya; Moyo, Sikhulile; van Widenfelt, Erik; Essex, M

    2011-02-09

    To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA) were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s) in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80%) cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64%) cases, and transmission of multiple variants was evident in 8 of 25 (32%) cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96%) cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.

  4. Single-particle study of protein assembly

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2001-10-01

    A study of protein assembly in solution with single-particle imaging and reconstruction techniques using cryoelectron microscopy is reported. The human glutamine synthetase enzyme, important in brain metabolism, and previously assumed to be assembled into a homogeneous quaternary structure, is found to be heterogeneous, with three oligomeric states that co-exist at room temperature. This result corrects an old structural and kinetic model determined by ensemble averaging techniques that assumed a homogeneous system. Unexpectedly fast protein dissociation kinetics results from a stabilized transition state.

  5. Carnot process with a single particle.

    PubMed

    Hoppenau, J; Niemann, M; Engel, A

    2013-06-01

    We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.

  6. Carnot process with a single particle

    NASA Astrophysics Data System (ADS)

    Hoppenau, J.; Niemann, M.; Engel, A.

    2013-06-01

    We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. BJPCBFK1520-610610.1021/jp0455428 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.

  7. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  8. Sample Targeting During Single-Particle Single-Cell Irradiation

    SciTech Connect

    Bigelow, A.W.; Randers-Pehrson, G.; Michel, K.A.; Brenner, D.J.; Dymnikov, A.D.

    2003-08-26

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  9. Coinhibition of viral interferon induction by Benzo(. alpha. )pyrene in association with occupation-related particles

    SciTech Connect

    Hahon, N. West Virginia Univ., Morgantown ); Booth, J.A. ); Flowers, L. )

    1990-06-01

    Benzo({alpha})pyrene (B(a)P) in combination with coal, asbestos, silicate, or metal particles was studied for its inhibitory effects on interferon-{alpha}/{beta} induction by influenza virus in rhesus monkey kidney (LLC-MK{sub 2}) cell monolayers. B(a)P per se had no adverse effect on the induction process. However, when cell cultures were pretreated with B(a)P that was bioactivated by rat liver S9 homogenate, from 52 to 65% inhibition of interferon induction occurred. Significantly greater depression (coinhibition) of viral interferon induction (>83%) resulted when bioactivated B(a)P was incorporated with coal particles representative of coal rank (anthracite, bituminous, lignite, peat). Coinhibition affected by bioactivated B(a)P was coal rank-independent but any interferon inhibitory activity affected by coal particles per se was coal rank-independent. When metals (aluminum, aluminum oxide, ferric oxide, nickel, or chromium) or asbestos fibers were individually mixed with bioactivated B(a)P, coinhibition of cellular interferon synthesis also resulted which was significantly greater than that manifested by bioactivated B(a)P or particles per se. Coinhibition of interferon induction by silicates and the bioactivated hydrocarbon was not in evidence although some silicates alone partially inhibited the induction process. Viral interferon induction was inhibited in a dose-response manner by B(a)P ({+-}S9) in combination with selected particles.

  10. Single Nanopores in Silicon Nitride Membranes with Applications to Viral Sensing

    SciTech Connect

    Davenport, M W; Healy, K; Teslich, N; Letant, S E; Siwy, Z S

    2012-03-29

    While current viral sensing methods are extremely sensitive, there is still a need for platforms capable of detecting engineered viruses and being integrated into device architectures for point-of-care assessments. Nanopores could provide a single pathway to achieve these goals.

  11. Visualizing interactions between Sindbis virus and cells by single particle tracking

    NASA Astrophysics Data System (ADS)

    Williard, Mary

    2005-03-01

    Sindbis virus infects both mammalian and insect cells. Though not pathogenic in humans, Sindbis is a model for many mosquito- borne viruses that cause human disease, such as West Nile virus. We have used real-time single particle fluorescence microscopy to observe individual Sindbis virus particles as they infect living cells. Fluorescent labels were incorporated into both the viral coat proteins and the lipid envelope of the virus. Kinetics characteristic of free diffusion in solution, slower diffusion inside cells, attachment to spots on the cell surface, and motor protein transport inside cells have been observed. Dequenching of the membrane label is used to report membrane fusion events during the infection process. Tracking individual viral particles allows multiple pathways to be determined without the requirement of synchronicity.

  12. Single-particle stochastic heat engine.

    PubMed

    Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  13. [Sample Preparation and Imaging of Single Adenovirus Particle Using Atomic Force Microscopy in Liquid].

    PubMed

    Liang, Yan; Li Chen; van Rosmalen, Mariska G M; Wuite, Gijs J L; Roos, Wouter H

    2015-11-01

    Atomic force microscopy (AFM), as a sophisticated imaging tool with nanoscale resolution, is widely used in virus research and the application of functional viral particles. To investigate single viruses by AFM in a physiologically relevant environment (liquid), an appropriate surface treatment to properly adhere the viruses to the substrate is essential. Here we discuss hydrophobic treated glass coverslips as a suitable substrate for the adhesion of single adenovirus particle (Adenovirus type 5 F35, Ad5F35) when studied with AFM in liquid. From the high resolution AFM images, the orientation of the adhered virus particles can be distinguished. Furthermore, the particles exhibit the expected height of -90 nm. This illustrates that the viruses adhere to the substrate firmly without large deformations. Hence, the described method works well on (fragile) viruses. The described experimental approach can be widely used for AFM studies in liquid of virus structure and mechanics as well as for investigating the interaction of viruses with cellular receptors.

  14. Plasmonic polymers unraveled through single particle spectroscopy.

    PubMed

    Slaughter, Liane S; Wang, Lin-Yung; Willingham, Britain A; Olson, Jana M; Swanglap, Pattanawit; Dominguez-Medina, Sergio; Link, Stephan

    2014-10-01

    Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experimental and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers. PMID:25155111

  15. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph; Flounders, Albert W.; Hughes, Robert C.; Ricco, Antonio J.; Wally, Karl; Kravitz, Stanley H.; Janek, Richard P.

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  16. Methods for forming particles from single source precursors

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  17. Plasmonic polymers unraveled through single particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Slaughter, Liane S.; Wang, Lin-Yung; Willingham, Britain A.; Olson, Jana M.; Swanglap, Pattanawit; Dominguez-Medina, Sergio; Link, Stephan

    2014-09-01

    Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experimental and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers.Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of

  18. Progesterone and a phospholipase inhibitor increase the endosomal bis(monoacylglycero)phosphate content and block HIV viral particle intercellular transmission.

    PubMed

    Chapuy-Regaud, Sabine; Subra, Caroline; Requena, Mary; de Medina, Philippe; Amara, Sawsan; Delton-Vandenbroucke, Isabelle; Payre, Bruno; Cazabat, Michelle; Carriere, Frédéric; Izopet, Jacques; Poirot, Marc; Record, Michel

    2013-09-01

    Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%-90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed. Electron microscopy showed the accumulation of viral particles either into large intracellular viral-containing compartments or outside the cells, indicating that endosomal accumulation of BMP could block intracellular biogenesis of viral particles while inhibition of macropinocytosis would prevent viral particle uptake. This is the first report linking BMP metabolism with a natural steroid such as progesterone or with involvement of a phospholipase A1 activity. BMP cellular content could be used as a biomarker for efficient anti-viral drugs. PMID:23774297

  19. Determining the Cellular Diversity of Hepatitis C Virus Quasispecies by Single-Cell Viral Sequencing

    PubMed Central

    McLauchlan, John

    2013-01-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants. PMID:24049174

  20. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  1. Deletion of open reading frame UL26 from the human cytomegalovirus genome results in reduced viral growth, which involves impaired stability of viral particles.

    PubMed

    Lorz, Kerstin; Hofmann, Heike; Berndt, Anja; Tavalai, Nina; Mueller, Regina; Schlötzer-Schrehardt, Ursula; Stamminger, Thomas

    2006-06-01

    We previously showed that open reading frame (ORF) UL26 of human cytomegalovirus, a member of the US22 multigene family of betaherpesviruses, encodes a novel tegument protein, which is imported into cells in the course of viral infection. Moreover, we demonstrated that pUL26 contains a strong transcriptional activation domain and is capable of stimulating the major immediate-early (IE) enhancer-promoter. Since this suggested an important function of pUL26 during the initiation of the viral replicative cycle, we sought to ascertain the relevance of pUL26 by construction of a viral deletion mutant lacking the UL26 ORF using the bacterial artificial chromosome mutagenesis procedure. The resulting deletion virus was verified by PCR, enzyme restriction, and Southern blot analyses. After infection of human foreskin fibroblasts, the UL26 deletion mutant showed a small-plaque phenotype and replicated to significantly lower titers than wild-type or revertant virus. In particular, we noticed a striking decrease of infectious titers 7 days postinfection in a multistep growth experiment, whereas the release of viral DNA from infected cells was not impaired. A further investigation of this aspect revealed a significantly diminished stability of viral particles derived from the UL26 deletion mutant. Consistent with this, we observed that the tegument composition of the deletion mutant deviates from that of the wild-type virus. We therefore hypothesize that pUL26 plays a role not only in the onset of IE gene transcription but also in the assembly of the viral tegument layer in a stable and correct manner. PMID:16699023

  2. Protecting staff against airborne viral particles: in vivo efficiency of laser masks.

    PubMed

    Derrick, J L; Li, P T Y; Tang, S P Y; Gomersall, C D

    2006-11-01

    Laser masks are used to prevent inhalation of viral particles during laser surgery. A crossover trial was performed in eight volunteers to compare the ability of a surgical mask and a laser mask with that of an FFP2 respirator to filter airborne dust particles. The surgical and laser masks were tested when worn normally and when they were taped to the face. The mean reductions in particle counts were 3.0 fold [95% confidence interval (95% CI) 1.8-4.2] for the untaped surgical mask, 3.8 fold (95% CI 2.9-4.6) for the untaped laser mask, 7.5 fold (95% CI 6.5-8.5) for the taped surgical mask, 15.6 fold (95% CI 13.5-17.8) for the taped laser mask, and 102.6 fold (95% CI 41.2-164.1) for the FFP2 half-face respirator. The laser mask provided significantly less protection than the FFP2 respirator (P=0.02), and only marginally more protection than the surgical mask. The continued use of laser masks for respiratory protection is questionable. Taping masks to the face only provided a small improvement in protection.

  3. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss

    NASA Astrophysics Data System (ADS)

    Lawrence, Scott A.; Davy, Joanne E.; Aeby, Greta S.; Wilson, William H.; Davy, Simon K.

    2014-09-01

    Porites tissue loss is a common disease of Porites compressa on Hawaiian reefs. Despite its prevalence, to date, the aetiological agent of the disease has not been found. The apparent lack of a microbial causative agent in the similar disease Porites bleaching with tissue loss, as well as increasing evidence of viral infections in scleractinian corals and Symbiodinium, led us to hypothesise that a virus may be responsible. Electron microscopy revealed the presence of numerous and varied virus-like particles (VLPs) in healthy and diseased P. compressa colonies. While overall virus numbers were similar in all samples, the abundance of a group of icosahedral VLPs differed significantly between healthy and diseased colonies. While not conclusive, these results suggest that viruses may play a role in this disease, and provide a basis for further studies.

  4. Intracerebroventricular and Intravascular Injection of Viral Particles and Fluorescent Microbeads into the Neonatal Brain.

    PubMed

    Kawasaki, Hideya; Kosugi, Isao; Sakao-Suzuki, Makiko; Meguro, Shiori; Tsutsui, Yoshihiro; Iwashita, Toshihide

    2016-01-01

    In the study on the pathogenesis of viral encephalitis, the infection method is critical. The first of the two main infectious routes to the brain is the hematogenous route, which involves infection of the endothelial cells and pericytes of the brain. The second is the intracerebroventricular (ICV) route. Once within the central nervous system (CNS), viruses may spread to the subarachnoid space, meninges, and choroid plexus via the cerebrospinal fluid. In experimental models, the earliest stages of CNS viral distribution are not well characterized, and it is unclear whether only certain cells are initially infected. Here, we have analyzed the distribution of cytomegalovirus (CMV) particles during the acute phase of infection, termed primary viremia, following ICV or intravascular (IV) injection into the neonatal mouse brain. In the ICV injection model, 5 µl of murine CMV (MCMV) or fluorescent microbeads were injected into the lateral ventricle at the midpoint between the ear and eye using a 10-µl syringe with a 27 G needle. In the IV injection model, a 1-ml syringe with a 35 G needle was used. A transilluminator was used to visualize the superficial temporal (facial) vein of the neonatal mouse. We infused 50 µl of MCMV or fluorescent microbeads into the superficial temporal vein. Brains were harvested at different time points post-injection. MCMV genomes were detected using the in situ hybridization method. Fluorescent microbeads or green fluorescent protein expressing recombinant MCMV particles were observed by fluorescent microscopy. These techniques can be applied to many other pathogens to investigate the pathogenesis of encephalitis. PMID:27501398

  5. Tracking single particle rotation: Probing dynamics in four dimensions

    DOE PAGES

    Anthony, Stephen Michael; Yu, Yan

    2015-04-29

    Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.

  6. Photothermal single particle microscopy using a single laser beam

    SciTech Connect

    Selmke, Markus; Heber, André; Braun, Marco; Cichos, Frank

    2014-07-07

    We introduce a single-laser-beam photothermal microscopy scheme for the detection of single absorbing nano-objects. Here, a modulated incident laser beam with a constant intensity offset serves as pump and probe beam at the same time. Using the out-of-phase scattering response of the retarded thermorefractive wave field, the method provides a selective contrast for absorbers over a possible background of scatterers. The use of a single wavelength and a single beam, considerably simplifies the setup and integration of photothermal detection in existing microscopy schemes.

  7. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    PubMed Central

    Labonté, Jessica M.; Field, Erin K.; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K. Eric; Kieft, Thomas L.; Onstott, Tullis C.; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  8. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population.

    PubMed

    Labonté, Jessica M; Field, Erin K; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K Eric; Kieft, Thomas L; Onstott, Tullis C; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  9. Tracking single-particle rotation during macrophage uptake.

    PubMed

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen M; Yi, Yi; Yu, Yan

    2015-07-14

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.

  10. Tracking single-particle rotation during macrophage uptake

    SciTech Connect

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; Yi, Yi; Yu, Yan

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.

  11. Tracking single-particle rotation during macrophage uptake†

    PubMed Central

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen M.; Yi, Yi

    2015-01-01

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation. PMID:26059797

  12. Extinction cross section measurements for a single optically trapped particle

    NASA Astrophysics Data System (ADS)

    Cotterell, Michael I.; Preston, Thomas C.; Mason, Bernard J.; Orr-Ewing, Andrew J.; Reid, Jonathan P.

    2015-08-01

    Bessel beam (BB) optical traps have become widely used to confine single and multiple aerosol particles across a broad range of sizes, from a few microns to < 200 nm in radius. The radiation pressure force exerted by the core of a single, zeroth-order BB incident on a particle can be balanced by a counter-propagating gas flow, allowing a single particle to be trapped indefinitely. The pseudo non-diffracting nature of BBs enables particles to be confined over macroscopic distances along the BB core propagation length; the position of the particle along this length can be finely controlled by variation of the BB laser power. This latter property is exploited to optimize the particle position at the center of the TEM00 mode of a high finesse optical cavity, allowing cavity ring-down spectroscopy (CRDS) to be performed on single aerosol particles and their optical extinction cross section, σext, measured. Further, the variation in the light from the illuminating BB elastically scattered by the particle is recorded as a function of scattering angle. Such intensity distributions are fitted to Lorenz-Mie theory to determine the particle radius. The trends in σext with particle radius are modelled using cavity standing wave Mie simulations and a particle's varying refractive index with changing relative humidity is determined. We demonstrate σext measurements on individual sub-micrometer aerosol particles and determine the lowest limit in particle size that can be probed by this technique. The BB-CRDS method will play a key role in reducing the uncertainty associated with atmospheric aerosol radiative forcing, which remains among the largest uncertainties in climate modelling.

  13. Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA

    SciTech Connect

    Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla

    2011-01-04

    Particle density is an important and useful property that is difficult to measure because it usually 5 requires separate instruments to measure two particle attributes. As density measurements are 6 often performed on size-classified particles, they are hampered by low particle numbers, and 7 hence poor temporal resolution. We present here a new method for measuring particle densities 8 using our single particle mass spectrometer, SPLAT. This method takes advantage of the fact 9 that the detection efficiency in our single particle mass spectrometer drops off very rapidly as the 10 particle size decreases below ~125 nm creating a distinct sharp feature on the small particle side 11 of the vacuum aerodynamic size distribution. Thus, the two quantities needed to determine 12 particle density, the particle diameter and vacuum aerodynamic diameter, are known. We first 13 test this method on particles of known composition and find that the densities it yields are 14 sufficiently accurate. We then apply the method to obtain the densities of particles that were 15 characterized during an airborne field campaign. In addition, we show that the distinctive 16 features of the vacuum aerodynamic size distribution can be used to characterize the instrument 17 detection efficiency as a function of particle size. In general, the method presented here reduces 18 complexity and yields information with high temporal resolution while the instrument is 19 collecting routine data on particle size and composition.

  14. Observation of Rotational Motion of Single Dusty Particle

    SciTech Connect

    Karasev, V. Yu.; Dzlieva, E. S.; Eikhval'd, A. I.; Ermolenko, M. A.; Golubev, M. S.

    2008-09-07

    Dust particle mechanical condition studying is important for question of dust structure stability and phase transitions in complex plasmas, and for ambient plasmas and dust particles parameters diagnostics. The rotation of single dust particles has been observed, followed with the range of theoretical papers, analyzing possible mechanisms, involving particles into rotation. We are observing single dust grains in stratified glow discharge. Rotation is detected with help of direct laser illumination, when the particle surface defects are lighted. Our observations show, that the majority of dust particles has stationary rotation with frequency about hundred Hz. Also it was founded, that there is frequency dependence on the discharge current by linear law. Qualitative interpretation of investigated phenomena is presented.

  15. Single-camera, three-dimensional particle tracking velocimetry.

    PubMed

    Peterson, Kevin; Regaard, Boris; Heinemann, Stefan; Sick, Volker

    2012-04-01

    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µPIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algorithm relying on the similarity of the particle images corresponding to a single, physical particle produces 3-component, volumetric velocity fields, rather than the 3-component, planar results obtained with stereoscopic PIV, and without the reconstruction of an instantaneous 3D particle field. The hardware and software used for SC3D-PTV are described, and experimental results are presented. PMID:22513613

  16. Calibration of single particle sizing velocimeters using photomask reticles

    NASA Technical Reports Server (NTRS)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  17. Integrating High Temporal Resolution Single Particle Data with Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Guazzotti, S.; Sodeman, D.; Holecek, J.; Carmichael, G. R.; Tang, Y.

    2003-12-01

    Single particle analysis can provide direct insight into the evolution of the mixing state of atmospheric particles. Information at this level can be used to gain insights into particle sources as well as atmospheric processing. There are a number of instruments which have been developed in the past decade which allow one to measure the size and chemical composition of individual particles in real time. This presentation will focus on aerosol time-of-flight mass spectrometry (ATOFMS) measurements made during ACE-Asia and other locations in the United States, focusing on the size-resolved chemical information that can be acquired with single particle mass spectrometers. The ability to use single particle signatures to distinguish between elemental carbon (EC), organic carbon (OC), and various mixtures will be demonstrated. Results will be presented showing how unique mass spectral markers can be used to discriminate between dust, sea salt, fossil fuel, and biomass particles, monitoring their relative contributions and changes in chemistry on short timescales. A discussion of how single particle measurements might be used to refine current atmospheric models by adding unique information will be presented.

  18. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system.

    PubMed

    Monteiro, Francisca; Bernal, Vicente; Chaillet, Maxime; Berger, Imre; Alves, Paula M

    2016-09-10

    The recent approval of vaccines and gene therapy products for human use produced in the Insect Cell-Baculovirus Expression Vector System (IC-BEVS) underlines the high potential and versatility of this platform. The interest in developing robust production processes emerges to cope with manufacturing pressure, as well as stringent product quality guidelines. Previously, we addressed the impact of the baculovirus infection on the physiology of insect host cell lines, identifying key cellular pathways enrolled in heterologous gene/protein expression. In the present work, this knowledge was applied to design tailored media supplementation schemes to boost IC-BEVS production yields and quality of enveloped viral particles: influenza VLPs (Inf-VLP) and baculovirus vectors (BV). The addition of reduced glutathione, antioxidants and polyamines increased the cell specific yields of baculovirus particles up to 3 fold. Cholesterol was identified as the most critical system booster, capable of improving 2.5 and 6-fold cell specific yields of BV and Inf-VLPs, respectively. Surprisingly, the combination of polyamines and cholesterol supplementation improved baculovirus stock quality, by preventing the accumulation of non-infectious particles during viral replication while selectively increasing infectious particles production. In addition, the specific yields of both enveloped viral particles, BVs and Inf-VLPs, were also increased. The correlation between supplement addition and systems productivity was extensively analyzed, providing a critical assessment on final product quantity and quality as drivers of bioprocess optimization efforts.

  19. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system.

    PubMed

    Monteiro, Francisca; Bernal, Vicente; Chaillet, Maxime; Berger, Imre; Alves, Paula M

    2016-09-10

    The recent approval of vaccines and gene therapy products for human use produced in the Insect Cell-Baculovirus Expression Vector System (IC-BEVS) underlines the high potential and versatility of this platform. The interest in developing robust production processes emerges to cope with manufacturing pressure, as well as stringent product quality guidelines. Previously, we addressed the impact of the baculovirus infection on the physiology of insect host cell lines, identifying key cellular pathways enrolled in heterologous gene/protein expression. In the present work, this knowledge was applied to design tailored media supplementation schemes to boost IC-BEVS production yields and quality of enveloped viral particles: influenza VLPs (Inf-VLP) and baculovirus vectors (BV). The addition of reduced glutathione, antioxidants and polyamines increased the cell specific yields of baculovirus particles up to 3 fold. Cholesterol was identified as the most critical system booster, capable of improving 2.5 and 6-fold cell specific yields of BV and Inf-VLPs, respectively. Surprisingly, the combination of polyamines and cholesterol supplementation improved baculovirus stock quality, by preventing the accumulation of non-infectious particles during viral replication while selectively increasing infectious particles production. In addition, the specific yields of both enveloped viral particles, BVs and Inf-VLPs, were also increased. The correlation between supplement addition and systems productivity was extensively analyzed, providing a critical assessment on final product quantity and quality as drivers of bioprocess optimization efforts. PMID:27378622

  20. Extinction and the optical theorem. Part I. Single particles.

    PubMed

    Berg, Matthew J; Sorensen, Christopher M; Chakrabarti, Amitabha

    2008-07-01

    We study the extinction caused by a single particle and present a conceptual phase-based explanation for the related optical theorem. Simulations of the energy flow caused by a particle's presence in a collimated beam of light demonstrate how the extinction process occurs. It is shown that extinction does not necessarily cause a reduction of the energy flow along the exact forward direction. Implications regarding the measurement of the single-particle extinction cross section are discussed. This work is extended to noninteracting and interacting multiparticle groups in Part II [J. Opt. Soc. Am. A25, pp. 1514 (2008)].

  1. Characterization and purification of recombinant bovine viral diarrhea virus particles with epitope-tagged envelope proteins.

    PubMed

    Wegelt, Anne; Reimann, Ilona; Granzow, Harald; Beer, Martin

    2011-06-01

    Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. The lipid membrane of the virions is supposed to contain the three glycosylated envelope proteins E(rns), E1 and E2, but detailed studies of virus assembly are complicated because no efficient purification method for pestiviruses has been described so far. In this study, we generated infectious BVDV with N-terminally FLAG-tagged E(rns) or E2 proteins, respectively. The expression of the epitope-tagged E(rns) and E2 proteins could be shown by immunofluorescence and Western blot experiments. Furthermore, an affinity tag purification protocol for the isolation and concentration of infectious BVDV was established. In the preparation with a titre of 10(8.75) TCID(50) ml(-1), spherical particles with a diameter of 43-58 nm (mean diameter: 48 nm) could be detected by negative staining electron microscopy, and immunogold labelling located both E(rns) and E2 proteins at the virus membrane.

  2. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists

    PubMed Central

    Esparo, Nicolle M.; Child, Stephanie J.; Geballe, Adam P.

    2016-01-01

    During millions of years of coevolution with their hosts, cytomegaloviruses (CMVs) have succeeded in adapting to overcome host-specific immune defenses, including the protein kinase R (PKR) pathway. Consequently, these adaptations may also contribute to the inability of CMVs to cross species barriers. Here, we provide evidence that the evolutionary arms race between the antiviral factor PKR and its CMV antagonist TRS1 has led to extensive differences in the species-specificity of primate CMV TRS1 proteins. Moreover, we identify a single residue in human PKR that when mutated to the amino acid present in African green monkey (Agm) PKR (F489S) is sufficient to confer resistance to HCMVTRS1. Notably, this precise molecular determinant of PKR resistance has evolved under strong positive selection among primate PKR alleles and is positioned within the αG helix, which mediates the direct interaction of PKR with its substrate eIF2α. Remarkably, this same residue also impacts sensitivity to K3L, a poxvirus-encoded pseudosubstrate that structurally mimics eIF2α. Unlike K3L, TRS1 has no homology to eIF2α, suggesting that unrelated viral genes have convergently evolved to target this critical region of PKR. Despite its functional importance, the αG helix exhibits extraordinary plasticity, enabling adaptations that allow PKR to evade diverse viral antagonists while still maintaining its critical interaction with eIF2α. PMID:27780231

  3. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  4. Active Brownian particles escaping a channel in single file

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  5. Triboelectricity evaluation of single toner particle by electron holography

    SciTech Connect

    Okada, H.; Shindo, D.; Kim, J. J.; Murakami, Y.; Kawase, H.

    2007-09-01

    Understanding electrification is particularly important in materials science since the use of charged particles, e.g., the electrophotographic printer with toner particles, is one of the most successful applications of electrification. However, the charge generation mechanism still remains unclear due to the lack of an appropriate method for evaluating individual fine particles. In this study, we describe an approach for determining the charge of a single toner particle that uses electron holography in combination with a shielding technique. Two long-standing problems in holographic studies--namely, perturbation of the reference electron wave and unwanted charging by illumination--have been overcome by introducing two types of shields in a microscope. Using this method, the amount of charge on a single toner particle was determined, and the surface charge distribution was found to be inhomogeneous. Furthermore, an in situ observation of triboelectricity was conducted inside the microscope.

  6. Tracking single-particle rotation during macrophage uptake

    DOE PAGES

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; Yi, Yi; Yu, Yan

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particlemore » rotation.« less

  7. Single-Particle Electrophoresis in Nanochannels

    PubMed Central

    2015-01-01

    Electrophoretic mobilities and particle sizes of individual Hepatitis B Virus (HBV) capsids were measured in nanofluidic channels with two nanopores in series. The channels and pores had three-dimensional topography and were milled directly in glass substrates with a focused ion beam instrument assisted by an electron flood gun. The nanochannel between the two pores was 300 nm wide, 100 nm deep, and 2.5 μm long, and the nanopores at each end had dimensions 45 nm wide, 45 nm deep, and 400 nm long. With resistive-pulse sensing, the nanopores fully resolved pulse amplitude distributions of T = 3 HBV capsids (32 nm outer diameter) and T = 4 HBV capsids (35 nm outer diameter) and had sufficient peak capacity to discriminate intermediate species from the T = 3 and T = 4 capsid distributions in an assembly reaction. Because the T = 3 and T = 4 capsids have a wiffle-ball geometry with a hollow core, the observed change in current due to the capsid transiting the nanopore is proportional to the volume of electrolyte displaced by the volume of capsid protein, not the volume of the entire capsid. Both the signal-to-noise ratio of the pulse amplitude and resolution between the T = 3 and T = 4 distributions of the pulse amplitudes increase as the electric field strength is increased. At low field strengths, transport of the larger T = 4 capsid through the nanopores is hindered relative to the smaller T = 3 capsid due to interaction with the pores, but at sufficiently high field strengths, the T = 3 and T = 4 capsids had the same electrophoretic mobilities (7.4 × 10–5 cm2 V–1 s–1) in the nanopores and in the nanochannel with the larger cross-sectional area. PMID:25489919

  8. Single-particle electrophoresis in nanochannels.

    PubMed

    Harms, Zachary D; Haywood, Daniel G; Kneller, Andrew R; Selzer, Lisa; Zlotnick, Adam; Jacobson, Stephen C

    2015-01-01

    Electrophoretic mobilities and particle sizes of individual Hepatitis B Virus (HBV) capsids were measured in nanofluidic channels with two nanopores in series. The channels and pores had three-dimensional topography and were milled directly in glass substrates with a focused ion beam instrument assisted by an electron flood gun. The nanochannel between the two pores was 300 nm wide, 100 nm deep, and 2.5 μm long, and the nanopores at each end had dimensions 45 nm wide, 45 nm deep, and 400 nm long. With resistive-pulse sensing, the nanopores fully resolved pulse amplitude distributions of T = 3 HBV capsids (32 nm outer diameter) and T = 4 HBV capsids (35 nm outer diameter) and had sufficient peak capacity to discriminate intermediate species from the T = 3 and T = 4 capsid distributions in an assembly reaction. Because the T = 3 and T = 4 capsids have a wiffle-ball geometry with a hollow core, the observed change in current due to the capsid transiting the nanopore is proportional to the volume of electrolyte displaced by the volume of capsid protein, not the volume of the entire capsid. Both the signal-to-noise ratio of the pulse amplitude and resolution between the T = 3 and T = 4 distributions of the pulse amplitudes increase as the electric field strength is increased. At low field strengths, transport of the larger T = 4 capsid through the nanopores is hindered relative to the smaller T = 3 capsid due to interaction with the pores, but at sufficiently high field strengths, the T = 3 and T = 4 capsids had the same electrophoretic mobilities (7.4 × 10(-5) cm(2) V(-1) s(-1)) in the nanopores and in the nanochannel with the larger cross-sectional area. PMID:25489919

  9. Apolipoprotein E Likely Contributes to a Maturation Step of Infectious Hepatitis C Virus Particles and Interacts with Viral Envelope Glycoproteins

    PubMed Central

    Lee, Ji-Young; Acosta, Eliana G.; Stoeck, Ina Karen; Long, Gang; Hiet, Marie-Sophie; Mueller, Birthe; Fackler, Oliver T.; Kallis, Stephanie

    2014-01-01

    ABSTRACT The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable

  10. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  11. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  12. Complete and repeatable inactivation of HIV-1 viral particles in suspension using a photo-labeled non-nucleoside reverse transcriptase inhibitor.

    PubMed

    Marin-Muller, C; Rios, A; Anderson, D; Siwak, E; Yao, Q

    2013-04-01

    A method is described for achieving repeatable, complete inactivation of HIV, based on photo-inactivation of HIV reverse transcriptase (RT) with a non-nucleoside reverse transcriptase inhibitor (NNRTI), photoactive 4-[[4-[(4-azido-2,6-dimethylphenyl) amino]-2-pyrimidinyl]amino]benzonitrile (PA-DAPYa). These results show that PA-DAPYa inactivated completely a suspension of cell-free HIV-1 viral particles in a dose and time-dependent manner. Using an ELISA assay for p24, it is demonstrated that a 500nM concentration of PA-DAPYa is able to inactivate 500 TCID50 of HIV viral particles in suspension when irradiated with non-microbicidal wavelength UV light for 30min. No active p24 was detected on days 7, 14, and 21 days after culturing the inactivated HIV in peripheral blood mononuclear cells (PBMCs). Several batches of large quantities of HIV viral particles were demonstrated to be inactivated completely and repeatedly by this method. Therefore, a reliable method has been developed to inactivate HIV viral particles in a reproducible manner using an optimal concentration of PA-DAPYa and duration of UV exposure time of the treated particles. The inactivation of viral particles in suspension allows for large-scale production of an injectable formulation of inactivated HIV viral particles for vaccine development which should preserve the conformational and antigenic integrity of viral surface proteins. PMID:23384676

  13. A Microfluidic-based Hydrodynamic Trap for Single Particles

    PubMed Central

    Johnson-Chavarria, Eric M.; Tanyeri, Melikhan; Schroeder, Charles M.

    2011-01-01

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  14. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    SciTech Connect

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  15. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  16. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  17. The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ϕ11 Plays a Structural Role in the Viral Particle

    PubMed Central

    Rodríguez-Rubio, Lorena; Quiles-Puchalt, Nuria; Martínez, Beatriz; Rodríguez, Ana; Penadés, José R.

    2013-01-01

    The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage ϕ11, is not essential for phage growth but stabilizes the viral particles. ϕ11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype. PMID:23892745

  18. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  19. Mass transfer experiments on single irregular-shaped particles

    SciTech Connect

    Ramezan, M. ); Kale, S.R. ); Anderson, R.J. )

    1991-01-01

    Mass transfer from irregular-shaped naphthalene particles (100-200 {mu}m in size) was studied in an electrodynamic balance. Charged particles were suspended in an electrostatic field directly in line with a calibrated air jet. Mass and size change histories were obtained under ambient conditions, and under steady- and pulsed-flow conditions. For natural convection, the time-averaged Sherwood number was similar to that for spheres. Forced-convection Sherwood number under steady-flow conditions was strongly dependent on particle shape and particle Reynolds number, and was consistently higher than values predicted for spheres at comparable Reynolds numbers. This paper validates the technique and indicates the shape effect on mass transfer from single particles.

  20. Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model

    NASA Astrophysics Data System (ADS)

    Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi

    2016-08-01

    Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.

  1. Calculation of inclusive probabilities from single-particle amplitudes

    NASA Astrophysics Data System (ADS)

    Kürpick, Peter; Lüdde, Hans Jürgen

    1993-04-01

    On the basis of the independent particle model, used to describe collisions between ions and atoms involving many electrons, the formalism of inclusive probabilities allows the computation of many-electron transition probabilities from single-particle amplitudes. The method presented can answer practically any experimental question formulated in terms of a certain number of vacancies and occupancies as can be measured in a typical ion-atom collision experiment. It is specialised to calculate many-particle probabilities with respect to a minimum number of vacancies or occupancies in one or more subshells as obtained e.g. in KLL- or KLM-Auger spectra.

  2. Large Silver Halide Single Crystals as Charged Particle Track Detectors

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.

    1972-01-01

    The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.

  3. Native molecular state of adeno-associated viral vectors revealed by single-molecule sequencing.

    PubMed

    Kapranov, Philipp; Chen, Lingxia; Dederich, Debra; Dong, Biao; He, Jie; Steinmann, Kathleen E; Moore, Andrea R; Thompson, John F; Milos, Patrice M; Xiao, Weidong

    2012-01-01

    The single-stranded genome of adeno-associated viral (AAV) vectors is one of the key factors leading to slow-rising but long-term transgene expression kinetics. Previous molecular studies have established what is now considered a textbook molecular model of AAV genomes with two copies of inverted tandem repeats at either end. In this study, we profiled hundreds of thousands of individual molecules of AAV vector DNA directly isolated from capsids, using single-molecule sequencing (SMS), which avoids any intermediary steps such as plasmid cloning. The sequence profile at 3' ends of both the regular and oversized vector did show the presence of an inverted terminal repeat (ITR), which provided direct confirmation that AAV vector packaging initiates from its 3' end. Furthermore, the vector 5'-terminus profile showed inconsistent termination for oversized vectors. Such incomplete vectors would not be expected to undergo canonical synthesis of the second strand of their genomic DNA and thus could function only via annealing of complementary strands of DNA. Furthermore, low levels of contaminating plasmid DNA were also detected. SMS may become a valuable tool during the development phase of vectors that are candidates for clinical use and for facilitating/accelerating studies on vector biology. PMID:21875357

  4. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  5. Generalized single-particle cryo-EM--a historical perspective.

    PubMed

    Frank, Joachim

    2016-02-01

    This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules. PMID:26566976

  6. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  7. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  8. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation

    PubMed Central

    Kummer, Mirko; Mühl-Zürbes, Petra; Drassner, Christina; Daniel, Christoph; Klewer, Monika; Steinkasserer, Alexander

    2015-01-01

    ABSTRACT Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. IMPORTANCE HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such

  9. Full inactivation of alphaviruses in single particle and crystallized forms.

    PubMed

    Lawrence, Robert M; Zook, James D; Hogue, Brenda G

    2016-10-01

    Inherent in the study of viruses is the risk of pathogenic exposure, which necessitates appropriate levels of biosafety containment. Unfortunately, this also limits the availability of useful research instruments that are located at facilities not equipped to handle infectious pathogens. Abrogation of viral infectivity can be accomplished without severely disrupting the physical structure of the virus particle. Virus samples that are verifiably intact but not infectious may be enabled for study at research facilities where they would otherwise not be allowed. Inactivated viruses are also used in the development of vaccines, where immunogenicity is sought in the absence of active infection. We demonstrate the inactivation of Sindbis alphavirus particles in solution, as well as in crystallized form. Inactivation was accomplished by two different approaches: crosslinking of proteins by glutaraldehyde treatment, and crosslinking of nucleic acids by UV irradiation. Biophysical characterization methods, including dynamic light scattering and transmission electron microscopy, were used to demonstrate that the glutaraldehyde and UV inactivated Sindbis virus particles remain intact structurally. SDS-PAGE was also used to show evidence of the protein crosslinking that was expected with glutaraldehyde treatment, but also observed with UV irradiation. PMID:27465218

  10. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells. PMID:17703064

  11. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-08-01

    In many viruses, molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.

  12. Single particle density of trapped interacting quantum gases

    SciTech Connect

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  13. Single-particle spectroscopic factors for spherical nuclei

    SciTech Connect

    Gnezdilov, N. V.; Saperstein, E. E. Tolokonnikov, S. V.

    2015-01-15

    Within the self-consistent theory of finite Fermi systems, the total single-particle spectroscopic factors for seven doubly magic nuclei of {sup 40}Ca, {sup 48}Ca, {sup 56}Ni, {sup 78}Ni, {sup 100}Sn, {sup 132}Sn, and {sup 208}Pb and for the {sup 188–212}Pb chain of semimagic even lead isotopes are calculated by the energy-density-functional method implemented with a functional in the form proposed by Fayans and his coauthors. The spectroscopic factor is expressed in terms of the Z factor, which is the residue of the single-particle Green’s function at the single-particle pole. The total Z factor calculated in the present study involves both effects of coupling to phonons and the volume Z factor, which is due to the fact that the mass operator features an energy dependence not associated with surface phonons. The volume Z factor is on the same order of magnitude as the phonon-coupling contribution. The volume effect depends only slightly on the nuclear species and on the single-particle state λ. On the contrary, the phonon contribution to the total spectroscopic factor changes upon going over from one state to another and from one nuclear species to another.

  14. Single Particle Orientation and Rotational Tracking (SPORT) in biopysical studies

    SciTech Connect

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-08-02

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  15. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level.

    PubMed

    Otterstrom, Jason J; Brandenburg, Boerries; Koldijk, Martin H; Juraszek, Jarek; Tang, Chan; Mashaghi, Samaneh; Kwaks, Ted; Goudsmit, Jaap; Vogels, Ronald; Friesen, Robert H E; van Oijen, Antoine M

    2014-12-01

    The ability of antibodies binding the influenza hemagglutinin (HA) protein to neutralize viral infectivity is of key importance in the design of next-generation vaccines and for prophylactic and therapeutic use. The two antibodies CR6261 and CR8020 have recently been shown to efficiently neutralize influenza A infection by binding to and inhibiting the influenza A HA protein that is responsible for membrane fusion in the early steps of viral infection. Here, we use single-particle fluorescence microscopy to correlate the number of antibodies or antibody fragments (Fab) bound to an individual virion with the capacity of the same virus particle to undergo membrane fusion. To this end, individual, infectious virus particles bound by fluorescently labeled antibodies/Fab are visualized as they fuse to a planar, supported lipid bilayer. The fluorescence intensity arising from the virus-bound antibodies/Fab is used to determine the number of molecules attached to viral HA while a fluorescent marker in the viral membrane is used to simultaneously obtain kinetic information on the fusion process. We experimentally determine that the stoichiometry required for fusion inhibition by both antibody and Fab leaves large numbers of unbound HA epitopes on the viral surface. Kinetic measurements of the fusion process reveal that those few particles capable of fusion at high antibody/Fab coverage display significantly slower hemifusion kinetics. Overall, our results support a membrane fusion mechanism requiring the stochastic, coordinated action of multiple HA trimers and a model of fusion inhibition by stem-binding antibodies through disruption of this coordinated action.

  16. Single-particle cryo-electron microscopy of macromolecular complexes.

    PubMed

    Skiniotis, Georgios; Southworth, Daniel R

    2016-02-01

    Recent technological breakthroughs in image acquisition have enabled single-particle cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution structural information for biological complexes. The improvements in image quality coupled with powerful computational methods for sorting distinct particle populations now also allow the determination of compositional and conformational ensembles, thereby providing key insights into macromolecular function. However, the inherent instability and dynamic nature of biological assemblies remain a tremendous challenge that often requires tailored approaches for successful implementation of the methodology. Here, we briefly describe the fundamentals of single-particle cryo-EM with an emphasis on covering the breadth of techniques and approaches, including low- and high-resolution methods, aiming to illustrate specific steps that are crucial for obtaining structural information by this method.

  17. hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles

    PubMed Central

    Rodriguez-Frandsen, Ariel; de Lucas, Susana; Pérez-González, Alicia; Pérez-Cidoncha, Maite; Roldan-Gomendio, Alejandro; Pazo, Alejandra; Marcos-Villar, Laura; Landeras-Bueno, Sara; Ortín, Juan; Nieto, Amelia

    2016-01-01

    The influenza A virus polymerase associates with a number of cellular transcription-related factors, including the RNA polymerase II (RNAP II). We previously described that the cellular protein hCLE/C14orf166 interacts with and stimulates influenza virus polymerase as well as RNAP II activities. Here we show that, despite the considerable cellular shut-off observed in infected cells, which includes RNAP II degradation, hCLE protein levels increase throughout infection in a virus replication-dependent manner. Human and avian influenza viruses of various subtypes increase hCLE levels, but other RNA or DNA viruses do not. hCLE colocalises and interacts with viral ribonucleoproteins (vRNP) in the nucleus, as well as in the cytoplasm late in infection. Furthermore, biochemical analysis of purified virus particles and immunoelectron microscopy of infected cells show hCLE in virions, in close association with viral vRNP. These findings indicate that hCLE, a cellular protein important for viral replication, is one of the very few examples of transcription factors that are incorporated into particles of an RNA-containing virus. PMID:26864902

  18. Horizontal deflection of single particle in a paramagnetic fluid.

    PubMed

    Liu, S; Yi, Xiang; Leaper, M; Miles, N J

    2014-06-01

    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. PMID:24894886

  19. Life and death of a single catalytic cracking particle.

    PubMed

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C; Weckhuysen, Bert M

    2015-04-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are "highways" of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  20. A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction

    PubMed Central

    Kucukelbir, Alp; Sigworth, Fred J.; Tagare, Hemant D.

    2012-01-01

    Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad-hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background. PMID:22564910

  1. [Study of the encapsulation and transport of several proteins to different organs by means of liposomal type particles of viral origin].

    PubMed

    Repanovici, R; Iliescu, R; Popa, L M

    1987-01-01

    Liposomal particles may be more efficiently incorporated by cells through mechanisms still incompletely elucidated. This property allowed to use them as a vehicle for macromolecules. Research was conducted to obtain liposomal type particles of viral origin charged with various proteins (bovine serum albumin, ovalbumin, ribosomes, human 125I-immunoglobulin G) and to establish the distribution of proteins encapsulated in viral envelopes among various organs after inoculation to laboratory animals. PMID:2821677

  2. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.

    PubMed

    Abdulkarim, Muthanna; Agulló, Nuria; Cattoz, Beatrice; Griffiths, Peter; Bernkop-Schnürch, Andreas; Borros, Salvador Gómez; Gumbleton, Mark

    2015-11-01

    Multiple particle tracking (MPT) methodology was used to dissect the impact of nanoparticle surface charge and size upon particle diffusion through freshly harvested porcine jejunum mucus. The mucus was characterised rheologically and by atomic force microscopy. To vary nanoparticle surface charge we used a series of self-assembly polyelectrolyte particles composed of varying ratios of the negatively charged polyacrylic acid polymer and the positively charged chitosan polymer. This series included a neutral or near-neutral particle to correspond to highly charged but near-neutral viral particles that appear to effectively permeate mucus. In order to negate the confounding issue of self-aggregation of such neutral synthetic particles a sonication step effectively reduced particle size (to less than 340 nm) for a sufficient period to conduct the tracking experiments. Across the polyelectrolyte particles a broad and meaningful relationship was observed between particle diffusion in mucus (×1000 difference between slowest and fastest particle types), particle size (104-373 nm) and particle surface charge (-29 mV to +19.5 mV), where the beneficial characteristic promoting diffusion was a neutral or near-neutral charge. The diffusion of the neutral polyelectrolyte particle (0.02887 cm S(-1)×10(-9)) compared favourably with that of a highly diffusive PEGylated-PLGA particle (0.03182 cm(2) S(-1)×10(-9)), despite the size of the latter (54 nm diameter) accommodating a reduced steric hindrance with the mucin network. Heterogeneity of particle diffusion within a given particle type revealed the most diffusive 10% sub-population for the neutral polyelectrolyte formulation (5.809 cm(2) S(-1)×10(-9)) to be faster than that of the most diffusive 10% sub-populations obtained either for the PEGylated-PLGA particle (4.061 cm(2) S(-1)×10(-9)) or for a capsid adenovirus particle (1.922 cm(2) S(-1)×10(-9)). While this study has used a simple self-assembly polyelectrolyte system

  3. Viral meningitis epidemics and a single, recent, recombinant and anthroponotic origin of swine vesicular disease virus

    PubMed Central

    Bruhn, Christian A. W.; Nielsen, Sandra C. Abel; Samaniego, Jose Alfredo; Wadsworth, Jemma; Knowles, Nick J.; Gilbert, M. Thomas P.

    2015-01-01

    Background and objectives: Swine vesicular disease virus (SVDV) is a close relative of the human Enterovirus B serotype, coxsackievirus B5. As the etiological agent of a significant emergent veterinary disease, several studies have attempted to explain its origin. However, several key questions remain, including the full biological ancestry of the virus, and its geographical and temporal origin. Methodology: We sequenced near-complete genomes of 27 SVDV and 13 coxsackievirus B5 samples, all originally isolated between 1966 and 2006, and analysed these in conjunction with existing sequences and historical information. Results: While analyses incorporating 24 additional near-complete SVDV genomic sequences indicate clear signs of within-SVDV recombination, all 51 SVDV isolates remain monophyletic. This supports a hypothesis of a single anthroponotic transfer origin. Analysis of individual coding and non-coding regions supports that SVDV has a recombinant origin between coxsackievirus B5 and another Enterovirus B serotype, most likely coxsackievirus A9. Extensive Bayesian sequence-based analysis of the time of the most recent common ancestor of all analysed sequences places this within a few years around 1961. Epidemiological evidence points to China as an origin, but there are no available samples to test this conclusively. Conclusions and implications: Historical investigation and the clinical aspects of the involved Enterovirus B serotypes, makes the current results consistent with a hypothesis stating that SVDV originated through co-infection, recombination, and a single anthroponotic event, during large viral meningitis epidemics around 1960/1961 involving the ancestral serotypes. The exact geographical origin of SVDV may remain untestable due to historical aspects. PMID:26508717

  4. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    PubMed

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate. PMID:19174870

  5. Dosimetric Analyses of Single Particle Microbeam in Cell Irradiation Experiment

    NASA Astrophysics Data System (ADS)

    Xu, Yong Jian; Jiang, Jiang; Chen, Lianyun; Zhan, Furu; Yu, Zengliang

    2008-12-01

    Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.

  6. Review of amorphous silicon based particle detectors: the quest for single particle detection

    NASA Astrophysics Data System (ADS)

    Wyrsch, N.; Ballif, C.

    2016-10-01

    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications.

  7. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-01-01

    Mass concentrations of particulate matter (PM) chemical components were determined from data for 0.3 to 3.0 μm particles measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) data at an urban and rural site. Hourly-averaged concentrations of nitrate, sulphate, ammonium, organic carbon, and elemental carbon, estimated based on scaled ATOFMS peak intensities of corresponding ion marker species, were compared with collocated chemical composition measurements by an Aerosol Mass Spectrometer (AMS), a Gas-Particle Ion Chromatograph (GPIC), and a Sunset Lab field OCEC analyzer. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 and 0.85 at the urban and rural sites, respectively. ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM chemical components at the rural site. Mass reconstruction using this ATOFMS based composition data agreed very well with the total PM mass measured at the rural site. Size distributions of the ten main types of particles were resolved for the rural site and the mass composition of each particle type was determined in terms of sulphate, nitrate, ammonium, organic carbon and elemental carbon. This is the first study to estimate hourly mass concentrations of individual aerosol components and the mass composition of individual particle-types based on ATOFMS single particle measurements.

  8. Shape evolution and splitting of a single coherent particle

    SciTech Connect

    Zhang, J.D.; Li, D.Y.; Chen, L.Q.

    1998-12-31

    The morphology and its evolution of a single coherent precipitate was investigated using the Cahn-Hilliard equation and Khachaturyan`s continuum elasticity theory for solid solutions. A cubic solid solution with negative elastic anisotropy and isotropic interfacial energy was considered. The lattice mismatch between the precipitate and the matrix was assumed to be purely dilatational and its compositional dependence obeys the Vegard`s law. Both two- and three-dimensional systems were studied. The Cahn-Hilliard equation was numerically solved using a semi-implicit Fourier-spectral method. It was demonstrated that, with increasing elastic energy contribution, the equilibrium shape of a coherent particle gradually changes from a circle to a square in two dimensions, and from a sphere to a cube in three dimensions, and the composition profile becomes increasingly inhomogeneous within the precipitate with the minimum at the center of the particle, consistent with previous theoretical studies and experimental observations. It was also shown that, with sufficiently large elastic strain energy contribution, a coherent particle may split to four particles from a square, or eight particles from a sphere, during its evolution to equilibrium. For both two and three dimensions, the splitting starts by nucleating the matrix phase at the center of the particle.

  9. Combustion of a single magnesium particle in water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ya; Xia, Zhi-Xun; Zhang, Wei-Hua; Huang, Xu; Hu, Jian-Xin

    2015-09-01

    The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified. Project supported by the National Natural Science Foundation of China (Grant No. 51406231).

  10. A phenomenological model for particle retention in single, saturated fractures.

    PubMed

    Rodrigues, Sandrina; Dickson, Sarah

    2014-01-01

    Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2)  = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research. PMID:23647360

  11. A phenomenological model for particle retention in single, saturated fractures.

    PubMed

    Rodrigues, Sandrina; Dickson, Sarah

    2014-01-01

    Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2)  = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research.

  12. Single particle demultiplexer based on domain wall conduits

    NASA Astrophysics Data System (ADS)

    Torti, A.; Mondiali, V.; Cattoni, A.; Donolato, M.; Albisetti, E.; Haghiri-Gosnet, A. M.; Vavassori, Paolo; Bertacco, R.

    2012-10-01

    The remote manipulation of micro and nano-sized magnetic particles carrying molecules or biological entities over a chip surface is of paramount importance for future on-chip applications in biology and medicine. In this paper, we present a method for the on-chip demultiplexing of individual magnetic particles using bifurcated magnetic nano-conduits for the propagation of constrained domain walls (DWs). We demonstrate that the controlled injection and propagation of a domain wall in a bifurcation allow capturing, transporting, and sorting a single magnetic particle between two predefined paths. The cascade of n levels of such building blocks allows for the implementation of a variety of complex sorting devices as, e.g., a demultiplexer for the controlled sorting among 2n paths.

  13. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.

  14. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. PMID:26931650

  15. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  16. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  17. Two-photon single particle tracking in 3D

    NASA Astrophysics Data System (ADS)

    So, Peter T. C.; Ragan, Timothy; Gratton, Enrico; Carerro, Jenny; Voss, Edward

    1997-05-01

    Transport processes are important in biology and medicine. Examples include virus docking and infection, endocytosis of extracellular protein and phagocytosis of antigenic material. Trafficking driven by molecular motors inside a complex 3D environment is a shared common theme. The complex sequence of these events are difficult to resolve with conventional techniques where the action of many cells are asynchronously averaged. Single particle tracking (SPT) was developed by Ghosh and Webb to address this problem and has proven to be a powerful technique in understanding membrane- protein interaction. Since the traditional SPT method uses wide field illumination and area detectors, it is limited to the study of 2D systems. In this presentation, we report the development of a 3D single particle tracking technique using two-photon excitation. Using a real-time feedback system, we can dynamically position the sub-femtoliter two-photon excitation volume to follow the fluorescent particle under transport by maximizing the detected fluorescent intensity. Further, fluorescence spectroscopy can be performed in real time along the particle trajectory to monitor the underlying biochemical signals driving this transport process. The first application of this instrument will focus on the study of antigen endocytosis process of macrophages.

  18. DETERMINATION OF STOKES SHAPE FACTOR FOR SINGLE PARTICLES AND AGGLOMERATES

    SciTech Connect

    Matyas, Josef; Schaible, Micah J.; Vienna, John D.

    2011-09-01

    The large octahedral crystals of spinel can precipitate from glass during the high-level waste vitrification process and potentially block the glass discharge riser of electrically heated ceramic melters. To help predict the settling behavior of spinel in the riser, the settling of single particles and agglomerates was studied in stagnant and transparent viscosity oils at room temperature with developed optical particle-dynamics-analyzer. Determined dimensions and terminal settling velocities of particles were used for calculation of their Stokes shape factors. Calculated shape factor for the glass beads was almost identical with the theoretical shape factor of 2/9 for a perfect sphere. The shape factor for single spinel crystal was about 7.6 % higher compare to the theoretically predicted value for octahedron. Stokes shape factor of irregularly shaped multi-particle agglomerates was lower than that of the glass beads and individual spinel crystals because of the higher surface drag caused by the larger surface area to volume ratio.

  19. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  20. Single-File Escape of Colloidal Particles from Microfluidic Channels.

    PubMed

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-15

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15}  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  1. Tracking single fluorescent particles in three dimensions via extremum seeking

    PubMed Central

    Ashley, Trevor T.; Gan, Eric L.; Pan, Jane; Andersson, Sean B.

    2016-01-01

    The ability to track single fluorescent particles in three-dimensions with sub-diffraction limit precision as well as sub-millisecond temporal resolution has enabled the understanding of many biophysical phenomena at the nanometer scale. While there are several techniques for achieving this, most require complicated experimental setups that are expensive to implement. These methods can offer superb performance but their complexity may be overwhelming to the end-user whose aim is only to understand the feature being imaged. In this work, we describe a method for tracking a single fluorescent particle using a standard confocal or multi-photon microscope configuration. It relies only on the assumption that the relative position of the measurement point and the particle can be actuated and that the point spread function has a global maximum that coincides with the particle’s position. The method uses intensity feedback to calculate real-time position commands that “seek” the extremum of the point spread function as the particle moves through its environment. We demonstrate the method by tracking a diffusing quantum dot in a hydrogel on a standard epifluorescent confocal microscope. PMID:27699104

  2. Single-File Escape of Colloidal Particles from Microfluidic Channels.

    PubMed

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-15

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15}  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions. PMID:27472142

  3. Tracking single fluorescent particles in three dimensions via extremum seeking

    PubMed Central

    Ashley, Trevor T.; Gan, Eric L.; Pan, Jane; Andersson, Sean B.

    2016-01-01

    The ability to track single fluorescent particles in three-dimensions with sub-diffraction limit precision as well as sub-millisecond temporal resolution has enabled the understanding of many biophysical phenomena at the nanometer scale. While there are several techniques for achieving this, most require complicated experimental setups that are expensive to implement. These methods can offer superb performance but their complexity may be overwhelming to the end-user whose aim is only to understand the feature being imaged. In this work, we describe a method for tracking a single fluorescent particle using a standard confocal or multi-photon microscope configuration. It relies only on the assumption that the relative position of the measurement point and the particle can be actuated and that the point spread function has a global maximum that coincides with the particle’s position. The method uses intensity feedback to calculate real-time position commands that “seek” the extremum of the point spread function as the particle moves through its environment. We demonstrate the method by tracking a diffusing quantum dot in a hydrogel on a standard epifluorescent confocal microscope.

  4. Single-particle Lagrangian and structure statistics in kinematically simulated particle-laden turbulent flows

    NASA Astrophysics Data System (ADS)

    Murray, S.; Lightstone, M. F.; Tullis, S.

    2016-03-01

    Kinematic simulation (KS) is a means of generating a turbulent-like velocity field, in a manner that enforces a desired input Eulerian energy spectrum. Such models have also been applied in particle-laden flows, due to their ability to enforce spatial organization of the fluid velocity field when simulating the trajectories of individual Lagrangian particles. A critical evaluation of KS is presented; in particular, we examine its ability to reproduce single-particle Lagrangian statistics. Also the ability of KS to reproduce the preferential concentration of inertial particles is examined. Some computational results are presented, in which particles are transported alternatively by (1) turbulence generated by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations, and (2) KS. The effect of unsteadiness formulation in particular is examined. We find that even steady KS qualitatively reproduces the continuity effect, clustering of inertial particles, the elevated dispersion of inertial particles over fluid particles, and the intermittency of Lagrangian velocity signals, but generally not to the same extent as is seen in the DNS.

  5. Automated single particle detection and tracking for large microscopy datasets.

    PubMed

    Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping

    2016-05-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

  6. Automated single particle detection and tracking for large microscopy datasets

    PubMed Central

    Wilson, Rhodri S.; Yang, Lei; Dun, Alison; Smyth, Annya M.; Duncan, Rory R.; Rickman, Colin

    2016-01-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates. PMID:27293801

  7. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  8. Age determination of single plutonium particles after chemical separation

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Donohue, D.; Ciurapinski, A.; Klose, D.

    2009-01-01

    Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu ( 240Pu/ 239Pu, 241Pu/ 239Pu and 242Pu/ 239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.

  9. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  10. Drift correction of the dissolved signal in single particle ICPMS.

    PubMed

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  11. Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy

    NASA Astrophysics Data System (ADS)

    Graeser, M.; Bente, K.; Buzug, T. M.

    2015-06-01

    The dynamical behaviour of superparamagnetic iron oxide nanoparticles (SPIONs) is not yet fully understood. In magnetic particle imaging (MPI) SPIONs are used to determine quantitative real-time medical images of a tracer material distribution. For reaching spatial resolution in the sub-millimetre range, MPI requires a well engineered instrumentation providing a magnetic field gradient exceeding 2 T m{}-{1} . However, as the particle performance strongly affects the sensitivity of the imaging process, optimization of the particle parameters is a crucial factor, which is not easy to address. Today most simulations of MPI use the Langevin model to describe the particle behaviour. In equilibrium, the model matches the measured data. If alternating fields in the mid kHz frequency range are applied, the dynamic behaviour of the particles differs from the Langevin theory due to anisotropy effects, particle-particle-interactions and/or exchange interaction in case of multi-core particles. In this paper a model based on previous work is introduced, which was adopted to include crystal and shape anisotropy of immobilised mono-domain single-core particles. The model is applied to typical MPI frequencies and field strengths with different possible superposition of the anisotropy effects, leading to differences in the particle response. It is shown that, despite comparatively high anisotropy constants, the magnetocrystalline anisotropy energy does not quench the signal response for MPI. The constructive superposition of shape and crystal anisotropy leads to the best performance in terms of sensitivity and resolution of the associated imaging modality and slightly reduces the energy barriers compared to a sole-shape anisotropy.

  12. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  13. Performance of single particle fritted capillary columns in electrochromatography.

    PubMed

    Zhang, Bo; Liu, Qing; Yang, Lijun; Wang, Qiuquan

    2013-01-11

    Development of capillary electrochromatography (CEC) largely depends on column technology. The past ten years or so have seen a great number of CEC works performed on monolithic columns, due to simplicity and robustness in column fabrication. Monolithic columns eliminate the issue of column fritting, which conventionally made particle-packed capillary columns fragile and introduced nonuniformity to the chromatographic bed. The particulate packing material, however, is still a popular type of stationary phase widely used in CEC, as the rich library of HPLC packing material provides a wide range of choices for chromatographic separations performed in electrodriven mode. In this study, we investigated a purely physical fritting method, single particle fritting technology, to immobilize particulate chromatographic material inside capillary tube in a sinter-free manner to produce robust capillary columns. Single particle fritted columns present significantly improved column-to-column reproducibility (n=10) in peak efficiency, retention factor, peak area and asymmetry (%RSD=5.4, 7.7, 6.2 and 6.1, respectively, at 26 kV), enabling their practical application in high throughput parallel analysis using multiple columns.

  14. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  15. Analysis of single particle photodegradation using photothermal infrared microspectroscopy.

    PubMed

    Moffat, Jonathan G; Eddleston, Mark D; Belton, Peter S; Jones, William; Craig, Duncan Q M

    2013-04-21

    The increasing use of high throughput methods, coupled with the need to develop approaches to anticipate long term stability issues, has necessitated the introduction of testing approaches whereby extremely small samples may be rapidly analysed. A novel method is described whereby the UV light-induced degradation of single particles of a model drug, nifedipine, may be rapidly and simply monitored using photothermal infrared microspectroscopy (PTMS). The technique involves the contact attachment of individual particles to a heated probe tip composed of a modified Wollaston wire which enables temperature fluctuations to be measured. Application of a focused IR beam to excite the sample allows measurement and subsequent Fourier transformation of the resultant interferogram to produce an IR spectrum which is in good agreement with that obtained from conventional IR methods. By application of a UV source to the assembly for specified time periods, we demonstrate that it is possible to monitor the appearance of peaks associated with degradation products as a function of time. The technique is critically evaluated in terms of practical issues associated with volatilization, particle size effects and orientation to the light source as well as more general issues associated with the sensitivity, resolution and quantitative interpretation of data from the PTMS technique. Overall the method has been shown to be capable of rapid measurement of photo-instability on individual particles, with important implications for development of the approach as a rapid screening or high throughput technique, although there are practical and theoretical limitations to reliable quantitative analysis at the present time.

  16. Life and death of a single catalytic cracking particle

    PubMed Central

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  17. Approaching the Heisenberg Limit Without Single-Particle Detection

    NASA Astrophysics Data System (ADS)

    Bentsen, Gregory; Davis, Emily; Schleier-Smith, Monika

    2016-05-01

    Achieving Heisenberg-limited measurements with ensembles of more than a few particles remains a major outstanding challenge. The problem is two-fold: one must not only prepare a sufficiently sensitive state, but also be able to detect it. While it is commonly assumed that Heisenberg-limited measurement demands single-particle-resolved detection, we propose an alternative approach that bypasses this requirement. We show that the ``one-axis twisting'' interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Even in the presence of dissipation, the protocol significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit, and achieves near-Heisenberg-limited precision in a √{ N}-times shorter evolution than is required to reach the GHZ state. AFOSR, NSF.

  18. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.

  19. Nature of single-particle states in disordered graphene

    NASA Astrophysics Data System (ADS)

    Nag, Sabyasachi; Garg, Arti; Ramakrishnan, T. V.

    2016-06-01

    We analyze the nature of the single-particle states, away from the Dirac point in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. For a disorder potential V (r ⃗) =V0exp(-| r ⃗-r⃗imp|2/ξ2) , we demonstrate that not only the Dirac state but all the single-particle states remain extended for weak-enough disorder. Based on our numerical calculations of inverse participation ratio, dc conductivity, diffusion coefficient, and the localization length from time evolution dynamics of the wave packet, we show that the threshold Vth required to localize a single-particle state of energy E (k ⃗) is minimum for the states near the band edge and is maximum for states near the band center, implying a mobility edge starting from the band edge for weak disorder and moving towards the band center as the disorder strength increases. This can be explained in terms of the low-energy Hamiltonian at any point k ⃗ which has the same nature as that at the Dirac point. From the nature of the eigenfunctions, it follows that a weak long-range impurity will cause weak antilocalization effects, which can be suppressed, giving localization if the strength of impurities is sufficiently large to cause intervalley scattering. The intervalley spacing 2 | k ⃗| increases as one moves in from the band edge towards the band center, which is reflected in the behavior of Vth and the mobility edge.

  20. Dirac single particle and plasmon excitations in topological insulators

    NASA Astrophysics Data System (ADS)

    Lupi, Stefano

    Topological Insulators (TIs), like Bi2Se3 and Bi2Te3, are one of the most intriguing issues at focus in Condensed Matter Physics. TIs exhibit a band gap in the bulk like ordinary insulators, but have intrinsic 2D conducting states on their edge and surface. This means that the topology, associated with the electronic wavefunctions of the system, changes discontinuously when passing from the bulk to the surface. The edge states arise from a strong spin-orbit coupling, and they are backscattering protected, i.e. not sensitive to disorder (except that coming from magnetic impurities). Such as graphene, TIs surface charge transport is carried out by Dirac fermions, with a very high surface carrier density (n >= 1013 cm-2) , compared to typical values on metal surfaces. Apart single particle excitations, Dirac fermions in TIs sustain exotic plasmonic (collective) modes whose properties of tunability and temperature dependence can be used for photonics applications at the nanoscale. Moreover, unlike plasmons in metals, Dirac plasmons in TIs are expected to be strongly affected by an external magnetic field B due to fact that the cyclotron frequency is comparable to the the plasmon frequency, in particular when plasmons are engineered in the terahertz region of the electromagnetic spectrum. In this talk, after a general review on the properties of Topological Insulators, I will discuss the terahertz linear response of Dirac plasmons in TIs and their behavior under a strong magnetic field up to 30 T. The appearance of strong non-linear optical effects, when the THz electric field reaches values on the order of 1 MV/cm, will be also discussed. In the second part of the talk, I will discuss the sub-ps dynamics of Dirac single-particle and collective excitations as measured by optical-pump THz-probe experiments. Both the steady state and time-resolved experiments provide a unifying picture of single particle and collective electronic excitations in Topological Insulators.

  1. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals.

    PubMed

    Rast, Luke I; Rouzine, Igor M; Rozhnova, Ganna; Bishop, Lisa; Weinberger, Ariel D; Weinberger, Leor S

    2016-05-01

    The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV's mutational escape (i.e., be 'resistance-proof'). However, an outstanding question has been whether these engineered interfering particles-termed Therapeutic Interfering Particles (TIPs)-would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV ('unilaterally') evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. PMID:27152856

  2. Relativistic symmetries in nuclear single-particle spectra

    NASA Astrophysics Data System (ADS)

    Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui

    Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.

  3. Single-particle cryo-EM at crystallographic resolution

    PubMed Central

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  4. Towards single particle imaging of human chromosomes at SACLA

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-12-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.

  5. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  6. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  7. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  8. Assembly of single-walled carbon nanohorn supported liposome particles.

    PubMed

    Huang, Wei; Zhang, Jianfei; Dorn, Harry C; Geohegan, David; Zhang, Chenming

    2011-06-15

    Nanoparticle-supported liposomes can be a promising platform for drug delivery, vaccine development, and biomedical imaging. Single-walled carbon nanohorns are a relatively new carbon nanomaterial, and they could be used as carriers of drug and imaging reagents. Assembling lipids around carbon nanohorns would confer this nanomaterial much broader applications such as vaccine development and targeted drug delivery by embedding a target protein or immunogenic protein into the lipid bilayer structure. Here, we show the assembly of functionalized single-walled carbon nanohorns (-CH(2)-CH(2)-COOH(x), ~100 nm) with positively charged lipids through a freeze and thaw cycle. The assembled complex particles can be readily separated from individual nanohorns or liposomes under specific centrifugation conditions. The results from transmission electronic microscopy, flow cytometry through nitrobenzoxadiazole labeled lipids, and zeta potential analysis clearly show that the nanohorns are encapsulated by liposomes with a median size of ca. 120 nm.

  9. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  10. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  11. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  12. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    NASA Astrophysics Data System (ADS)

    Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.

    2016-05-01

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  13. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    SciTech Connect

    Jiang Jiyang; Aiken, Christopher . E-mail: chris.aiken@vanderbilt.edu

    2006-03-15

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4{sup +} T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo.

  14. Direct interrogation of DNA content distribution in nanoparticles by a novel microfluidics-based single-particle analysis.

    PubMed

    Beh, Cyrus W; Pan, Deng; Lee, Jason; Jiang, Xuan; Liu, Kelvin J; Mao, Hai-Quan; Wang, Tza-Huei

    2014-08-13

    Nonviral gene delivery holds great promise not just as a safer alternative to viral vectors in traditional gene therapy applications, but also for regenerative medicine, induction of pluripotency in somatic cells, and RNA interference for gene silencing. Although it continues to be an active area of research, there remain many challenges to the rational design of vectors. Among these, the inability to characterize the composition of nanoparticles and its distribution has made it difficult to probe the mechanism of gene transfection process, since differences in the nanoparticle-mediated transfection exist even when the same vector is used. There is a lack of sensitive methods that allow for full characterization of DNA content in single nanoparticles and its distribution among particles in the same preparation. Here we report a novel spectroscopic approach that is capable of interrogating nanoparticles on a particle-by-particle basis. Using PEI/DNA and PEI-g-PEG/DNA nanoparticles as examples, we have shown that the distribution of DNA content among these nanoparticles was relatively narrow, with the average numbers of DNA of 4.8 and 6.7 per particle, respectively, in PEI/DNA and PEI-g-PEG/DNA nanoparticles. This analysis enables a more accurate description of DNA content in polycation/DNA nanoparticles. It paves the way toward comparative assessments of various types of gene carriers and provides insights into bridging the efficiency gap between viral and nonviral vehicles.

  15. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  16. Conformational changes of a single magnetic particle string within gels.

    PubMed

    An, Hai-Ning; Groenewold, Jan; Picken, S J; Mendes, Eduardo

    2014-02-21

    Magnetorheological (MR) gels consist of micron sized magnetic particles inside a gel matrix. Before physical cross-linking, the suspension is subjected to a small magnetic field which creates a particle string structure. After cross-linking, the string is kept within the gel at room temperature. Under an external homogeneous magnetic field and mechanical deformation, the soft swollen gel matrix allows the string to largely rearrange at microscopic scales. With the help of two homemade magneto cells mounted on an optical microscope, we were able to follow the conformational change and instabilities of a single magnetic particle string under the combined influence of shear (or stretch) and the magnetic field. In the absence of mechanical deformation, an external magnetic field, applied in the perpendicular direction to the string, breaks it into small pieces generating periodic structures like sawteeth. When an external magnetic field is applied parallel to the pre-aligned string, it exhibits a length contraction. However, under shear strain perpendicular to the original pre-structured string (and magnetic field), the string breaks and short string segments tilt, making an angle with the original direction that is smaller than that of the applied shear (non-affine). The difference in tilt angle scales with the inverse length of the small segments L-1 and the magnetic flux density B, reflecting the ability of the gel matrix to expel solvents under local stress.

  17. Optimal estimation of diffusion coefficients from single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  18. Probing Black Carbon-containing Particle Microphysics with the Single-Particle Soot Photometer (SP2)

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lewis, E. R.; Onasch, T. B.; Lambe, A. T.; Davidovits, P.; Kleinman, L. I.

    2012-12-01

    Knowledge of the structure and mixing state of black-carbon containing particles is important for calculating their radiative forcing and provides insight into their source and life cycle. Recently analysis of black carbon-containing particles has demonstrated that for a fraction of such particles, the black carbon may reside on or near the surface of the particle as opposed to the traditional core-shell configuration typically assumed in which the black carbon core is surrounded by a shell of non-refractory material. During the DOE-sponsored Aerosol Lifecycle field campaign held in summer, 2011 at Brookhaven National Laboratory on Long Island, NY, episodes were encountered in which a high fraction of particles containing black carbon had such configurations, and these episodes corresponded to air masses that contained biomass burning plumes (Sedlacek et al., 2012). Subsequent analysis found other episodes in field campaigns in Colorado and California in which high fractions this configuration corresponded to biomass burning plumes. In an effort to evaluate this interpretation and explore formation mechanisms, a series of laboratory-based experiments examining the coagulation of regal black (surrogate for collapsed soot) with model non-refractory coatings [dioctyl sebacate (surrogate for organic aerosols with liquid-like character) and deliquesced ammonium sulfate (solid)] were carried out. The results of these experiments and their potential implications on black carbon radiative forcing will be discussed. Sedlacek, III, Arthur, E. R. Lewis, L. I. Kleinman, J. Xu and Q. Zhang (2012), Determination of and Evidence for Non-core-shell structure of particles containing black carbon using the single particle soot photometer (SP2). Geophys. Res. Lett., 39 L06802, doi:10.1029/2012GL050905

  19. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches.

    PubMed

    van Duijl-Richter, Mareike K S; Blijleven, Jelle S; van Oijen, Antoine M; Smit, Jolanda M

    2015-08-01

    Chikungunya virus (CHIKV) is a rapidly spreading, enveloped alphavirus causing fever, rash and debilitating polyarthritis. No specific treatment or vaccines are available to treat or prevent infection. For the rational design of vaccines and antiviral drugs, it is imperative to understand the molecular mechanisms involved in CHIKV infection. A critical step in the life cycle of CHIKV is fusion of the viral membrane with a host cell membrane. Here, we elucidate this process using ensemble-averaging liposome-virus fusion studies, in which the fusion behaviour of a large virus population is measured, and a newly developed microscopy-based single-particle assay, in which the fusion kinetics of an individual particle can be visualised. The combination of these approaches allowed us to obtain detailed insight into the kinetics, lipid dependency and pH dependency of hemifusion. We found that CHIKV fusion is strictly dependent on low pH, with a threshold of pH 6.2 and optimal fusion efficiency below pH 5.6. At this pH, CHIKV fuses rapidly with target membranes, with typically half of the fusion occurring within 2 s after acidification. Cholesterol and sphingomyelin in the target membrane were found to strongly enhance the fusion process. By analysing our single-particle data using kinetic models, we were able to deduce that the number of rate-limiting steps occurring before hemifusion equals about three. To explain these data, we propose a mechanistic model in which multiple E1 fusion trimers are involved in initiating the fusion process.

  20. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  1. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  2. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals

    PubMed Central

    Rast, Luke I.; Rouzine, Igor M.; Rozhnova, Ganna; Bishop, Lisa; Weinberger, Ariel D.; Weinberger, Leor S.

    2016-01-01

    The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV’s mutational escape (i.e., be ‘resistance-proof’). However, an outstanding question has been whether these engineered interfering particles—termed Therapeutic Interfering Particles (TIPs)—would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV (‘unilaterally’) evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. PMID:27152856

  3. Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis.

    PubMed

    Wang, Chun-Yan; Zhang, Qin-Fen; Gao, Yuan-Zhu; Xie, Li; Li, Hong-Mei; Hong, Jian; Zhang, Chuan-Xi

    2015-01-01

    Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit.

  4. Three-dimensional single-particle tracking in live cells: news from the third dimension

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gorelashvili, M.; Schüller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D.

    2013-07-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased.

  5. DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens.

    PubMed

    Seymour, Elif; Daaboul, George G; Zhang, Xirui; Scherr, Steven M; Ünlü, Nese Lortlar; Connor, John H; Ünlü, M Selim

    2015-10-20

    Here, we describe the use of DNA-conjugated antibodies for rapid and sensitive detection of whole viruses using a single-particle interferometric reflectance imaging sensor (SP-IRIS), a simple, label-free biosensor capable of imaging individual nanoparticles. First, we characterize the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional (3-D) polymeric surface using a fluorescence axial localization technique, spectral self-interference fluorescence microscopy (SSFM). Our results indicate that using DNA linkers results in significant elevation of the antibodies on the 3-D polymeric surface. We subsequently show the specific detection of pseudotyped vesicular stomatitis virus (VSV) as a model virus on SP-IRIS platform. We demonstrate that DNA-conjugated antibodies improve the capture efficiency by achieving the maximal virus capture for an antibody density as low as 0.72 ng/mm(2), whereas for unmodified antibody, the optimal virus capture requires six times greater antibody density on the sensor surface. We also show that using DNA conjugated anti-EBOV GP (Ebola virus glycoprotein) improves the sensitivity of EBOV-GP carrying VSV detection compared to directly immobilized antibodies. Furthermore, utilizing a DNA surface for conversion to an antibody array offers an easier manufacturing process by replacing the antibody printing step with DNA printing. The DNA-directed immobilization technique also has the added advantages of programmable sensor surface generation based on the need and resistance to high temperatures required for microfluidic device fabrication. These capabilities improve the existing SP-IRIS technology, resulting in a more robust and versatile platform, ideal for point-of-care diagnostics applications. PMID:26378807

  6. ORF9p phosphorylation by ORF47p is crucial for the formation and egress of varicella-zoster virus viral particles.

    PubMed

    Riva, Laura; Thiry, Marc; Bontems, Sebastien; Joris, Aline; Piette, Jacques; Lebrun, Marielle; Sadzot-Delvaux, Catherine

    2013-03-01

    The role of the tegument during the herpesvirus lytic cycle is still not clearly established, particularly at the late phase of infection, when the newly produced viral particles need to be fully assembled before being released from the infected cell. The varicella-zoster virus (VZV) protein coded by open reading frame (ORF) 9 (ORF9p) is an essential tegument protein, and, even though its mRNA is the most expressed during the productive infection, little is known about its functions. Using a GalK positive/negative selection technique, we modified a bacterial artificial chromosome (BAC) containing the complete VZV genome to create viruses expressing mutant versions of ORF9p. We showed that ORF9p is hyperphosphorylated during the infection, especially through its interaction with the viral Ser/Thr kinase ORF47p; we identified a consensus site within ORF9p recognized by ORF47p and demonstrated its importance for ORF9p phosphorylation. Strikingly, an ultrastructural analysis revealed that the mutation of this consensus site (glutamate 85 to arginine) strongly affects viral assembly and release, reproducing the ORF47 kinase-dead VZV phenotype. It also slightly diminishes the infectivity toward immature dendritic cells. Taken together, our results identify ORF9p as a new viral substrate of ORF47p and suggest a determinant role of this phosphorylation for viral infectivity, especially during the process of viral particle formation and egress.

  7. Particle migration analysis in iterative classification of cryo-EM single-particle data.

    PubMed

    Chen, Bo; Shen, Bingxin; Frank, Joachim

    2014-12-01

    Recently developed classification methods have enabled resolving multiple biological structures from cryo-EM data collected on heterogeneous biological samples. However, there remains the problem of how to base the decisions in the classification on the statistics of the cryo-EM data, to reduce the subjectivity in the process. Here, we propose a quantitative analysis to determine the iteration of convergence and the number of distinguishable classes, based on the statistics of the single particles in an iterative classification scheme. We start the classification with more number of classes than anticipated based on prior knowledge, and then combine the classes that yield similar reconstructions. The classes yielding similar reconstructions can be identified from the migrating particles (jumpers) during consecutive iterations after the iteration of convergence. We therefore termed the method "jumper analysis", and applied it to the output of RELION 3D classification of a benchmark experimental dataset. This work is a step forward toward fully automated single-particle reconstruction and classification of cryo-EM data.

  8. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position.

    PubMed Central

    Kao, H P; Verkman, A S

    1994-01-01

    We present a novel optical technique for three-dimensional tracking of single fluorescent particles using a modified epifluorescence microscope containing a weak cylindrical lens in the detection optics and a microstepper-controlled fine focus. Images of small, fluorescent particles were circular in focus but ellipsoidal above and below focus; the major axis of the ellipsoid shifted by 90 degrees in going through focus. Particle z position was determined from the image shape and orientation by applying a peak detection algorithm to image projections along the x and y axes; x, y position was determined from the centroid of the particle image. Typical spatial resolution was 12 nm along the optical axis and 5 nm in the image plane with a maximum sampling rate of 3-4 Hz. The method was applied to track fluorescent particles in artificial solutions and living cells. In a solution of viscosity 30 cP, the mean squared distance (MSD) traveled by a 264 nm diameter rhodamine-labeled bead was linear with time to 20 s. The measured diffusion coefficient, 0.0558 +/- 0.001 micron2/s (SE, n = 4), agreed with the theoretical value of 0.0556 micron2/s. Statistical variability of MSD curves for a freely diffusing bead was in quantitative agreement with Monte Carlo simulations of three-dimensional random walks. In a porous glass matrix, the MSD data was curvilinear and showed reduced bead diffusion. In cytoplasm of Swiss 3T3 fibroblasts, bead diffusion was restricted. The water permeability in individual Chinese Hamster Ovary cells was measured from the z movement of a fluorescent bead fixed at the cell surface in response osmotic gradients; water permeability was increased by > threefold in cells expressing CHIP28 water channels. The simplicity and precision of this tracking method may be useful to quantify the complex trajectories of fluorescent particles in living cells. Images FIGURE 1 FIGURE 2 PMID:7811944

  9. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    PubMed Central

    Pearson, Victoria M.; Caudle, S. Brian

    2016-01-01

    Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae), and model organisms for genetics and evolution studies (Microviridae). Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group. PMID:27781171

  10. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  11. Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution.

    PubMed

    Asbahi, Mohamed; Mehraeen, Shafigh; Wang, Fuke; Yakovlev, Nikolai; Chong, Karen S L; Cao, Jianshu; Tan, Mei Chee; Yang, Joel K W

    2015-09-01

    Directed self-assembly of nanoparticles (DSA-n) holds great potential for device miniaturization in providing patterning resolution and throughput that exceed existing lithographic capabilities. Although nanoparticles excel at assembling into regular close-packed arrays, actual devices on the other hand are often laid out in sparse and complex configurations. Hence, the deterministic positioning of single or few particles at specific positions with low defect density is imperative. Here, we report an approach of DSA-n that satisfies these requirements with less than 1% defect density over micrometer-scale areas and at technologically relevant sub-10 nm dimensions. This technique involves a simple and robust process where a solvent film containing sub-10 nm gold nanoparticles climbs against gravity to coat a prepatterned template. Particles are placed individually into nanoscale cavities, or between nanoposts arranged in varying degrees of geometric complexity. Brownian dynamics simulations suggest a mechanism in which the particles are pushed into the template by a nanomeniscus at the drying front. This process enables particle-based self-assembly to access the sub-10 nm dimension, and for device fabrication to benefit from the wealth of chemically synthesized nanoparticles with unique material properties.

  12. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  13. Entanglement polytopes: multiparticle entanglement from single-particle information.

    PubMed

    Walter, Michael; Doran, Brent; Gross, David; Christandl, Matthias

    2013-06-01

    Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope-a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.

  14. Approaching the Heisenberg Limit without Single-Particle Detection.

    PubMed

    Davis, Emily; Bentsen, Gregory; Schleier-Smith, Monika

    2016-02-01

    We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the "one-axis twisting" interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations-e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing-the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit. PMID:26894711

  15. Cryogenic electron microscopy and single-particle analysis.

    PubMed

    Elmlund, Dominika; Elmlund, Hans

    2015-01-01

    About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.

  16. Classification using diffraction patterns for single-particle analysis.

    PubMed

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-05-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties.

  17. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  18. Search for single photons from supersymmetric particle production

    SciTech Connect

    Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Meyer, O.A.; Moromisato, J.H.; Polvado, R.O.; Shambroom, W.D.; Sleeman, J.C.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Moss, L.J.; Muller, F.; Nelson, H.N.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.Y.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.

    1985-03-18

    A search in e/sup +/e/sup -/ annihilation for final states which contain only a single energetic photon has been performed at ..sqrt..s = 29 GeV with the MAC detector at PEP. The upper limit on an anomalous signal has been interpreted in terms of mass limits for supersymmetric particles under the assumption of radiative pair paroduction of either supersymmetric photons or neutrinos. For the supersymmetric electron (e) this limit is m/sub e/>37 GeV/c/sup 2/ at the 90% confidence level if M/sub e//sub L/ = m/sub e//sub R/ and the supersymmetric photo (gamma-tilde) has m/sub gamma-tilde/ = 0.

  19. Information storage and retrieval in a single levitating colloidal particle

    NASA Astrophysics Data System (ADS)

    Myers, Christopher J.; Celebrano, Michele; Krishnan, Madhavi

    2015-10-01

    The binary switch is a basic component of digital information. From phase-change alloys to nanomechanical beams, molecules and atoms, new strategies for controlled bistability hold great interest for emerging technologies. We present a generic methodology for precise and parallel spatiotemporal control of nanometre-scale matter in a fluid, and demonstrate the ability to attain digital functionalities such as switching, gating and data storage in a single colloid, with further implications for signal amplification and logic operations. This fluid-phase bit can be arrayed at high densities, manipulated by either electrical or optical fields, supports low-energy, high-speed operation and marks a first step toward ‘colloidal information’. The principle generalizes to any system where spatial perturbation of a particle elicits a differential response amenable to readout.

  20. Single Particle Jumps in Sheared SiO2

    NASA Astrophysics Data System (ADS)

    McMahon, Sean; Vollmayr-Lee, Katharina; Cookmeyer, Jonathan; Horbach, Juergen

    We study the dynamics of a sheared glass via molecular dynamics simulations. Using the BKS potential we simulate the strong glass former SiO2. The system is initially well equilibrated at a high temperature, then quenched to a temperature below the glass transition, and, after a waiting time at the desired low temperature, sheared with constant strain rate. We present preliminary results of an analysis of single particle trajectories of the sheared glass. We acknowledge the support via NSF REU Grant #PHY-1156964, DoD ASSURE program, and NSF-MRI CHE-1229354 as part of the MERCURY high-performance computer consortium. We thank G.P. Shrivastav, Ch. Scherer and B. Temelso.

  1. Single particle analysis integrated with microscopy: a high-throughput approach for reconstructing icosahedral particles.

    PubMed

    Yan, Xiaodong; Cardone, Giovanni; Zhang, Xing; Zhou, Z Hong; Baker, Timothy S

    2014-04-01

    In cryo-electron microscopy and single particle analysis, data acquisition and image processing are generally carried out in sequential steps and computation of a three-dimensional reconstruction only begins once all the micrographs have been acquired. We are developing an integrated system for processing images of icosahedral particles during microscopy to provide reconstructed density maps in real-time at the highest possible resolution. The system is designed as a combination of pipelines to run in parallel on a computer cluster and analyzes micrographs as they are acquired, handling automatically all the processing steps from defocus estimation and particle picking to origin/orientation determination. An ab initio model is determined independently from the first micrographs collected, and new models are generated as more particles become available. As a proof of concept, we simulated data acquisition sessions using three sets of micrographs of good to excellent quality that were previously recorded from different icosahedral viruses. Results show that the processing of single micrographs can keep pace with an acquisition rate of about two images per minute. The reconstructed density map improves steadily during the image acquisition phase and its quality at the end of data collection is only moderately inferior to that obtained by expert users who processed semi-automatically all the micrographs after the acquisition. The current prototype demonstrates the advantages of integrating three-dimensional image processing with microscopy, which include an ability to monitor acquisition in terms of the final structure and to predict how much data and microscope resources are needed to achieve a desired resolution.

  2. Single particle analysis integrated with microscopy: a high-throughput approach for reconstructing icosahedral particles

    PubMed Central

    Zhang, Xing; Zhou, Z. Hong; Baker, Timothy S.

    2014-01-01

    In cryo-electron microscopy and single particle analysis, data acquisition and image processing are generally carried out in sequential steps and computation of a three-dimensional reconstruction only begins once all the micrographs have been acquired. We are developing an integrated system for processing images of icosahedral particles during microscopy to provide reconstructed density maps in real-time at the highest possible resolution. The system is designed as a combination of pipelines to run in parallel on a computer cluster and analyzes micrographs as they are acquired, handling automatically all the processing steps from defocus estimation and particle picking to origin/orientation determination. An ab-initio model is determined independently from the first micrographs collected, and new models are generated as more particles become available. As a proof of concept, we simulated data acquisition sessions using three sets of micrographs of good to excellent quality that were previously recorded from different icosahedral viruses. Results show that the processing of single micrographs can keep pace with an acquisition rate of about two images per minute. The reconstructed density map improves steadily during the image acquisition phase and its quality at the end of data collection is only moderately inferior to that obtained by expert users who processed semi-automatically all the micrographs after the acquisition. The current prototype demonstrates the advantages of integrating three-dimensional image processing with microscopy, which include an ability to monitor acquisition in terms of the final structure and to predict how much data and microscope resources are needed to achieve a desired resolution. PMID:24613762

  3. Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection.

    PubMed

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    2009-04-01

    The identification of eukaryotic genes involved in virus entry and replication is important for understanding viral infection. Our goal is to develop a siRNA-based screening system using cell arrays and high-throughput (HT) fluorescence microscopy. A central issue is efficient, robust, and automated single-cell-based analysis of massive image datasets. We have developed an image analysis approach that comprises (i) a novel, gradient-based thresholding scheme for cell nuclei segmentation which does not require subsequent postprocessing steps for separation of clustered nuclei, (ii) quantification of the virus signal in the neighborhood of cell nuclei, (iii) localization of regions with transfected cells by combining model-based circle fitting and grid fitting, (iv) cell classification as infected or noninfected, and (v) image quality control (e.g., identification of out-of-focus images). We compared the results of our nucleus segmentation approach with a previously developed scheme of adaptive thresholding with subsequent separation of nuclear clusters. Our approach, which does not require a postprocessing step for the separation of nuclear clusters, correctly segmented 97.1% of the nuclei, whereas the previous scheme achieved 95.8%. Using our algorithm for the detection of out-of-focus images, we obtained a high discrimination power of 99.4%. Our overall approach has been applied to more than 55,000 images of cells infected by either hepatitis C or dengue virus. Reduced infection rates were correctly detected in positive siRNA controls, as well as for siRNAs targeting, for example, cellular genes involved in viral infection. Our image analysis approach allows for the automatic and accurate determination of changes in viral infection based on high-throughput single-cell-based siRNA cell array imaging experiments.

  4. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping.

    PubMed

    Shuang, Bo; Chen, Jixin; Kisley, Lydia; Landes, Christy F

    2014-01-14

    Single particle tracking (SPT) techniques provide a microscopic approach to probe in vivo and in vitro structure and reactions. Automatic analysis of SPT data with high efficiency and accuracy spurs the development of SPT algorithms. In this perspective, we review a range of available techniques used in SPT analysis programs. In addition, we present an example SPT program step-by-step to provide a guide so that researchers can use, modify, and/or write a SPT program for their own purposes. PMID:24263676

  5. A Single-Cell Platform for Monitoring Viral Proteolytic Cleavage in Different Cellular Compartments

    PubMed Central

    Abbadessa, Darin; Smurthwaite, Cameron A.; Reed, Connor W.; Wolkowicz, Roland

    2015-01-01

    Infectious diseases affect human health despite advances in biomedical research and drug discovery. Among these, viruses are especially difficult to tackle due to the sudden transfer from animals to humans, high mutational rates, resistance to current treatments, and the intricacies of their molecular interactions with the host. As an example of these interactions, we describe a cell-based approach to monitor specific proteolytic events executed by either the viral-encoded protease or by host proteins on the virus. We then emphasize the significance of examining proteolysis within the subcellular compartment where cleavage occurs naturally. We show the power of stable expression, highlighting the usefulness of the cell-based multiplexed approach, which we have adapted to two independent assays previously developed to monitor (a) the activity of the HIV-1-encoded protease or (b) the cleavage of the HIV-1-encoded envelope protein by the host. Multiplexing was achieved by mixing cells each carrying a different assay or, alternatively, by engineering cells expressing two assays. Multiplexing relies on the robustness of the individual assays and their clear discrimination, further enhancing screening capabilities in an attempt to block proteolytic events required for viral infectivity and spread. PMID:27688710

  6. A Single-Cell Platform for Monitoring Viral Proteolytic Cleavage in Different Cellular Compartments

    PubMed Central

    Abbadessa, Darin; Smurthwaite, Cameron A.; Reed, Connor W.; Wolkowicz, Roland

    2015-01-01

    Infectious diseases affect human health despite advances in biomedical research and drug discovery. Among these, viruses are especially difficult to tackle due to the sudden transfer from animals to humans, high mutational rates, resistance to current treatments, and the intricacies of their molecular interactions with the host. As an example of these interactions, we describe a cell-based approach to monitor specific proteolytic events executed by either the viral-encoded protease or by host proteins on the virus. We then emphasize the significance of examining proteolysis within the subcellular compartment where cleavage occurs naturally. We show the power of stable expression, highlighting the usefulness of the cell-based multiplexed approach, which we have adapted to two independent assays previously developed to monitor (a) the activity of the HIV-1-encoded protease or (b) the cleavage of the HIV-1-encoded envelope protein by the host. Multiplexing was achieved by mixing cells each carrying a different assay or, alternatively, by engineering cells expressing two assays. Multiplexing relies on the robustness of the individual assays and their clear discrimination, further enhancing screening capabilities in an attempt to block proteolytic events required for viral infectivity and spread.

  7. Proteins immobilization on the surface of modified plant viral particles coated with hydrophobic polycations.

    PubMed

    Nikitin, Nikolai A; Malinin, Andrei S; Trifonova, Ekaterina A; Rakhnyanskaya, Anna A; Yaroslavov, Aleksandr A; Karpova, Olga V; Atabekov, Joseph G

    2014-01-01

    Two hydrophobic cations based on poly-N-ethyl-vinylpyridine were used to produce biologically active complexes. The complexes obtained from tobacco mosaic virus (TMV) spherical particles (SPs), hydrophobic polycation, and a model protein were stable and did not aggregate in solution, particularly at high ionic strengths. The nucleic acid-free SPs were generated by thermal remodeling of the TMV (helical rod-shaped plant virus). The model protein preserved its antigenic activity in the ternary complex (SP-polycation-protein). Immobilization of proteins on the surface of SPs coated with hydrophobic cation is a promising approach to designing biologically active complexes used in bionanotechnologies. PMID:25121344

  8. Single-file diffusion of macroscopic charged particles.

    PubMed

    Coste, C; Delfau, J-B; Even, C; Saint Jean, M

    2010-05-01

    In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.

  9. Excoecarianin, Isolated from Phyllanthus urinaria Linnea, Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles

    PubMed Central

    Cheng, Hua-Yew; Yang, Chien-Min; Lin, Ta-Chen; Lin, Liang-Tzung; Chiang, Lien-Chai; Lin, Chun-Ching

    2011-01-01

    Phyllanthus urinaria Linnea (Euphorbiaceae) is one of the traditional medicinal plants widely used by oriental people to treat various diseases. We have previously demonstrated that the acetone extract of P. urinaria inhibits herpes simplex virus type 2 (HSV-2) but not HSV-1 infection. In a continuing effort to clarify the antiviral mechanisms of P. urinaria, we isolated the pure compound excoecarianin from the whole plant of P. urinaria through acetone extraction, and investigated its anti-HSV-1 and HSV-2 activities. Our results indicated that excoecarianin protected Vero cells from HSV-2 but not HSV-1 infection, and its 50% inhibitory concentration (IC50) was 1.4 ± 0.1 μM. The antiviral effective concentration of excoecarianin did not affect the viability or the morphology of Vero cells. Although excoecarianin inhibited HSV-2 infection, the inhibitory effect, however, was most prominent when excoecarianin was concurrently added with the virus. Pretreatment of Vero cells with excoecarianin with removal of the drug prior to infection did not yield any antiviral effects, and the same observation was made for post viral entry treatment. Subsequent studies revealed that excoecarianin inactivated HSV-2 virus particles to prevent viral infection. A synergistic antiviral effect against HSV-2 was also observed when Vero cells were treated with a combination of acyclovir (ACV) and excoecarianin. These results suggested that excoecarianin merits to be further explored as an entry inhibitor against HSV-2 and could potentially be investigated for combinatorial drug treatment with nucleoside analogues such as ACV in therapeutic management of HSV-2 infection. PMID:19808846

  10. Theoretical Calculation on the Coercivity of Single Acicular γ-Fe2O3 Particle

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.; Chang, C. Y.

    1985-03-01

    The chain-of-spheres model is modified by taking crystal anisotropy into account. Coercivity of isolated single-domain particle due to mixed anisotropies of shape and crystal is treated in detail for various should be deleted particle axis orientation. Calculations on the single acicular γ-Fe2O3 particle are found in good agreement with experimental results by Knowles.

  11. Intracellular production of virus particles and viral components in NIH/3T3 cells chronically infected with Moloney murine leukemia virus: effect of interferon.

    PubMed Central

    Aboud, M; Kimchi, R; Bakhanashvili, M; Salzberg, S

    1981-01-01

    The effect of interferon on the biochemical properties and the maturation process of intracellular viral particles isolated from the cytoplasmic fraction of NIH/3T3 cells chronically infected with Moloney murine leukemia virus was investigated. By labeling these virions with either [35S]methionine or [3H]glucosamine, we demonstrated that they contain the same viral proteins and glycoproteins found in extracellular virions. Interferon treatment was found to reduce the rate of intracellular virus assembly. This effect was not a consequence of an interferon inhibition of viral RNA synthesis or its translation or a consequence of an interference with the posttranslational cleavage processing of viral precursor proteins, since all of these steps were not affected by interferon. However, the reduced rate of virus assembly could be attributed to the inhibition of viral protein glycosylation observed in interferon-treated cells. Nevertheless, despite this reduced rate, virus particles accumulated in interferon-treated cells. This accumulation was probably due to the strong inhibition of their final release from such cells. PMID:6172601

  12. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE PAGES

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  13. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    SciTech Connect

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.

  14. Nanoscale structural features determined by AFM for single virus particles.

    PubMed

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis. PMID:24056758

  15. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  16. Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers

    PubMed Central

    Zhao, Nianxi; Pei, Sung-nan; Parekh, Parag; Salazar, Eric; Zu, Youli

    2014-01-01

    To investigate the potential clinical application of aptamers to prevention of HIV infection, single- stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12 hr. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd=1.59 nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers. PMID:24661998

  17. Simultaneous detection of five notifiable viral diseases of cattle by single-tube multiplex real-time RT-PCR.

    PubMed

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2015-06-01

    Multiplexed real-time PCR (qPCR) assays enable the detection of several target genes in a single reaction, which is applicable for simultaneous testing for the most important viral diseases in samples obtained from ruminants with unspecific clinical symptoms. Here, reverse transcription qPCR (RT-qPCR) systems for the detection of bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV) were combined with an internal control system based on the beta-actin gene. Additionally, a background screening for three further major pathogens of cloven-hoofed animals reportable to the World Organisation for Animal Health, namely foot-and-mouth disease virus, epizootic haemorrhagic disease virus, and Rift Valley fever virus, was integrated using the identical fluorophore for the respective RT-qPCR assays. Every pathogen-specific assay had an analytical sensitivity of at least 100 genome copies per reaction within the multiplex approach, and a series of reference samples and clinical specimens obtained from cattle, but also from small ruminants, were detected reliably. The qPCR systems integrated in the background screening were even not influenced by the simultaneous amplification of very high BVDV and BTV genome copy numbers. The newly developed multiplex qPCR allows the specific and sensitive detection of five of the most important diseases of ruminants and could be used in the context of monitoring programs or for differential diagnostics. PMID:25746154

  18. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition

    PubMed Central

    Jiao, Junyi; Rebane, Aleksander A.; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-01-01

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼−23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention. PMID:26038562

  19. Simultaneous detection of five notifiable viral diseases of cattle by single-tube multiplex real-time RT-PCR.

    PubMed

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2015-06-01

    Multiplexed real-time PCR (qPCR) assays enable the detection of several target genes in a single reaction, which is applicable for simultaneous testing for the most important viral diseases in samples obtained from ruminants with unspecific clinical symptoms. Here, reverse transcription qPCR (RT-qPCR) systems for the detection of bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV) were combined with an internal control system based on the beta-actin gene. Additionally, a background screening for three further major pathogens of cloven-hoofed animals reportable to the World Organisation for Animal Health, namely foot-and-mouth disease virus, epizootic haemorrhagic disease virus, and Rift Valley fever virus, was integrated using the identical fluorophore for the respective RT-qPCR assays. Every pathogen-specific assay had an analytical sensitivity of at least 100 genome copies per reaction within the multiplex approach, and a series of reference samples and clinical specimens obtained from cattle, but also from small ruminants, were detected reliably. The qPCR systems integrated in the background screening were even not influenced by the simultaneous amplification of very high BVDV and BTV genome copy numbers. The newly developed multiplex qPCR allows the specific and sensitive detection of five of the most important diseases of ruminants and could be used in the context of monitoring programs or for differential diagnostics.

  20. Single particle fluorescence burst analysis of epsin induced membrane fission.

    PubMed

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  1. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  2. Universal large deviations for the tagged particle in single-file motion.

    PubMed

    Hegde, Chaitra; Sabhapandit, Sanjib; Dhar, Abhishek

    2014-09-19

    We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle interaction that prevents particle crossings--this is called single-file motion. Starting from equilibrium initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics, the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged particle displacement and show that this is universal, independent of the individual dynamics.

  3. Universal Large Deviations for the Tagged Particle in Single-File Motion

    NASA Astrophysics Data System (ADS)

    Hegde, Chaitra; Sabhapandit, Sanjib; Dhar, Abhishek

    2014-09-01

    We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle interaction that prevents particle crossings—this is called single-file motion. Starting from equilibrium initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics, the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged particle displacement and show that this is universal, independent of the individual dynamics.

  4. Single Particle Scattering Used for Characterization of Suspended Sediments

    NASA Astrophysics Data System (ADS)

    Bjørnø, Leif; Bjørnø, Irina

    The aim of this paper is to develop a theoretical model for description of ultrasound scattering from irregularly shaped individual particles. Investigations of sediment transport by use of ultrasound scattering technique demand a fundamental understanding of scattering by individual, irregularly shaped particles. Regularly shaped particles are frequently spheres, while irregularly shaped particles can be symmetrically particles with surface roughness or with angular facets and edges. A cube and a rough sphere have been used in the studies behind this paper. Laboratory experiments have been used for verification of theoretical and numerical results.

  5. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.

    PubMed

    Galaz-Montoya, Jesús G; Hecksel, Corey W; Baldwin, Philip R; Wang, Eryu; Weaver, Scott C; Schmid, Michael F; Ludtke, Steven J; Chiu, Wah

    2016-06-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. PMID:27016284

  6. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.

    PubMed

    Galaz-Montoya, Jesús G; Hecksel, Corey W; Baldwin, Philip R; Wang, Eryu; Weaver, Scott C; Schmid, Michael F; Ludtke, Steven J; Chiu, Wah

    2016-06-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions.

  7. Characterization of aerodynamic drag force on single particles: Final report

    SciTech Connect

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  8. Proton Single-Particle States In The Heaviest Actinide Nuclei

    SciTech Connect

    Ahmad, I.; Kondev, F.G.; Moore, E.F.; Chasman, R.R.; Carpenter, M.P.; Greene, J.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Hoff, R.W.; Evans, J.E.; Lougheed, R.W.; Porter, C.E.; Felker, L.K.

    2005-04-05

    The level structure of 249Bk has been investigated by measuring the {gamma}-ray spectra following the {alpha} decay of a chemically and isotopically pure 253Es sample. Alpha-gamma coincidence measurement was performed using a Si detector for {alpha} particles and a 25% Ge detector for {gamma} rays. A gamma-gamma coincidence measurement was performed with the Gammasphere spectrometer. The Es sample was obtained by extracting the 253Es which grew in a 253Cf source material produced in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Additional information on the 249Bk levels was obtained from the study of {gamma} rays produced in the {beta}- decay of 249Cm. The 249Cm sample was produced by neutron irradiation of 248Cm. Using the results of the present study and the results of previous 248Cm({alpha},t) and 248Cm(3He,d) reaction spectra, the following single-particle states have been identified in 249Bk: 7/2+[633], 0.0 keV; 3/2-[521], 8.78 keV; 1/2+[400], 377.55 keV: 5/2+[642], 389.17 keV; 1/2-[530], 569.19 keV; 1/2-[521], 643.0 keV; 5/2-[523], 672.8 keV; 9/2+[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7 and 1223.0 keV with tentative assignments of {l_brace}7/2+[633]x1-{r_brace}9/2-, {l_brace}7/2+[633]x0-{r_brace}7/2-, {l_brace}7/2+[633]x1-{r_brace}5/2- and {l_brace}7/2+[633]x0+{r_brace}7/2+, respectively.

  9. Recombinant UL30 antigen-based single serum dilution ELISA for detection of duck viral enteritis.

    PubMed

    Aravind, S; Patil, B R; Dey, Sohini; Mohan, C Madhan

    2012-11-01

    A recombinant UL30 antigen-based single serum dilution enzyme linked immunosorbent assay (ELISA) was developed to measure specific antibody in the sera of ducks against duck enteritis virus (DEV). The partial UL30 gene of DEV was cloned, expressed, purified and tested for its diagnostic use by designing a single serum dilution enzyme linked immuno-sorbent assay (ELISA). A total of 226 duck sera samples were tested using the assay. A linear relationship was found between the predicted antibody titres at a single working dilution of 1:100 and the corresponding serum titres observed as determined by the standard serial dilution method. Regression analysis was used to determine a standard curve from which an equation was derived which demonstrated this correlation. The equation was then used to convert the corrected absorbance readings of the single working dilution directly into the predicted ELISA antibody titres. The assay proved to be specific, sensitive and accurate as compared to the virus neutralization test with a specificity, sensitivity and accuracy being 96%, 95% and 95% respectively.

  10. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics. PMID:18461483

  11. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  12. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  13. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  14. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  15. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  16. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  17. Effects of asphericity on single-particle polarized light scattering.

    PubMed

    Spinrad, R W; Brown, J

    1993-10-20

    Polarized light scattering from individual particles has been analyzed to determine the effects of particle shape. Flow cytometric techniques were used on samples of spherical microspheres and naturally occurring marine algae. An analog of the depolarization ratio was obtained by using crossed polarizers in the source and detector of the flow cytometer. Results suggest that differences between the polarized light scattering of spheres and aspherical particles are not discernible unless the scattered intensities are normalized to the forward scattering, which is roughly equivalent to particulate cross section. This research indicates that polarized light scattering, when normalized to particle size, may provide an indication of the extent of asphericity of hydrosols.

  18. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors.

    PubMed

    Lee, Donald W; Allison, Andrew B; Bacon, Kaitlyn B; Parrish, Colin R; Daniel, Susan

    2016-05-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons-a newly recognized CPV host-to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity. PMID:26889026

  19. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors

    PubMed Central

    Lee, Donald W.; Allison, Andrew B.; Bacon, Kaitlyn B.

    2016-01-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons—a newly recognized CPV host—to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity. PMID:26889026

  20. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors.

    PubMed

    Lee, Donald W; Allison, Andrew B; Bacon, Kaitlyn B; Parrish, Colin R; Daniel, Susan

    2016-05-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons-a newly recognized CPV host-to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity.

  1. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  2. Copackaging of multiple adeno-associated viral vectors in a single production step.

    PubMed

    Doerfler, Phillip A; Byrne, Barry J; Clément, Nathalie

    2014-10-01

    Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing.

  3. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding.

    PubMed

    Lu, Rong; Neff, Norma F; Quake, Stephen R; Weissman, Irving L

    2011-10-01

    Disentangling cellular heterogeneity is a challenge in many fields, particularly in the stem cell and cancer biology fields. Here we demonstrate how to combine viral genetic barcoding with high-throughput sequencing to track single cells in a heterogeneous population. We use this technique to track the in vivo differentiation of unitary hematopoietic stem cells (HSCs). The results are consistent with single-cell transplantation studies but require two orders of magnitude fewer mice. In addition to its high throughput, the high sensitivity of the technique allows for a direct examination of the clonality of sparse cell populations such as HSCs. We show how these capabilities offer a clonal perspective of the HSC differentiation process. In particular, our data suggest that HSCs do not equally contribute to blood cells after irradiation-mediated transplantation, and that two distinct HSC differentiation patterns co-exist in the same recipient mouse after irradiation. This technique can be applied to any virus-accessible cell type for both in vitro and in vivo processes.

  4. Real time analysis of lead-containing atmospheric particles in Beijing during springtime by single particle aerosol mass spectrometry.

    PubMed

    Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2016-07-01

    Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time.

  5. Single-Beam Optical Conveyor Belt for Chiral Particles

    NASA Astrophysics Data System (ADS)

    Fernandes, David E.; Silveirinha, Mário G.

    2016-07-01

    A different paradigm is proposed to selectively manipulate and transport small engineered chiral particles and discriminate different enantiomers using unstructured chiral light. It is theoretically shown that the response of a chiral metamaterial particle may be tailored to enable an optical conveyor-belt operation with no optical traps, such that for a fixed incident light helicity the nanoparticle is either steadily pushed towards the direction of the photon flow or steadily pulled against the photon flow, independent of its position. Our findings create distinct opportunities for unconventional optical manipulations of tailored nanoparticles and may have applications in sorting racemic mixtures of artificial chiral molecules and in particle delivery.

  6. Detection of infectious viral particles in plant protoplasts inoculated with transcripts of full-length shallot virus X cDNA.

    PubMed

    Vishnichenko, V K; Zavriev, S K

    2001-01-01

    Flexible filamentous shallot virus X (ShVX) particles were detected in extracts of Beta vulgaris protoplasts inoculated with transcripts from a full-length ShVX cDNA. Extracts from ShVX-infected protoplast were infectious for ShVX-healthy shallot seedlings. Western blot analysis of inoculated plants revealed the accumulation of the ShVX coat protein, while electron microscopy confirmed the presence of ShVX virions. The results suggest that the in vitro RNA transcripts from full-length ShVX cDNA give rise to infectious viral particles.

  7. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype.

    PubMed

    Dowd, Kimberly A; DeMaso, Christina R; Pelc, Rebecca S; Speer, Scott D; Smith, Alexander R Y; Goo, Leslie; Platt, Derek J; Mascola, John R; Graham, Barney S; Mulligan, Mark J; Diamond, Michael S; Ledgerwood, Julie E; Pierson, Theodore C

    2016-08-01

    Recent epidemics of Zika virus (ZIKV) have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian) that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas. PMID:27481466

  8. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype.

    PubMed

    Dowd, Kimberly A; DeMaso, Christina R; Pelc, Rebecca S; Speer, Scott D; Smith, Alexander R Y; Goo, Leslie; Platt, Derek J; Mascola, John R; Graham, Barney S; Mulligan, Mark J; Diamond, Michael S; Ledgerwood, Julie E; Pierson, Theodore C

    2016-08-01

    Recent epidemics of Zika virus (ZIKV) have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian) that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.

  9. Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji

    2015-04-01

    By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.

  10. Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques

    NASA Astrophysics Data System (ADS)

    Fan, X.; Parker, D. J.; Smith, M. D.

    2006-06-01

    Positron emission particle tracking (PEPT) is a non-invasive technique used for obtaining dynamic information within multiphase systems. It involves tracking a single radioactively labelled tracer particle. The tracking efficiency and representative of PEPT data are crucially dependent on the amount of radioactivity labelled in a single particle, as well as the physical and chemical properties of a tracer. This paper will discuss the effect of tracer properties on PEPT data and two labelling techniques, direct activation and ion-exchange, in detail. In direct activation, particles are directly bombarded using a 33 MeV 3He beam. A few of the oxygen atoms in the particles are then converted into 18F radioisotope. Direct activation can be used to label a particle with a size range from 1 to 10 mm, but the material must be able to resist a high temperature. The ion-exchange technique can be used to label smaller resin particles with a size ranging from 60 to 1000 μm. The radioactivity labelled in a single resin bead is controlled by ion-exchange properties of the resin material, anions present in the radioactive water and processing time.

  11. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  12. Quantitative evaluation of viral fitness due to a single nucleotide polymorphism in the Marek's disease virus UL41 gene via an in vitro competition assay.

    PubMed

    Mao, Weifeng; Niikura, Masahiro; Silva, Robert F; Cheng, Hans H

    2008-03-01

    Marek's disease, a T cell lymphoma, is an economically important disease of poultry caused by the Marek's disease virus (MDV), a highly cell-associated alphaherpesvirus. A greater understanding of viral gene function and the contribution of sequence variation to virulence should facilitate efforts to control Marek's disease in chickens. To characterize a naturally occurring single nucleotide polymorphism (SNP; AY510475:g.108,206C>T) in the MDV UL41 gene that results in a missense mutation (AAS01683:p.Arg377Cys), bacterial artificial chromosome (BAC)-derived MDVs that differed only in the UL41 SNP were evaluated using a head-to-head competition assay in vitro. Monitoring the frequency of each SNP by pyrosequencing during virus passage determined the ratio of each viral genome in a single monolayer, which is a very sensitive method to monitor viral fitness. MDV with the UL41*Cys allele showed enhanced fitness in vitro. To evaluate the mechanism of altered viral fitness caused by this SNP, the virion-associated host shutoff (vhs) activity of both UL41 alleles was determined. The UL41*Cys allele had no vhs activity, which suggests that enhanced fitness in vitro for MDV with inactive vhs was due to reduced degradation of viral transcripts. The in vitro competition assay should be applicable to other MDV genes and mutations.

  13. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    PubMed

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  14. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  15. Single particle atmospheric aerosol analysis using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Mihailescu, Mona; Cojocaru, Ruxandra Elena; Kusko, C.; Toanca, Flori; Dinescu, A.; Schiopu, P.

    2011-06-01

    The aim of this research is to calculate the refractive index of transparent atmospheric aerosols, which have biological origin, using a digital holographic microscopy technique (DHM). The samples are collected on filters, using miniature impactors for particles with dimensions smaller than 10μm (on even one axis), from a height of over 20 meters, in Magurele, a rural location near the urban and industrial agglomeration of the capital city, Bucharest. Due to their organic or inorganic origin, each atmospheric aerosol particle has different size, shape and optical properties which have a determinant role in LIDAR measurements. We record on a CCD camera hundreds of holograms which contain the diffraction pattern from every aerosol particle superposed with the reference wave. Digitally, we scan the entire volume of one particle with nanometric resolution (using an algorithm based on the Fresnel approximation). The calibration was done using an object with known dimensions fabricated by e-beam lithography and some complementary measurements were done in confocal microscopy. Our analysis separates four main classes of atmospheric aerosols particles (wires, columns, spherical fragments, and irregular). The predominant class in the investigated period is the first one, which has biological origin and the refractive index was calculated starting from the phase shift introduced by them in the optical path and models for their cylindrical shape. The influence of spatial filtering in the reconstructed object images was investigated.

  16. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  17. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  18. Self Interference of Single Electrodynamic Particle in Double Slit

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2013-12-01

    It is by the long established fact in experiment and theory that electromagnetic waves, here as one component of an IED particle, passing a double slit will undergo self inference each, producing at a detector plane fringed intensities. The wave generating point charge of a zero rest mass, as the other component of the particle, is maintained a constant energy and speed by a repeated radiation reabsorption/reemission scheme, and in turn steered in direction in its linear motion by the reflected radiation field, and will thereby travel to the detector along (one of) the optical path(s) of the waves leading to a bright interference fringe. We elucidate the process formally based on first principles solutions for the IED particle and known principles for wave-matter interaction.

  19. Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    NASA Technical Reports Server (NTRS)

    Wiscombe, W. J.; Mugnai, A.

    1986-01-01

    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.

  20. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  1. Plasma etching of single fine particle trapped in Ar plasma by optical tweezers

    NASA Astrophysics Data System (ADS)

    Ito, T.; Koga, K.; Yamashita, D.; Kamataki, K.; Itagaki, N.; Uchida, G.; Shiratani, M.

    2014-06-01

    Physical and chemical interactions between plasmas and nano-featured surfaces are one important issue in the plasma processing. Here we optically trap single fine particle levitated at plasma/sheath boundary with an infrared laser to realize in-situ analysis of such interactions. We have measured time evolution of the diameter of the single fine particle in Ar plasma. The trapped particle was etched at an etching rate of 1 nm/min in Ar plasma. We also obtained a Raman peak at around 2950 cm-1 corresponding to C-H bonds in the single fine particle in Ar plasma. The results open a new possibility to observe directly interactions between plasma and single fine particle.

  2. Low aspect ratio micropores for single-particle and single-cell analysis.

    PubMed

    Goyal, Gaurav; Mulero, Rafael; Ali, Jamel; Darvish, Armin; Kim, Min Jun

    2015-05-01

    This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis.

  3. Single dilution Avidity-Blocking ELISA as an alternative to the Bovine Viral Diarrhea Virus neutralization test.

    PubMed

    Franco Mahecha, O L; Ogas Castells, M L; Combessies, G; Lavoria, M A; Wilda, M; Mansilla, F C; Seki, C; Grigera, P R; Capozzo, A V

    2011-08-01

    This study describes the development and validation of a blocking ELISA that measures avidity of BVDV-specific immunoglobulins (Igs) as an alternative to the classic virus neutralization test. The assay comprises a recombinant soluble E2 glycoprotein as target antigen, a neutralizing serum as detector antibody and a washing-step with a chaotropic agent to determine BVDV-specific Igs avidity. Avidity-Blocking ELISA was validated with 100 negative and 87 positive BVDV-neutralization serum samples from either infected or vaccinated bovines (inactivated commercial vaccines). Specificity and sensitivity of the Avidity-Blocking ELISA were 100% and 98.8%, respectively. The assay was standardized to use a single dilution, so that 90 samples can be tested per plate. Results expressed as Avidity Index (AI) correlated with BVDV neutralizing titers (r=0.94). Unlike the virus neutralization test, the Avidity-Blocking ELISA could discriminate between infected and vaccinated animals (DIVA), suggesting that avidity measurement can be a valuable tool to achieve DIVA compliances. The data show that the avidity of anti BVDV antibodies is related to their capacity to block viral infection in vitro. PMID:21621555

  4. Single dilution Avidity-Blocking ELISA as an alternative to the Bovine Viral Diarrhea Virus neutralization test.

    PubMed

    Franco Mahecha, O L; Ogas Castells, M L; Combessies, G; Lavoria, M A; Wilda, M; Mansilla, F C; Seki, C; Grigera, P R; Capozzo, A V

    2011-08-01

    This study describes the development and validation of a blocking ELISA that measures avidity of BVDV-specific immunoglobulins (Igs) as an alternative to the classic virus neutralization test. The assay comprises a recombinant soluble E2 glycoprotein as target antigen, a neutralizing serum as detector antibody and a washing-step with a chaotropic agent to determine BVDV-specific Igs avidity. Avidity-Blocking ELISA was validated with 100 negative and 87 positive BVDV-neutralization serum samples from either infected or vaccinated bovines (inactivated commercial vaccines). Specificity and sensitivity of the Avidity-Blocking ELISA were 100% and 98.8%, respectively. The assay was standardized to use a single dilution, so that 90 samples can be tested per plate. Results expressed as Avidity Index (AI) correlated with BVDV neutralizing titers (r=0.94). Unlike the virus neutralization test, the Avidity-Blocking ELISA could discriminate between infected and vaccinated animals (DIVA), suggesting that avidity measurement can be a valuable tool to achieve DIVA compliances. The data show that the avidity of anti BVDV antibodies is related to their capacity to block viral infection in vitro.

  5. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly

    PubMed Central

    Tomko, Robert J.; Taylor, David W.; Chen, Zhuo A.; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-01-01

    Summary Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. PMID:26451487

  6. Single-particle light-scattering measurement: photochemical aerosols and atmospheric particulates.

    PubMed

    Phillips, D T; Wyatt, P J

    1972-09-01

    The use of single-particle light-scattering measurements to determine the origin of atmospheric hazes has been explored by measurement of laboratory aerosols, field samples, and computer analysis of the light-scattering data. The refractive index of measured spherical particles 800 nm to 1000 nm in diameter was determined within 2%. For particles of diameter less than 500 nm the measurement of absolute scattering intensity is required for complete analysis. Distinctive nonspherical and absorbing particles were observed both in automotive exhaust and atmospheric samples. Electrostatic suspension of atmospheric particulates is demonstrated to provide a practical approach to optical measurement of single particles. The technique may be used to calibrate optical particle counters or identify particles with unique shape or refractive index.

  7. Single beam two-views holographic particle image velocimetry.

    PubMed

    Sheng, Jian; Malkiel, Edwin; Katz, Joseph

    2003-01-10

    Holographic particle image velocimetry (HPIV) is presently the only method that can measure at high resolution all three components of the velocity in a finite volume. In systems that are based on recording one hologram, velocity components parallel to the hologram can be measured throughout the sample volume, but elongation of the particle traces in the depth direction severely limits the accuracy of the velocity component that is perpendicular to the hologram. Previous studies overcame this limitation by simultaneously recording two orthogonal holograms, which inherently required four windows and two recording systems. This paper introduces a technique that maintains the advantages of recording two orthogonal views, but requires only one window and one recording system. Furthermore, it enables a quadruple increase in the spatial resolution. This method is based on placing a mirror in the test section that reflects the object beam at an angle of 45 degrees. Particles located in the volume in which the incident and reflected beams from the mirror overlap are illuminated twice in perpendicular directions. Both views are recorded on the same hologram. Off-axis holography with conjugate reconstruction and high-pass filtering is used for recording and analyzing the holograms. Calibration tests show that two views reduce the uncertainty in the three-dimensional (3-D) coordinates of the particle centroids to within a few microns. The velocity is still determined plane-by-plane by use of two-dimensional particle image velocimetry procedures, but the images are filtered to trim the elongated traces based on the 3-D location of the particle. Consequently, the spatial resolution is quadrupled. Sample data containing more than 200 particles/mm3 are used for calculating the 3-D velocity distributions with interrogation volumes of 220 x 154 x 250 microm, and vector spacing of 110 x 77 x 250 microm. Uncertainty in velocity is addressed by examining how well the data satisfies

  8. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    PubMed

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  9. Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods

    PubMed Central

    Watanabe, Tomonobu M.; Fujii, Fumihiko; Jin, Takashi; Umemoto, Eiji; Miyasaka, Masayuki; Fujita, Hideaki; Yanagida, Toshio

    2013-01-01

    Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees. PMID:23931303

  10. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    NASA Astrophysics Data System (ADS)

    Lin, Jinda; Li, Yong-qing

    2014-03-01

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4-20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ˜20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  11. Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations

    NASA Astrophysics Data System (ADS)

    Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Ostendorf, Andreas

    2012-05-01

    This work describes the development and analysis of a new single-axis acoustic levitator, which consists of a 38 kHz Langevin-type piezoelectric transducer with a concave radiating surface and a concave reflector. The new levitator design allows to significantly reducing the electric power necessary to levitate particles and to stabilize the levitated sample in both radial and axial directions. In this investigation the lateral oscillations of a levitated particle were measured with a single point Laser Doppler Vibrometer (LDV) and an image evaluation technique. The lateral oscillations were measured for different values of particle diameter, particle density and applied electrical power.

  12. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect

    Lin, Jinda; Li, Yong-qing

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  13. Prospects for single-particle imaging at XFELs

    SciTech Connect

    Chapman, H N; Hau-Riege, S P; London, R A; Marchesini, S; Noy, A; Szoke, A; Szoke, H; Ingerman, E; Hajdu, J; Huldt, G; Howells, M R; He, H; Spence, J H; Weierstall, U

    2004-04-25

    X-ray free-electron lasers will produce pulses of x-rays that are 10 orders of magnitude brighter than today's undulator sources at synchrotrons. This may enable atomic resolution imaging of single macromolecules.

  14. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    PubMed

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  15. Single particle measurements of material line stretching in turbulence: Experiments

    NASA Astrophysics Data System (ADS)

    Kramel, Stefan; Tympel, Saskia; Toschi, Federico; Voth, Greg

    2015-11-01

    We find that particles in the shape of chiral dipoles display a preferential rotation direction in three dimensional isotropic turbulence. The particles consist of two helical ends with opposite chirality that are connected by a straight rod. They are fabricated using 3D printing and have an aspect ratio of 10 and a length in the inertial range of our flow between oscillating grids. Due to their high aspect ratio, they move like material lines. Because material lines align with the extentional eigenvectors of the velocity gradient tensor they experience a mean stretching in turbulence. The stretching of a chiral dipole produces a rotation about the dipole axis and so chiral dipoles experience a non-zero mean spinning rate in turbulence. These results provide a first direct experimental measurement of the rate of material line stretching in turbulence.

  16. Single particles accelerate final stages of capillary break-up

    NASA Astrophysics Data System (ADS)

    Lindner, Anke; Fiscina, Jorge Eduardo; Wagner, Christian

    2015-06-01

    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite-time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well-known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  17. Analysis of single particle diffusion with transient binding using particle filtering.

    PubMed

    Bernstein, Jason; Fricks, John

    2016-07-21

    Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm.

  18. High frequency single mode traveling wave structure for particle acceleration

    NASA Astrophysics Data System (ADS)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  19. Optimizing the acquisition and analysis of confocal images for quantitative single-mobile-particle detection.

    PubMed

    Friaa, Ouided; Furukawa, Melissa; Shamas-Din, Aisha; Leber, Brian; Andrews, David W; Fradin, Cécile

    2013-08-01

    Quantification of the fluorescence properties of diffusing particles in solution is an invaluable source of information for characterizing the interactions, stoichiometry, or conformation of molecules directly in their native environment. In the case of heterogeneous populations, single-particle detection should be the method of choice and it can, in principle, be achieved by using confocal imaging. However, the detection of single mobile particles in confocal images presents specific challenges. In particular, it requires an adapted set of imaging parameters for capturing the confocal images and an adapted event-detection scheme for analyzing the image. Herein, we report a theoretical framework that allows a prediction of the properties of a homogenous particle population. This model assumes that the particles have linear trajectories with reference to the confocal volume, which holds true for particles with moderate mobility. We compare the predictions of our model to the results as obtained by analyzing the confocal images of solutions of fluorescently labeled liposomes. Based on this comparison, we propose improvements to the simple line-by-line thresholding event-detection scheme, which is commonly used for single-mobile-particle detection. We show that an optimal combination of imaging and analysis parameters allows the reliable detection of fluorescent liposomes for concentrations between 1 and 100 pM. This result confirms the importance of confocal single-particle detection as a complementary technique to ensemble fluorescence-correlation techniques for the studies of mobile particle.

  20. ACMEV-SP2 (Single Particle Soot Photometer)

    DOE Data Explorer

    Sedlacek, Arthur

    2015-06-01

    The SP2 provides information on the amounts of rBC (refractory black carbon) and of other, non-refractory substances associated with individual rBC containing particles by simultaneously measuring the scattering and incandescence signals of such particles that are directed through the cavity of a 1064 nm Nd:YAG laser. (refractory Black Carbon) rBC mixing ratio (ng/Kg) and number size distribution time series collected during the DOE-ARM sponsored ACME-V field campaign held from June 1 to September 15, 2015 rBC mixing ratio is reported at STP conditions Time resolution: 10 sec Uncertainty: ~ 30% SP2 Unit: 25 Location: Deadhorse, AK Location: N 70-degree 11' 41'' - W 148-degress. 27' 55'' SP2_dateTime: UTC rBC concentration is in units of ng/Kg - dry air. Mass Equivalent Diameters [MED] used for size distribution (SP2_min; SP2_geo; and SP2_max) are in units of micrometers dN/dlogDp counts for a given size bin (SP2_geo) listed as 'SP2_cnts_0 - SP2_cnts_199' and are in units of #/cc. Column naming convention: 'SP2_cnts_X' are the number of particles in bin number _X. , where _X is the row number within the 'SP2_geo' size bin column that contains the mass equivalent diameter (e.g., SP2_cnts_0 = 0.01 microns; SP2_cnts_10 = 0.060 microns, etc.). The dN/dlogDp data is time-resolved where a given row is associated with the timestamp for that row. Note that the rBC column length is one field shorter than the SP2_datetime column. Last time field is not relevant to the rBC time series (see comment below on length of SP2_datetime column) Lengths for SP2_max; SP2_min; SP2_geo are one field longer then the number of SP2_cnts_XX columns . This is to provide bounds for image plots (if desired). Length for SP2_datetime is one field longer than that length of the SP2_cnts_XX columns This is to provide bounds for image plots (if desired) SP2 Calibration: Fullerene soot with corrrection applied for particle density as a function of particle size. No correction for OC content in

  1. Identification of volume phase transition of a single microgel particle using optical tweezers

    NASA Astrophysics Data System (ADS)

    Karthickeyan, D.; Gupta, Deepak K.; Tata, B. V. R.

    2016-10-01

    Poly (N-isopropyl acrylamide-co-acrylic acid) (PNIPAM-co-Aac) microgel particles are pH responsive and exhibit volume phase transition (VPT) upon variation of pH. Dynamic light scattering (DLS) is used conventionally to identify VPT and requires a dilute suspension with particle concentration ˜107 particles cm-3 and if particles are polydisperse in nature, DLS data interpretation is relatively difficult. Here we show that optical tweezers allow one to measure the VPT of a single microgel particle by measuring the optical trap stiffness, κ of trapped particle as a function of pH. We report here a sudden change in κ at VPT, which is shown to arise from a sudden decrease in particle diameter with a concomitant increase in the refractive index of the particle at VPT.

  2. Automated Single-Particle SEM/EDX Analysis of Submicron Particles down to 0.1 mu m

    SciTech Connect

    Laskin, Alexander ); Cowin, James P. )

    2000-12-01

    An automated single particle SEM/EDX analysis of aerosols deposited onto grid supported carbon film of 15-25 nm thickness is demonstrated. Use of the carbon film gives exceptionally low background in the SEM/EDAX and allows satisfied automated analysis of particles down to 0.1 mm size, including analysis of low-Z elements (C, O and N). In this work, six lab-generated 0.1-2 mm aerosols were tested for their elemental composition. The EDAX yields reasonably accurate quantitative results featuring all the elements presented in the tested compounds, namely C, O, N, Na, S, Al, Si and Cl. Furthermore, the carbon film has very low backscattered electron (BSE) yield compared to that from the particle, so in the BSE mode the particle image is seen with very high contrast. This greatly improves quality and speed of the automated mapping of particles by SEM prior to EDAX. The presented approach is believed to be a significant improvement over the automated single particle analysis in the elect ron microprobe based techniques, which usually provide limited information on low-Z elements and usually could not go below {approx}0.5 mm.

  3. Single-particle characterization of oncolytic vaccinia virus by flow virometry.

    PubMed

    Tang, Vera A; Renner, Tyler M; Varette, Oliver; Le Boeuf, Fabrice; Wang, Jiahu; Diallo, Jean-Simon; Bell, John C; Langlois, Marc-André

    2016-09-30

    Vaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris. Here we have employed flow virometry (FV) analysis and sorting to isolate and characterize distinct SSP populations in therapeutic oncolytic VV preparations. We show that VV preparations contain SSPs heterogeneous in size and include large numbers of non-infectious VV particles. Furthermore, we used FV to illustrate how VV has a propensity to aggregate over time and under various handling and storage procedures. Accordingly, we find that together the infectious titer, the total number of SSPs, the number of viral genomes and the level of particle aggregation in a sample constitute useful parameters that greatly facilitate inter-sample assessment of physical quality, and also provides a means to monitor sample deterioration over time. Additionally, we have successfully employed FV sorting to further isolate virus from other particles by identifying a lipophilic dye that preferentially stains VV over other SSPs in the sample. Overall, we demonstrate that FV is a fast and effective tool that can be used to perform quality, and consistency control assessments of oncolytic VV vaccine preparations.

  4. Single-particle characterization of oncolytic vaccinia virus by flow virometry.

    PubMed

    Tang, Vera A; Renner, Tyler M; Varette, Oliver; Le Boeuf, Fabrice; Wang, Jiahu; Diallo, Jean-Simon; Bell, John C; Langlois, Marc-André

    2016-09-30

    Vaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris. Here we have employed flow virometry (FV) analysis and sorting to isolate and characterize distinct SSP populations in therapeutic oncolytic VV preparations. We show that VV preparations contain SSPs heterogeneous in size and include large numbers of non-infectious VV particles. Furthermore, we used FV to illustrate how VV has a propensity to aggregate over time and under various handling and storage procedures. Accordingly, we find that together the infectious titer, the total number of SSPs, the number of viral genomes and the level of particle aggregation in a sample constitute useful parameters that greatly facilitate inter-sample assessment of physical quality, and also provides a means to monitor sample deterioration over time. Additionally, we have successfully employed FV sorting to further isolate virus from other particles by identifying a lipophilic dye that preferentially stains VV over other SSPs in the sample. Overall, we demonstrate that FV is a fast and effective tool that can be used to perform quality, and consistency control assessments of oncolytic VV vaccine preparations. PMID:27614781

  5. Single fiber model of particle retention in an acoustically driven porous mesh.

    PubMed

    Grossner, Michael T; Penrod, Alan E; Belovich, Joanne M; Feke, Donald L

    2003-03-01

    A method for the capture of small particles (tens of microns in diameter) from a continuously flowing suspension has recently been reported. This technique relies on a standing acoustic wave resonating in a rectangular chamber filled with a high-porosity mesh. Particles are retained in this chamber via a complex interaction between the acoustic field and the porous mesh. Although the mesh has a pore size two orders of magnitude larger than the particle diameter, collection efficiencies of 90% have been measured. A mathematical model has been developed to understand the experimentally observed phenomena and to be able to predict filtration performance. By examining a small region (a single fiber) of the porous mesh, the model has duplicated several experimental events such as the focusing of particles near an element of the mesh and the levitation of particles within pores. The single-fiber analysis forms the basis of modeling the overall performance of the particle filtration system. PMID:12565069

  6. Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores.

    PubMed

    Goyal, Gaurav; Freedman, Kevin J; Kim, Min Jun

    2013-09-01

    This paper describes the use of gold nanoparticles to study particle translocation dynamics through silicon nitride solid-state nanopores. Gold nanoparticles were dispersed in 20 mM KCl solution containing nonionic surfactant Triton X-100 and their translocation was studied at different applied voltages. The use of low electrolyte concentration resulted in current enhancement upon particle translocation. The counterion cloud around the nanoparticles is proposed to be the reason for current enhancement phenomena because associated counterion cloud is believed to increase the ion density inside the pore during particle translocation. Further, single particle diffusion events were also recorded at 0 mV voltage bias and 0 pA background ionic current with high signal-to-noise ratio as the particles moved down their concentration gradient. The ability of nanopore sensors to detect single particle diffusion can be extended to field-free analysis of biomolecules in their native state and at or near physiological salt concentrations.

  7. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  8. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  9. Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.

    2010-03-01

    The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.

  10. Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Corbin, J. C.; Mensah, A. A.; Keller, A.; Kim, J.; Petzold, A.; Sierau, B.

    2012-07-01

    The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL). It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2. Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5-10 nm). It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total particle mass

  11. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  12. The Effect of Single Particle Charge Limits on Particle Charge Distributions in Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Girshick, Steven; Le Picard, Romain

    2013-09-01

    There is a limit to the number of electrons that can coexist on a dust particle in a plasma. This limit depends on the particle's surface potential, electron affinity and the inter-electron Coulomb repulsion. We conducted numerical simulations that examine the effect of charge limits on steady-state particle charge distributions, as well as on the time required to reach steady state. Attachment of electrons to a cloud of nanoparticles can severely deplete the electron density and increase the ion density, causing the electron-to-ion density ratio to be much less than unity. At sufficiently high values of the density ratio, e.g. above about 0.1 for 80-nm-diameter Si particles, the charge limit strongly constrains particle charge. At lower values of the density ratio, e.g. around 0.01, particles are much less negatively charged even in the absence of a charge limit, and therefore the limit makes only a small difference. However, in this regime the charge distribution still deviates from the Gaussian form predicted by previous work that neglects charge limits. For the case of Maxwellian electron velocity distributions, we find that whether or not particle charge distributions are significantly affected by charge limits depends on the dimensionless asymmetry charging factor p and on particle size. The factor p in turn depends on the ratios of electron-to-ion density, temperature and mass. Partially supported by the US NSF (grant CHE-1124752), US DOE Office of Fusion Energy Science (grant DE-SC0001939), and the Minnesota Supercomputing Institute.

  13. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance

    PubMed Central

    Wang, Shaopeng; Shan, Xiaonan; Patel, Urmez; Huang, Xinping; Lu, Jin; Li, Jinghong; Tao, Nongjian

    2010-01-01

    We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm2). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles. PMID:20798340

  14. Collective and single particle structure in /sup 103/Rh

    SciTech Connect

    Dejbakhsh, H.; Schmitt, R.P.; Mouchaty, G.

    1988-02-01

    High-spin states in /sup 103/Rh have been studied using the /sup 100/Mo(/sup 7/Li,4n..gamma..) reaction at 45 MeV. The in-beam techniques employed included relative ..gamma..-ray excitation functions, ..gamma..-..gamma.. coincidences, and ..gamma..-ray angular distribution measurements. Low-lying collective bands built on the 1g/sub 9/2/ and 2p/sub 1/2/ quasiproton states show large signature splitting. At higher excitation energies (2.346 and 3.399 MeV), two strong ..delta..I = 1 cascades are also observed with small signature splitting. These latter bands probably arise from three quasiparticle configurations. The one quasiparticle bands are interpreted within the framework of the axially symmetric rotor-plus-particle model with a variable moment of inertia, the generalized particle-asymmetric-rotor model, and the interacting boson-fermion model. High-spin features of /sup 103/Rh are compared with the predictions of the cranked shell model. All of the models indicate that /sup 103/Rh is a soft nucleus which exhibits shape coexistence.

  15. Modeling lithium intercalation of a single spinel particle under potentiodynamic control

    SciTech Connect

    Zhang, D.; Popov, B.N.; White, R.E.

    2000-03-01

    A mathematical model is presented for the lithium intercalation of a single spinel particle as a microelectrode under the stimulus of a cyclic linear potential sweep. The model includes both lithium diffusion within the particle and kinetics at the particle-electrolyte interface. The model is used to predict that peak current densities depend linearly on the scan rate to a certain power with a constant term, which is different from the predicted peak current density for a conventional redox system.

  16. Fabrication of Discrete Nanosized Cobalt Particles Encapsulated Inside Single-Walled Carbon Nanotubes

    SciTech Connect

    Zoican Loebick, C.; Majewska, M; Ren, F; Haller, G; Pfefferle, L

    2010-01-01

    Single-walled carbon nanotubes (SWNT) with encapsulated nanosized cobalt particles have been synthesized by a facile and scalable method. In this approach, SWNT were filled with a cobalt acetylacetonate solution in dichloromethane by ultrasonication. In a second step, exposure to hydrogen at different temperatures released discrete cobalt particles of controllable size inside the SWNT cavity. The SWNT-Co particles systems were characterized by transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, and thermal gravimetric analysis.

  17. Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Schwander, Peter; Abergel, Chantal; Andersson, Inger; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša.; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John; Chapman, Henry N.; Claverie, Jean-Michel; Coppola, Nicola; Deponte, Daniel P.; Ekeberg, Tomas; Epp, Sascha W.; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y.; Hartmann, Andreas; Hartmann, Elisabeth; Hartmann, Robert; Hauser, Gunter; Hirsemann, Helmut; Holl, Peter; Kassemeyer, Stephan; Kimmel, Nils; Kiskinova, Maya; Liang, Mengning; Duane Loh, Ne-Te; Lomb, Lukas; Maia, Filipe R. N. C.; Martin, Andrew V.; Nass, Karol; Pedersoli, Emanuele; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, Marvin; Seltzer, Virginie; Shoeman, Robert L.; Sierra, Raymond G.; Soltau, Heike; Starodub, Dmitri; Steinbrener, Jan; Stier, Gunter; Strüder, Lothar; Svenda, Martin; Ullrich, Joachim; Weidenspointner, Georg; White, Thomas A.; Wunderer, Cornelia; Ourmazd, Abbas

    2011-08-01

    Single-particle experiments using X-ray Free Electron Lasers produce more than 105 snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.

  18. Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering.

    PubMed

    Yoon, Chun Hong; Schwander, Peter; Abergel, Chantal; Andersson, Inger; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John; Chapman, Henry N; Claverie, Jean-Michel; Coppola, Nicola; DePonte, Daniel P; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Elisabeth; Hartmann, Robert; Hauser, Gunter; Hirsemann, Helmut; Holl, Peter; Kassemeyer, Stephan; Kimmel, Nils; Kiskinova, Maya; Liang, Mengning; Loh, Ne-Te Duane; Lomb, Lukas; Maia, Filipe R N C; Martin, Andrew V; Nass, Karol; Pedersoli, Emanuele; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, Marvin; Seltzer, Virginie; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Steinbrener, Jan; Stier, Gunter; Strüder, Lothar; Svenda, Martin; Ullrich, Joachim; Weidenspointner, Georg; White, Thomas A; Wunderer, Cornelia; Ourmazd, Abbas

    2011-08-15

    Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.

  19. Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering.

    PubMed

    Yoon, Chun Hong; Schwander, Peter; Abergel, Chantal; Andersson, Inger; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John; Chapman, Henry N; Claverie, Jean-Michel; Coppola, Nicola; DePonte, Daniel P; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Elisabeth; Hartmann, Robert; Hauser, Gunter; Hirsemann, Helmut; Holl, Peter; Kassemeyer, Stephan; Kimmel, Nils; Kiskinova, Maya; Liang, Mengning; Loh, Ne-Te Duane; Lomb, Lukas; Maia, Filipe R N C; Martin, Andrew V; Nass, Karol; Pedersoli, Emanuele; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, Marvin; Seltzer, Virginie; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Steinbrener, Jan; Stier, Gunter; Strüder, Lothar; Svenda, Martin; Ullrich, Joachim; Weidenspointner, Georg; White, Thomas A; Wunderer, Cornelia; Ourmazd, Abbas

    2011-08-15

    Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification. PMID:21935018

  20. DNA-Based Sensor Particles Enable Measuring Light Intensity in Single Cells.

    PubMed

    Mikutis, Gediminas; Mora, Carlos A; Puddu, Michela; Paunescu, Daniela; Grass, Robert N; Stark, Wendelin J

    2016-04-13

    "Lab on a particle" architecture is employed in designing a light nanosensor. Light-sensitive protecting groups are installed on DNA, which is encapsulated in silica particles, qualifying as a self-sufficient light sensor. The nanosensors allow measuring light intensity and duration in very small volumes, such as single cells, and store the irradiation information until readout.

  1. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Mensah, A. A.; Corbin, J. C.; Keller, A.; Kim, J.; Petzold, A.; Sierau, B.

    2012-12-01

    The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2. Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5-10 nm). Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5-10, as reported here for PALAS soot, was not expected. In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective density. By contrast, the BC mass per primary particle

  2. Single-particle characterization of municipal solid waste (MSW) ash particles using low- Z particle electron probe X-ray microanalysis

    NASA Astrophysics Data System (ADS)

    Hwang, HeeJin; Ro, Chul-Un

    Environmentally benign treatment of municipal solid waste (MSW) ashes has been a worldwide issue since more countries are implementing incineration to reduce waste volume. A single-particle analytical technique, named low- Z particle electron probe X-ray microanalysis (low- Z particle EPMA) was applied to characterize MSW fly- and bottom-ash particle samples collected from two municipal incinerators in Korea. According to their chemical composition, many distinctive particle types were identified. For fly ash sample collected in one incinerator (sample S1), where lime slurry injection is used for acid-gas treatment, CaCO 3-containing particles (28.4%) are the most abundantly encountered, followed by carbonaceous (23.6%), SiO 2-containing (13.8%), NaCl-containing (13.1%), and iron-containing (10.5%) particles. For fly ash sample collected at the other incinerator (sample S2), NaCl-containing particles (40.4%) are the most abundantly encountered, followed by iron-containing (29.1%), carbonaceous (11.8%), CaCO 3-containing (2.2%), and SiO 2-containing (7.0%) particles. For bottom ash sample collected at one incinerator (sample S3), iron-containing particles (46.6%) are the most abundantly encountered, followed by CaCO 3-containing (17.3%), carbonaceous (16.6%), and Si and/or Al oxide-containing (15.8%) particles. For bottom ash sample collected in the other incinerator (sample S4), iron-containing particles (63.4%) are also the most abundantly encountered, followed by carbonaceous (14.0%), CaCO 3-containing (10.0%), and Si and/or Al oxide-containing (6.1%) particles. Chemical compositions of the two bottom ash samples are not much different compared to those of the two fly ash samples. It was demonstrated that the single-particle characterization using this low- Z particle EPMA technique provided detailed information on various types of chemical species in the MSW ash samples. In addition, the technique has advantage over conventional analytical techniques in the

  3. Single molecule experiments challenge the strict wave-particle dualism of light.

    PubMed

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  4. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    PubMed Central

    Greulich, Karl Otto

    2010-01-01

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise—only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified. PMID:20162017

  5. Measuring the complex field scattered by single submicron particles

    SciTech Connect

    Potenza, Marco A. C. Sanvito, Tiziano

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  6. Analysis of the ideal phase-Doppler System: Limitations imposed by the single-particle constraint

    SciTech Connect

    Edwards, C.F.; Marx, K.D.

    1991-06-01

    This paper explores the effects of particles statistics on the ability of a phase-Doppler system (or any single-particle diagnostic) to make accurate measurements of complex particle flows. This is accomplished by analyzing the response of an ideal phase-Doppler system to a postulated particle flux. The ideal system defined here senses particles of all sizes and velocities with perfect accuracy, but is subject to one constraint: in order for a measurement to be considered valid there must be only one particle in the probe volume at a time. A consequence of this constraint is that the measured flux of particles is similar to the true flux, but reduced by passage through two stages of filters. The first rejects particles for insufficient spacing and is controlled by a spatial Poisson process, while the second rejects particles for excessive residence time and is driven by a temporal Poisson process. The key filter parameters are the expected values of the number of particles in the probe volume and the number of particles entering the probe region during the residence time of a previous particle. Only if these values are kept below order 10{sup {minus}2} can the measured joint distribution function, flux rate, and derived quantities, be assumed to reflect the true nature of the flow. 8 refs., 30 figs., 2 tabs.

  7. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.

  8. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a. PMID:25766014

  9. Simultaneous Measurement of Size, Composition, Hygroscopicity, and Density of Single Ambient Particles

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Han, J.; Oatis, S.

    2003-12-01

    The holly grail in aerosol climate interaction is a roadmap that takes one from emissions of aerosol and aerosol precursors through aerosol transformations, to optical and cloud effects and finally to climate impacts. A critical element on this path must be the behavior of aerosol as a function of atmospheric relative humidity, which in turn requires an understanding of the correlation between aerosol composition and hygroscopicity. For single component particles this problem is tractable and reasonably understood. But, the vast majority of particles in the real atmosphere are internal mixtures of hygroscopic salts, organic acids and or bases, long chain hydrocarbons, soot, mineral dust and the list go on. Hundreds of organic compounds with highly varying hygroscopicities can be found in single particles. It would be unrealistic to expect global climate models to include and track each of these compounds. A similar problem faces the experimental world, where measuring the size, detailed molecular composition and hygroscopicity of individual particles although, in principle possible, is impractical. Single particle mass spectroscopy can be used to classify particles as organics mixed with sulfate, for example. Or in some cases pinpoint the class of some of the organics found in the mixture. But it cannot yield a quantitative measure of relative amounts. In an attempt to address this issue we have developed the method to measure simultaneously hygroscopicity, size, and composition of individual ambient particles. However, the data from Long Island NY, where the vast majority of particles were internally mixed sulfate with organics, the correlation between composition and hygroscopicity was rather weak. This is due to the fact that single-laser single particle mass spectra cannot quantitatively measure the ratio of organics to sulfates. In contrast, we found a very clear correlation between hygroscopicity and particle density for a given class of particles. In this

  10. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    PubMed

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface.

  11. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    PubMed

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface. PMID:27548937

  12. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  13. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K.; Yeh, H.-C.

    2015-10-01

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  14. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    SciTech Connect

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K. E-mail: tim.yeh@austin.utexas.edu; Yeh, H.-C. E-mail: tim.yeh@austin.utexas.edu

    2015-10-12

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  15. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    PubMed

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment.

  16. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiu-Lin; Liu, Wei

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  17. Experimental observation of simultaneous wave and particle behavior in a narrowband single-photon wave packet

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Liao, Kaiyu; Deng, Zhitao; He, Junyu; Xue, Zheng-Yuan; Zhang, Zhi-Ming; Zhu, Shi-Liang

    2015-04-01

    Light's wave-particle duality is at the heart of quantum mechanics and can be well illustrated by Wheeler's delayed-choice experiment: The choice of inserting or removing the second classical (quantum) beam splitter in a Mach-Zehnder interferometer determines the classical (quantum) wave-particle behavior of a photon. In this paper, we report our experiment on directly observing simultaneous wave and particle behavior in a narrowband single-photon wave packet by classically inserting or removing the second beam splitter when part of the wave packet passes through it. Our experiment demonstrates that the produced wave-particle state can be utilized in encoding quantum information.

  18. Evolution equation for tagged-particle density and correlations in single-file diffusion.

    PubMed

    Suárez, Gonzalo; Hoyuelos, Miguel; Mártin, Héctor O

    2013-08-01

    We derive and study a theoretical description for single-file diffusion, i.e., diffusion in a one-dimensional lattice of particles with hard core interaction. It is well known that for this system a tagged particle has anomalous diffusion for long times. The novelty of the present approach is that it allows for the derivation of correlations between a tagged particle and other particles of the system at a given distance with empty sites in between. The behavior of the correlation gives deeper insights into the processes involved. The numerical integration of differential equations are in good agreement with Monte Carlo simulations.

  19. Analysis and Interpretation of Superresolution Single-Particle Trajectories.

    PubMed

    Holcman, D; Hoze, N; Schuss, Z

    2015-11-01

    A large number (tens of thousands) of single molecular trajectories on a cell membrane can now be collected by superresolution methods. The data contains information about the diffusive motion of molecule, proteins, or receptors and here we review methods for its recovery by statistical analysis of the data. The information includes the forces, organization of the membrane, the diffusion tensor, the long-time behavior of the trajectories, and more. To recover the long-time behavior and statistics of long trajectories, a stochastic model of their nonequilibrium motion is required. Modeling and data analysis serve extracting novel biophysical features at an unprecedented spatiotemporal resolution. The review presents data analysis, modeling, and stochastic simulations applied in particular on surface receptors evolving in neuronal cells.

  20. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  1. Single-step cloning-screening method: a new tool for developing and studying high-titer viral vector producer cells.

    PubMed

    Rodrigues, A F; Formas-Oliveira, A S; Guerreiro, M R; Tomás, H A; Alves, P M; Coroadinha, A S

    2015-09-01

    This article describes a novel method merging the cloning of viral vector producer cells with vector titer screening, allowing for screening 200-500 clones in 2 weeks. It makes use of a GFP separated into two fragments, S10 and S11 (Split GFP), fluorescing only upon transcomplementation. Producer cells carrying a S11 viral transgene are cloned in 96-well plates and co-cultured with target cells stably expressing S10. During the period of clone expansion, S11 viruses infect S10 target cells reconstituting the GFP signal. Transcomplemented fluorescence data provide direct estimation of the clone's productivity and can be analyzed in terms of density distribution, offering valuable information on the average productivity of the cell population and allowing the identification of high-producing clones. The method was validated by establishing a retrovirus producer from a nude cell line, in <3 months, inserting three vector constructs without clone selection or screening in between. Clones producing up to 10(8) infectious particles per ml were obtained, delivering optimal ratios of infectious-to-total particles (1 to 5). The method was additionally used to evaluate the production performance of HEK 293 and HEK 293T cell lines demonstrating that the latter sustains increased titers. Finally, it was used to study genetic manipulation of glutathione metabolism in retrovirus production showing that changing cell metabolism steers higher vector expression with titer increases of more than one order of magnitude.This method is a valuable tool not only for cell line development but also for genetic manipulation of viral vector and/or producer cells contributing to advancing the field of viral gene therapy.

  2. Cell surface display of poliovirus receptor on Escherichia coli, a novel method for concentrating viral particles in water.

    PubMed

    Abbaszadegan, Morteza; Alum, Absar; Abbaszadegan, Hamed; Stout, Valerie

    2011-08-01

    The lack of efficient methods for concentrating viruses in water samples leads to underreporting of viral contamination in source water. A novel strategy for viral concentration was developed using the expression of target virus receptors on bacterial cells. Poliovirus type 1, the most studied enterovirus, was used as a surrogate for enteric viruses. The human poliovirus receptor (hPVR) gene was expressed on the surface of Escherichia coli cells by using the ice nucleation protein (INP) gene. The hPVR gene was ligated to the 3' end of the INP gene after the removal of the stop codon. The resulting open reading frame (ORF) was used for the projection of hPVR onto the outer membrane of E. coli. Gene expression was tested by SDS-PAGE, Western blot, and dot blot analyses, and virion capture ability was confirmed by transmission electron microscopy. The application of engineered E. coli cells for capturing viruses in 1-liter samples of source and drinking water resulted in 75 to 99% procedural recovery efficiency. Cell surface display of viral receptors on bacterial cells opens a new prospect for an efficient and inexpensive alternative tool for capturing and concentrating waterborne viruses in water samples.

  3. The Oncogenic Transforming Potential of the Passage of Single α Particles through Mammalian Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.; Randers-Pehrson, Gerhard; Geard, Charles R.; Hall, Eric J.; Brenner, David J.

    1999-01-01

    Domestic, low-level exposure to radon gas is considered a major environmental lung-cancer hazard involving DNA damage to bronchial cells by α particles from radon progeny. At domestic exposure levels, the relevant bronchial cells are very rarely traversed by more than one α particle, whereas at higher radon levels--at which epidemiological studies in uranium miners allow lung-cancer risks to be quantified with reasonable precision--these bronchial cells are frequently exposed to multiple α -particle traversals. Measuring the oncogenic transforming effects of exactly one α particle without the confounding effects of multiple traversals has hitherto been unfeasible, resulting in uncertainty in extrapolations of risk from high to domestic radon levels. A technique to assess the effects of single α particles uses a charged-particle microbeam, which irradiates individual cells or cell nuclei with predefined exact numbers of particles. Although previously too slow to assess the relevant small oncogenic risks, recent improvements in throughput now permit microbeam irradiation of large cell numbers, allowing the first oncogenic risk measurements for the traversal of exactly one α particle through a cell nucleus. Given positive controls to ensure that the dosimetry and biological controls were comparable, the measured oncogenicity from exactly one α particle was significantly lower than for a Poisson-distributed mean of one α particle, implying that cells traversed by multiple α particles contribute most of the risk. If this result applies generally, extrapolation from high-level radon risks (involving cellular traversal by multiple α particles) may overestimate low-level (involving only single α particles) radon risks.

  4. Morphology of single inhalable particle in the air polluted city of Shijiazhuang, China.

    PubMed

    Wang, Zanhong; Zhang, Lingzhi; Zhang, Yuliang; Zhao, Zhou; Zhang, Sumin

    2008-01-01

    In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant. The soot particle is present as floccule with average size around 10 microm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.

  5. Study of the comminution characteristics of coal by single particle breakage test device

    SciTech Connect

    Sahoo, R.

    2005-09-01

    Single-particle breakage tests of South Blackwater and Ensham coal from the Bowen Basin area in Queensland were conducted by a computer-monitored twin-pendulum device to measure the energy utilization pattern of the breakage particles. Three particle sizes (-16.0+13.2mm, -13.2+11.2mm, -11.2+9.5mm) of each coal were tested by a pendulum device at five input energy levels to measure the specific comminution energy. When particles were tested at constant input energy, the variation of comminution energy between the same size broken particles of Ensham coal was minimal, because Ensham coal is a softer and higher friability coal, which absorbs more input energy than harder coal during breakage tests. For different particle sizes, the specific comminution energy increases linearly with the input energy and the fineness of the breakage products increases with the specific comminution energy. The size distribution graphs are curved but approach linearity in the finer region. At a constant input energy, the twin pendulum breakage product results show that the fineness of the products increases with decrease in particle size and South Blackwater coal produced finer products than the Ensham coal. The t-curves are the family of size distribution curves, which can describe the product size distribution of the breakage particles during single-particle breakage tests.

  6. Digital atom interferometer with single particle control on a discretized space-time geometry

    PubMed Central

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-01-01

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 × 10-4 in units of gravitational acceleration g. PMID:22665771

  7. Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements.

    PubMed

    Fuwa, Maria; Takeda, Shuntaro; Zwierz, Marcin; Wiseman, Howard M; Furusawa, Akira

    2015-01-01

    A single quantum particle can be described by a wavefunction that spreads over arbitrarily large distances; however, it is never detected in two (or more) places. This strange phenomenon is explained in the quantum theory by what Einstein repudiated as 'spooky action at a distance': the instantaneous nonlocal collapse of the wavefunction to wherever the particle is detected. Here we demonstrate this single-particle spooky action, with no efficiency loophole, by splitting a single photon between two laboratories and experimentally testing whether the choice of measurement in one laboratory really causes a change in the local quantum state in the other laboratory. To this end, we use homodyne measurements with six different measurement settings and quantitatively verify Einstein's spooky action by violating an Einstein-Podolsky-Rosen-steering inequality by 0.042±0.006. Our experiment also verifies the entanglement of the split single photon even when one side is untrusted.

  8. Single particle detection: Phase control in submicron Hall sensors

    SciTech Connect

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-11-15

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 {mu}m. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of {mu}{approx_equal}10{sup 8} {mu}{sub B} has been achieved with a 600 nm-wide sensor.

  9. Single particle detection: Phase control in submicron Hall sensors

    NASA Astrophysics Data System (ADS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-11-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ ≈108 μB has been achieved with a 600 nm-wide sensor.

  10. Studying biofuel aerosol evaporation rates with single particle manipulation

    NASA Astrophysics Data System (ADS)

    Corsetti, S.; Miles, R. E. H.; Reid, J. P.; Kiefer, J.; McGloin, D.

    2014-09-01

    The significant increase in the air pollution, and the impact on climate change due to the burning of fossil fuel has led to the research of alternative energies. Bio-ethanol obtained from a variety of feedstocks can provide a feasible solution. Mixing bio-ethanol with gasoline leads to a reduction in CO emission and in NOx emissions compared with the use of gasoline alone. However, adding ethanol leads to a change in the fuel evaporation. Here we present a preliminary investigation of evaporation times of single ethanol-gasoline droplets. In particular, we investigated the different evaporation rate of the droplets depending on the variation in the percentage of ethanol inside them. Two different techniques have been used to trap the droplets. One makes use of a 532nm optical tweezers set up, the other of an electrodynamics balance (EDB). The droplets decreasing size was measured using video analysis and elastic light scattering respectively. In the first case measurements were conducted at 293.15 K and ambient humidity. In the second case at 280.5 K and a controlled environment has been preserved by flowing nitrogen into the chamber. Binary phase droplets with a higher percentage of ethanol resulted in longer droplet lifetimes. Our work also highlights the advantages and disadvantages of each technique for such studies. In particular it is challenging to trap droplets with low ethanol content (such as pure gasoline) by the use of EDB. Conversely such droplets are trivial to trap using optical tweezers.

  11. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  12. Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules

    PubMed Central

    Hultberg, Anna; Temperton, Nigel J.; Rosseels, Valérie; Koenders, Mireille; Gonzalez-Pajuelo, Maria; Schepens, Bert; Ibañez, Lorena Itatí; Vanlandschoot, Peter; Schillemans, Joris; Saunders, Michael; Weiss, Robin A.; Saelens, Xavier; Melero, José A.; Verrips, C. Theo; Van Gucht, Steven; de Haard, Hans J.

    2011-01-01

    For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH) against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein), Rabies virus (Glycoprotein) and H5N1 Influenza (Hemagglutinin 5) were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH) and biparatopic (two different VHH) constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5. The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve “best-in-class” and broader neutralization capacity. PMID:21483777

  13. Two-dimensional Guinier analysis: application to single aerosol particles in-flight.

    PubMed

    Berg, Matthew J; Hill, Steve C; Pan, Yong-Le; Videen, Gorden

    2010-10-25

    This work presents an apparatus that measures near-forward two-dimensional elastic scattering patterns of single aerosol particles and proposes a two-angle extension of the Guinier law to analyze these patterns. The particles, which approximately range from 2 to 8 micrometers in size, flow through the apparatus in an aerosol stream. A spatial filtering technique separates the near-forward portion of the patterns from the illumination light. Contours intended to represent the geometrical profile of the particles are generated from the patterns using the extension of the Guinier law. The analysis is applied to spherical and nonspherical particles, and the resulting contours are found to be consistent with particle shape only for spherical particles.

  14. Single crystal structure analysis of a single Sm{sub 2}Fe{sub 17}N{sub 3} particle

    SciTech Connect

    Inami, Nobuhito Takeichi, Yasuo; Saito, Kotaro; Sagayama, Ryoko; Kumai, Reiji; Ono, Kanta; Ueno, Tetsuro

    2014-05-07

    We performed single crystal structure analysis of Sm{sub 2}Fe{sub 17}N{sub 3} using X-ray diffraction. A pick-up system combined with a micromanipulation tool driven by piezoelectric actuators and a microgripper was used. A single Sm{sub 2}Fe{sub 17}N{sub x} particle with the diameter of about 20 μm was picked up, and X-ray diffraction was measured using an X-ray diffractometer at the synchrotron radiation beamline at the Photon Factory, KEK. Single crystal structure analysis of a Sm{sub 2}Fe{sub 17}N{sub 3} particle was performed and the structure was successfully determined from X-ray diffraction patterns. The space group and the lattice constants were determined to be R-3m (number sign166) a = b = 8.7206 Å and c = 12.6345 Å, respectively. Atomic positions of Sm and Fe atoms were accurately determined by single crystal structure analysis of only one particle.

  15. Mutagenic Effects of a Single and an Exact Number of α Particles in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Wu, Li-Jun; Liu, Su-Xian; Vannais, Diane; Waldren, Charles A.; Randers-Pehrson, Gerhard

    1997-04-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single α particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human--hamster hybrid (AL) cells by either a single or an exact number of α particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 α particles at a linear energy transfer of 90 keV/μ m consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to AL cells (survival fraction ≈ 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 105 survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single α particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  16. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  17. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  18. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  19. Studies on pathogenesis following single and double infection with viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Brudeseth, B E; Castric, J; Evensen, O

    2002-03-01

    Rainbow trout (Oncorhynchus mykiss) were bath challenged with viral hemorrhagic septicemia (VHS) virus or infectious hematopoietic necrosis (IHN) virus or with both viruses simultaneously. The viral distribution and development of histologic lesions were examined using immunohistochemistry, while virus titer in kidney was determined by viral titration in cell culture. Single infections with VHS virus and IHN virus showed similar distributions of virus in internal organs. The early identification of virus in gill epithelium, 1 and 2 days postinfection (PI) for VHS virus and IHN virus, respectively, indicates that this organ is the point of entry for both viruses. The detection of VHS virus at 1 day PI and 3 days PI for IHN virus is indicative of kidney and spleen being the target organs for these viruses. A simultaneous infection of VHS virus and IHN virus resulted in both viruses establishing an infection. Further double infection did not result in a statistically significant lower titer of both viruses in kidney but a more restricted distribution of IHN virus in internal organs compared with the single infected group. The most striking finding is that, for IHN virus, virus was not detected in the brain in situ in the double-infected group. This study provides support for the conclusion that simultaneous infection with two piscine rhabdoviruses in a susceptible host results in some degree of interaction at the cell level, leading to a reduced systemic distribution of IHN virus.

  20. The magic nature of (132)Sn explored through the single-particle states of (133)Sn.

    PubMed

    Jones, K L; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Harlin, C; Hatarik, R; Kapler, R; Kozub, R L; Liang, J F; Livesay, R; Ma, Z; Moazen, B H; Nesaraja, C D; Nunes, F M; Pain, S D; Patterson, N P; Shapira, D; Shriner, J F; Smith, M S; Swan, T P; Thomas, J S

    2010-05-27

    Atomic nuclei have a shell structure in which nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in (133)Sn that lie outside the double shell closure present at the short-lived nucleus (132)Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of (132)Sn. PMID:20505723

  1. The magic nature of 132Sn explored through the single-particle states of 133Sn

    SciTech Connect

    Jones, K. L.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Harlin, Christopher W; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian; Nesaraja, Caroline D; Nunes, F. M.; Pain, S. D.; Patterson, N. P.; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.

    2010-05-01

    Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lies outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.

  2. Enhancing 18F uptake in a single particle for positron emission particle tracking through modification of solid surface chemistry

    NASA Astrophysics Data System (ADS)

    Fan, X.; Parker, D. J.; Smith, M. D.

    2006-03-01

    The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on particulate motion in granular materials and flow fields in multiphase systems. The technique involves tracking a single radioactively labelled particle by detecting the pairs of back-to-back 511 keV γ-rays arising from annihilation of emitted positrons. It is thus crucially dependent on the availability of suitably labelled tracer particles. With the present equipment, the optimum activity for a PEPT tracer is between 300 and 1000 μCi. The positron emitting radionuclide most often used is 18F in the form of fluoride ions. However, most materials have a very poor capacity to take up fluoride naturally. This paper presents a surface modification technique which was developed to improve the adsorption of 18F on solids and therefore extending the application of PEPT. For example, 200 μm MCC particles are the subject of many PEPT studies, but these particles only adsorb a few μCi 18F naturally, and cannot be used as tracers for PEPT. After surface modification, they take up about 700 μCi 18F, and can be tracked very well using PEPT.

  3. High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles

    PubMed Central

    Akpinar, Fulya; Timm, Andrea

    2015-01-01

    ABSTRACT Defective interfering particles (DIPs) are virus mutants that lack essential genes for growth. In coinfections with helper virus, the diversion of viral proteins to the replication and packaging of DIP genomes can interfere with virus production. Mounting cases of DIPs and DIP-like genomes in clinical and natural isolates, as well as growing interest in DIP-based therapies, underscore a need to better elucidate how DIPs work. DIP activity is primarily measured by its inhibition of virus infection yield, an endpoint that masks the dynamic and potentially diverse individual cell behaviors. Using vesicular stomatitis virus (VSV) as a model, we coinfected BHK cells with VSV DIPs and recombinant helper virus carrying a gene encoding a red fluorescent protein (RFP) whose expression correlates with the timing and level of virus release. For single cells within a monolayer, 10 DIPs per cell suppressed the reporter expression in only 1.2% of the cells. In most cells, it slowed and reduced viral gene expression, manifested as a shift in mean latent time from 4 to 6 h and reduced virus yields by 10-fold. For single cells isolated in microwells, DIP effects were more pronounced, reducing virus yields by 100-fold and extending latent times to 12 h, including individual instances above 20 h. Together, these results suggest that direct or indirect cell-cell interactions prevent most coinfected cells from being completely suppressed by DIPs. Finally, a gamma distribution model captures well how the infection kinetics quantitatively depends on the DIP dose. Such models will be useful for advancing a predictive biology of DIP-associated virus growth and infection spread. IMPORTANCE During the last century, basic studies in virology have focused on developing a molecular mechanistic understanding of how infectious viruses reproduce in their living host cells. However, over the last 10 years, the advent of deep sequencing and other powerful technologies has revealed in

  4. Development of an improved method to perform single particle analysis by TIMS for nuclear safeguards.

    PubMed

    Kraiem, M; Richter, S; Kühn, H; Aregbe, Y

    2011-02-28

    A method is described that allows measuring the isotopic composition of small uranium oxide particles (less than 1μm in diameter) for nuclear safeguards purposes. In support to the development of reliable tools for the identification of uranium and plutonium signatures in trace amounts of nuclear materials, improvements in scanning electron microscopy (SEM) and thermal ionization mass spectrometry (TIMS) in combination with filament carburization and multiple ion counting (MIC) detection were investigated. The method that has been set up enables the analysis of single particles by a combination of analytical tools, thus yielding morphological, elemental and isotopic information. Hereby individual particles of certified reference materials (CRMs) containing uranium at femtogram levels were analysed. The results showed that the combination of techniques proposed in this work is suitable for the accurate determination of uranium isotope ratios in single particles with improved capabilities for the minor abundant isotopes. PMID:21296200

  5. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  6. Analysis of proton single-particle properties of zinc and germanium isotopes

    SciTech Connect

    Bespalova, O. V. Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2014-12-15

    Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.

  7. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  8. Analysis of proton single-particle properties of zinc and germanium isotopes

    NASA Astrophysics Data System (ADS)

    Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2014-12-01

    Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.

  9. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus.

    PubMed Central

    Matloubian, M; Kolhekar, S R; Somasundaram, T; Ahmed, R

    1993-01-01

    This study documents that the immunosuppressive lymphocytic choriomeningitis virus (LCMV) variant, clone 13, shows a specific predilection for enhanced infection of macrophages both in vitro and in vivo and that single amino acid changes in the viral polymerase and glycoprotein are responsible for macrophage tropism. The growth difference seen between variant clone 13 and the parental Armstrong strain was specific for macrophages, since both clone 13 and Armstrong grew equally well in fibroblasts and neither isolate infected lymphocytes efficiently. Complete sequencing of the clone 13 genome, along with genetic analysis, showed that a single amino acid change in the polymerase (K-->Q at position 1079) was the major determinant of virus yield in macrophages. This was proven unequivocally by comparing the sequences of parental and reassortant viruses, which were identical at all loci except for the single mutation in the polymerase gene. This finding was further strengthened by showing that reversion at this site back to lysine (Q-->K) resulted in loss of macrophage tropism. In addition, an independently derived macrophage-tropic variant of LCMV, clone 28b, had a K-->N mutation at the same position. Thus, these results show that substitution of the positively charged amino acid K with a neutral amino acid (either Q or N) at residue 1079 of the polymerase resulted in enhanced viral replication in macrophages. In addition to the polymerase change, a mutation in the glycoprotein was also associated with macrophage tropism. This single amino acid change in the glycoprotein (F-->L at position 260) did not affect virus yield per macrophage but was critical in determining the number of macrophages infected. Our previous studies have shown that the same two mutations in the polymerase and glycoprotein are essential for establishing a chronic infection in adult mice. Since the same mutations confer macrophage tropism and ability to persist in vivo, these studies provide

  10. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    PubMed

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  11. Web server for tilt-pair validation of single particle maps from electron cryomicroscopy.

    PubMed

    Wasilewski, Sebastian; Rosenthal, Peter B

    2014-04-01

    Three-dimensional structures of biological assemblies may be calculated from images of single particles obtained by electron cryomicroscopy. A key step is the correct determination of the orientation of the particle in individual image projections. A useful tool for validation of the quality of a 3D map and its consistency with images is tilt-pair analysis. In a successful tilt-pair test, the relative angle between orientations assigned to each image of a tilt-pair agrees with the known relative rotation angle of the microscope specimen holder during the experiment. To make the procedure easy to apply to the increasing number of single particle maps, we have developed software and a web server for tilt-pair analysis. The tilt-pair analysis program reports the overall agreement of the assigned orientations with the known tilt angle and axis of the experiment and the distribution of tilt transformations for individual particles recorded in a single image field. We illustrate application of the validation tool to several single particle specimens and describe how to interpret the scores.

  12. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source.

  13. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source. PMID:27363128

  14. Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Wang, Xinning; Li, Jingyan; Xu, Tingting; Chen, Hong; Yang, Xin; Chen, Jianmin

    2015-12-01

    Submicron aerosol volatility, chemical composition, and mixing state were simultaneously measured using a thermodenuder (TD) in-line with a single particle aerosol mass spectrometry (SPAMS) during Nov.12 to Dec. 11 of 2014 in Shanghai. By heating up to 250 °C, the signals of refractory species such as elemental carbon, metallic compounds, and mineral dust in aerosols were enhanced in the mass spectra. At 250 °C, the main particle types present in the size range of 0.2-1.0 μm were biomass burning (37% by number) and elemental carbon (20%). From 1.0 to 2.0 μm, biomass burning (30%), dust (19%) and metal-rich (18%) were the primary particle types. CN- signal remained in the mass spectra of the heated biomass burning particles suggests the existence of some extremely low-volatility nitrogen-containing organics. Laboratory experiments were conducted by burning rice straws, the main source material of biomass burning particles in Southern China, to confirm the less volatile composition contributed by biomass burning. Strong CN- with relative area >0.21 was observed in most of the laboratory-made biomass burning particles when heated above 200 °C and was selected as a new marker to identify the biomass burning particles in the field. The TD-SPAMS measured the size-resolved chemical composition of the individual particle residues at different temperatures and offered more information on the aging processes of primary particles and their sources.

  15. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  16. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis. PMID:22739316

  17. Transport of Ions and Particles Through Single Pores of Controlled Geometry and Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Pevarnik, Matthew A.

    Synthetic nanopores are a powerful tool to control the transport of ions, molecules, and water at the molecular level, mimicking biological systems. In this research, polymer pores are prepared of different geometries, sizes, and surface chemistry to utilize features seen in naturally occurring systems. Specifically, it was one of the goals of this research to prepare and characterize single polymer pores that rectify the current due to a combination of electrostatic and hydrophobic interactions, similar to naturally occurring ion channels. Prior to modification, aqueous electrolytic solutions are able to conduct readily through the single polymer pores, but after the chemisorption of hydrophobic chemical groups, the pore demonstrates open and closed states. This behavior is also observed to be voltage dependent. Increasing voltage increases the probability of the pore to be in the open states. There is also a voltage range where the pore does not conduct at all. The hydrophobic gating was studied as a function of pore diameter and charge of the residual groups and could be used for an on demand drug delivery system. Another technique that was utilized in this research is the resistive-pulse technique, which is a powerful approach to detect single molecules and particles. A single particle passing through a pore can be observed as a transient drop of the transmembrane current. This research focuses on resistive-pulse sensing experiments performed with track-etched polymer pores characterized by an undulating diameter along the pore length. The resistive pulses generated by spherical beads passing through these pores have a repeatable pattern of large variations corresponding to these diameter changes. We show that this pattern of variations enables the unambiguous resolution of multiple particles simultaneously in the pore, the detection of transient sticking of particles within the pore, and confirmation whether any individual particle completely translocates the

  18. Integrated particles sensor formed on single substrate using fringes formed by diffractive elements

    NASA Technical Reports Server (NTRS)

    Gharib, Morteza (Inventor); Fourguette, Dominique (Inventor); Modarress, Darius (Inventor); Taugwalder, Frederic (Inventor); Forouhar, Siamak (Inventor)

    2005-01-01

    Integrated sensors are described using lasers on substrates. In one embodiment, a first sensor forms a laser beam and uses a quartz substrate to sense particle motion by interference of the particles with a diffraction beam caused by a laser beam. A second sensor uses gradings to produce an interference. In another embodiment, an integrated sensor includes a laser element, producing a diverging beam, and a single substrate which includes a first diffractive optical element placed to receive the diverging beam and produce a fringe based thereon, a scattering element which scatters said fringe beam based on particles being detected, and a second diffractive element receiving scattered light.

  19. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  20. Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years

    PubMed Central

    Frank, Joachim

    2010-01-01

    This essay gives the author’s personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts. PMID:20025794

  1. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  2. Wavelength resolved polarized elastic scatter measurements from micron-sized single particles

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Czege, Jozsef; Eversole, Jay D.

    2013-05-01

    The goal of this project is to investigate correlations of polarimetric angular scattering patterns from individual aerosol particles with the particles' physical structure and composition. Such signature patterns may be able to provide particle classification capability, such as, for example, discrimination between man-made and naturally occurring aerosols. If successful, this effort could improve current detection methods for biological warfare (BW) agent aerosols. So far, we have demonstrated an experimental arrangement to measure polarization-state resolved, multi-angle, scattering intensities from single aerosol particles on-the-fly. Our novel approach is a radical departure from conventional polarimetric measurement methods, and a key factor is the use of a multiple-order retarder to prepare different polarization states, depending on the wavelength of the incident light. This novel experimental technique uses a supercontinuum light source, an array of optical fibers, an imaging spectrometer and an EMCCD camera to simultaneously acquire wavelength and angle dependent particle light scattering data as a two-dimensional snapshot. Mueller matrix elements were initially measured from individual particles held in an optical trap (at 405 nm). Since particles can be stably trapped for long periods (hours), we were able to change the optical configuration to acquire multiple Mueller matrix element measurements on a single particle. We have computationally modeled these measurements at specific angles, and the comparison with experimental measurements shows good agreement. Similar measurements have also been made on slowly falling particles, and our current efforts are focused on improving experimental technique sufficiently to make such measurements on flowing particles.

  3. Contact angles and wetting behaviour of single micron-sized particles

    NASA Astrophysics Data System (ADS)

    Gillies, Graeme; Büscher, Karsten; Preuss, Markus; Kappl, Michael; Butt, Hans-Jürgen; Graf, Karlheinz

    2005-03-01

    A 'particle interaction apparatus' based on the technique of atomic force microscopy was constructed that allows us to measure the interaction between single micron-sized particles and the air-water interface. From the force versus distance profiles ('force curves') the contact angle of single microspheres could be determined. This new method for microsphere tensiometry was validated using a variety of materials with contact angles between 20° and 90°. Contact angles measured on single microspheres correlated well with those measured on flat substrates of the same materials. The interaction of single silica microspheres with an air bubble in the presence of surfactants (SDS and DTAB) was investigated. Depending on surfactant type and concentration, adhesion or repulsion could be induced. Adhesion forces were found to depend on the applied load, indicating possible adsorption/desorption processes at the particle-bubble interface. We have built a new set-up that combines a particle interaction apparatus with a Langmuir trough and a fluorescence microscope. This will allow study of interactions at the air-water interface in more detail, especially in the presence of a definite surface density of amphiphilic molecules. The interaction of single ZnS spheres with a bubble (modelling flotation of ZnS) was studied at different pH values. The results suggest that the isoelectric point of these spheres exists between pH 7 and 8.

  4. Presence of bovine viral diarrhea virus (BVDV) E2 glycoprotein in VSV recombinant particles and induction of neutralizing BVDV antibodies in mice.

    PubMed

    Grigera, P R; Marzocca, M P; Capozzo, A V; Buonocore, L; Donis, R O; Rose, J K

    2000-08-01

    We generated a recombinant vesicular stomatitis virus (VSV-E2) encoding the bovine viral diarrhea virus (BVDV) E2 glycoprotein with the VSV-G protein signal peptide. Infection of BHK21 cells with VSV-E2 induced the synthesis of a recombinant E2 (rE2) that comigrated with authentic BVDV-E2 in PAGE-SDS gels. Non-reducing immunoblots showed that rE2 is a disulfide bond-linked homodimer with at least 10-fold higher avidity for conformation-dependent anti-BVDV-E2 antibodies than its reduced monomeric counterpart. Immunofluorescence microscopy also showed that rE2 was transported to the plasma membrane of infected cells and analysis of purified particles demonstrated that dimeric rE2 was incorporated into VSV-E2 virions in approximately 1:10 ratio with respect to the G glycoprotein. BALB/c mice inoculated intranasally with VSV-E2 doses of up to 10(7) plaque forming units (pfu) showed no symptoms of viral-induced disease and developed a specific BVDV neutralizing response that lasted for at least 180 days post inoculation. PMID:10989181

  5. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis.

    PubMed

    Li, Kun; Wang, Kun; Qin, Weiwei; Deng, Suhui; Li, Di; Shi, Jiye; Huang, Qing; Fan, Chunhai

    2015-04-01

    Plasmonic imaging under a dark-field microscope (DFM) holds great promise for single-particle analysis in bioimaging, nanophotonics, and nanocatalysis. Here, we designed a DNA-directed programmable assembly strategy to fabricate a halo-like Au nanostructure (nanohalo) that couples plasmonic large gold nanoparticles (L-AuNPs) with catalytically active small AuNPs (S-AuNPs) in a single nanoarchitecture. Catalytic reaction occurring on S-AuNPs changes its permittivity, which results in a significant variation of the plasmonic resonance of the nanohalo. Hence, we can indirectly monitor catalytic reactions on a single nanohalo under DFM, on the basis of which we have obtained quantitative information on both nanocatalysis and catalyst poisoning. Our study thus provides a cost-effective means to quantitatively study metal NP-based catalysis at single-particle level.

  6. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography.

    PubMed

    Myasnikov, Alexander G; Afonina, Zhanna A; Klaholz, Bruno P

    2013-03-01

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged.

  7. Viral pneumonia.

    PubMed

    Greenberg, S B

    1991-09-01

    Viral pneumonias are common in infants and young children but rare in adults. Respiratory syncytial virus (RSV) and para-influenza viruses are the most frequent viral pathogens in infants and children. Influenza virus types A and B account for over one half of viral pneumonias in adults. Immunocompromised hosts are susceptible to pneumonias caused by cytomegalovirus (CMV) and other herpesviruses, as well as rubeola and adenovirus. Diagnosis of viral pneumonia depends on appropriate viral cultures and acute and convalescent sera for specific antibodies. Superinfection with bacteria is common in adults. Anti-viral therapy is available for several respiratory viruses. Ribavirin, amantadine/rimantadine, interferon alpha, and acyclovir are antiviral drugs that may be of benefit in treatment and prophylaxis. Prevention of viral pneumonia will depend upon improved viral immunization practices.

  8. How does breathing frequency affect the performance of an N95 filtering facepiece respirator and a surgical mask against surrogates of viral particles?

    PubMed

    He, Xinjian; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2014-01-01

    Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. "Faceseal leakage-to-filter" (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p < 0.05) on Pfilter and TIL. Increasing breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects. PMID:24521067

  9. Single-particle correlated time-of-flight velocimeter for remote wind-speed measurement.

    PubMed

    Bartlett, K G; She, C Y

    1977-11-01

    A new technique of single-particle correlation for wind-speed measurement by determining aerosol time of flight is discussed. Using this technique, single-ended remote measurement of atmospheric wind speeds has been demonstrated at ranges up to 100 m under natural aerosol conditions with less than 0.2-W continuous-wave laser power with a measurement time of approximately 1 sec.

  10. Experimental and numerical study of single and multiple impacts of angular particles on ductile metals

    NASA Astrophysics Data System (ADS)

    Takaffoli, Mahdi

    Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid-plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of 150 microm nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental

  11. High-density single-particle tracking: quantifying molecule organization and dynamics at the nanoscale.

    PubMed

    Sibarita, Jean-Baptiste

    2014-06-01

    The organization and dynamics of proteins are fundamental parameters for cellular function. Their study, at the single-molecule level, provides precise information on molecular interactions. Over the last 30 years, the single-particle tracking imaging technique has proven its capability to efficiently quantify such parameters in many biological systems, with nanometric accuracy and millisecond temporal resolutions. Nevertheless, the low concentration of labeling required for single-molecule imaging usually prevents the extraction of large statistics. The advent of high-density single-molecule-based super-resolution techniques has revolutionized the field, allowing monitoring of thousands of biomolecules in the minute timescale and providing unprecedented insight into the molecular organization and dynamics of cellular compounds. In this issue, I will review the main principles of single-particle tracking, a highly interdisciplinary technique at the interface between microscopy, image analysis and labeling strategies. I will point out the advantages brought by high-density single-particle tracking which will be illustrated with a few recent biological results.

  12. Viral pneumonia

    MedlinePlus

    ... Names Pneumonia - viral; "Walking pneumonia" - viral Images Lungs Respiratory system References Lee FE, Treanor J. Viral infections. In: Mason RJ, VC Broaddus, Martin TR, et al, eds. Murray and Nadel’s Textbook of Respiratory Medicine . 5th ed. Philadelphia, PA: Saunders Elsevier; 2010: ...

  13. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  14. Charging and discharging of single colloidal particles at oil/water interfaces

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Xing, Xiaochen; Li, Ye; Ngai, To; Jin, Fan

    2014-05-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ~ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior.

  15. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  16. Crossover from normal diffusion to single-file diffusion of particles in a one-dimensional channel: LJ particles in zeolite zsm-22

    NASA Astrophysics Data System (ADS)

    Kumar, A. V. Anil

    2015-06-01

    The crossover from normal Fickian diffusion, where mean-squared displacement goes as t to single-file diffusion, where t 0.5 is studied as function of particle size confined in zeolite zsm-22 using molecular dynamics simulations. The simulation results indicate that the crossover is smooth as the particle size increases and the diffusion reaches single file through a series of subdiffusion processes. A small number of mutual passage of particles can destroy the correlated single-file diffusion. The density dependence on single-file mobility obtained from molecular dynamics simulations are in very good agreement with theoretical predictions.

  17. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells.

    PubMed

    Jose, Joyce; Tang, Jinghua; Taylor, Aaron B; Baker, Timothy S; Kuhn, Richard J

    2015-12-01

    Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions.

  18. Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer

    PubMed Central

    LIU, CHUNYAN; ZHANG, YONGGANG; LIU, MINZHI MAGGIE; ZHOU, HAOMING; CHOWDHURY, WASIM H.; LUPOLD, SHAWN E.; DEWEESE, TED L.; RODRIGUEZ, RONALD

    2011-01-01

    Purpose Conditionally Replicative Adenovirus (CRAd) has been previously demonstrated to augment the activity of radiation, resulting in synergy of cell kill. However, previous models combining radiation with CRAd have not focused on the methods of radiation delivery. Materials and methods We model the combination of a novel prostate-specific CRAd, Ad5 PSE/PBN E1A-AR (Ad5: adenovirus 5; PSE: prostate-specific enhancer; PBN: rat probasin promoter; E1A: early region 1A; AR: androgen receptor), with radiation delivered both acutely and continuously, in an effort to better mimic the potential clinical modes of prostate cancer radiotherapy. Results We demonstrate that pre-treatment of cells with acute single high dose rate (HDR) radiation 24 hours prior to viral infection results in significantly enhanced viral replication and virus-mediated cell death. In addition, this combination causes increased level of γ-H2AX (Phosphorylated histone protein H2AX on serine 139), a marker of double-stranded DNA damage and an indirect measure of nuclear fragmentation. In contrast, continuous low dose rate (LDR) radiation immediately following infection of the same CRAd results in no enhancement of viral replication, and only additive effects in virus-mediated cell death. Conclusions These data provide the first direct assessment of the real-time impact of radiation on viral replication and the first comparison of the effect of radiation delivery on the efficacy of CRAd virotherapy. Our data demonstrate substantial differences in CRAd efficacy based on the mode of radiation delivery. PMID:20201650

  19. Single-particle selection and alignment with heavy atom cluster-antibody conjugates.

    PubMed

    Jensen, G J; Kornberg, R D

    1998-08-01

    A method is proposed for selecting and aligning images of single biological particles to obtain high-resolution structural information by cryoelectron microscopy. The particles will be labeled with multiple heavy atom clusters to permit the precise determination of particle locations and relative orientations even when imaged close to focus with a low electron dose, conditions optimal for recording high-resolution detail. Heavy atom clusters should also allow selection of images free from many kinds of defects, including specimen movement and particle inhomogeneity. Heavy atom clusters may be introduced in a general way by the construction of "adaptor" molecules based on single-chain Fv antibody fragments, consisting of a constant framework region engineered for optimal cluster binding and a variable antigen binding region selected for a specific target. The success of the method depends on the mobility of the heavy atom cluster on the particle, on the precision to which clusters can be located in an image, and on the sufficiency of cluster projections alone to orient and select particles for averaging. The necessary computational algorithms were developed and implemented in simulations that address the feasibility of the method.

  20. Simple and accurate quantification of quantum dots via single-particle counting.

    PubMed

    Zhang, Chun-yang; Johnson, Lawrence W

    2008-03-26

    Quantification of quantum dots (QDs) is essential to the quality control of QD synthesis, development of QD-based LEDs and lasers, functionalizing of QDs with biomolecules, and engineering of QDs for biological applications. However, simple and accurate quantification of QD concentration in a variety of buffer solutions and in complex mixtures still remains a critical technological challenge. Here, we introduce a new methodology for quantification of QDs via single-particle counting, which is conceptually different from established UV-vis absorption and fluorescence spectrum techniques where large amounts of purified QDs are needed and specific absorption coefficient or quantum yield values are necessary for measurements. We demonstrate that single-particle counting allows us to nondiscriminately quantify different kinds of QDs by their distinct fluorescence burst counts in a variety of buffer solutions regardless of their composition, structure, and surface modifications, and without the necessity of absorption coefficient and quantum yield values. This single-particle counting can also unambiguously quantify individual QDs in a complex mixture, which is practically impossible for both UV-vis absorption and fluorescence spectrum measurements. Importantly, the application of this single-particle counting is not just limited to QDs but also can be extended to fluorescent microspheres, quantum dot-based microbeads, and fluorescent nano rods, some of which currently lack efficient quantification methods.

  1. Summary report of the group on single-particle nonlinear dynamics

    SciTech Connect

    Axinescu, S.; Bartolini, R.; Bazzani, A.

    1996-10-01

    This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects.

  2. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  3. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  4. Single-Particle Laser Doppler Anemometry at 1.55 mum.

    PubMed

    Harris, M; Pearson, G N; Ridley, K D; Karlsson, C J; Olsson, F A; Letalick, D

    2001-02-20

    We demonstrate the successful operation of a cw laser Doppler wind sensor at a wavelength of 1.55 mum. At longer ranges (>100 m) the signal conforms closely to complex Gaussian statistics, consistent with the incoherent addition of contributions from a large number of scattering aerosols. As the range is reduced, the probe volume rapidly diminishes and the signal statistics are dramatically modified. At the shortest ranges (<8 m) the signal becomes dominated by short bursts, each originating from a single particle within the measurement volume. These single-particle events can have a very high signal-to-noise ratio (SNR) because (1) the signal becomes concentrated within a small time window and (2) its bandwidth is much reduced compared with multiparticle detection. Examples of wind-signal statistics at different ranges and for a variety of atmospheric backscatter conditions are presented. Results show that single-particle-scattering events play a significant role even to ranges of ~50 m, leading to results inconsistent with complex Gaussian statistics. The potential is assessed for a low-power laser Doppler wind sensor that exploits the SNR enhancement obtained with single-particle detection.

  5. EMAN: semiautomated software for high-resolution single-particle reconstructions.

    PubMed

    Ludtke, S J; Baldwin, P R; Chiu, W

    1999-12-01

    We present EMAN (Electron Micrograph ANalysis), a software package for performing semiautomated single-particle reconstructions from transmission electron micrographs. The goal of this project is to provide software capable of performing single-particle reconstructions beyond 10 A as such high-resolution data become available. A complete single-particle reconstruction algorithm is implemented. Options are available to generate an initial model for particles with no symmetry, a single axis of rotational symmetry, or icosahedral symmetry. Model refinement is an iterative process, which utilizes classification by model-based projection matching. CTF (contrast transfer function) parameters are determined using a new paradigm in which data from multiple micrographs are fit simultaneously. Amplitude and phase CTF correction is then performed automatically as part of the refinement loop. A graphical user interface is provided, so even those with little image processing experience will be able to begin performing reconstructions. Advanced users can directly use the lower level shell commands and even expand the package utilizing EMAN's extensive image-processing library. The package was written from scratch in C++ and is provided free of charge on our Web site. We present an overview of the package as well as several conformance tests with simulated data.

  6. Low-temperature Bessel beam trap for single submicrometer aerosol particle studies

    SciTech Connect

    Lu, Jessica W.; Chasovskikh, Egor; Stapfer, David; Isenor, Merrill; Signorell, Ruth

    2014-09-01

    We report on a new instrument for single aerosol particle studies at low temperatures that combines an optical trap consisting of two counter-propagating Bessel beams (CPBBs) and temperature control down to 223 K (−50 °C). The apparatus is capable of capturing and stably trapping individual submicrometer- to micrometer-sized aerosol particles for up to several hours. First results from studies of hexadecane, dodecane, and water aerosols reveal that we can trap and freeze supercooled droplets ranging in size from ∼450 nm to 5500 nm (radius). We have conducted homogeneous and heterogeneous freezing experiments, freezing-melting cycles, and evaporation studies. To our knowledge, this is the first reported observation of the freezing process for levitated single submicrometer-sized droplets in air using optical trapping techniques. These results show that a temperature-controlled CPBB trap is an attractive new method for studying phase transitions of individual submicrometer aerosol particles.

  7. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tran, D.; Myhro, K.; Velasco, J.; Gillgren, N.; Lau, C. N.; Barlas, Y.; Poumirol, J. M.; Smirnov, D.; Guinea, F.

    2014-12-01

    Many physical phenomena can be understood by single-particle physics; that is, treating particles as non-interacting entities. When this fails, many-body interactions lead to spontaneous symmetry breaking and phenomena such as fundamental particles’ mass generation, superconductivity and magnetism. Competition between single-particle and many-body physics leads to rich phase diagrams. Here we show that rhombohedral-stacked trilayer graphene offers an exciting platform for studying such interplay, in which we observe a giant intrinsic gap ~42 meV that can be partially suppressed by an interlayer potential, a parallel magnetic field or a critical temperature ~36 K. Among the proposed correlated phases with spatial uniformity, our results are most consistent with a layer antiferromagnetic state with broken time reversal symmetry. These results reflect the interplay between externally induced and spontaneous symmetry breaking whose relative strengths are tunable by external fields, and provide insight into other low-dimensional systems.

  8. Quantitative measurements of the micromagnetic behavior of single-domain ferromagnetic particles

    NASA Astrophysics Data System (ADS)

    O'Barr, Robert Alan

    1997-09-01

    We have obtained experimental data describing the reversal properties of individual, isolated, single- domain ferromagnetic particles. Two types of particles were studied: nearly ellipsoidal γ-Fe2O3 particles and elongated nickel cylinders. A process in which Ni was electrochemically deposited into the pores of channeled pore membranes was developed to prepare Ni cylinders over a wide size range. Three types of membranes were employed: Nanochannel glass arrays, Al2O3 filter membranes, and polycarbonate track-etched membranes. High aspect ratio Ni cylinders were prepared with diameters ranging from 27-1000 nm. Particles were deposited onto transmission electron microscopy (TEM) grids and the size, shape, morphology, crystalline structure, and isolated nature of the particles were studied by scanning electron microscopy (SEM), TEM, and electron diffraction. The magnetic properties of the electrodeposited membrane arrays were studied by vibrating sample magnetometry (VSM) and the individual particle properties were studied by Lorentz magnetometry and magnetic force microscopy (MFM). The switching field H s was measured as a function of the angle between the applied field and the particle axis. The resulting angular dependence of the γ-Fe2O3 particles is qualitatively similar but quantitatively smaller than that expected for coherent rotation. This is probably explained by the voids in the particle interior and/or the precise orientation of the crystalline easy axes with respect to the particle long axis and the applied field. Quantitative measurements and the numerical simulation of a Ni cylinder with a length L = 1.4 μm and diameter D = 116 nm showed that the remanent magnetization of the particle is essentially uniform and the remanence loop is square, hence the particle can be considered single- domain. The experimental data was compared to nucleation theory and to numerical micromagnetic simulations. For large diameter, the experimental H s is much larger than

  9. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  10. A single particle model to simulate the dynamics of entangled polymer melts

    NASA Astrophysics Data System (ADS)

    Kindt, P.; Briels, W. J.

    2007-10-01

    We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.

  11. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

    NASA Astrophysics Data System (ADS)

    Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J. D.; Coppola, N.; Doak, R. B.; Epp, S. W.; Erk, B.; Foucar, L.; Gumprecht, L.; Hampton, C. Y.; Hartmann, A.; Hartmann, R.; Holl, P.; Kassemeyer, S.; Kimmel, N.; Laksmono, H.; Liang, M.; Loh, N. D.; Lomb, L.; Martin, A. V.; Nass, K.; Reich, C.; Rolles, D.; Rudek, B.; Rudenko, A.; Schulz, J.; Shoeman, R. L.; Sierra, R. G.; Soltau, H.; Steinbrener, J.; Stellato, F.; Stern, S.; Weidenspointner, G.; Frank, M.; Ullrich, J.; Strüder, L.; Schlichting, I.; Chapman, H. N.; Spence, J. C. H.; Bogan, M. J.

    2012-12-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

  12. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns.

    PubMed

    Starodub, D; Aquila, A; Bajt, S; Barthelmess, M; Barty, A; Bostedt, C; Bozek, J D; Coppola, N; Doak, R B; Epp, S W; Erk, B; Foucar, L; Gumprecht, L; Hampton, C Y; Hartmann, A; Hartmann, R; Holl, P; Kassemeyer, S; Kimmel, N; Laksmono, H; Liang, M; Loh, N D; Lomb, L; Martin, A V; Nass, K; Reich, C; Rolles, D; Rudek, B; Rudenko, A; Schulz, J; Shoeman, R L; Sierra, R G; Soltau, H; Steinbrener, J; Stellato, F; Stern, S; Weidenspointner, G; Frank, M; Ullrich, J; Strüder, L; Schlichting, I; Chapman, H N; Spence, J C H; Bogan, M J

    2012-01-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

  13. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns.

    PubMed

    Starodub, D; Aquila, A; Bajt, S; Barthelmess, M; Barty, A; Bostedt, C; Bozek, J D; Coppola, N; Doak, R B; Epp, S W; Erk, B; Foucar, L; Gumprecht, L; Hampton, C Y; Hartmann, A; Hartmann, R; Holl, P; Kassemeyer, S; Kimmel, N; Laksmono, H; Liang, M; Loh, N D; Lomb, L; Martin, A V; Nass, K; Reich, C; Rolles, D; Rudek, B; Rudenko, A; Schulz, J; Shoeman, R L; Sierra, R G; Soltau, H; Steinbrener, J; Stellato, F; Stern, S; Weidenspointner, G; Frank, M; Ullrich, J; Strüder, L; Schlichting, I; Chapman, H N; Spence, J C H; Bogan, M J

    2012-01-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution. PMID:23232406

  14. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  15. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  16. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems.

    PubMed Central

    Qian, H; Sheetz, M P; Elson, E L

    1991-01-01

    Analysis of the trajectories of small particles at high spatial and temporal resolution using video enhanced contrast microscopy provides a powerful approach to characterizing the mechanisms of particle motion in living cells and in other systems. We present here the theoretical basis for the analysis of these trajectories for particles undergoing random diffusion and/or systematic transport at uniform velocity in two-dimensional systems. The single particle tracking method, based on observations of the trajectories of individual particles, is compared with methods that characterize the motions of a large collection of particles such as fluorescence photobleaching recovery. Determination of diffusion coefficients or transport velocities either from correlation of positions or of velocities of the particles is discussed. A result of practical importance is an analysis of the dependence of the expected statistical uncertainty of these determinations on the number of position measurements. This provides a way of judging the accuracy of the diffusion coefficients and transport velocities obtained using this approach. PMID:1742458

  17. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  18. Energy-Sensitive Single-Photon X-ray and Particle Imaging

    NASA Astrophysics Data System (ADS)

    Lotto, Christian

    Energy-sensitive detectors perform asynchronous arrival detection of single X-Ray photons and particles. Their ability of measuring the detected particles' energy improves the performance of the particle counting applications and enables spectroscopic applications. In such detectors, either a semiconductor layer for direct conversion or a combination of a scintillator and a semiconductor sensing device for visible photons is used for generation of an electrical charge pulse per absorbed particle. This charge amount, which represents the particle energy, is detected by an asynchronous charge pulse detecting circuit. The noise of such circuits defines the lowest discrimination threshold of counting systems and the energy resolution of spectroscopic applications. Therefore, low noise, low power consumption, and low area are requirements for charge pulse detecting circuits used in segmented energy sensitive particle detectors with a high number of pixels. Choice of a sensing device, definition of the charge pulse detecting circuit's topology, and analysis of interdependences amongst the above performance parameters are covered and a context with employed readout schemes, processing circuits, and target applications is established in this chapter. Energy-sensitive detectors perform asynchronous arrival detection of single X-Ray photons and particles. Their ability of measuring the detected particles' energy improves the performance of the particle counting applications and enables spectroscopic applications. In such detectors, either a semiconductor layer for direct conversion or a combination of a scintillator and a semiconductor sensing device for visible photons is used for generation of an electrical charge pulse per absorbed particle. This charge amount, which represents the particle energy, is detected by an asynchronous charge pulse detecting circuit. The noise of such circuits defines the lowest discrimination threshold of counting systems and the energy

  19. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    PubMed

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques.

  20. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles.

    PubMed

    Walkiewicz, Marcin P; Morral, Nuria; Engel, Daniel A

    2009-08-01

    Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72kDa DNA-binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. A similar relationship was observed for a helper-dependent adenovirus vector expressing green fluorescent protein. This relationship allowed accurate titration of adenovirus preparations, including wild-type and helper-dependent vectors, using a 1-day immunofluorescence method. The method can be applied to any adenovirus vector and gives results equivalent to the standard plaque assay.

  1. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles.

    PubMed

    Walkiewicz, Marcin P; Morral, Nuria; Engel, Daniel A

    2009-08-01

    Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72kDa DNA-binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. A similar relationship was observed for a helper-dependent adenovirus vector expressing green fluorescent protein. This relationship allowed accurate titration of adenovirus preparations, including wild-type and helper-dependent vectors, using a 1-day immunofluorescence method. The method can be applied to any adenovirus vector and gives results equivalent to the standard plaque assay. PMID:19406166

  2. Effect of the viral protease on the dynamics of bacteriophage HK97 maturation intermediates characterized by variance analysis of cryo EM particle ensembles.

    PubMed

    Gong, Yunye; Veesler, David; Doerschuk, Peter C; Johnson, John E

    2016-03-01

    Cryo EM structures of maturation-intermediate Prohead I of bacteriophage HK97 with (PhI(Pro+)) and without (PhI(Pro-)) the viral protease packaged have been reported (Veesler et al., 2014). In spite of PhI(Pro+) containing an additional ∼ 100 × 24 kD of protein, the two structures appeared identical although the two particles have substantially different biochemical properties, e.g., PhI(Pro-) is less stable to disassembly conditions such as urea. Here the same cryo EM images are used to characterize the spatial heterogeneity of the particles at 17Å resolution by variance analysis and show that PhI(Pro-) has roughly twice the standard deviation of PhI(Pro+). Furthermore, the greatest differences in standard deviation are present in the region where the δ-domain, not seen in X-ray crystallographic structures or fully seen in cryo EM, is expected to be located. Thus presence of the protease appears to stabilize the δ-domain which the protease will eventually digest.

  3. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Zeng, Dechang; Liu, Zhongwu

    2016-04-01

    Single domain strontium ferrite particles (SrFe12O19) with hexagonal morphology were synthesized by conventional ceramic process. Effects of Fe/Sr mole ratio and milling time on structure, morphology and magnetic properties of the strontium ferrite particles have been systematically studied. Single phase SrFe12O19 was successfully synthesized in a large composition range of Fe/Sr ratio (Fe/Sr = 9-11). The particle size refinement effect and the morphology change were observed with the increase of Fe/Sr ratio. It was also found that the change of Fe/Sr ratio had little effect on the magnetization curve. However, the magnetization process was significantly influenced with different milling time. The optimal magnetic properties obtained at Fe/Sr = 11 with 6 h milling are 68.2 emu g-1 and 5540 Oe for saturation magnetization (M S) and intrinsic coercivity (H C), respectively. The high performance single domain strontium hexaferrite particles obtained in this paper would greatly facilitate the application in the permanent magnet industry.

  4. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Zeng, Dechang; Liu, Zhongwu

    2016-04-01

    Single domain strontium ferrite particles (SrFe12O19) with hexagonal morphology were synthesized by conventional ceramic process. Effects of Fe/Sr mole ratio and milling time on structure, morphology and magnetic properties of the strontium ferrite particles have been systematically studied. Single phase SrFe12O19 was successfully synthesized in a large composition range of Fe/Sr ratio (Fe/Sr = 9–11). The particle size refinement effect and the morphology change were observed with the increase of Fe/Sr ratio. It was also found that the change of Fe/Sr ratio had little effect on the magnetization curve. However, the magnetization process was significantly influenced with different milling time. The optimal magnetic properties obtained at Fe/Sr = 11 with 6 h milling are 68.2 emu g‑1 and 5540 Oe for saturation magnetization (M S) and intrinsic coercivity (H C), respectively. The high performance single domain strontium hexaferrite particles obtained in this paper would greatly facilitate the application in the permanent magnet industry.

  5. Natural Single-Nucleotide Variations in the HIV-1 Genomic SA1prox Region Can Alter Viral Replication Ability by Regulating Vif Expression Levels

    PubMed Central

    Nomaguchi, Masako; Doi, Naoya; Sakai, Yosuke; Ode, Hirotaka; Iwatani, Yasumasa; Matsumoto, Yui; Miyazaki, Yasuyuki; Masuda, Takao

    2016-01-01

    ABSTRACT We previously found that natural single-nucleotide variations located within a proximal region of splicing acceptor 1 (SA1prox) in the HIV-1 genome could alter the viral replication potential and mRNA expression pattern, especially the vif mRNA level. Here, we studied the virological and molecular basis of nucleotide sequence variations in SA1prox for alterations of viral replication ability. Consistent with our previous findings, variant clones indeed expressed Vif at different levels and grew distinctively in cells with various APOBEC3G expression levels. Similar effects were observed for natural variations found in HIV-2 SA1prox, suggesting the importance of the SA1prox sequence. To define nucleotides critical for the regulation of HIV-1 Vif expression, effects of natural SA1prox variations newly found in the HIV Sequence Compendium database on vif mRNA/Vif protein levels were examined. Seven out of nine variations were found to produce Vif at lower, higher, or more excessive levels than wild-type NL4-3. Combination experiments of variations giving distinct Vif levels suggested that the variations mutually affected vif transcript production. While low and high producers of Vif grew in an APOBEC3G-dependent manner, excessive expressers always showed an impeded growth phenotype due to defects in single-cycle infectivity and/or virion production levels. The phenotype of excessive expressers was not due primarily to inadequate expression of Tat or Rev, although SA1prox variations altered the overall HIV-1 mRNA expression pattern. Collectively, our results demonstrate that HIV SA1prox regulates Vif expression levels and suggest a relationship between SA1prox and viral adaptation/evolution given that variations occurred naturally. IMPORTANCE While human cells possess restriction factors to inhibit HIV-1 replication, HIV-1 encodes antagonists to overcome these barriers. Conflicts between host restriction factors and viral counterparts are critical driving

  6. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments

    NASA Astrophysics Data System (ADS)

    Kepten, Eldad; Bronshtein, Irena; Garini, Yuval

    2013-05-01

    The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

  7. Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Pixley, J. H.; Deng, Dong-Ling; Ganeshan, Sriram; Das Sarma, S.

    2016-05-01

    We study the many-body localization aspects of single-particle mobility edges in fermionic systems. We investigate incommensurate lattices and random disorder Anderson models. Many-body localization and quantum nonergodic properties are studied by comparing entanglement and thermal entropy, and by calculating the scaling of subsystem particle-number fluctuations, respectively. We establish a nonergodic extended phase as a generic intermediate phase (between purely ergodic extended and nonergodic localized phases) for the many-body localization transition of noninteracting fermions where the entanglement entropy manifests a volume law (hence, "extended"), but there are large fluctuations in the subsystem particle numbers (hence, "nonergodic"). Based on the numerical results, we expect such an intermediate phase scenario may continue to hold even for the many-body localization in the presence of interactions as well. We find for many-body fermionic states in noninteracting one-dimensional Aubry-André and three-dimensional Anderson models that the entanglement entropy density and the normalized particle-number fluctuation have discontinuous jumps at the localization transition where the entanglement entropy is subthermal but obeys the "volume law." In the vicinity of the localization transition, we find that both the entanglement entropy and the particle-number fluctuations obey a single parameter scaling based on the diverging localization length. We argue using numerical and theoretical results that such a critical scaling behavior should persist for the interacting many-body localization problem with important observable consequences. Our work provides persuasive evidence in favor of there being two transitions in many-body systems with single-particle mobility edges, the first one indicating a transition from the purely localized nonergodic many-body localized phase to a nonergodic extended many-body metallic phase, and the second one being a transition

  8. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  9. Single-walled carbon nanotubes growing radially from YC2 particles

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Seraphin, Supapan; Wang, Su

    1994-09-01

    In the primary soot produced by arc discharge using an yttrium carbide loaded anode, bundles of single-walled carbon nanotubes (SWT) are observed, protruding radially from YC2 particles coated with graphitic multilayers. The graphitic cages separating YC2 particle and SWT bundles fall into the narrow range of 10-20 layers. The morphology of the clusters suggests a two-step growth model: The radial SWT growth pattern is first initiated by catalytic action between the YC2 droplet and the carbon in the gas phase. Second, and upon cooling, the graphitic cage starts by segregating excess carbon from the YC2 bulk, arresting further growth of SWT.

  10. Metal oxide superconducting powder comprised of flake-like single crystal particles

    DOEpatents

    Capone, Donald W.; Dusek, Joseph

    1994-01-01

    Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice.

  11. Metal oxide superconducting powder comprised of flake-like single crystal particles

    DOEpatents

    Capone, D.W.; Dusek, J.

    1994-10-18

    Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice. 3 figs.

  12. Adaptive optics enables three-dimensional single particle tracking at the sub-millisecond scale

    NASA Astrophysics Data System (ADS)

    Juette, Manuel F.; Rivera-Molina, Felix E.; Toomre, Derek K.; Bewersdorf, Joerg

    2013-04-01

    We present the integration of an adaptive optics element into a feedback-driven single particle tracking microscope. Our instrument captures three-dimensional (3D) trajectories with down to 130 μs temporal resolution for dynamic studies on the nanoscale. Our 3D beam steering approach tracks particles over an axial range of >6 μm with ˜2 ms mechanical response times and isolates the sample from any tracking motion. Tracking of transport vesicles containing Alexa488-labeled transferrin glycoprotein in living cells demonstrates the speed and sensitivity of our instrument.

  13. Frealign: An Exploratory Tool for Single-Particle Cryo-EM.

    PubMed

    Grigorieff, N

    2016-01-01

    Frealign is a software tool designed to process electron microscope images of single molecules and complexes to obtain reconstructions at the highest possible resolution. It provides a number of refinement parameters and options that allow users to tune their refinement to achieve specific goals, such as masking to classify selected regions within a particle, control over the refinement of specific alignment parameters to accommodate various data collection schemes, refinement of pseudosymmetric particles, and generation of initial maps. This chapter provides a general overview of Frealign functions and a more detailed guide to using Frealign in typical scenarios. PMID:27572728

  14. The U-Theory of Everything (- A single Particle Theory of Universe)

    NASA Astrophysics Data System (ADS)

    Yu, Weiping

    2014-03-01

    A new Theory of Everything has been developed. This theory unifies all the field forces in the universe with one single fundamental particle. Using this theory, the author is able to settle the centennial dispute between Einstein's Theory of Relativity and Quantum Mechanics. During this presentation, the author will reveal the secrets of the origin of Electric Charge, the origin of Mass, the natures of Gravity, Dark Matter and Dark Energy. The author will also explain the mysteries of Quantum Mechanics Double Slit Experiment and Wave-Particle Duality paradox.

  15. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  16. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  17. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  18. ClusterSculptor: Software for Expert-Steered Classification of Single Particle Mass Spectra

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Nam, Eun Ju; Han, Yiping; Mueller, Klaus

    2008-08-01

    To take full advantage of the vast amount of highly detailed data acquired by single particle mass spectrometers requires that the data be organized according to some rules that have the potential to be insightful. Most commonly statistical tools are used to cluster the individual particle mass spectra on the basis of their similarity. Cluster analysis is a powerful strategy for the exploration of high-dimensional data in the absence of a-priori hypotheses or data classification models, and the results of cluster analysis can then be used to form such models. More often than not, when examining the data clustering results we find that many clusters contain particles of different types and that many particles of one type end up in a number of separate clusters. Our experience with cluster analysis shows that we have a vast amount of non-compiled knowledge and intuition that should be brought to bear in this effort. We will present new software we call ClusterSculptor that provides comprehensive and intuitive framework to aid scientists in data classification. ClusterSculptor uses k-means as the overall clustering engine, but allows tuning its parameters interactively, based on a non-distorted compact visual presentation of the inherent characteristics of the data in high-dimensional space. ClusterSculptor provides all the tools necessary for a high-dimensional activity we call cluster sculpting. ClusterSculptor is designed to be coupled to SpectraMiner, our data mining and visualization software package. The data are first visualized with SpectraMiner and identified problems are exported to ClusterSculptor, where the user steers the reclassification and recombination of clusters of tens of thousands particle mass spectra in real-time. The resulting sculpted clusters can be then imported back into SpectraMiner. Here we will greatly improved single particle chemical speciation in an example of application of this new tool to a number of particle types of atmospheric

  19. Simple hand-held devices for the efficient infection of plants with viral-encoding constructs by particle bombardment.

    PubMed

    Gal-On, A; Meiri, E; Elman, C; Gray, D J; Gaba, V

    1997-02-01

    An efficient method for infection of plants with a cloned potyvirus by particle bombardment has been described (Gal-On et al., 1995). A simplified method is described now whereby a vaccuum chamber and helium propulsive gas are not required to achieve a high efficiency of infection. The new device-the 'HandGun'--is hand-held, and easily constructed from readily available materials. With this technique it is possible to bombard soft plants and seedings that do not survive particle bombardment by other devices. bombardment of C. pepo plants with a full length clone of zucchini yellow mosaic potyvirus results in approximately 100% infection at 100 pg cDNA per plant using air or helium to propel the microprojectiles. The HandGun is 10(5)-fold more efficient than mechanical inoculation. Tungsten and gold were found to be the most efficient materials tested for use as microprojectiles. Crude extracts of plasmids from E. coli were found to be effective, as well as column-purified cDNA. A functional, simple version of the HandGun--'the Blowpipe'--was also constructed, which does not require an electrically controlled valve. Plants can be inoculated with plant viruses from sap with the HandGun. PMID:9029535

  20. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    PubMed

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  1. Viral infection

    PubMed Central

    Puigdomènech, Isabel; de Armas-Rillo, Laura; Machado, José-David

    2011-01-01

    Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist. PMID:21966556

  2. Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow

    SciTech Connect

    Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias; Henn, Tobias R.; Sprau, Peter; Laskin, Alexander; Uematsu, Mitsuo; Gilles, Marry K.

    2012-04-04

    Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. The mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.

  3. Critical single-domain grain sizes in elongated iron particles: implications for meteoritic and lunar magnetism

    NASA Astrophysics Data System (ADS)

    Muxworthy, Adrian R.; Williams, Wyn

    2015-07-01

    Kamacite particles (Fe-Ni, Ni < 5 per cent), are very common in extra-terrestrial materials, such as meteorites. It is normally assumed that for kamacite particles to be reliable recorders of magnetic fields, they need to be magnetically uniform (single domain, SD) and thermally stable. Larger particles subdivide into non-uniform multidomain (MD) magnetic structures that produce weaker magnetic signals, while small SD particles become magnetically unstable due to thermal fluctuations and exhibit superparamagnetic behaviour. In this paper we determine the first micromagnetic calculation of the stable SD range domain-state phase diagram for metallic iron; previous calculations were analytical. There is a significant increase in the critical size for the SD/MD threshold size, for example, for cube-shaped iron particles, the critical SD/MD threshold has now been estimated to be 25 nm, compared to 17 nm for previous estimates. The larger critical SD/MD threshold size for iron, agrees better with previously published nanometric observations of domain state for FeNi particles, then early analytical models.

  4. Orally Co-Infected Aedes albopictus from La Reunion Island, Indian Ocean, Can Deliver Both Dengue and Chikungunya Infectious Viral Particles in Their Saliva

    PubMed Central

    Vazeille, Marie; Mousson, Laurence; Martin, Estelle; Failloux, Anna-Bella

    2010-01-01

    Background First described in humans in 1964, reports of co-infections with dengue (DENV) and chikungunya (CHIKV) viruses are increasing, particularly after the emergence of chikungunya (CHIK) in the Indian Ocean in 2005–2006 due to a new variant highly transmitted by Aedes albopictus. In this geographic area, a dengue (DEN) outbreak transmitted by Ae. albopictus took place shortly before the emergence of CHIK and co-infections were reported in patients. A co-infection in humans can occur following the bite of two mosquitoes infected with one virus or to the bite of a mosquito infected with two viruses. Co-infections in mosquitoes have never been demonstrated in the field or in the laboratory. Thus, we question about the ability of a mosquito to deliver infectious particles of two different viruses through the female saliva. Methodology/Principal Findings We orally exposed Ae. albopictus from La Reunion Island with DENV-1 and CHIKV isolated respectively during the 2004–2005 and the 2005–2006 outbreaks on this same island. We were able to show that Ae. albopictus could disseminate both viruses and deliver both infectious viral particles concomitantly in its saliva. We also succeeded in inducing a secondary infection with CHIKV in mosquitoes previously inoculated with DENV-1. Conclusions/Significance In this study, we underline the ability of Ae. albopictus to be orally co-infected with two different arboviruses and furthermore, its capacity to deliver concomitantly infectious particles of CHIKV and DENV in saliva. This finding is of particular concern as Ae. albopictus is still expanding its geographical range in the tropical as well as in the temperate regions. Further studies are needed to try to elucidate the molecular/cellular basis of this phenomenon. PMID:20544013

  5. Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation.

    PubMed

    Zheng, Zhaoke; Majima, Tetsuro

    2016-02-18

    Surface plasmon resonances of metal nanoparticles have shown significant promise for the use of solar energy to drive catalytic chemical reactions. More importantly, understanding and monitoring such catalytic reactions at single-nanoparticle level is crucial for the study of local reaction processes. Herein, using plasmonic photoluminescence (PL) spectroscopy, we describe a novel sensing method for catalytic ethanol oxidation reactions at the single-nanoparticle level. The Au nanorod monitors the interfacial interaction with ethanol during the catalytic reaction through the PL intensity changes in the single-particle PL spectra. The analysis of energy relaxation of excited electron-hole pairs indicates the relationship between the PL quenching and ethanol oxidation reaction on the single Au nanorod.

  6. Magnetic property and microstructure of single crystalline Nd2Fe14B ultrafine particles ball milled from HDDR powders

    NASA Astrophysics Data System (ADS)

    Li, W. F.; Hu, X. C.; Cui, B. Z.; Yang, J. B.; Han, J. Z.; Hadjipanayis, G. C.

    2013-08-01

    In this work we report the microstructure and magnetic property of single crystalline Nd2Fe14B ultrafine particles ball milled from HDDR Nd-Fe-B alloys. The average size of the particles is 283 nm, and TEM observation reveals that these particles are single crystalline. The coercivity of these particles is 6.0 kOe, which is much higher than that of the particles ball milled from sintered and hot pressed Nd-Fe-B magnets. Micromagnetic analysis shows that the coercivity degradation is caused by surface damage during ball milling.

  7. Mode of Myosin Transportation in Living Cells Studied by Single Particle Tracking

    NASA Astrophysics Data System (ADS)

    Liang, Zhang-yi; Xu, Ning; Guan, Ying-hua; Zhang, You-yi; Zhao, Xin-sheng

    2007-08-01

    The transport of internalized α1A-adrenergic receptor (α1A-AR) by myosin protein in live cells was studied. The technique of single particle tracking by fluorescence imaging with high temporal and spatial resolution was used. The endosomes of α1A-AR were transported along actin filaments in a step-by-step mode. The average step-size in different time resolutions is consistent with the step-size of myosin assay in vitro. With the simulation of the stepwise traces in different time resolutions, we found that the kinetic process of each step is in coherence with the single myosin assay in vitro.

  8. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  9. Interference and multiparticle effects in a Mach-Zehnder interferometer with single-particle sources

    NASA Astrophysics Data System (ADS)

    Rosselló, Guillem; Battista, Francesca; Moskalets, Michael; Splettstoesser, Janine

    2015-03-01

    We investigate a Mach-Zehnder interferometer fed by two time-dependently driven single-particle sources, one of them placed in front of the interferometer, the other in the center of one of the arms. As long as the two sources are operated independently, the signal at the output of the interferometer shows an interference pattern, which we analyze in the spectral current, in the charge and energy currents, as well as in the charge current noise. The synchronization of the two sources in this specifically designed setup allows for collisions and absorptions of particles at different points of the interferometer, which have a strong impact on the detected signals. It introduces further relevant time scales and can even lead to a full suppression of the interference in some of the discussed quantities. The complementary interpretations of this phenomenon in terms of spectral properties and tunable two-particle effects (absorptions and quantum exchange effects) are put forward in this paper.

  10. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  11. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  12. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    SciTech Connect

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-05-09

    Abstract This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (~109 W/cm2). Particle size ranged from 500 nm to 3 μm. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions.

  13. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  14. Cryo-EM single particle analysis with the Volta phase plate.

    PubMed

    Danev, Radostin; Baumeister, Wolfgang

    2016-01-01

    We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach.

  15. Recovering a stochastic process from super-resolution noisy ensembles of single-particle trajectories.

    PubMed

    Hoze, N; Holcman, D

    2015-11-01

    Recovering a stochastic process from noisy ensembles of single-particle trajectories is resolved here using the coarse-grained Langevin equation as a model. The massive redundancy contained in single-particle tracking data allows recovering local parameters of the underlying physical model. We use several parametric and nonparametric estimators to compute the first and second moments of the process, to recover the local drift, its derivative, and the diffusion tensor, and to deconvolve the instrumental from the physical noise. We use numerical simulations to also explore the range of validity for these estimators. The present analysis allows defining what can exactly be recovered from statistics of super-resolution microscopy trajectories used for characterizing molecular trafficking underlying cellular functions.

  16. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    PubMed Central

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-01-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707

  17. Radiative capture of nucleons at astrophysical energies with single-particle states

    SciTech Connect

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-11-15

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  18. Detecting gamma-ray bursts with the pierre auger observatory using the single particle technique

    SciTech Connect

    Allard, Denis; Parizot, E.; Bertou, Xavier; Beatty, J.; Vernois, M.Du; Nitz, D.; Rodriguez, G.

    2005-08-01

    During the past ten years, gamma-ray Bursts (GRB) have been extensively studied in the keV-MeV energy range but the higher energy emission still remains mysterious. Ground based observatories have the possibility to investigate energy range around one GeV using the ''single particle technique''. The aim of the present study is to investigate the capability of the Pierre Auger Observatory to detect the high energy emission of GRBs with such a technique. According to the detector response to photon showers around one GeV, and making reasonable assumptions about the high energy emission of GRBs, we show that the Pierre Auger Observatory is a competitive instrument for this technique, and that water tanks are very promising detectors for the single particle technique.

  19. Single-particle fluctuations and directional correlations in driven hard-sphere glasses.

    PubMed

    Mandal, Suvendu; Chikkadi, Vijaykumar; Nienhuis, Bernard; Raabe, Dierk; Schall, Peter; Varnik, Fathollah

    2013-08-01

    Via event-driven molecular dynamics simulations and experiments, we study the packing-fraction and shear-rate dependence of single-particle fluctuations and dynamic correlations in hard-sphere glasses under shear. At packing fractions above the glass transition, correlations increase as shear rate decreases: the exponential tail in the distribution of single-particle jumps broadens and dynamic four-point correlations increase. Interestingly, however, upon decreasing the packing fraction, a broadening of the exponential tail is also observed, while dynamic heterogeneity is shown to decrease. An explanation for this behavior is proposed in terms of a competition between shear and thermal fluctuations. Building upon our previous studies [Chikkadi et al., Europhys. Lett. 100, 56001 (2012)], we further address the issue of anisotropy of the dynamic correlations.

  20. Entanglement classification of three fermions with up to nine single-particle states

    NASA Astrophysics Data System (ADS)

    Sárosi, Gábor; Lévay, Péter

    2014-04-01

    Based on results well known in the mathematics literature but not yet common knowledge in the physics literature, we conduct a study on three-fermionic systems with six, seven, eight, and nine single-particle states. Via introducing special polynomial invariants playing the role of entanglement measures the structure of the stochastic local operations and classical communication (SLOCC) entanglement classes is investigated. The SLOCC classes of the six- and seven-dimensional cases can elegantly be described by special subconfigurations of the Fano plane. Some special embedded systems containing distinguishable constituents are arising naturally in our formalism, namely, three-qubits and three-qutrits. In particular, the three fundamental invariants I6, I9, and I12 of the three-qutrits system are shown to arise as special cases of the four fundamental invariants of three-fermions with nine single-particle states.

  1. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    SciTech Connect

    Yang, Shuolong; Sobota, J. A.; Leuenberger, D.; He, Y.; Hashimoto, M.; Lu, D. H.; Eisaki, H.; Kirchmann, P. S.; Shen, Z. -X.

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  2. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    NASA Astrophysics Data System (ADS)

    Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille

    2016-03-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.

  3. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    NASA Astrophysics Data System (ADS)

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-06-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.

  4. Testing the Validity of Single-Particle Maps at Low and High Resolution.

    PubMed

    Rosenthal, P B

    2016-01-01

    Single-particle electron cryomicroscopy may be used to determine the structure of biological assemblies by aligning and averaging low-contrast projection images recorded in the electron microscope. Recent progress in both experimental and computational methods has led to higher resolution three-dimensional maps, including for more challenging low molecular weight proteins, and this has highlighted the problems of model bias and over-fitting during iterative refinement that can potentially lead to incorrect map features at low or high resolution. This chapter discusses the principles and practice of specific validation tests that demonstrate the consistency of a 3D map with projection images. In addition, the chapter describes tests that detect over-fitting during refinement and lead to more robust assessment of both global and local map resolution. Application of several of these tests together demonstrates the reliability of single-particle maps that underpins their correct biological interpretation. PMID:27572729

  5. Cryo-EM single particle analysis with the Volta phase plate

    PubMed Central

    Danev, Radostin; Baumeister, Wolfgang

    2016-01-01

    We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach. DOI: http://dx.doi.org/10.7554/eLife.13046.001 PMID:26949259

  6. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  7. Aging and removal of Black Carbon measured using a Single Particle Soot Photometer in East Asia

    NASA Astrophysics Data System (ADS)

    Kanaya, Y.; Miyakawa, T.; Taketani, F.; Oshima, N.; PAN, X.; Komazaki, Y.; Kondo, Y.; Takami, A.; Yoshino, A.

    2015-12-01

    Black carbon (BC) aerosol is one of the most important aerosols, affecting the Earth's radiative budget both directly through light absorption and indirectly by acting as cloud condensation and ice nuclei. Microphysical parameters of soot aerosols are important to assess their roles in atmosphere. A single particle soot photometer (SP2, Droplet Measurement Technologies Inc.) can be used to detect and quantify the mass of refractory BC (rBC) in a soot-containing particle. We conducted ground-measurements of rBC-containing particles using the SP2 at Yokosuka (near industrial sources, early summer of 2014, Fig1) and at Fukue island (outflow from Asian continent, spring of 2015, Fig1). During Fukue observation, we measured carbon monoxide (CO) mixing ratio (by 48C, Themo Scientific, Inc.) which is useful for investigating polluted air masses. Air mass histories were analyzed with backward trajectories from the sampling point and precipitation along the trajectory calculated using the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory model with the meteorological data sets from NCEP's GDAS. We analysed number-/mass-size distributions and mixing states of rBC-containing particles considering the differences in air mass characteristics and history. The observed rBC mass concentrations (at STP) were ranging from ~50 ng m-3 at Fukue island to ~2000 ng m-3 near industrial sources. The size distributions of rBC-containing particles were systematically changed depending on the sites and air mass histories. Modal mass-equivalent diameters of the observed mass-size distributions showed minima (~0.16 μm) near source area and maxima (~0.21 μm) at Fukue island for Asian outflow period without wet removal. In the presentation, we synthetically discuss the relationship between rBC microphysics and air mass characteristics and histories.

  8. Single-Particle Motion and Vortex Stretching in Three-Dimensional Turbulent Flows.

    PubMed

    Pumir, Alain; Xu, Haitao; Bodenschatz, Eberhard; Grauer, Rainer

    2016-03-25

    Three-dimensional turbulent flows are characterized by a flux of energy from large to small scales, which breaks the time reversal symmetry. The motion of tracer particles, which tend to lose energy faster than they gain it, is also irreversible. Here, we connect the time irreversibility in the motion of single tracers with vortex stretching and thus with the generation of the smallest scales. PMID:27058081

  9. Search for d3/2 single particle strength in 15N in Unbound Levels

    NASA Astrophysics Data System (ADS)

    Mertin, C. E.; Caussyn, D. D.; Crisp, A. M.; Keeley, N.; Kemper, K. W.; Momotyuk, O.; Roeder, B. T.; Volya, A.

    2013-10-01

    The population of states in the nucleus 15N provides the opportunity to investigate both single particle and cluster structures in the 1p and 2s1d shells. Single, two, three and four particle transfer reactions selectively excite states in 15N thus providing a way to explore current nuclear structure models. Narrow structures are observed in the various transfer reactions up to at least 20 MeV in excitation well above the neutron (10.8 MeV) and proton (10.2 MeV) separation energies. In the present work new results for the reaction 14N(d,p) are presented that explore possible single particle strengths up to 18 MeV in excitation. The beam energies used in the present work were between 10.5 and 16 MeV. An early work with a beam energy of 8 MeV clearly populated strong sharp levels at 10.07 and 11.23 MeV and the present work confirms their existence. In addition, very weak broader levels are populated at 12.13 and 12.5 MeV but no other structures are found experimentally at higher excitation energies. The results of shell model calculations that include the 1p and 2s1d shells will be presented. The centroid energies for the 1d5/2 and 2s1/2 single particle strength have been obtained through comparison with FRESCO calculations. This work was supported by the NSF, DOE and Florida State University.

  10. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    PubMed

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images.

  11. Apparatus for studies of high-temperature chemical reactions in single particle systems

    NASA Astrophysics Data System (ADS)

    Andrzejak, Timothy A.; Shafirovich, Evgeny; Taylor, David G.; Varma, Arvind

    2007-08-01

    We report a compact microgravity flight apparatus for characterization of high-temperature chemical reactions in single particle systems. The apparatus employs an infrared CO2 laser to ignite 1-5mm samples while video images, thermocouple measurements, laser on/off status, and XYZ accelerometer signals are synchronously recorded. Different operating modes permit preignition quenching, ignition, and combustion experiments to be performed. The apparatus was successfully utilized during microgravity experiments on board NASA research aircraft.

  12. GraFix: sample preparation for single-particle electron cryomicroscopy.

    PubMed

    Kastner, Berthold; Fischer, Niels; Golas, Monika Mariola; Sander, Bjoern; Dube, Prakash; Boehringer, Daniel; Hartmuth, Klaus; Deckert, Jochen; Hauer, Florian; Wolf, Elmar; Uchtenhagen, Hannes; Urlaub, Henning; Herzog, Franz; Peters, Jan Michael; Poerschke, Dietmar; Lührmann, Reinhard; Stark, Holger

    2008-01-01

    We developed a method, named GraFix, that considerably improves sample quality for structure determination by single-particle electron cryomicroscopy (cryo-EM). GraFix uses a glycerol gradient centrifugation step in which the complexes are centrifuged into an increasing concentration of a chemical fixation reagent to prevent aggregation and to stabilize individual macromolecules. The method can be used to prepare samples for negative-stain, cryo-negative-stain and, particularly, unstained cryo-EM. PMID:18157137

  13. Single-particle cryo-EM data acquisition by using direct electron detection camera.

    PubMed

    Wu, Shenping; Armache, Jean-Paul; Cheng, Yifan

    2016-02-01

    Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as 'movies' made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired.

  14. Single-Particle Motion and Vortex Stretching in Three-Dimensional Turbulent Flows.

    PubMed

    Pumir, Alain; Xu, Haitao; Bodenschatz, Eberhard; Grauer, Rainer

    2016-03-25

    Three-dimensional turbulent flows are characterized by a flux of energy from large to small scales, which breaks the time reversal symmetry. The motion of tracer particles, which tend to lose energy faster than they gain it, is also irreversible. Here, we connect the time irreversibility in the motion of single tracers with vortex stretching and thus with the generation of the smallest scales.

  15. Topological invariants for interacting topological insulators. II. Breakdown of single-particle Green's function formalism

    NASA Astrophysics Data System (ADS)

    He, Yuan-Yao; Wu, Han-Qing; Meng, Zi Yang; Lu, Zhong-Yi

    2016-05-01

    Topological phase transitions in free fermion systems can be characterized by the closing of single-particle gap and the change in topological invariants. However, in the presence of electronic interactions, topological phase transitions can be more complicated. In paper I of this series [Phys. Rev. B 93, 195163 (2016), 10.1103/PhysRevB.93.195163], we have proposed an efficient scheme to evaluate the topological invariants based on the single-particle Green's function formalism. Here, in paper II, we demonstrate several interaction-driven topological phase transitions (TPTs) in two-dimensional (2D) interacting topological insulators (TIs) via large-scale quantum Monte Carlo (QMC) simulations, based on the scheme of evaluating topological invariants presented in paper I. Across these transitions, the defining symmetries of the TIs have been neither explicitly nor spontaneously broken. In the first two models, the topological invariants calculated from the Green's function formalism succeed in characterizing the topologically distinct phases and identifying interaction-driven TPTs. However, in the other two models, we find that the single-particle gap does not close and the topological invariants constructed from the single-particle Green's function acquire no change across the TPTs. Unexpected breakdown of the Green's function formalism in constructing the topological invariants is thus discovered. We thence classify the topological phase transitions in interacting TIs into two categories in practical computation: Those that have noninteracting correspondence can be characterized successfully by the topological invariants constructed from the Green's functions, while for the others that do not have noninteracting correspondence, the Green's function formalism experiences a breakdown, but more interesting and exciting phenomena, such as emergent collective critical modes at the transition, arise. Discussion on the success and breakdown of topological invariants

  16. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes.

    PubMed

    Mor, Flavio M; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-28

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λ(em) = 532 nm) at half the excitation wavelength (λ(ex) = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET). PMID:26956197

  17. Automated identification and classification of single particle serial femtosecond X-ray diffraction data.

    PubMed

    Andreasson, Jakob; Martin, Andrew V; Liang, Meng; Timneanu, Nicusor; Aquila, Andrew; Wang, Fenglin; Iwan, Bianca; Svenda, Martin; Ekeberg, Tomas; Hantke, Max; Bielecki, Johan; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Hartmann, Robert; Erk, Benjamin; Rudek, Benedikt; Chapman, Henry N; Hajdu, Janos; Barty, Anton

    2014-02-10

    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour.

  18. Automated identification and classification of single particle serial femtosecond X-ray diffraction data.

    PubMed

    Andreasson, Jakob; Martin, Andrew V; Liang, Meng; Timneanu, Nicusor; Aquila, Andrew; Wang, Fenglin; Iwan, Bianca; Svenda, Martin; Ekeberg, Tomas; Hantke, Max; Bielecki, Johan; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Hartmann, Robert; Erk, Benjamin; Rudek, Benedikt; Chapman, Henry N; Hajdu, Janos; Barty, Anton

    2014-02-10

    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour. PMID:24663542

  19. Classification of the PALMS single particle mass spectral data from Atlanta by regression tree analysis

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Murphy, D. M.; Lee, S.; Lee, S.; Lee, S.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    During the Atlanta Supersites project in August 1999, the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument collected over 500,000 individual particle spectra. The Atlanta data were originally analyzed by examining combinations of peaks and relative peak areas [Lee et al., 2001a,b], and a wide range of particle components such as sulfate, nitrate, mineral species, metals, organic species, and elemental carbon were detected. To further study the dataset, a classification program using regression tree analysis was developed and applied. Spectral data were compressed into a lower resolution spectrum (every 0.25 mass units) of the raw data and a list of peak areas (every mass unit). Each spectrum started as a normalized classification vector by itself. If the dot product of two classification vectors was within a certain threshold, they were combined into a new classification. The new classification vector was a normalized running average of the classifications being combined. In subsequent steps, the threshold for combining classifications was continuously lowered until a reasonable number of classifications remained. After the final iteration, each spectrum was compared individually with the entire set of classification vectors. Classifications were also combined manually. The classification results from the Atlanta data are generally consistent with those determined by peak identification. However, the classification program identified specific patterns in the mass spectra that were not found by peak identification and generated new particle types. Furthermore, rare particle types that may affect human health were studied in more detail. A description of the classification program as well as the results for the Atlanta data will be presented. Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook, Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the Atlanta Supersites Project

  20. Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging.

    PubMed

    Bharat, Tanmay A M; Russo, Christopher J; Löwe, Jan; Passmore, Lori A; Scheres, Sjors H W

    2015-09-01

    Recent innovations in specimen preparation, data collection, and image processing have led to improved structure determination using single-particle electron cryomicroscopy (cryo-EM). Here we explore some of these advances to improve structures determined using electron cryotomography (cryo-ET) and sub-tomogram averaging. We implement a new three-dimensional model for the contrast transfer function, and use this in a regularized likelihood optimization algorithm as implemented in the RELION program. Using direct electron detector data, we apply both single-particle analysis and sub-tomogram averaging to analyze radiation-induced movements of the specimen. As in single-particle cryo-EM, we find that significant sample movements occur during tomographic data acquisition, and that these movements are substantially reduced through the use of ultrastable gold substrates. We obtain a sub-nanometer resolution structure of the hepatitis B capsid, and show that reducing radiation-induced specimen movement may be central to attempts at further improving tomogram quality and resolution.

  1. Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges.

    PubMed

    Hosseinizadeh, A; Dashti, A; Schwander, P; Fung, R; Ourmazd, A

    2015-07-01

    Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a spatial resolution of about 0.3 nm, with a rapidly emerging capability to map discrete and continuous conformational changes and the energy landscapes of biomolecular machines. Nonetheless, single-particle imaging by X-ray free-electron lasers remains important for a range of applications, including the study of large "electron-opaque" objects and time-resolved examination of key biological processes at physiological temperatures. After summarizing the state of the art in the study of structure and conformations by cryogenic electron microscopy, we identify the primary opportunities and challenges facing X-ray-based single-particle approaches, and possible means for circumventing them.

  2. Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particles.

    PubMed

    Hänel, G

    1988-06-01

    Mean shortwave values of the single scattering albedo and the asymmetry parameter of dry atmospheric particles have been measured photometrically. From the single scattering albedo the mean shortwave value of the apparent complex refractive index and the apparent volume fraction of soot within the particulate matter are derived. From 275 measurements the mean value of the single scattering albedo is 0.835, the mean value of the apparent complex refractive index is 1.51-0.026i, and the mean value of the apparent volume fraction of soot is 5.8%. For seventy-seven cases of mostly urban particles the mean value of the asymmetry parameter is 0.39. The term apparent stands for appearing (but not necessarily) real or true. Reasons for this attribute are the idealizations necessary to get a value of the refractive index of atmospheric particles. Consequently the use of an apparent refractive index for modeling purposes is restricted as described in the concluding section.

  3. Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging.

    PubMed

    Bharat, Tanmay A M; Russo, Christopher J; Löwe, Jan; Passmore, Lori A; Scheres, Sjors H W

    2015-09-01

    Recent innovations in specimen preparation, data collection, and image processing have led to improved structure determination using single-particle electron cryomicroscopy (cryo-EM). Here we explore some of these advances to improve structures determined using electron cryotomography (cryo-ET) and sub-tomogram averaging. We implement a new three-dimensional model for the contrast transfer function, and use this in a regularized likelihood optimization algorithm as implemented in the RELION program. Using direct electron detector data, we apply both single-particle analysis and sub-tomogram averaging to analyze radiation-induced movements of the specimen. As in single-particle cryo-EM, we find that significant sample movements occur during tomographic data acquisition, and that these movements are substantially reduced through the use of ultrastable gold substrates. We obtain a sub-nanometer resolution structure of the hepatitis B capsid, and show that reducing radiation-induced specimen movement may be central to attempts at further improving tomogram quality and resolution. PMID:26256537

  4. Electron Cryomicroscopy of Membrane Proteins: Specimen Preparation for Two-Dimensional Crystals and Single Particles

    PubMed Central

    Schmidt-Krey, Ingeborg; Rubinstein, John L.

    2010-01-01

    Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed. PMID:20678942

  5. Comparison of Ensemble and Single Molecule Methods for Particle Characterization and Binding Analysis of a PEGylated Single-Domain Antibody.

    PubMed

    Schneeweis, Lumelle A; Obenauer-Kutner, Linda; Kaur, Parminder; Yamniuk, Aaron P; Tamura, James; Jaffe, Neil; O'Mara, Brian W; Lindsay, Stuart; Doyle, Michael; Bryson, James

    2015-12-01

    Domain antibodies (dAbs) are single immunoglobulin domains that form the smallest functional unit of an antibody. This study investigates the behavior of these small proteins when covalently attached to the polyethylene glycol (PEG) moiety that is necessary for extending the half-life of a dAb. The effect of the 40 kDa PEG on hydrodynamic properties, particle behavior, and receptor binding of the dAb has been compared by both ensemble solution and surface methods [light scattering, isothermal titration calorimetry (ITC), surface Plasmon resonance (SPR)] and single-molecule atomic force microscopy (AFM) methods (topography, recognition imaging, and force microscopy). The large PEG dominates the properties of the dAb-PEG conjugate such as a hydrodynamic radius that corresponds to a globular protein over four times its size and a much reduced association rate. We have used AFM single-molecule studies to determine the mechanism of PEG-dependent reductions in the effectiveness of the dAb observed by SPR kinetic studies. Recognition imaging showed that all of the PEGylated dAb molecules are active, suggesting that some may transiently become inactive if PEG sterically blocks binding. This helps explain the disconnect between the SPR, determined kinetically, and the force microscopy and ITC results that demonstrated that PEG does not change the binding energy. PMID:26343417

  6. Comparison of Ensemble and Single Molecule Methods for Particle Characterization and Binding Analysis of a PEGylated Single-Domain Antibody.

    PubMed

    Schneeweis, Lumelle A; Obenauer-Kutner, Linda; Kaur, Parminder; Yamniuk, Aaron P; Tamura, James; Jaffe, Neil; O'Mara, Brian W; Lindsay, Stuart; Doyle, Michael; Bryson, James

    2015-12-01

    Domain antibodies (dAbs) are single immunoglobulin domains that form the smallest functional unit of an antibody. This study investigates the behavior of these small proteins when covalently attached to the polyethylene glycol (PEG) moiety that is necessary for extending the half-life of a dAb. The effect of the 40 kDa PEG on hydrodynamic properties, particle behavior, and receptor binding of the dAb has been compared by both ensemble solution and surface methods [light scattering, isothermal titration calorimetry (ITC), surface Plasmon resonance (SPR)] and single-molecule atomic force microscopy (AFM) methods (topography, recognition imaging, and force microscopy). The large PEG dominates the properties of the dAb-PEG conjugate such as a hydrodynamic radius that corresponds to a globular protein over four times its size and a much reduced association rate. We have used AFM single-molecule studies to determine the mechanism of PEG-dependent reductions in the effectiveness of the dAb observed by SPR kinetic studies. Recognition imaging showed that all of the PEGylated dAb molecules are active, suggesting that some may transiently become inactive if PEG sterically blocks binding. This helps explain the disconnect between the SPR, determined kinetically, and the force microscopy and ITC results that demonstrated that PEG does not change the binding energy.

  7. Orbital Single Particle Tracking on a commercial confocal microscope using piezoelectric stage feedback

    PubMed Central

    Lanzanò, Luca; Gratton, Enrico

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. PMID:25419461

  8. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available. PMID:16474042

  9. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  10. Single mimivirus particles intercepted and imaged with an X-ray laser.

    PubMed

    Seibert, M Marvin; Ekeberg, Tomas; Maia, Filipe R N C; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D; Boutet, Sébastien; Miahnahri, A Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R Bruce; Marchesini, Stefano; Hau-Riege, Stefan P; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N; Hajdu, Janos

    2011-02-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.

  11. Single mimivirus particles intercepted and imaged with an X-ray laser

    PubMed Central

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P.; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A.; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D.; Boutet, Sébastien; Miahnahri, A. Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R. Bruce; Marchesini, Stefano; Hau-Riege, Stefan P.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N.; Hajdu, Janos

    2014-01-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1–4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  12. Single mimivirus particles intercepted and imaged with an X-ray laser.

    PubMed

    Seibert, M Marvin; Ekeberg, Tomas; Maia, Filipe R N C; Svenda, Martin; Andreasson, Jakob; Jönsson, Olof; Odić, Duško; Iwan, Bianca; Rocker, Andrea; Westphal, Daniel; Hantke, Max; DePonte, Daniel P; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Coppola, Nicola; Aquila, Andrew; Liang, Mengning; White, Thomas A; Martin, Andrew; Caleman, Carl; Stern, Stephan; Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel; Bostedt, Christoph; Bozek, John D; Boutet, Sébastien; Miahnahri, A Alan; Messerschmidt, Marc; Krzywinski, Jacek; Williams, Garth; Hodgson, Keith O; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Andersson, Inger; Bajt, Saša; Barthelmess, Miriam; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Kirian, Richard; Hunter, Mark; Doak, R Bruce; Marchesini, Stefano; Hau-Riege, Stefan P; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Schmidt, Carlo; Foucar, Lutz; Kimmel, Nils; Holl, Peter; Rudek, Benedikt; Erk, Benjamin; Hömke, André; Reich, Christian; Pietschner, Daniel; Weidenspointner, Georg; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Schlichting, Ilme; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Chapman, Henry N; Hajdu, Janos

    2011-02-01

    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies. PMID:21293374

  13. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes

    NASA Astrophysics Data System (ADS)

    Mor, Flavio M.; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-01

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λem = 532 nm) at half the excitation wavelength (λex = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET).Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal

  14. Single-particle characterization of soil samples collected at various arid areas of China, using low-Z particle electron probe X-ray microanalysis☆

    NASA Astrophysics Data System (ADS)

    Kim, HyeKyeong; Hwang, HeeJin; Ro, Chul-Un

    2006-04-01

    Individual soil particles collected at arid areas of China are analyzed using a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis (EPMA). The major chemical species encountered in soil samples are SiO 2, aluminosilicates, CaCO 3, Fe-containing particles, and carbonaceous particles. Aluminosilicate particles are the most abundant in soil samples, followed by SiO 2 particles. For soil samples collected at Loess plateau nearby the Yellow river, aluminosilicate and CaCO 3 species are more abundantly observed than for soil samples collected at the Tengger and the Hungshandake deserts. Whereas, sand desert soils have higher content of SiO 2 than loess soils. In this work, using the low- Z particle EPMA, it is clearly demonstrated that the relative abundances of each chemical species significantly vary among soil samples. The frequencies to encounter aluminosilicates and the contents of minor elements in aluminosilicate-containing particles are different between soil samples. Also, the contents of calcite, dolomite, and Fe-containing particles vary from sample to sample. This kind of detailed information on chemical composition of source soils could be useful for the identification of the source region of mineral particles in aerosol samples and in the research of chemical modification of Asian Dust particles during long-range transport.

  15. Single-Particle Laboratory Studies of Heterogeneous H2O and HCl Processing on Clean and H2SO4-Coated Aluminum Oxide Particles

    NASA Astrophysics Data System (ADS)

    Hunter, A. J.; Sonnenfroh, D. M.; Rawlins, W. T.

    2001-12-01

    Aluminum oxide particles exhausted from solid rocket motors may affect tropospheric and stratospheric radiative balance through nucleation and growth of water ice clouds, both locally in launch corridors and globally. These particles also are active toward chemisorption of HCl and dissociative chemisorption of CFCs. Plume particle surfaces are likely to contain H2SO4, possibly altering their activities toward uptake and chemical processing of HCl and HNO3. We have investigated activities of different types of aluminum oxide particles for uptake of gas-phase H2O and HCl, using a single-particle electrodynamic levitation apparatus. The particle types investigated were clean and H2SO4-treated alpha-Al2O3 and gamma-Al2O3. We also investigated metastable Al2O3 particles formed by rapid cooling from molten particles in a shock tube, analogous to particle processing in a rocket exhaust nozzle. Particles were treated with H2SO4 by vapor deposition in an oven. The kinetic measurements consisted of independent, simultaneous observations of mass uptake and particle size increase upon exposure of single levitated particles to fixed concentrations of H2O or HCl in slowly flowing gas mixtures at 1 atm. Alpha and gamma Al2O3 were essentially inert toward H2O and HCl uptake, however they readily adsorbed monolayer-equivalent levels of H2SO4 vapor. H2SO4-coated and metastable particles were active toward H2O and HCl uptake. The measured uptake efficiencies imply fast reaction rates within rocket exhaust plumes, potentially leading to CCN behavior as well as heterogeneous chlorine activation by these particles. This research was supported by the Air Force Office of Scientific Research.

  16. Electron correlations in single-electron capture from helium by fast protons and α particles

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan; Milojević, Nenad

    2010-02-01

    Single-electron capture from heliumlike atomic systems by bare projectiles is investigated by means of the four-body boundary-corrected first Born approximation (CB1-4B). The effect of the dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The quantum-mechanical post and prior transition amplitudes for single charge exchange encompassing symmetric and/or asymmetric collisions are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. An illustrative computation is performed for single-electron capture from helium by protons and α particles at intermediate and high impact energies. The role of dynamic correlations is examined as a function of increased projectile energy. The validity and utility of the proposed CB1-4B method is critically assessed in comparison with the existing experimental data for total cross sections, and excellent agreement is obtained.

  17. Precision Experiments with Single Particles in Ion Traps for Tests of Fundamental Interactions

    NASA Astrophysics Data System (ADS)

    Quint, Wolfgang

    2007-06-01

    Ion trap technology has made it possible to store, cool and observe single ions or ensembles of few ions under well controlled experimental conditions and at very low temperatures [1]. Single particles in traps allow for clean investigations of basic interactions and also for the determination of fundamental constants. This has been demonstrated by investigations of Quantum Electrodynamics (QED) with respect to the g-factor of the free electron [2] and of the electron bound in hydrogen-like carbon and oxygen [3], which form the most precise determinations of the fine-structure constant and of the mass of the electron, respectively. A precision test of CPT invariance has been performed in a proton-antiproton mass comparison with single particles in a Penning trap [4]. Optical quantum jump spectroscopy with single laser-cooled ions in rf traps has paved the way for optical frequency standards and for the investigation of a possible variation of fundamental constants. With the novel technique of deceleration, trapping and cooling, even high-accuracy experiments with highly charged ions up to uranium U91+ will be possible at the HITRAP facility at GSI Darmstadt [5]. [1] Observation of a Phase Transition of Stored Laser-Cooled Ions, F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther, Phys. Rev. Lett. 59, 2931 (1987) [2] New Determination of the Fine Structure Constant from the Electron g Value and QED, G. Gabrielse et al., Phys. Rev. Lett. 97, 030802 (2006). [3] New Determination of the Electron's Mass, T. Beier et al., Phys. Rev. Lett. 88, 011603 (2002). [4] Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles, G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999). [5] Trapping ions of hydrogen-like uranium: The HITRAP project at GSI, T. Beier et al., NIM B 235, 473 (2005).

  18. Surface Enhanced Raman Spectroscopy (SERS) of Atmospheric Particles and Single Particle pH from Raman Microspectroscopy: Tools to Provide Greater Chemical Detail about Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Craig, R. L.; Bondy, A. L.

    2015-12-01

    The ability to probe the chemical complexity and physicochemical properties of individual organic aerosols and organic-inorganic mixtures is needed to improve our understanding of their formation and evolution in the atmosphere, as well as their impacts on climate. This work will describe two new methods being developed to probe individual particles with Raman microspectroscopy: SERS provides unprecedented sensitivity regarding the functional groups present and single particle pH provide a direct probe of atmospheric particle acidity Surface enhanced Raman spectroscopy (SERS) generates enhanced Raman signal and has been applied to atmospheric aerosol particles and model systems in the laboratory, leading to enhancements of 101-102. This has allowed rich vibrational spectra to be observed for submicron particles, with detailed functional group and phase state information. Single particle pH is been developed to allow direct observation of individual particle pH through a combination of a spectral approach and an independent method based on changes in diameter at different relative humidities. Together these provide an independent check and an important improvement on indirect methods to allow detailed chemical studies. Together, the new SERS and single particle pH methods have the potential to improve our understanding of atmospheric organic aerosol mechanisms and evolution in the atmosphere.

  19. Kinetics of single and dual infection of calves with an Asian atypical bovine pestivirus and a highly virulent strain of bovine viral diarrhoea virus 1.

    PubMed

    Larska, Magdalena; Polak, Mirosław P; Riitho, Victor; Strong, Rebecca; Belák, Sándor; Alenius, Stefan; Uttenthal, Åse; Liu, Lihong

    2012-07-01

    Atypical bovine pestiviruses related to bovine viral diarrhoea virus (BVDV) have recently been detected in cattle from South America, Asia and Europe. The purpose of this study was to compare the clinical and virological aspects of dual infection with BVDV-1 (Horton 916) and an Asian atypical bovine pestivirus (Th/04_KhonKaen) in naïve calves, in comparison to single infections. Milder clinical signs were observed in the animals infected with single Th/04_KhonKaen strain. Leukocytopenia and lymphocytopenia were observed in all infected groups at a similar level which correlated with the onset of viraemia. Co-infection with both viruses led to prolonged fever in comparison to single strain inoculated groups and simultaneous replication of concurrent viruses in blood and in the upper respiratory tract. Following the infections all the calves seroconverted against homologous strains. Atypical pestiviruses pose a serious threat to livestock health and BVDV eradication, since they may have the potential to be widely spread in cattle populations without being detected and differentiated from other BVDV infections.

  20. Probing particle size distributions in natural surface waters from 15 nm to 2 microm by a combination of LIBD and single-particle counting.

    PubMed

    Walther, Clemens; Büchner, Sebastian; Filella, Montserrat; Chanudet, Vincent

    2006-09-15

    We present a technique for measuring colloid size distributions between 15 nm and 2 microm at concentrations relevant to natural surface waters. Two particle-measuring methods are combined: laser-induced breakdown detection (LIBD), which allows the quantification of colloid size distributions below 400 nm, and a commercial single-particle counter that extends the accessible size range up to two mum. Centrifugation was used in order to separate micrometer sized particles for the LIBD measurement. The feasibility is demonstrated on water of Lake Brienz (Switzerland) and the River Pfinz (Germany) and the particle size distributions follow Pareto's law even down to 15 nm in both cases.

  1. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.

    PubMed

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J P; de Pablo, Pedro J; Mateu, Mauricio G

    2012-06-01

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.

  2. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    SciTech Connect

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  3. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    DOE PAGES

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively highermore » photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.« less

  4. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  5. "Depth-Profiling" and Quantitative Characterization of the Size, Composition, Shape, Density, and Morphology of Fine Particles with SPLAT, a Single-Particle Mass Spectrometer

    SciTech Connect

    Zelenyuk, Alla; Yang, Juan; Song, Chen; Zaveri, Rahul A.; Imre, Dan G.

    2008-01-31

    A significant fraction of atmospheric particles are composed of inorganic substances that are mixed or coated with organics. The behavior of these particles depends on the particle internal composition and on the arrangement of the specific constituents in each particle. It is important to know which constituent is on the surface and whether it entirely covers the particle surface. We present a study that demonstrates that an instrumental system that includes an ultra-sensitive single particle mass spectrometer that is coupled with a differential mobility analyzer can be used to quantitatively measure in real-time individual particle composition, size, density, shape and determine which substance is on the surface and whether it entirely covers the particle. Here we use liquid dioctyl phthalate to coat NaCl seeds and generate spherical particles that are encapsulated with the organic coat and pyrene, a solid poly aromatic hydrocarbon, to produce aspherical particles with pyrene nodules and exposed NaCl cores. We show that the behavior of the mass spectral intensities as a function of laser fluence yields information that can be used to determine the morphological distribution of individual particles constituents.

  6. Optical microscopy as a comparative analytical technique for single-particle dissolution studies.

    PubMed

    Svanbäck, Sami; Ehlers, Henrik; Yliruusi, Jouko

    2014-07-20

    Novel, simple and cost effective methods are needed to replace advanced chemical analytical techniques, in small-scale dissolution studies. Optical microscopy of individual particles could provide such a method. The aim of the present work was to investigate and verify the applicability of optical microscopy as an analytical technique for drug dissolution studies. The evaluation was performed by comparing image and chemical analysis data of individual dissolving particles. It was shown that the data obtained by image analysis and UV-spectrophotometry produced practically identical dissolution curves, with average similarity and difference factors above 82 and below 4, respectively. The relative standard deviation for image analysis data, of the studied particle size range, varied between 1.9% and 3.8%. Consequently, it is proposed that image analysis can be used, on its own, as a viable analytical technique in single-particle dissolution studies. The possibility for significant reductions in sample preparation, operational cost, time and substance consumption gives optical detection a clear advantage over chemical analytical methods. Thus, image analysis could be an ideal and universal analytical technique for rapid small-scale dissolution studies.

  7. Single particle optical investigation of gold shell enhanced upconverted fluorescence emission

    NASA Astrophysics Data System (ADS)

    Green, Kory; Lim, Shuang Fang; Hallen, Hans

    2014-03-01

    Upconverting nanoparticles (UCNPs) excited in the near IR offer novel advantages as fluorescent contrast agents, allowing for background free bio-imaging. However, their fluorescence brightness is hampered by low quantum efficiency due to the low absorption cross section of Ytterbium and Erbium ions in the near IR. We enhance the efficiency of these particles by investigating the plasmonic coupling of 30nm diameter core NaYF4: Yb, Er upconverting particles (UCNPs) with a gold shell coating. An enhancement of green emission by a factor of five and a three times overall increase in emission intensity has been achieved for single particle spectra. UV-Vis absorption has confirmed the surface plasmon resonance (SPR) of the gold shell to the near IR and transmission electron microscope (TEM) images demonstrates successful growth of a gold shell around the upconversion particle. Time-resolved spectroscopy shows that gold shell coupling changes the lifetime of the energy levels of the Erbium ion that are relevant to the emission process.

  8. Single-particle measurements of phase partitioning between primary and secondary organic aerosols.

    PubMed

    Robinson, Ellis Shipley; Donahue, Neil M; Ahern, Adam T; Ye, Qing; Lipsky, Eric

    2016-07-18

    Organic aerosols provide a measure of complexity in the urban atmosphere. This is because the aerosols start as an external mixture, with many populations from varied local sources, that all interact with each other, with background aerosols, and with condensing vapors from secondary organic aerosol formation. The externally mixed particle populations start to evolve immediately after emission because the organic molecules constituting the particles also form thermodynamic mixtures - solutions - in which a large fraction of the constituents are semi-volatile. The external mixtures are thus well out of thermodynamic equilibrium, with very different activities for many constituents, and yet also have the capacity to relax toward equilibrium via gas-phase exchange of semi-volatile vapors. Here we describe experiments employing quantitative single-particle mass spectrometry designed to explore the extent to which various primary organic aerosol particle populations can interact with each other or with secondary organic aerosols representative of background aerosol populations. These methods allow us to determine when these populations will and when they will not mix with each other, and then to constrain the timescales for that mixing.

  9. Mapping out spin and particle conductances of a single-mode channel with tunable interactions

    NASA Astrophysics Data System (ADS)

    Lebrat, Martin; Krinner, Sebastian; Grenier, Charles; Husmann, Dominik; Häusler, Samuel; Nakajima, Shuta; Brantut, Jean-Philippe; Esslinger, Tilman

    2016-05-01

    We study particle and spin transport in a single-mode quantum point contact, shaped by light potentials onto a charge neutral, quantum degenerate gas of 6 Li fermions with tunable interactions. The spin and particle conductances are measured as a function of chemical potential or confinement, covering weak attraction, where quantized conductance is observed, to the strongly interacting superfluid regime. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of superfluidity. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid: it shows conductance plateaus at non-universal values continuously increasing from 1/h to 4/h, as the interaction strength is increased from weak to intermediate. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. This anomalous quantization is incompatible with a Fermi liquid description, shedding new light on the nature of the strongly attractive Fermi gas in the normal phase.

  10. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  11. Formation of nanowires via single particle-triggered linear polymerization of solid-state aromatic molecules.

    PubMed

    Horio, Akifumi; Sakurai, Tsuneaki; Lakshmi, G B V S; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Seki, Shu

    2016-08-11

    Nanowires occupy a prestigious place in nanoelectronics, nanomechanics, and biomimetics. Although there are notable methods to grow nanowires via self-assembly, there is a key drawback in the need to find out the specific conditions appropriate for each system. In this sense, universal techniques to fabricate such nanowires from various organic materials have been sought for the continued progress of the related research field. Here we report one of the promising and facile methodologies to quantitatively produce nanowires with controlled geometrical parameters. In this method, referred to as "Single Particle-Triggered Linear Polymerization (STLiP)", organic thin films on a supporting substrate were irradiated with high-energy charged particles, accelerated by particle accelerators. Each particle penetrates from the top of the films to the substrate while gradually releasing kinetic energy along its trajectory (ion track), generating reactive intermediates such as radical species that eventually induce propagation reactions. The resulting polymerized products were integrated into nanowires with uniform diameter and length that can be isolated via development with appropriate organic solvents. Considering the widely applicable nature of STLiP to organic materials, the present technique opens a new door for access to a number of functional nanowires and their assembly.

  12. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    PubMed

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively.

  13. Qualitatively different collective and single-particle dynamics in a supercooled liquid.

    PubMed

    Priya, Madhu; Bidhoodi, Neeta; Das, Shankar P

    2015-12-01

    The equations of fluctuating nonlinear hydrodynamics for a two component mixture are obtained with a proper choice of slow variables which correspond to the conservation laws in the system. Using these nonlinear equations we construct the basic equations of the mode coupling theory (MCT) and consequent ergodic-nonergodic (ENE) transition in a binary mixture. The model is also analyzed in the one component limit of the mixture to study the dynamics of a tagged particle in the sea of identical particles. According to the existing MCT, dynamics of the single-particle correlation is slaved to that of the collective density fluctuations and, hence, both correlations freeze simultaneously at the ENE transition. We show here from a nonperturbative approach that at the ENE transition, characterized by the freezing of the long time limit of the dynamic correlation of collective density fluctuations to a nonzero value, the tagged-particle correlation still decays to zero. Our result implies that the point at which simulation or experimental data of the self-diffusion constant extrapolate to zero would not correspond to the ENE transition of simple MCT. PMID:26764693

  14. Qualitatively different collective and single-particle dynamics in a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Priya, Madhu; Bidhoodi, Neeta; Das, Shankar P.

    2015-12-01

    The equations of fluctuating nonlinear hydrodynamics for a two component mixture are obtained with a proper choice of slow variables which correspond to the conservation laws in the system. Using these nonlinear equations we construct the basic equations of the mode coupling theory (MCT) and consequent ergodic-nonergodic (ENE) transition in a binary mixture. The model is also analyzed in the one component limit of the mixture to study the dynamics of a tagged particle in the sea of identical particles. According to the existing MCT, dynamics of the single-particle correlation is slaved to that of the collective density fluctuations and, hence, both correlations freeze simultaneously at the ENE transition. We show here from a nonperturbative approach that at the ENE transition, characterized by the freezing of the long time limit of the dynamic correlation of collective density fluctuations to a nonzero value, the tagged-particle correlation still decays to zero. Our result implies that the point at which simulation or experimental data of the self-diffusion constant extrapolate to zero would not correspond to the ENE transition of simple MCT.

  15. Formation of nanowires via single particle-triggered linear polymerization of solid-state aromatic molecules.

    PubMed

    Horio, Akifumi; Sakurai, Tsuneaki; Lakshmi, G B V S; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Seki, Shu

    2016-08-11

    Nanowires occupy a prestigious place in nanoelectronics, nanomechanics, and biomimetics. Although there are notable methods to grow nanowires via self-assembly, there is a key drawback in the need to find out the specific conditions appropriate for each system. In this sense, universal techniques to fabricate such nanowires from various organic materials have been sought for the continued progress of the related research field. Here we report one of the promising and facile methodologies to quantitatively produce nanowires with controlled geometrical parameters. In this method, referred to as "Single Particle-Triggered Linear Polymerization (STLiP)", organic thin films on a supporting substrate were irradiated with high-energy charged particles, accelerated by particle accelerators. Each particle penetrates from the top of the films to the substrate while gradually releasing kinetic energy along its trajectory (ion track), generating reactive intermediates such as radical species that eventually induce propagation reactions. The resulting polymerized products were integrated into nanowires with uniform diameter and length that can be isolated via development with appropriate organic solvents. Considering the widely applicable nature of STLiP to organic materials, the present technique opens a new door for access to a number of functional nanowires and their assembly. PMID:27355341

  16. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  17. Automatic enumeration of gold nanomaterials at the single-particle level.

    PubMed

    Xu, Xiao; Li, Tian; Xu, Zhongxing; Wei, Hejia; Lin, Ruoyun; Xia, Bin; Liu, Feng; Li, Na

    2015-03-01

    In this study, we developed a highly sensitive automatic counting method for gold nanomaterials at the single particle level, which can serve as a general sensing platform based on counting of gold nanomaterials. This method substantially improved the sensitivity and accuracy for AuNP counting by adopting the color image processing based on the distinctive localized plasmonic light-scattering of gold nanomaterials. The 60-nm AuNPs, with concentrations down to 4 fM, can be detected with our method. As a universal counting approach for gold nanomaterials, such as gold nanospheres, nanorods, and aggregates from particles under detectable size, this quantification method should be versatile to a breadth of applications.

  18. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments

    SciTech Connect

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; Hahn, Robert von; Klinkhamer, Vincent; Vogel, Stephen; Wolf, Andreas; Krantz, Claude; Novotný, Oldřich; Schippers, Stefan

    2015-02-15

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK’s Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  19. Single-Particle Refinement and Variability Analysis in EMAN2.1.

    PubMed

    Ludtke, S J

    2016-01-01

    CryoEM single-particle reconstruction has been growing rapidly over the last 3 years largely due to the development of direct electron detectors, which have provided data with dramatic improvements in image quality. It is now possible in many cases to produce near-atomic resolution structures, and yet 2/3 of published structures remain at substantially lower resolutions. One important cause for this is compositional and conformational heterogeneity, which is both a resolution-limiting factor and presenting a unique opportunity to better relate structure to function. This manuscript discusses the canonical methods for high-resolution refinement in EMAN2.12, and then considers the wide range of available methods within this package for resolving structural variability, targeting both improved resolution and additional knowledge about particle dynamics. PMID:27572727

  20. Single-Particle Refinement and Variability Analysis in EMAN2.1.

    PubMed

    Ludtke, S J

    2016-01-01

    CryoEM single-particle reconstruction has been growing rapidly over the last 3 years largely due to the development of direct electron detectors, which have provided data with dramatic improvements in image quality. It is now possible in many cases to produce near-atomic resolution structures, and yet 2/3 of published structures remain at substantially lower resolutions. One important cause for this is compositional and conformational heterogeneity, which is both a resolution-limiting factor and presenting a unique opportunity to better relate structure to function. This manuscript discusses the canonical methods for high-resolution refinement in EMAN2.12, and then considers the wide range of available methods within this package for resolving structural variability, targeting both improved resolution and additional knowledge about particle dynamics.