Science.gov

Sample records for single viral particles

  1. LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA.

    PubMed Central

    Weeks, R; Aline, R F; Myler, P J; Stuart, K

    1992-01-01

    The 32-nm-diameter spherical viral particles found in the cytoplasm of Leishmania guyanensis CUMC1-1A sediment at 130S and have a buoyant density of approximately 1.4 g/ml in cesium chloride gradients. These particles contain a 5.3-kb double-stranded RNA, while single-stranded RNA that corresponds to the viral positive strand is associated with less-dense particles. These results suggest a conservative and sequential mode of LRV1 viral RNA replication that is exemplified by the ScV L-A virus of yeast. Images PMID:1738198

  2. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  3. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  4. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  5. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    PubMed

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  6. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 104 particles ml-1. The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  7. A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system.

    PubMed

    Brown, Matthew R; Johnson, Sarah A; Brorson, Kurt A; Lute, Scott C; Roush, David J

    2017-07-01

    Multi-modal anion exchange resins combine properties of both anion exchange and hydrophobic interaction chromatography for commercial protein polishing and may provide some viral clearance as well. From a regulatory viral clearance claim standpoint, it is unclear if multi-modal resins are truly orthogonal to either single-mode anion exchange or hydrophobic interaction columns. To answer this, a strategy of solute surface assays and High Throughput Screening of resin in concert with a scale-down model of large scale chromatography purification was employed to determine the predominant binding mechanisms of a panel of bacteriophage (i.e., PR772, PP7, and ϕX174) to multi-modal and single mode resins under various buffer conditions. The buffer conditions were restricted to buffer environments suggested by the manufacturer for the multi-modal resin. Each phage was examined for estimated net charge expression and relative hydrophobicity using chromatographic based methods. Overall, PP7 and PR772 bound to the multimodal resin via both anionic and hydrophobic moieties, while ϕX174 bound predominantly by the anionic moiety. Biotechnol. Bioeng. 2017;114: 1487-1494. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Trapping mammalian protein complexes in viral particles

    PubMed Central

    Eyckerman, Sven; Titeca, Kevin; Van Quickelberghe, Emmy; Cloots, Eva; Verhee, Annick; Samyn, Noortje; De Ceuninck, Leentje; Timmerman, Evy; De Sutter, Delphine; Lievens, Sam; Van Calenbergh, Serge; Gevaert, Kris; Tavernier, Jan

    2016-01-01

    Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. PMID:27122307

  9. A single particle energies

    SciTech Connect

    Bodmer, A.R. |; Usmani, Q.N.; Sami, M.

    1993-09-01

    We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.

  10. {Lambda} single particle energies

    SciTech Connect

    Usmani, Q.N.; Bodmer, A.R. |

    1999-11-01

    The {Lambda} single-particle energies B{sub {Lambda}} of hypernuclei (HN) are calculated microscopically using the Fermi hypernetted chain method to obtain for our {Lambda}N and {Lambda}NN potentials the {Lambda} binding D({rho}) to nuclear matter, and the effective mass m{sub {Lambda}}{sup {asterisk}}({rho}) at densities {rho}{le}{rho}{sub 0} ({rho}{sub 0} is normal nuclear density), and also the corresponding effective {Lambda}N and {Lambda}NN potentials. The {Lambda} core-nucleus potential U{sub {Lambda}}(r) is obtained by suitably folding these into the core density. The Schr{umlt o}dinger equation for U{sub {Lambda}} and m{sub {Lambda}}{sup {asterisk}} is solved for B{sub {Lambda}}. The fringing field (FF) due to the finite range of the effective potentials is theoretically required. We use a dispersive {Lambda}NN potential but also include a phenomenological {rho} dependence allowing for less repulsion for {rho}{lt}{rho}{sub 0}, i.e., in the surface. The best fits to the data with a FF give a large {rho} dependence, equivalent to an {ital A} dependent strength consistent with variational calculations of {sub {Lambda}}{sup 5}He, indicating an effective {Lambda}NN dispersive potential increasingly repulsive with {ital A} whose likely interpretation is in terms of dispersive plus two-pion-exchange {Lambda}NN potentials. The well depth is 29{plus_minus}1&hthinsp;MeV. The {Lambda}N space-exchange fraction corresponds to m{sub {Lambda}}{sup {asterisk}}({rho}){approx}0.75{endash}0.80 and a ratio of {ital p}- to {ital s}-state potentials of {approx}0.5{plus_minus}0.1. Charge symmetry breaking (CSB) is significant for heavy HN with a large neutron excess; with a FF the strength agrees with that obtained from the A=4&hthinsp;HN. The fits without FF are excellent but inconsistent with the requirement for a FF, with {sub {Lambda}}{sup 5}He, and also with the CSB sign for A=4. {copyright} {ital 1999} {ital The American Physical Society}

  11. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  12. Exploring viral infection using single-cell sequencing.

    PubMed

    Rato, Sylvie; Golumbeanu, Monica; Telenti, Amalio; Ciuffi, Angela

    2016-11-02

    Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication.

  13. In situ measurements of viral particles diffusion inside mucoid biofilms.

    PubMed

    Lacroix-Gueu, Pascaline; Briandet, Romain; Lévêque-Fort, Sandrine; Bellon-Fontaine, Marie-Noëlle; Fontaine-Aupart, Marie-Pierre

    2005-12-01

    Fluorescence correlation spectroscopy (FCS) under two-photon excitation was used successfully to characterize the diffusion properties of model virus particles (bacteriophages) in bacterial biofilm of Stenotrophonas maltophilia. The results are compared to those obtained with fluorescent latex beads used as a reference. The FCS data clearly demonstrated the possibility for viral particles to penetrate inside the exopolymeric matrix of mucoid biofilms, and hence to benefit from its protective effect toward antimicrobials (antibiotics and biocides). Microbial biofilms should hence be considered as potential reservoirs of pathogenic viruses, and are probably responsible for numerous persistent viral infections.

  14. Quantitative real-time single particle analysis of virions

    PubMed Central

    Heider, Susanne; Metzner, Christoph

    2014-01-01

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. PMID:24999044

  15. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  16. Colocalization of Different Influenza Viral RNA Segments in the Cytoplasm before Viral Budding as Shown by Single-molecule Sensitivity FISH Analysis

    PubMed Central

    Chou, Yi-ying; Heaton, Nicholas S.; Gao, Qinshan; Palese, Peter; Singer, Robert; Lionnet, Timothée

    2013-01-01

    The Influenza A virus genome consists of eight negative sense, single-stranded RNA segments. Although it has been established that most virus particles contain a single copy of each of the eight viral RNAs, the packaging selection mechanism remains poorly understood. Influenza viral RNAs are synthesized in the nucleus, exported into the cytoplasm and travel to the plasma membrane where viral budding and genome packaging occurs. Due to the difficulties in analyzing associated vRNPs while preserving information about their positions within the cell, it has remained unclear how and where during cellular trafficking the viral RNAs of different segments encounter each other. Using a multicolor single-molecule sensitivity fluorescence in situ hybridization (smFISH) approach, we have quantitatively monitored the colocalization of pairs of influenza viral RNAs in infected cells. We found that upon infection, the viral RNAs from the incoming particles travel together until they reach the nucleus. The viral RNAs were then detected in distinct locations in the nucleus; they are then exported individually and initially remain separated in the cytoplasm. At later time points, the different viral RNA segments gather together in the cytoplasm in a microtubule independent manner. Viral RNAs of different identities colocalize at a high frequency when they are associated with Rab11 positive vesicles, suggesting that Rab11 positive organelles may facilitate the association of different viral RNAs. Using engineered influenza viruses lacking the expression of HA or M2 protein, we showed that these viral proteins are not essential for the colocalization of two different viral RNAs in the cytoplasm. In sum, our smFISH results reveal that the viral RNAs travel together in the cytoplasm before their arrival at the plasma membrane budding sites. This newly characterized step of the genome packaging process demonstrates the precise spatiotemporal regulation of the infection cycle. PMID

  17. Immunological and Biochemical Characterization of Coxsackie Virus A16 Viral Particles

    PubMed Central

    Chong, Pele; Guo, Meng-Shin; Lin, Fion Hsiao-Yu; Hsiao, Kuang-Nan; Weng, Shu-Yang; Chou, Ai-Hsiang; Wang, Jen-Ren; Hsieh, Shih-Yang; Su, Ih-Jen; Liu, Chia-Chyi

    2012-01-01

    Background Coxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available. Principal Finding In this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >106 the tissue culture's infectious dose (TCID50) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10−5 was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24–28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35–38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176–190. Conclusion These results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary. PMID:23226233

  18. Functional Role of Infective Viral Particles on Metal Reduction

    SciTech Connect

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans and the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.

  19. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter.

    PubMed

    Brady-Estévez, Anna S; Nguyen, Thanh H; Gutierrez, Leonardo; Elimelech, Menachem

    2010-07-01

    This study investigates the effectiveness of a single-walled carbon nanotube (SWNT) filter for removal of viruses from water. MS2 bacteriophage viral removal was examined over a range of environmentally relevant solution chemistries, spanning various ionic strengths, monovalent and divalent salts, pH, and natural organic matter (NOM) concentrations. Viral removal by the SWNT filter was governed by physicochemical (depth) filtration. The removal of viruses increased at higher ionic strengths (NaCl) due to suppression of repulsive electrostatic interactions between viruses and SWNTs. Addition of divalent salts, however, had varying impacts. While CaCl(2) increased virus removal, likely due to complexation of calcium ions to viral surfaces, addition of MgCl(2) reduced viral removal by the SWNT filter. Solution pH also had significant impact on viral removal as the interactions between viral particles and SWNTs changed from attractive below the virus isoelectric point (about pH 3.9) to repulsive at higher pH. Suwannee River NOM was shown to be detrimental to filter viral removal. Reduction of viral removal by NOM was attributed to adsorption of NOM macromolecules to viruses and SWNTs, thereby resulting in steric repulsive forces. Modifications of the filter to incorporate thicker SWNT layers mitigate the negative impacts of NOM on filter performance. This study has shown that while it is possible to attain high levels of viral removal over a broad range of solution chemistries, the extent of viral removal will be highly dependent on the specific solution chemistry of the treated water.

  20. Sequencing viral genomes from a single isolated plaque.

    PubMed

    Depew, Jessica; Zhou, Bin; McCorrison, Jamison M; Wentworth, David E; Purushe, Janaki; Koroleva, Galina; Fouts, Derrick E

    2013-06-06

    Whole genome sequencing of viruses and bacteriophages is often hindered because of the need for large quantities of genomic material. A method is described that combines single plaque sequencing with an optimization of Sequence Independent Single Primer Amplification (SISPA). This method can be used for de novo whole genome next-generation sequencing of any cultivable virus without the need for large-scale production of viral stocks or viral purification using centrifugal techniques. A single viral plaque of a variant of the 2009 pandemic H1N1 human Influenza A virus was isolated and amplified using the optimized SISPA protocol. The sensitivity of the SISPA protocol presented here was tested with bacteriophage F_HA0480sp/Pa1651 DNA. The amplified products were sequenced with 454 and Illumina HiSeq platforms. Mapping and de novo assemblies were performed to analyze the quality of data produced from this optimized method. Analysis of the sequence data demonstrated that from a single viral plaque of Influenza A, a mapping assembly with 3590-fold average coverage representing 100% of the genome could be produced. The de novo assembled data produced contigs with 30-fold average sequence coverage, representing 96.5% of the genome. Using only 10 pg of starting DNA from bacteriophage F_HA0480sp/Pa1651 in the SISPA protocol resulted in sequencing data that gave a mapping assembly with 3488-fold average sequence coverage, representing 99.9% of the reference and a de novo assembly with 45-fold average sequence coverage, representing 98.1% of the genome. The optimized SISPA protocol presented here produces amplified product that when sequenced will give high quality data that can be used for de novo assembly. The protocol requires only a single viral plaque or as little as 10 pg of DNA template, which will facilitate rapid identification of viruses during an outbreak and viruses that are difficult to propagate.

  1. Quantitative real-time single particle analysis of virions

    SciTech Connect

    Heider, Susanne; Metzner, Christoph

    2014-08-15

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. - Highlights: • We introduce four methods for virus particle-based quantification of viruses. • They allow for quantification of a wide range of samples in under an hour time. • The additional measurement of size and zeta potential is possible for some.

  2. Saha equation, single and two particle states

    NASA Technical Reports Server (NTRS)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  3. {Lambda} single-particle energies

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1995-08-01

    We are continuing our work on the {Lambda} hyperon single-particle (s.p.) energies and their interpretation in terms of the basic {Lambda}-nuclear interactions. In particular we are interpreting the results obtained by S.C. Pieper, A. Usmani and Q.N. Usmani. We obtain about 30 MeV for the repulsive contribution of the three-body {Lambda}NN forces in nuclear matter. We are able to exclude purely {open_quotes}dispersive{close_quotes} {Lambda}NN forces. We are investigating the mix of dispersive and two-pion-exchange {Lambda}NN forces which provide a fit to the s.p. data. For interactions, which provide a fit to the s.p. data, the {Lambda} binding energy as a function of the nuclear matter density shows characteristic saturation features with a maximum at a density not very different from that of normal nuclear matter. We obtain a more precise measure of the space-exchange part of the {Lambda}-nuclear force than was previously available, corresponding to an exchange parameter {approx_equal} 0.32. The space-exchange force is rather directly related to the effective mass of a {Lambda} in the nuclear medium and turns out to be about 70% of its free mass. As a result, we also obtain a much better value for the p-state {Lambda}-nucleus potential which is about 40% of the s-state potential. The A binding to nuclear matter is determined to be {approx_equal} 28 MeV.

  4. Single particle diversity and mixing state measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Riemer, N.; Wenger, J. C.; Murphy, M.; West, M.; Poulain, L.; Wiedensohler, A.; O'Connor, I. P.; McGillicuddy, E.; Sodeau, J. R.; Evans, G. J.

    2014-02-01

    A newly developed framework for quantifying aerosol particle diversity and mixing state based on information-theoretic entropy is applied for the first time to single particle mass spectrometry field data. Single particle mass fraction estimates for black carbon, organic aerosol, ammonium, nitrate and sulphate, derived using single particle mass spectrometer, aerosol mass spectrometer and multi-angle absorption photometer measurements are used to calculate single particle species diversity (Di). The average single particle species diversity (Dα) is then related to the species diversity of the bulk population (Dγ) to derive a mixing state index value (χ) at hourly resolution. The mixing state index is a single parameter representation of how internally/externally mixed a particle population is at a given time. The index describes a continuum, with values of 0% and 100% representing fully external and internal mixing, respectively. This framework was applied to data collected as part of the MEGAPOLI winter campaign in Paris, France 2010. Di values are low (∼2) for fresh traffic and woodburning particles that contain high mass fractions of black carbon and organic aerosol but low mass fractions of inorganic ions. Conversely, Di values are higher (∼4) for aged carbonaceous particles containing similar mass fractions of black carbon, organic aerosol, ammonium, nitrate and sulphate. Aerosol in Paris is estimated to be 59% internally mixed in the size range 150-1067 nm, and mixing state is dependent both upon time of day and air mass origin. Daytime primary emissions associated with vehicular traffic and woodburning result in low χ values, while enhanced condensation of ammonium nitrate on existing particles at night leads to higher χ values. Advection of particles from continental Europe containing ammonium, nitrate and sulphate leads to increases in Dα, Dγ and χ. The mixing state index represents a useful metric by which to compare and contrast ambient

  5. Single particle diversity and mixing state measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Riemer, N.; Wenger, J. C.; Murphy, M.; West, M.; Poulain, L.; Wiedensohler, A.; O'Connor, I. P.; McGillicuddy, E.; Sodeau, J. R.; Evans, G. J.

    2014-06-01

    A newly developed framework for quantifying aerosol particle diversity and mixing state based on information-theoretic entropy is applied for the first time to single particle mass spectrometry field data. Single particle mass fraction estimates for black carbon, organic aerosol, ammonium, nitrate and sulfate, derived using single particle mass spectrometer, aerosol mass spectrometer and multi-angle absorption photometer measurements are used to calculate single particle species diversity (Di). The average single particle species diversity (Dα) is then related to the species diversity of the bulk population (Dγ) to derive a mixing state index value (χ) at hourly resolution. The mixing state index is a single parameter representation of how internally/externally mixed a particle population is at a given time. The index describes a continuum, with values of 0 and 100% representing fully external and internal mixing, respectively. This framework was applied to data collected as part of the MEGAPOLI winter campaign in Paris, France, 2010. Di values are low (~ 2) for fresh traffic and wood-burning particles that contain high mass fractions of black carbon and organic aerosol but low mass fractions of inorganic ions. Conversely, Di values are higher (~ 4) for aged carbonaceous particles containing similar mass fractions of black carbon, organic aerosol, ammonium, nitrate and sulfate. Aerosol in Paris is estimated to be 59% internally mixed in the size range 150-1067 nm, and mixing state is dependent both upon time of day and air mass origin. Daytime primary emissions associated with vehicular traffic and wood-burning result in low χ values, while enhanced condensation of ammonium nitrate on existing particles at night leads to higher χ values. Advection of particles from continental Europe containing ammonium, nitrate and sulfate leads to increases in Dα, Dγ and χ. The mixing state index represents a useful metric by which to compare and contrast ambient particle

  6. A KDEL Retrieval System for ER-Golgi Transport of Japanese Encephalitis Viral Particles.

    PubMed

    Wang, Robert Y L; Wu, Yu-Jen; Chen, Han-Shan; Chen, Chih-Jung

    2016-02-05

    Evidence has emerged that RNA viruses utilize the host secretory pathway for processing and trafficking mature viral particles and for exiting the infected cells. Upon completing the complex assembly process, the viral particles take advantage of the cellular secretory trafficking machinery for their intracellular trafficking toward the Golgi organelle and budding or export of virions. In this study, we showed that Japanese encephalitis virus (JEV)-induced extracellular GRP78 contains no KDEL motif using an anti-KDEL-specific antibody. Overexpression of the KDEL-truncated GRP78 in the GPR78 knocked down cells significantly reduced JEV infectivity, suggesting that the KDEL motif is required for GRP78 function in the release of JE viral particles. In addition, we demonstrated the KDELR protein, an ER-Golgi retrieval system component, is associated with viral envelope proteins and is engaged in the subcellular localization of viral particles in Golgi. More importantly, accumulation of intracellular virions was observed in the KDELR knocked down cells, indicating that the KDELR protein mediated the intracellular trafficking of JE viral particles. Altogether, we demonstrated that intracellular trafficking of JE assembled viral particles was mediated by the host ER-Golgi retrieval system prior to exit by the secretory pathway.

  7. Hydrodynamic trap for single particles and cells

    PubMed Central

    Tanyeri, Melikhan; Johnson-Chavarria, Eric M.; Schroeder, Charles M.

    2010-01-01

    Trapping and manipulation of microscale and nanoscale particles is demonstrated using the sole action of hydrodynamic forces. We developed an automated particle trap based on a stagnation point flow generated in a microfluidic device. The hydrodynamic trap enables confinement and manipulation of single particles in low viscosity (1–10 cP) aqueous solution. Using this method, we trapped microscale and nanoscale particles (100 nm–15 μm) for long time scales (minutes to hours). We demonstrate particle confinement to within 1 μm of the trap center, corresponding to a trap stiffness of ∼10−5–10−4 pN∕nm. PMID:20585593

  8. Localization and force analysis at the single virus particle level using atomic force microscopy.

    PubMed

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-06

    Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    SciTech Connect

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  10. Single particle raster image analysis of diffusion.

    PubMed

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS.

  11. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles.

    PubMed

    Stepanauskas, Ramunas; Fergusson, Elizabeth A; Brown, Joseph; Poulton, Nicole J; Tupper, Ben; Labonté, Jessica M; Becraft, Eric D; Brown, Julia M; Pachiadaki, Maria G; Povilaitis, Tadas; Thompson, Brian P; Mascena, Corianna J; Bellows, Wendy K; Lubys, Arvydas

    2017-07-20

    Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms.Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.

  12. Single-Particle Detection of Transcription following Rotavirus Entry

    PubMed Central

    Salgado, Eric N.; Upadhyayula, Srigokul

    2017-01-01

    pathways. Rotaviruses, like most viruses that lack membranes of their own, disrupt or perforate the intracellular, membrane-enclosed compartment into which they become engulfed following attachment to a cell surface, in order to gain access to the cell interior. The properties of rotavirus particles make it possible to determine molecular mechanisms for these entry steps. In the work described here, we have asked the following question: what fraction of the rotavirus particles that penetrate into the cell make new viral RNA? We find that of the cell-attached particles, between 20 and 50% ultimately penetrate, and of these, about 10% make RNA. RNA synthesis by even a single virus particle can initiate a productive infection. PMID:28701394

  13. Single particle maximum likelihood reconstruction from superresolution microscopy images

    PubMed Central

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation. PMID:28253349

  14. Single particle maximum likelihood reconstruction from superresolution microscopy images.

    PubMed

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation.

  15. Assembly of viral particles in Xenopus oocytes: pre-surface-antigens regulate secretion of the hepatitis B viral surface envelope particle.

    PubMed Central

    Standring, D N; Ou, J H; Rutter, W J

    1986-01-01

    Infection with hepatitis B virus (HBV) is associated with the production of a viral envelope particle that contains membrane lipids, surface antigen (S), and two presurface-antigens (pre-S) comprised of the entire S moiety with approximately 55 (pre-S2) and 174 (pre-S1) additional NH2-terminal amino acids. We show here that Xenopus oocytes injected with synthetic S mRNA assemble and secrete characteristic 22-nm viral envelope particles. In contrast, pre-S1 and pre-S2 antigens are synthesized but not secreted. By coinjecting mRNAs, we found that synthesis of high levels of pre-S proteins specifically inhibits S antigen secretion. On the other hand, high levels of S synthesis can drive the secretion of small amounts of either pre-S antigen. These observations are consistent with a model for viral envelope assembly in which both S and pre-S proteins are incorporated into a multimeric particle, presumably via interactions between the S protein domains, while the pre-S amino-terminal moieties regulate the secretion of this structure. Our results indicate that Xenopus oocytes will provide a powerful system for studying the morphogenesis of simple structures of viral or cellular origin. Images PMID:3467308

  16. Subviral Hepatitis B Virus Filaments, like Infectious Viral Particles, Are Released via Multivesicular Bodies

    PubMed Central

    Jiang, Bingfu; Himmelsbach, Kiyoshi; Ren, Huimei; Boller, Klaus

    2015-01-01

    ABSTRACT In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies. PMID:26719264

  17. Gene Expression Correlates with the Number of Herpes Viral Genomes Initiating Infection in Single Cells

    PubMed Central

    Cohen, Efrat M.

    2016-01-01

    Viral gene expression varies significantly among genetically identical cells. The sources of these variations are not well understood and have been suggested to involve both deterministic host differences and stochastic viral host interactions. For herpesviruses, only a limited number of incoming viral genomes initiate expression and replication in each infected cell. To elucidate the effect of this limited number of productively infecting genomes on viral gene expression in single cells, we constructed a set of fluorescence-expressing genetically tagged herpes recombinants. The number of different barcodes originating from a single cell is a good representative of the number of incoming viral genomes replicating (NOIVGR) in that cell. We identified a positive correlation between the NOIVGR and viral gene expression, as measured by the fluorescent protein expressed from the viral genome. This correlation was identified in three distinct cell-types, although the average NOIVGR per cell differed among these cell-types. Among clonal single cells, high housekeeping gene expression levels are not supportive of high viral gene expression, suggesting specific host determinants effecting viral infection. We developed a model to predict NOIVGR from cellular parameters, which supports the notion that viral gene expression is tightly linked to the NOIVGR in single-cells. Our results support the hypothesis that the stochastic nature of viral infection and host cell determinants contribute together to the variability observed among infected cells. PMID:27923068

  18. Gene Expression Correlates with the Number of Herpes Viral Genomes Initiating Infection in Single Cells.

    PubMed

    Cohen, Efrat M; Kobiler, Oren

    2016-12-01

    Viral gene expression varies significantly among genetically identical cells. The sources of these variations are not well understood and have been suggested to involve both deterministic host differences and stochastic viral host interactions. For herpesviruses, only a limited number of incoming viral genomes initiate expression and replication in each infected cell. To elucidate the effect of this limited number of productively infecting genomes on viral gene expression in single cells, we constructed a set of fluorescence-expressing genetically tagged herpes recombinants. The number of different barcodes originating from a single cell is a good representative of the number of incoming viral genomes replicating (NOIVGR) in that cell. We identified a positive correlation between the NOIVGR and viral gene expression, as measured by the fluorescent protein expressed from the viral genome. This correlation was identified in three distinct cell-types, although the average NOIVGR per cell differed among these cell-types. Among clonal single cells, high housekeeping gene expression levels are not supportive of high viral gene expression, suggesting specific host determinants effecting viral infection. We developed a model to predict NOIVGR from cellular parameters, which supports the notion that viral gene expression is tightly linked to the NOIVGR in single-cells. Our results support the hypothesis that the stochastic nature of viral infection and host cell determinants contribute together to the variability observed among infected cells.

  19. Single Particle Analysis of Ice Forming Aerosols

    NASA Astrophysics Data System (ADS)

    Cziczo, Daniel J.; Kulkarni, Gourihar; Pratt, Kerri; Pekour, Mikahil; Hallar, Gannet; McCubbin, Ian

    2010-05-01

    During January and February of 2010 ice forming aerosol particles were analyzed at Storm Peak Laboratory in north-central Colorado in the USA. Atmospheric particles were acquired through an isokinetic inlet during periods when free-tropospheric conditions with minimal local influence existed. The particles were then subject to low temperature and high relative humidity in order to mimic cloud formation conditions. Particles which nucleated ice were separated using a counterflow virtual impactor. The size and chemical composition of the ice nuclei was then characterized in situ using a single particle mass spectrometer . Samples were also collected for off line electron microscopic analysis. A particular emphasis was placed on determination of fractions associated with anthropogenic activity and biogenic components.

  20. Quantum fingerprinting with a single particle

    SciTech Connect

    Massar, S.

    2005-01-01

    We show that the two-slit experiment in which a single quantum particle interferes with itself can be interpreted as a quantum fingerprinting protocol: the interference pattern exhibited by the particle contains information about the environment it encountered in the slits which would require much more communication to learn classically than is required quantum mechanically. An extension to the case where the particle has many internal degrees of freedom is suggested, and its interpretation is discussed. The interpretation of these results is discussed in detail, and a possible experimental realization is proposed.

  1. Single-particle levels in cluster potentials

    NASA Astrophysics Data System (ADS)

    Della Rocca, V.; Bijker, R.; Iachello, F.

    2017-10-01

    We calculate single-particle levels in potentials with Z2 (dumbbell), D3h (triangle) and Td (tetrahedral) symmetry, appropriate to the α-cluster structure of 8Be, 12C and 16O respectively. We suggest that these can be used to study, within the framework of a cluster shell model (CSM), kα + x nucleon structures, with k = 2 , 3 , 4 and x = 1 , 2 , …, in particular the single particle (x = 1) structures 9Be, 9B; 13C, 13N; 17O, 17F.

  2. Nanoscale three-dimensional single particle tracking

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélie; Lamb, Don C.

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for

  3. Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population

    PubMed Central

    Rupar, Matevž; Gutierrez-Aguirre, Ion; Curk, Tomaž; Kreuze, Jan F.

    2015-01-01

    ABSTRACT RNA viruses exist within a host as a population of mutant sequences, often referred to as quasispecies. Within a host, sequences of RNA viruses constitute several distinct but interconnected pools, such as RNA packed in viral particles, double-stranded RNA, and virus-derived small interfering RNAs. We aimed to test if the same representation of within-host viral population structure could be obtained by sequencing different viral sequence pools. Using ultradeep Illumina sequencing, the diversity of two coexisting Potato virus Y sequence pools present within a plant was investigated: RNA isolated from viral particles and virus-derived small interfering RNAs (the derivatives of a plant RNA silencing mechanism). The mutational landscape of the within-host virus population was highly similar between both pools, with no notable hotspots across the viral genome. Notably, all of the single-nucleotide polymorphisms with a frequency of higher than 1.6% were found in both pools. Some unique single-nucleotide polymorphisms (SNPs) with very low frequencies were found in each of the pools, with more of them occurring in the small RNA (sRNA) pool, possibly arising through genetic drift in localized virus populations within a plant and the errors introduced during the amplification of silencing signal. Sequencing of the viral particle pool enhanced the efficiency of consensus viral genome sequence reconstruction. Nonhomologous recombinations were commonly detected in the viral particle pool, with a hot spot in the 3′ untranslated and coat protein regions of the genome. We stress that they present an important but often overlooked aspect of virus population diversity. IMPORTANCE This study is the most comprehensive whole-genome characterization of a within-plant virus population to date and the first study comparing diversity of different pools of viral sequences within a host. We show that both virus-derived small RNAs and RNA from viral particles could be used for

  4. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research

    PubMed Central

    Weinbauer, M.G.; Bettarel, Y.; Cattaneo, R.; Luef, B.; Maier, C.; Motegi, C.; Peduzzi, P.; Mari, X.

    2016-01-01

    Viral abundance and processes in the water column and sediments are well studied for some systems; however, we know relatively little about virus–host interactions on particles and how particles influence these interactions. Here we review virus–prokaryote interactions on inorganic and organic particles in the water column. Profiting from recent methodological progress, we show that confocal laser scanning microscopy in combination with lectin and nucleic acid staining is one of the most powerful methods to visualize the distribution of viruses and their hosts on particles such as organic aggregates. Viral abundance on suspended matter ranges from 105 to 1011 ml−1. The main factors controlling viral abundance are the quality, size and age of aggregates and the exposure time of viruses to aggregates. Other factors such as water residence time likely act indirectly. Overall, aggregates appear to play a role of viral scavengers or reservoirs rather than viral factories. Adsorption of viruses to organic aggregates or inorganic particles can stimulate growth of the free-living prokaryotic community, e.g. by reducing viral lysis. Such mechanisms can affect microbial diversity, food web structure and biogeochemical cycles. Viral lysis of bacterio- and phytoplankton influences the formation and fate of aggregates and can, for example, result in a higher stability of algal flocs. Thus, viruses also influence carbon export; however, it is still not clear whether they short-circuit or prime the biological pump. Throughout this review, emphasis has been placed on defining general problems and knowledge gaps in virus–particle interactions and on providing avenues for further research, particularly those linked to global change. PMID:27478304

  5. Small synthetic ligands for the enrichment of viral particles pseudotyped with amphotropic murine leukemia virus envelope.

    PubMed

    Fernandes, Cláudia S M; Castro, Rute; Coroadinha, Ana Sofia; Roque, A Cecília A

    2016-03-18

    Retroviral vectors gained popularity toward other viral vectors as they integrate their genome into hosts' genome, a characteristic required for the modification of stem cells. However, the production of viable particles for gene therapy is hampered by the low ratio of infectious to non-infectious viral particles after purification, low titers and limited number of competent viral receptors. We have developed de novo two fully synthetic triazine-based ligands that can selectively bind retroviral particles pseudotyped with amphotropic murine leukemia virus envelope (AMPHO4070A). A 78-membered library of triazine-based ligands was designed in silico and was virtually screened against the modeled structure of the AMPHO4070A protein. Ligands displaying the highest energy of binding were synthesized on cross-linked agarose and experimentally tested. Adsorbents containing ligands A5A10 and A10A11 showed selectivity toward viral particles containing the target protein (VLP-AMPHO), binding 19 ± 5 μg/g support and 47 ± 13 μg/g support, respectively. The elution conditions for both ligands were mild and with high recovery yields (80-100%), in comparison with common purification practices. These results were based on a lab-scale experimental setting with VLP integrity being confirmed through TEM. In particular, the elution buffer containing 12 mM imidazole allowed the recovery of intact amphotropic viral particles.

  6. Single Particle Tomography in EMAN2

    PubMed Central

    Galaz-Montoya, Jesús G.; Flanagan, John; Schmid, Michael F.; Ludtke, Steven J.

    2015-01-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. PMID:25956334

  7. Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles

    PubMed Central

    Aebischer, Patrick

    2013-01-01

    Abstract Recombinant adeno-associated viral (AAV) vectors of serotypes 6, 8, and 9 were characterized as tools for gene delivery to dopaminergic neurons in the substantia nigra for future gene therapeutic applications in Parkinson's disease. While vectors of all three serotypes transduced nigral dopaminergic neurons with equal efficiency when directly injected to the substantia nigra, AAV6 was clearly superior to AAV8 and AAV9 for retrograde transduction of nigral neurons after striatal delivery. For sequential transduction of nigral dopaminergic neurons, the combination of AAV9 with AAV6 proved to be more powerful than AAV8 with AAV6 or repeated AAV6 administration. Surprisingly, single-stranded viral genomes persisted in nigral dopaminergic neurons within cell bodies and axon terminals in the striatum, and intact assembled AAV capsid was enriched in nuclei of nigral neurons, 4 weeks after virus injections to the substantia nigra. 6-Hydroxydopamine (6-OHDA)–induced degeneration of dopaminergic neurons in the substantia nigra reduced the number of viral genomes in the striatum, in line with viral genome persistence in axon terminals. However, 6-OHDA–induced axonal degeneration did not induce any transsynaptic spread of AAV infection in the striatum. Therefore, the potential presence of viral particles in axons may not represent an important safety issue for AAV gene therapy applications in neurodegenerative diseases. PMID:23600720

  8. Single particle sources and quantum heat fluctuations

    NASA Astrophysics Data System (ADS)

    Battista, F.

    2014-10-01

    The miniaturisation of electronic devices has been a well-known trend in engineering over almost 50 years. The technological advancement in the field can now provide an astonishing control of charge transport in mesoscopic structures. Single particle pumping, namely the control in time and space of the flow of an arbitrarily small number of electrons or holes, has been realised in various kind of structure with, in some cases, very high accuracies. The first half of the manuscript provides a brief overview of different experimental realisations of single particle sources. Though these devices allow to minimise charge fluctuations in the charge current, because of Heisenberg's uncertainty principle, the emitted particles are characterised by energy fluctuations. The consequences of it are of great relevance and presented in the second part of the paper.

  9. Localization and force analysis at the single virus particle level using atomic force microscopy

    SciTech Connect

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  10. Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell

    PubMed Central

    Akpinar, Fulya; Inankur, Bahar

    2016-01-01

    ABSTRACT When viruses infect their host cells, they can make defective virus-like particles along with intact virus. Cells coinfected with virus and defective particles often exhibit interference with virus growth caused by the competition for resources by defective genomes. Recent reports of the coexistence and cotransmission of such defective interfering particles (DIPs) in vivo, across epidemiological length and time scales, suggest a role in viral pathogenesis, but it is not known how DIPs impact infection spread, even under controlled culture conditions. Using fluorescence microscopy, we quantified coinfections of vesicular stomatitis virus (VSV) expressing a fluorescent reporter protein and its DIPs on BHK-21 host cell monolayers. We found that viral gene expression was more delayed, infections spread more slowly, and patterns of spread became more “patchy” with higher DIP inputs to the initial cell. To examine how infection spread might depend on the behavior of the initial coinfected cell, we built a computational model, adapting a cellular automaton (CA) approach to incorporate kinetic data on virus growth for the first time. Specifically, changes in observed patterns of infection spread could be directly linked to previous high-throughput single-cell measures of virus-DIP coinfection. The CA model also provided testable hypotheses on the spatial-temporal distribution of the DIPs, which remain governed by their predator-prey interaction. More generally, this work offers a data-driven computational modeling approach for better understanding of how single infected cells impact the multiround spread of virus infections across cell populations. IMPORTANCE Defective interfering particles (DIPs) compete with intact virus, depleting host cell resources that are essential for virus growth and infection spread. However, it is not known how such competition, strong or weak, ultimately affects the way in which infections spread and cause disease. In this study

  11. Active cAMP-dependent protein kinase incorporated within highly purified HIV-1 particles is required for viral infectivity and interacts with viral capsid protein.

    PubMed

    Cartier, Christine; Hemonnot, Bénédicte; Gay, Bernard; Bardy, Martine; Sanchiz, Céline; Devaux, Christian; Briant, Laurence

    2003-09-12

    Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein.

  12. Signaling with a single-particle system

    NASA Astrophysics Data System (ADS)

    Jensen, Raymond W.

    2009-03-01

    In this article, an argument is presented for the possibility of a device which permits transmission of signals faster than the speed of light (FTLC), even retro-causally. The method relies on sending digital information to a receiver through the appearance and disappearance of an interference pattern. The purpose here is not to present a device which is practical for FTLC. It is to circumvent the myth that FTLC will not work with correlated systems of particles, because a coincidence circuit is needed to see the interference patterns. Thus, the argument is restricted to single-particle systems.

  13. Prevention of radioactive indicator and viral particle transmission with an ointment barrier

    SciTech Connect

    Oz, M.C.; Newbold, J.E.; Lemole, G.M. )

    1991-02-01

    The objective of this study was to determine the efficacy of a lanolin-based gel in preventing radioactive particle and viral penetration. Paired, stacked filter discs were held in a stainless steel support, and the gel was applied manually to the upper surface of the upper filter. Indicator solution containing either radioactive viral particles (3H-labeled simian virus 40 or 3H-labeled woodchuck hepatitis virus) or 20 microliters or 100 microliters of 32P-labeled radioactive compounds of much lower molecular weight then were applied to the upper filter. The filter discs were separated after 30 minutes, and the lower disc was examined for radioactivity in a liquid scintillation counter. Transmission of radioactive particles was statistically significantly reduced by the application of the ointment on the upper filter (from 6.7 +/- 0.1 x 10(5) counts per minute (cpm) to 88 +/- 38 cpm). Transmission of both labeled viral particles also was reduced to a similar degree. Application of protective ointment to the filters significantly reduces transmission of radioactive viral particles and smaller radioactive compounds through filter discs. Use of this ointment may offer similar mechanical protection against the transmission of viruses between patient and healthcare provider.

  14. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    PubMed

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  15. Single particle raster image analysis of diffusion for particle mixtures.

    PubMed

    Longfils, M; Röding, M; Altskär, A; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-09-01

    Recently we complemented the raster image correlation spectroscopy (RICS) method of analysing raster images via estimation of the image correlation function with the method single particle raster image analysis (SPRIA). In SPRIA, individual particles are identified and the diffusion coefficient of each particle is estimated by a maximum likelihood method. In this paper, we extend the SPRIA method to analyse mixtures of particles with a finite set of diffusion coefficients in a homogeneous medium. In examples with simulated and experimental data with two and three different diffusion coefficients, we show that SPRIA gives accurate estimates of the diffusion coefficients and their proportions. A simple technique for finding the number of different diffusion coefficients is also suggested. Further, we study the use of RICS for mixtures with two different diffusion coefficents and investigate, by plotting level curves of the correlation function, how large the quotient between diffusion coefficients needs to be in order to allow discrimination between models with one and two diffusion coefficients. We also describe a minor correction (compared to published papers) of the RICS autocorrelation function. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  16. Chemotherapy targeting by DNA capture in viral protein particles

    PubMed Central

    Agadjanian, Hasmik; Chu, David; Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Rentsendorj, Altan; Song, Lei; Valluripalli, Vinod; Lubow, Jay; Ma, Jun; Sharifi, Behrooz; Farkas, Daniel L; Medina-Kauwe, Lali K

    2012-01-01

    Aim This study tests the hypothesis that DNA intercalation and electrophilic interactions can be exploited to noncovalently assemble doxorubicin in a viral protein nanoparticle designed to target and penetrate tumor cells through ligand-directed delivery. We further test whether this new paradigm of doxorubicin targeting shows therapeutic efficacy and safety in vitro and in vivo. Materials & methods We tested serum stability, tumor targeting and therapeutic efficacy in vitro and in vivo using biochemical, microscopy and cytotoxicity assays. Results Self-assembly formed approximately 10-nm diameter serum-stable nanoparticles that can target and ablate HER2+ tumors at >10× lower dose compared with untargeted doxorubicin, while sparing the heart after intravenous delivery. The targeted nanoparticle tested here allows doxorubicin potency to remain unaltered during assembly, transport and release into target cells, while avoiding peripheral tissue damage and enabling lower, and thus safer, drug dose for tumor killing. Conclusion This nanoparticle may be an improved alternative to chemical conjugates and signal-blocking antibodies for tumor-targeted treatment. PMID:22385197

  17. Single-particle states in transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  18. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  19. Efficiency of single-particle engines

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian

    2015-09-01

    We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

  20. Single Metal Particles Nanoscale Friction and Wear

    NASA Astrophysics Data System (ADS)

    Ling, Xing; Kappl, Michael

    2009-06-01

    The sliding behavior between single pairs of gold and carbonyl iron particles with diameters of 5-10 μm were studied by Friction Force Microscopy. Normal load between the particles during friction was varied in the range of 0-3 μN. For the gold particles, two different wear regimes could be observed. At lower loads, only mild wear was observed, probably due to the typical organic contamination layer. At higher loads, strong wear of the gold surface was observed due to direct metallic contact. For the sliding between CIP, only mild wear was observed possibly due to the protective oxide layers which prevented the formaton of direct metallic contacts. The evolution of friction between the sliding particles was quantitively examined by use of inverse cumulative distribution functions, which allowed to correlate the increase in friction with the change in surface topography. During mild wear, the friction in the sliding area was found to change with the local radius of curvature and to increase nearly linear with increasing load. Within this regime, the dependence of friction F on load W followed the relation F = μW+F0. The values μ and F0 obtained from different combinations of particles were 0.42±0.26 and 106±104 nN for gold and 0.36±0.16 and 43±41 nN for iron respectively.

  1. Single soil particle or an aggregate?

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Kovács, József; Szabó, Boglárka; Szalai, Zoltán; Jakab, Gergely

    2017-04-01

    The knowledge of particle size distribution (PSD) of the soil is essential in many soil-related studies, as well as in erosional studies. Not only single particles are translocated during erosion process, but also aggregates of various size. Both of these types are responsible for either the redistribution of the nutrients and organic matter or for their in situ accumulation. The mentioned selectivity, the detachment and the early stage of the transport phase of the erosion were studied. Are the factors as slope or moisture content have an effect on the aggregate/particle size distribution of the runoff in case of the same soil sample? Which fraction dominates in the soil and the runoff? Laboratory rainfall simulation experiments were applied for six different treatments: detailed studies were made on the aggregate size distribution of the runoff and the particle size distribution of the aggregate size classes. The results showed the followings: 1) the >1mm macroaggregate fraction, which dominated the control sample (40%) was missing in the soil loss; 2) the ratio of microaggregates was increased (from 30% to 70%). The ratio of >50µm fraction was smaller in steeper slope and the fraction of 50-250µm decreased to its half under extremely dry or saturated condition. The PSD histograms were similar per fraction in each treatment, but the shape of the PSD histograms suggested that there were unbroken aggregates in the sample. As we concluded, the real question could be, if it is really needed to measure particles. It could it also be possible that if a small (60-110 µm) aggregate (which is still stable after drop erosion and transportation) could be chemically broken down or it has to be counted with as a particle during modelling? The used particle size analyser was purchased with the support of KMOP project no. 4.2.1/ B-10-2011-0002. The authors gratefully acknowledge this support.

  2. Single-particle and single-hole spectra in UCa

    SciTech Connect

    Jing Xiao-gong; Li Cheng-zu; Yang Shan-de; Wu Shi-shu

    1987-07-01

    The single-particle (sp) and single-hole spectra in UCa are calculated with the Paris potential by two methods: (1) the eigenvalue equation derived from the sp Green function and (2) the sp potential u/sub //sub US / = M/sub //sub US /(epsilon/sub US /) defined in terms of the mass operator M/sub //sub US /( ). The energy dependence of G matrix is taken into account rigorously. Our results agree with the experimental values fairly well. It is found that the Paris potential yields a somewhat better result than the RSC potential.

  3. Characterization of inherent particles and mechanism of thermal stress induced particle formation in HSV-2 viral vaccine candidate.

    PubMed

    Li, Lillian; Kirkitadze, Marina; Bhandal, Kamaljit; Roque, Cristopher; Yang, Eric; Carpick, Bruce; Rahman, Nausheen

    2017-09-14

    Vaccine formulations may contain visible and/or subvisible particles, which can vary in both size and morphology. Extrinsic particles, which are particles not part of the product such as foreign contaminants, are generally considered undesirable and should be eliminated or controlled in injectable products. However, biological products, in particular vaccines, may also contain particles that are inherent to the product. Here we focus on the characterization of visible and subvisible particles in a live, replication-deficient viral vaccine candidate against HSV genital herpes in an early developmental stage. HSV-2 viral vaccine were characterized using a panel of analytical methods, including Fourier transform infrared spectroscopy (FTIR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, liquid chromatography-mass spectrometry (LC-MS), light microscopy, transmission electron microscopy (TEM), micro-flow imaging (MFI), dynamic light scattering (DLS), right angle light scattering (RALS), and intrinsic fluorescence. Particles in HSV-2 vaccine typically ranged from hundreds of nanometers to hundreds of micrometers in size and were determined to be inherent to the product. The infectious titer did not correlate with any trend in subvisible particle concentration and size distribution as shown by DLS, MFI, and TEM under stressed conditions. This suggested that particle changes in the submicron range were related to HSV-2 virion structure and had direct impact on biological activity. It was also observed that subvisible and visible particles could induce aggregation in the viral product. The temperature induced aggregation was observed by RALS, intrinsic fluorescence, and DLS. The increase of subvisible particle size with temperature could be fitted to a two-step thermokinetic model. Visible and subvisible particles were found to be inherent to the HSV-2 viral vaccine product. The mechanism of protein aggregation was discussed and a two

  4. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly.

    PubMed

    Wang, Robert Y L; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone.

  5. Single-domain intrabodies against hepatitis C virus core inhibit viral propagation and core-induced NFκB activation.

    PubMed

    Suzuki, Ryosuke; Saito, Kenji; Matsuda, Mami; Sato, Mitsuru; Kanegae, Yumi; Shi, Guoli; Watashi, Koichi; Aizaki, Hideki; Chiba, Joe; Saito, Izumu; Wakita, Takaji; Suzuki, Tetsuro

    2016-04-01

    Hepatitis C virus (HCV) core plays a key role in viral particle formation and is involved in viral pathogenesis. Here, constructs for single-domain intrabodies consisting of variable regions derived from mouse mAbs against HCV core were established. Expressed single-domain intrabodies were shown to bind to HCV core, and inhibit the growth of cell culture-produced HCV derived from JFH-1 (genotype 2a) and a TH (genotype 1b)/JFH-1 chimera. Adenovirus vectors expressing intrabodies were also capable of reducing HCV propagation. Intrabody expression did not affect viral entry or genome replication of single-round infectious trans-complemented HCV particles. However, intrabody expression reduced intracellular and extracellular infectious titres in CD81-defective Huh7-25 cells transfected with the HCV genome, suggesting that these intrabodies impair HCV assembly. Furthermore, intrabody expression suppressed HCV core-induced NFκB promoter activity. These intrabodies may therefore serve as tools for elucidating the role of core in HCV pathogenesis.

  6. Cryo-electron microscopy single particle reconstruction of virus particles using compressed sensing theory

    NASA Astrophysics Data System (ADS)

    Kim, Min Woo; Choi, Jiyoung; Yu, Liu; Lee, Kyung Eun; Han, Sung-Sik; Ye, Jong Chul

    2007-02-01

    Sparse object supports are often encountered in many imaging problems. For such sparse objects, recent theory of compressed sensing tells us that accurate reconstruction of objects are possible even from highly limited number of measurements drastically smaller than the Nyquist sampling limit by solving L I minimization problem. This paper employs the compressed sensing theory for cryo-electron microscopy (cryo-EM) single particle reconstruction of virus particles. Cryo-EM single particle reconstruction is a nice application of the compressed sensing theory because of the following reasons: 1) in some cases, due to the difficulty in sample collection, each experiment can obtain micrographs with limited number of virus samples, providing undersampled projection data, and 2) the nucleic acid of a viron is enclosed within capsid composed of a few proteins; hence the support of capsid in 3-D real space is quite sparse. In order to minimize the L I cost function derived from compressed sensing, we develop a novel L I minimization method based on the sliding mode control theory. Experimental results using synthetic and real virus data confirm that the our algorithm provides superior reconstructions of 3-D viral structures compared to the conventional reconstruction algorithms.

  7. Stochastic magnetization dynamics in single domain particles

    NASA Astrophysics Data System (ADS)

    Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2013-06-01

    Magnetic particles are largely utilized in several applications ranging from magnetorheological fluids to bioscience and from nanothechnology to memories or logic devices. The behavior of each single particle at finite temperature (under thermal stochastic fluctuations) plays a central role in determining the response of the whole physical system taken into consideration. Here, the magnetization evolution is studied through the Landau-Lifshitz-Gilbert formalism and the non-equilibrium statistical mechanics is introduced with the Langevin and Fokker-Planck methodologies. As result of the combination of such techniques we analyse the stochastic magnetization dynamics and we numerically determine the convergence time, measuring the velocity of attainment of thermodynamic equilibrium, as function of the system temperature.

  8. Single port access holographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Woodruff, S. D.; Richards, G. A.; Cha, D. J.

    An optical system, which requires only a single optical window mounted on a test volume, is proposed for holographic particle image velocimetry (HPIV). The optical system is a derivative of the double-exposure, double-reference-beam, off-axis HPIV system, but the innovative idea behind the system is to use back scattered light from the particles as the object wave. A 45 degree beam splitter inserted in front of the window serves to admit the illuminating beam and extract the back scattered light. This concept can be of great engineering interest because optical access is often limited to one window in practical devices. The preliminary results of the technique appear quite promising, with current studies aimed at defining the optical resolution capabilities.

  9. Single port access holographic particle image velocimetry

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.; Cha, D.J.

    1995-07-01

    An optical system, which requires only a single optical window mounted on a test volume, is proposed for holographic particle image velocimetry (HPIV). The optical system is a derivative of the double-exposure, double-reference-beam, off-axis HPIV system, but the innovative idea behind the system is to use back scattered light from the particles as the object wave. A 45{degree} beam splitter inserted in front of the window serves to admit the illuminating beam and extract the back scattered light. This concept can be of great engineering interest because optical access is often limited to one window in practical devices. The preliminary results of the technique appear quite promising, with current studies aimed at defining the optical resolution capabilities.

  10. Viral genome segmentation can result from a trade-off between genetic content and particle stability.

    PubMed

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-03-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.

  11. Transmission of innate immune signaling by packaging of cGAMP in viral particles.

    PubMed

    Gentili, Matteo; Kowal, Joanna; Tkach, Mercedes; Satoh, Takeshi; Lahaye, Xavier; Conrad, Cécile; Boyron, Marilyn; Lombard, Bérangère; Durand, Sylvère; Kroemer, Guido; Loew, Damarys; Dalod, Marc; Théry, Clotilde; Manel, Nicolas

    2015-09-11

    Infected cells detect viruses through a variety of receptors that initiate cell-intrinsic innate defense responses. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a cytosolic sensor for many DNA viruses and HIV-1. In response to cytosolic viral DNA, cGAS synthesizes the second messenger 2'3'-cyclic GMP-AMP (cGAMP), which activates antiviral signaling pathways. We show that in cells producing virus, cGAS-synthesized cGAMP can be packaged in viral particles and extracellular vesicles. Viral particles efficiently delivered cGAMP to target cells. cGAMP transfer by viral particles to dendritic cells activated innate immunity and antiviral defenses. Finally, we show that cell-free murine cytomegalovirus and Modified Vaccinia Ankara virus contained cGAMP. Thus, transfer of cGAMP by viruses may represent a defense mechanism to propagate immune responses to uninfected target cells. Copyright © 2015, American Association for the Advancement of Science.

  12. Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    PubMed Central

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C.; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-01-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. PMID:21437265

  13. Single-particle study of protein assembly

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2001-10-01

    A study of protein assembly in solution with single-particle imaging and reconstruction techniques using cryoelectron microscopy is reported. The human glutamine synthetase enzyme, important in brain metabolism, and previously assumed to be assembled into a homogeneous quaternary structure, is found to be heterogeneous, with three oligomeric states that co-exist at room temperature. This result corrects an old structural and kinetic model determined by ensemble averaging techniques that assumed a homogeneous system. Unexpectedly fast protein dissociation kinetics results from a stabilized transition state.

  14. Carnot process with a single particle

    NASA Astrophysics Data System (ADS)

    Hoppenau, J.; Niemann, M.; Engel, A.

    2013-06-01

    We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. BJPCBFK1520-610610.1021/jp0455428 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.

  15. Carnot process with a single particle.

    PubMed

    Hoppenau, J; Niemann, M; Engel, A

    2013-06-01

    We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.

  16. Discovery of a Novel Single-Stranded DNA Virus from a Sea Turtle Fibropapilloma by Using Viral Metagenomics▿

    PubMed Central

    Ng, Terry Fei Fan; Manire, Charles; Borrowman, Kelly; Langer, Tammy; Ehrhart, Llewellyn; Breitbart, Mya

    2009-01-01

    Viral metagenomics, consisting of viral particle purification and shotgun sequencing, is a powerful technique for discovering viruses associated with diseases with no definitive etiology, viruses that share limited homology with known viruses, or viruses that are not culturable. Here we used viral metagenomics to examine viruses associated with sea turtle fibropapillomatosis (FP), a debilitating neoplastic disease affecting sea turtles worldwide. By means of purifying and shotgun sequencing the viral community directly from the fibropapilloma of a Florida green sea turtle, a novel single-stranded DNA virus, sea turtle tornovirus 1 (STTV1), was discovered. The single-stranded, circular genome of STTV1 was approximately 1,800 nucleotides in length. STTV1 has only weak amino acid level identities (25%) to chicken anemia virus in short regions of its genome; hence, STTV1 may represent the first member of a novel virus family. A total of 35 healthy turtles and 27 turtles with FP were tested for STTV1 using PCR, and only 2 turtles severely afflicted with FP were positive. The affected turtles were systemically infected with STTV1, since STTV1 was found in blood and all major organs. STTV1 exists as a quasispecies, with several genome variants identified in the fibropapilloma of each positive turtle, suggesting rapid evolution of this virus. The STTV1 variants were identical over the majority of their genomes but contained a hypervariable region with extensive divergence. This study demonstrates the potential of viral metagenomics for discovering novel viruses directly from animal tissue, which can enhance our understanding of viral evolution and diversity. PMID:19116258

  17. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics.

    PubMed

    Ng, Terry Fei Fan; Manire, Charles; Borrowman, Kelly; Langer, Tammy; Ehrhart, Llewellyn; Breitbart, Mya

    2009-03-01

    Viral metagenomics, consisting of viral particle purification and shotgun sequencing, is a powerful technique for discovering viruses associated with diseases with no definitive etiology, viruses that share limited homology with known viruses, or viruses that are not culturable. Here we used viral metagenomics to examine viruses associated with sea turtle fibropapillomatosis (FP), a debilitating neoplastic disease affecting sea turtles worldwide. By means of purifying and shotgun sequencing the viral community directly from the fibropapilloma of a Florida green sea turtle, a novel single-stranded DNA virus, sea turtle tornovirus 1 (STTV1), was discovered. The single-stranded, circular genome of STTV1 was approximately 1,800 nucleotides in length. STTV1 has only weak amino acid level identities (25%) to chicken anemia virus in short regions of its genome; hence, STTV1 may represent the first member of a novel virus family. A total of 35 healthy turtles and 27 turtles with FP were tested for STTV1 using PCR, and only 2 turtles severely afflicted with FP were positive. The affected turtles were systemically infected with STTV1, since STTV1 was found in blood and all major organs. STTV1 exists as a quasispecies, with several genome variants identified in the fibropapilloma of each positive turtle, suggesting rapid evolution of this virus. The STTV1 variants were identical over the majority of their genomes but contained a hypervariable region with extensive divergence. This study demonstrates the potential of viral metagenomics for discovering novel viruses directly from animal tissue, which can enhance our understanding of viral evolution and diversity.

  18. Analysis of the characteristics of single atmospheric particles in Chengdu using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Luo, Bin; Zhang, Jianqiang; Ouyang, Feng; Song, Hongyi; Liu, Peichuan; Cao, Pan; Schäfer, Klaus; Wang, Shigong; Huang, Xiaojuan; Lin, Yongfu

    2017-05-01

    Chengdu, the capital of Sichuan Province and the main city in Sichuan basin, is one of the heavily polluted cities in China. The characteristics of single particles in the atmosphere over Chengdu are critical for the in-depth understanding of their sources, formation mechanisms, and effects. In this study, a continuous ambient aerosol measurement was performed in summer in Chengdu with a single particle aerosol mass spectrometer (SPAMS) and other monitoring instruments. The particulate matter (PM) mass concentrations were low during our study period: PM2.5 and PM10 (aerosol particles with an aerodynamic diameter of less than 2.5 or 10 μm) were 40.5 ± 23.6 μg m-3 and 67.0 ± 38.1 μg m-3, respectively. This was mainly caused by the favorable meteorological conditions during the summer season. Twelve particle types were identified and classified as dust particles (Dust), four types of carbonaceous particles, organic nitrogen and potassium containing particles (KCN), four types of secondary particles, Na-K-containing particles (NaK), and metal-containing particles (Metal). The highest contribution of particles was from potassium with elemental carbon (KEC; 23.0%), and the lowest from elemental carbon (EC; 0.2%). All types of particles showed different diurnal variations and size distributions, which were closely related to their sources and reactions in the atmosphere. The eastern and southern air masses corresponded with high PM2.5 mass concentrations. The contributions of KEC and K-sulfate (KSO4) particles to PM2.5 were clearly higher than those in air masses from the southeast. During polluted days, the contributions of KEC and KSO4 particles increased, while the contributions of organic carbon (OC), combined OC and EC particles (OCEC), and K-nitrate (KNO3) particles decreased. This shows the importance of biomass burning and industrial emissions for the PM2.5 pollution in Chengdu. These results will be useful for the in-depth understanding of the PM2

  19. Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units

    PubMed Central

    Combe, Marine; Garijo, Raquel; Geller, Ron; Cuevas, José M.; Sanjuán, Rafael

    2015-01-01

    Summary Genetic diversity enables a virus to colonize novel hosts, evade immunity, and evolve drug resistance. However, viral diversity is typically assessed at the population level. Given the existence of cell-to-cell variation, it is critical to understand viral genetic structure at the single-cell level. By combining single-cell isolation with ultra-deep sequencing, we characterized the genetic structure and diversity of a RNA virus shortly after single-cell bottlenecks. Full-length sequences from 881 viral plaques derived from 90 individual cells reveal that sequence variants pre-existing in different viral genomes can be co-transmitted within the same infectious unit to individual cells. Further, the rate of spontaneous virus mutation varies across individual cells, and early production of diversity depends on the viral yield of the very first infected cell. These results unravel genetic and structural features of a virus at the single-cell level, with implications for viral diversity and evolution. PMID:26468746

  20. Performance of single mechanoluminescent particle as ubiquitous light source.

    PubMed

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order.

  1. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles

    PubMed Central

    Hoffmann, Marco; Zeisel, Mirjam B.; Jilg, Nikolaus; Paranhos-Baccalà, Glaucia; Stoll-Keller, Françoise; Wakita, Takaji; Hafkemeyer, Peter; Blum, Hubert E.; Barth, Heidi; Henneke, Philipp; Baumert, Thomas F.

    2009-01-01

    Toll-like receptors (TLRs) are pathogen recognition molecules activating the innate immune system. Cell surface expressed TLRs, such as TLR2 and TLR4 have been shown to play an important role in human host defenses against viruses through sensing of viral structural proteins. In this study, we aimed to elucidate whether TLR2 and TLR4 participate in inducing antiviral immunity against hepatitis C virus by sensing viral structural proteins. We studied TLR2 and TLR4 activation by cell-culture derived infectious virions (HCVcc) and serum-derived virions in comparison to purified recombinant HCV structural proteins and enveloped virus-like particles. Incubation of TLR2 or TLR4 transfected cell lines with recombinant core protein resulted in activation of TLR2-dependent signaling. In contrast, neither infectious virions nor enveloped HCV-like particles triggered TLR2 and TLR4 signaling. These findings suggest that monomeric HCV core protein but not intact infectious particles are sensed by TLR2. Impairment of core-TLR interaction in infectious viral particles may contribute to escape from innate antiviral immune responses. PMID:20375602

  2. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  3. Secondary particle emission from sapphire single crystal

    NASA Astrophysics Data System (ADS)

    Minnebaev, K. F.; Khvostov, V. V.; Zykova, E. Yu.; Tolpin, K. A.; Colligon, J. S.; Yurasova, V. E.

    2015-07-01

    Secondary ion emission from sapphire single crystal has been studied experimentally and by means of computer simulation. The particular oscillations of secondary ion energy spectra and two specific maxima of O+ and Al+ ions were observed under irradiation of (0001) sapphire face by 1 and 10 keV Ar+ ions. We have explained this by the interplay of the charge exchange processes between moving particles and solids. The existence of two maxima in energy spectra of O+ and Al+ secondary ions can be also connected with special features of single-crystal sputtering: the low-energy peak can be formed by random sputtering and the high-energy peak from focusing collisions. In addition some similarity was found between the positions of low-energy maximum in energy spectra of Al+ ions emitted from sapphire and the principal maxima of Al+ ions ejected from the aluminum single crystal. This indicates a possibility to explain the presence of low-energy maximum in energy spectra of secondary ions ejecting from sapphire by emission of Al+ ions from aluminum islands appearing in a number of cases on the sapphire surface due to preferential sputtering of oxygen. These different mechanisms of creating the energy spectra of ions emitted from sapphire should be taken in account.

  4. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  5. Dielectrophoretic Traps for Single-Particle Patterning

    PubMed Central

    Rosenthal, Adam; Voldman, Joel

    2005-01-01

    We present a novel microfabricated dielectrophoretic trap designed to pattern large arrays of single cells. Because flowing away untrapped cells is often the rate-limiting step during cell patterning, we designed the trap to be strong enough to hold particles against practical flow rates. We experimentally validated the trap strength by measuring the maximum flow rate that polystyrene beads could withstand while remaining trapped. These bead experiments have shown excellent agreement with our model predictions, without the use of fitting parameters. The model was able to provide us with a fundamental understanding of how the traps work, and additionally allowed us to establish a set of design rules for optimizing the traps for a wide range of cell sizes. We provide the foundations for an enabling technology that can be used to pattern cells in unique ways, allowing us to do novel cell biology experiments at the microscale. PMID:15613624

  6. Single-particle stochastic heat engine

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  7. Single-particle stochastic heat engine.

    PubMed

    Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  8. Visualizing interactions between Sindbis virus and cells by single particle tracking

    NASA Astrophysics Data System (ADS)

    Williard, Mary

    2005-03-01

    Sindbis virus infects both mammalian and insect cells. Though not pathogenic in humans, Sindbis is a model for many mosquito- borne viruses that cause human disease, such as West Nile virus. We have used real-time single particle fluorescence microscopy to observe individual Sindbis virus particles as they infect living cells. Fluorescent labels were incorporated into both the viral coat proteins and the lipid envelope of the virus. Kinetics characteristic of free diffusion in solution, slower diffusion inside cells, attachment to spots on the cell surface, and motor protein transport inside cells have been observed. Dequenching of the membrane label is used to report membrane fusion events during the infection process. Tracking individual viral particles allows multiple pathways to be determined without the requirement of synchronicity.

  9. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph; Flounders, Albert W.; Hughes, Robert C.; Ricco, Antonio J.; Wally, Karl; Kravitz, Stanley H.; Janek, Richard P.

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  10. Single-particle machine for quantum thermalization

    SciTech Connect

    Liao Jieqiao; Dong, H.; Sun, C. P.

    2010-05-15

    The long time accumulation of the random actions of a single particle 'reservoir' on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and 'coherently heated' as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.

  11. Methods for forming particles from single source precursors

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  12. Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles.

    PubMed Central

    Furlong, D B; Nibert, M L; Fields, B N

    1988-01-01

    Electron microscopy revealed structures consisting of long fibers topped with knobs extending from the surfaces of virions of mammalian reoviruses. The morphology of these structures was reminiscent of the fiber protein of adenovirus. Fibers were also seen extending from the reovirus top component and intermediate subviral particles but not from cores, suggesting that the fibers consist of either the mu 1C or sigma 1 outer capsid protein. Amino acid sequence analysis predicts that the reovirus cell attachment protein sigma 1 contains an extended fiber domain (R. Bassel-Duby, A. Jayasuriya, D. Chatterjee, N. Sonenberg, J. V. Maizell, Jr., and B. N. Fields, Nature [London] 315:421-423, 1985). When sigma 1 protein was released from viral particles with mild heat and subsequently obtained in isolation, it was found to have a morphology identical to that of the fiber structures seen extending from the viral particles. The identification of an extended form of sigma 1 has important implications for its function in cell attachment. Other evidence suggests that sigma 1 protein may occur in virions in both an extended and an unextended state. Images PMID:3275434

  13. Single Nanopores in Silicon Nitride Membranes with Applications to Viral Sensing

    SciTech Connect

    Davenport, M W; Healy, K; Teslich, N; Letant, S E; Siwy, Z S

    2012-03-29

    While current viral sensing methods are extremely sensitive, there is still a need for platforms capable of detecting engineered viruses and being integrated into device architectures for point-of-care assessments. Nanopores could provide a single pathway to achieve these goals.

  14. The hepatitis E virus capsid C-terminal region is essential for the viral life cycle: implication for viral genome encapsidation and particle stabilization.

    PubMed

    Shiota, Tomoyuki; Li, Tian-Cheng; Yoshizaki, Sayaka; Kato, Takanobu; Wakita, Takaji; Ishii, Koji

    2013-05-01

    Although the C-terminal 52 amino acids (C52aa) of hepatitis E virus (HEV) capsid are not essential for morphology, the C52aa-encoding region is required for replication. Transfection of a C52aa knockdown mutant showed transient growth, and the earliest population included a majority of noninfectious (possibly empty) particles and a minority of infectious particles with C-terminal capsid degradation. Finally, the complete revertant was generated reproducibly. C52aa is essential for the viral life cycle, promoting accurate encapsidation and stabilizing encapsidated particles.

  15. Characterization of Non-Infectious Virus-Like Particle Surrogates for Viral Clearance Applications.

    PubMed

    Johnson, Sarah; Brorson, Kurt A; Frey, Douglas D; Dhar, Arun K; Cetlin, David A

    2017-03-09

    Viral clearance is a critical aspect of biopharmaceutical manufacturing process validation. To determine the viral clearance efficacy of downstream chromatography and filtration steps, live viral "spiking" studies are conducted with model mammalian viruses such as minute virus of mice (MVM). However, due to biosafety considerations, spiking studies are costly and typically conducted in specialized facilities. In this work, we introduce the concept of utilizing a non-infectious MVM virus-like particle (MVM-VLP) as an economical surrogate for live MVM during process development and characterization. Through transmission electron microscopy, size exclusion chromatography with multi-angle light scattering, chromatofocusing, and a novel solute surface hydrophobicity assay, we examined and compared the size, surface charge, and hydrophobic properties of MVM and MVM-VLP. The results revealed that MVM and MVM-VLP exhibited nearly identical physicochemical properties, indicating the potential utility of MVM-VLP as an accurate and economical surrogate to live MVM during chromatography and filtration process development and characterization studies.

  16. Accumulation of defective interfering viral particles in only a few passages in Vero cells attenuates mumps virus neurovirulence.

    PubMed

    Šantak, Maja; Markušić, Maja; Balija, Maja Lang; Kopač, Sandra Keć; Jug, Renata; Örvell, Claes; Tomac, Jelena; Forčić, Dubravko

    2015-03-01

    Immunization programs have implemented live attenuated mumps vaccines which reduced mumps incidence ≥97%. Some of the vaccine strains were abandoned due to unwanted side effects and the genetic marker of attenuation has not been identified so far. Our hypothesis was that non-infectious viral particles, in particular defective interfering particles (DIPs), contribute to neuroattenuation. We showed that non-infectious particles of the mumps vaccine L-Zagreb attenuated neurovirulence of wild type mumps virus 9218/Zg98. Then, we attenuated recent wild type mumps virus MuVi/Zagreb.HRV/28.12 in Vero cells through 16 passages but already the fifth passage (p5) showed accumulation of DIPs and attenuated neurovirulence in a newborn rat model when compared to the second passage (p2). Sequence analysis of the p2 and p5 revealed a single mutation in the 5' untranslated region of the HN gene. Analysis of the expression level of the HN protein showed that this mutation does not affect the expression of the protein. We conclude that the passages of MuVi/Zagreb.HRV/28.12 in Vero cells for only three passages accumulated DIPs which attenuate neurovirulence. These findings reveal DIPs as a very promising and general neuroattenuating factor which should be considered in the rational design of the new mumps vaccine.

  17. Application of Viral Systems for Single-Machine Total Weighted Tardiness Problem

    NASA Astrophysics Data System (ADS)

    Santosa, Budi; Affandi, Umar

    2013-06-01

    In this paper, a relatively new algorithm inspired by the viral replication system called Viral Systems is used to solve the Single-Machine Total Weighted Tardiness (SMTWTP). SMTWTP is a job scheduling problem which is one of classical combinatorial problems known as np-hard problems. This algorithm makes the process of finding solutions through neighborhood and mutation mechanism. The experiment was conducted to evaluate its performance. There are seven parameters which are required to tune in to find best solution. The experiment was implemented on data sets of 40 jobs, 50 jobs, and 100 jobs. The results show that the algorithm can solve 235 optimally out of 275 problems.

  18. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  19. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  20. Automated data collection in single particle electron microscopy.

    PubMed

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S; Carragher, Bridget

    2016-02-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed.

  1. Single particle states in the heaviest elements

    SciTech Connect

    Ahmad, I.; Chasman, R.R.

    1995-08-01

    The search for superheavy elements was a major theme of nuclear structure research for the past twenty years. Theoretical predictions of the stability of superheavy elements depend crucially on the single-particle energy level spacings in the vicinity of 114 protons and 184 neutrons. The approach that we are taking is to learn as much as possible about these levels from spectroscopic studies of nuclides in the A = 250 region. This is possible because there are members of the relevant spherical multiplets that drop rapidly in energy with increasing deformation, and are fairly close to ground in the strongly deformed nuclides near A = 250. The orbitals that are important for fixing the shell corrections near N = 184 are the h{sub 11/2}, j{sub 13/2} and k{sub 17/2} spherical states. For each of these spherical orbitals, there is a corresponding deformed orbital whose energy in the A = 250 region is quite sensitive to one of these spherical states, e. g. the 1/2-[761] orbital was already identified in {sup 251}Cf is quite sensitive to the spherical j{sub 13/2} orbital. The position of the 1/2+[880] deformed orbital is very sensitive to the k{sub 17/2} spherical state. According to our calculations, this state should be found at {approximately}1500 KeV in {sup 251}Cf and should be populated in a one-nucleon transfer reaction using an ({alpha},{sup 3}He) reaction. We calculated signatures for the low-lying states in {sup 251}Cf and the calculated energies and signatures are in good agreement with the experimentally observed (d,p) spectrum. We expect to see the high-j states in an ({alpha},{sup 3}He) study. Our analysis of low-lying states in {sup 251}Cf was published. The ({alpha},{sup 3}He) experiment was approved, and is waiting on the preparation of a target.

  2. Principles of cryo-EM single-particle image processing

    PubMed Central

    Sigworth, Fred J.

    2016-01-01

    Single-particle reconstruction is the process by which 3D density maps are obtained from a set of low-dose cryo-EM images of individual macromolecules. This review considers the fundamental principles of this process and the steps in the overall workflow for single-particle image processing. Also considered are the limits that image signal-to-noise ratio places on resolution and the distinguishing of heterogeneous particle populations. PMID:26705325

  3. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  4. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing.

    PubMed

    McWilliam Leitch, E Carol; McLauchlan, John

    2013-12-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  5. Tracking single particle rotation: Probing dynamics in four dimensions

    SciTech Connect

    Anthony, Stephen Michael; Yu, Yan

    2015-04-29

    Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.

  6. Tracking single particle rotation: Probing dynamics in four dimensions

    DOE PAGES

    Anthony, Stephen Michael; Yu, Yan

    2015-04-29

    Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.

  7. Virus-Like Particles Exhibit Potential as a Pan-Filovirus Vaccine for Both Ebola and Marburg Viral Infections

    DTIC Science & Technology

    2007-11-02

    viral replication and severe hemorrhagic fever. Previously, we showed that expression of the h v T F t a t t T h P K 1 a t A ( d a j s 0 d omologous...unimpeded viral replication and severe hemorrhagic fever. Previously, we showed that expression of the homologous glycoprotein (GP) and matrix protein VP40... replication -deficient particles (VRP) expressing filovirus proteins have been used with varying degree of success in the mouse and guinea pig models of

  8. Analysis of population structures of viral isolates using single-strand conformation polymorphism method.

    PubMed

    Delaunay, Agnès; Rolland, Mathieu; Jacquot, Emmanuel

    2009-01-01

    The analysis of viral populations requires the use of techniques that describe characteristics of individuals. The single-strand conformation polymorphism (SSCP) makes possible the identification of genetic differences between viral sequences and constitutes an alternative to the expensive and time-consuming cloning and sequencing strategies. Applied to small genomic regions (from 100 to 500 bases in length), SSCP patterns could describe, under appropriate experimental conditions, single nucleotide variations in the studied sequence. The different steps of a complete SSCP procedure, from sampling to pattern analysis (including nucleic acid extraction, RT-PCR amplification, double-stranded DNA quantification, polyacrylamide gel preparation, electrophoresis conditions, and staining procedures), are described using a region (500 bases) of the barley yellow dwarfvirus-PAV (BYDV-PAV, Luteovirus) genome as molecular target.

  9. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss

    NASA Astrophysics Data System (ADS)

    Lawrence, Scott A.; Davy, Joanne E.; Aeby, Greta S.; Wilson, William H.; Davy, Simon K.

    2014-09-01

    Porites tissue loss is a common disease of Porites compressa on Hawaiian reefs. Despite its prevalence, to date, the aetiological agent of the disease has not been found. The apparent lack of a microbial causative agent in the similar disease Porites bleaching with tissue loss, as well as increasing evidence of viral infections in scleractinian corals and Symbiodinium, led us to hypothesise that a virus may be responsible. Electron microscopy revealed the presence of numerous and varied virus-like particles (VLPs) in healthy and diseased P. compressa colonies. While overall virus numbers were similar in all samples, the abundance of a group of icosahedral VLPs differed significantly between healthy and diseased colonies. While not conclusive, these results suggest that viruses may play a role in this disease, and provide a basis for further studies.

  10. Exploiting virus-like particles as innovative vaccines against emerging viral infections.

    PubMed

    Jeong, Hotcherl; Seong, Baik Lin

    2017-03-01

    Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.

  11. Tracking single-particle rotation during macrophage uptake

    SciTech Connect

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; Yi, Yi; Yu, Yan

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.

  12. Tracking single-particle rotation during macrophage uptake†

    PubMed Central

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen M.; Yi, Yi

    2015-01-01

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation. PMID:26059797

  13. Intracerebroventricular and Intravascular Injection of Viral Particles and Fluorescent Microbeads into the Neonatal Brain.

    PubMed

    Kawasaki, Hideya; Kosugi, Isao; Sakao-Suzuki, Makiko; Meguro, Shiori; Tsutsui, Yoshihiro; Iwashita, Toshihide

    2016-07-24

    In the study on the pathogenesis of viral encephalitis, the infection method is critical. The first of the two main infectious routes to the brain is the hematogenous route, which involves infection of the endothelial cells and pericytes of the brain. The second is the intracerebroventricular (ICV) route. Once within the central nervous system (CNS), viruses may spread to the subarachnoid space, meninges, and choroid plexus via the cerebrospinal fluid. In experimental models, the earliest stages of CNS viral distribution are not well characterized, and it is unclear whether only certain cells are initially infected. Here, we have analyzed the distribution of cytomegalovirus (CMV) particles during the acute phase of infection, termed primary viremia, following ICV or intravascular (IV) injection into the neonatal mouse brain. In the ICV injection model, 5 µl of murine CMV (MCMV) or fluorescent microbeads were injected into the lateral ventricle at the midpoint between the ear and eye using a 10-µl syringe with a 27 G needle. In the IV injection model, a 1-ml syringe with a 35 G needle was used. A transilluminator was used to visualize the superficial temporal (facial) vein of the neonatal mouse. We infused 50 µl of MCMV or fluorescent microbeads into the superficial temporal vein. Brains were harvested at different time points post-injection. MCMV genomes were detected using the in situ hybridization method. Fluorescent microbeads or green fluorescent protein expressing recombinant MCMV particles were observed by fluorescent microscopy. These techniques can be applied to many other pathogens to investigate the pathogenesis of encephalitis.

  14. Observation of Rotational Motion of Single Dusty Particle

    SciTech Connect

    Karasev, V. Yu.; Dzlieva, E. S.; Eikhval'd, A. I.; Ermolenko, M. A.; Golubev, M. S.

    2008-09-07

    Dust particle mechanical condition studying is important for question of dust structure stability and phase transitions in complex plasmas, and for ambient plasmas and dust particles parameters diagnostics. The rotation of single dust particles has been observed, followed with the range of theoretical papers, analyzing possible mechanisms, involving particles into rotation. We are observing single dust grains in stratified glow discharge. Rotation is detected with help of direct laser illumination, when the particle surface defects are lighted. Our observations show, that the majority of dust particles has stationary rotation with frequency about hundred Hz. Also it was founded, that there is frequency dependence on the discharge current by linear law. Qualitative interpretation of investigated phenomena is presented.

  15. Single-particle mechanism of magnetostriction in magnetoactive elastomers.

    PubMed

    Kalita, Viktor M; Snarskii, Andrei A; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  16. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5 by single particle aerosol mass spectrometry.

    PubMed

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-09-01

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (dva) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Growth of single-crystalline particles of metallic copper

    NASA Astrophysics Data System (ADS)

    Guo, Jinlei; Shen, Shaobo; Zhao, Yingshi; Wang, Fuming

    2016-10-01

    Most of ultrafine particles of metallic copper reported so far were of polycrystalline structures. Here, some ultrafine particles of metallic copper of single-crystalline structure were synthesized in gas phase. Some mixtures of a raw copper powder (about 79 μm) and sodium chloride powder were used as the precursor materials. The materials were chlorinated by dry chlorine at 400 °C. Some anhydrous eutectics composed of copper chlorides and sodium chloride were thus obtained. The eutectics were first heated in situ up to 900 °C and then carried to a gas space by evaporation using a flowing Argon, where they met H2 and were reduced to metallic copper particles. It was found that all these copper particles prepared were of single-crystalline structure irrespective of the molar ratio of raw copper and sodium chloride. When the molar ratio of NaCl to Cu in the precursor materials was 1 to 3, some dispersed octahedral particles of single-crystalline copper with an average size of 776 nm were prepared. However, when the ratio was increased to 4 to 1, some dispersed spherical particles of single-crystalline copper with a size of 92 nm were obtained. No impurities from the two shapes of copper particles were detected. The mechanisms involved in controlling the shape and size of copper particles were proposed.

  18. Determining the Cellular Diversity of Hepatitis C Virus Quasispecies by Single-Cell Viral Sequencing

    PubMed Central

    McLauchlan, John

    2013-01-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants. PMID:24049174

  19. Single-Particle Tracking of Human Lipoproteins.

    PubMed

    de Messieres, Michel; Ng, Abby; Duarte, Cornelio J; Remaley, Alan T; Lee, Jennifer C

    2016-01-05

    Lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low density lipoprotein (VLDL), play a critical role in heart disease. Lipoproteins vary in size and shape as well as in their apolipoprotein content. Here, we developed a new experimental framework to study freely diffusing lipoproteins from human blood, allowing analysis of even the smallest HDL with a radius of 5 nm. In an easily constructed confinement chamber, individual HDL, LDL, and VLDL particles labeled with three distinct fluorophores were simultaneously tracked by wide-field fluorescence microscopy and their sizes were determined by their motion. This technique enables studies of individual lipoproteins in solution and allows characterization of the heterogeneous properties of lipoproteins which affect their biological function but are difficult to discern in bulk studies.

  20. Kinetics of small single particle combustion of zirconium alloy

    SciTech Connect

    Wei Haoyan; Yoo, Choong-Shik

    2012-01-15

    We present quantitative kinetic information regarding small, 1-10 {mu}m in diameter, single particle combustion of Zr-rich metal alloy foils subjected to either mechanical impacts or laser-ablation. The lights from combustion of metal fragments were recorded on a high-speed camera. The particle size was determined by the motion analysis of individual particle trajectory based on an aerodynamic drag law and further verified by the microstructure and chemical composition analysis of recovered post-burn particles. The measured particle sizes show a log-normal distribution centered at around 3.1 {mu}m in diameter, and the composition of recovered particles is that of fully oxidized ZrO{sub 2}. The temperature evolution of each particle along the space/time-trajectory is determined based on the thermal emission from combustion using a single-color photographic spectro-pyrometry. The result indicates that the particle has reached the maximum combustion temperature of 4000 K, well beyond the melting temperature of ZrO{sub 2}, and undergone the solidification of molten ZrO{sub 2} during the cooling stage. It also shows that the maximum combustion temperature decreases linearly with increasing the particle diameter, following the correlation t aD{sup 1.5-1.8} between the burn time (t) and the particle diameter (D). Combining the particle size, the burn time, and the particle temperature, both temperature and mass burn rates are obtained as a function of particle size. As the particle size increases, the temperature burn rate decreases, whereas the mass burn rate goes in the opposite direction.

  1. Expression of Major Capsid Protein VP-1 in the Absence of Viral Particles in Thymomas Induced by Murine Polyomavirus

    PubMed Central

    Sanjuan, Norberto; Porrás, Analía; Otero, Javier; Perazzo, Sofía

    2001-01-01

    Thymomas induced by polyomavirus strain PTA in mice are known to express the major capsid protein VP-1. Since the expression of a late structural protein such as VP-1 is considered a sign of virus replication, the present work attempted to clarify the implication of the presence of this protein in tumor cells. Electron microscopy of tumors showed a striking absence of viral particles in the vast majority of the cells. However, immunoelectron microscopy of the same samples demonstrated intranuclear VP-1 in most cells despite the absence of viral particles. Very little infectious virus was recovered from tumors. A change in the electrophoretic mobility of VP-1 from thymomas was detected compared with VP-1 from productively infected cells. The data presented in this work prove that the expression of VP-1 in polyomavirus-induced tumors is not synonymous with the presence of infectious virus, suggesting a possible defect in viral encapsidation. PMID:11222714

  2. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    DTIC Science & Technology

    2016-08-30

    display time-, particle-, or wavelength-resolved chemical properties such as single aerosol particle extinction . We demonstrate the scope by trapping...chemical properties such as single aerosol particle extinction . We demonstrate the scope by trapping and walking single carbon-nanotube particles of...well-defined single aerosol particles for spatial resolution in a single aerosol manipulation, detection limit of extinction coefficient, detection

  3. Quantum heat fluctuations of single-particle sources.

    PubMed

    Battista, F; Moskalets, M; Albert, M; Samuelsson, P

    2013-03-22

    Optimal single electron sources emit regular streams of particles, displaying no low-frequency charge current noise. Because of the wave packet nature of the emitted particles, the energy is, however, fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single-particle wave function properties and display strong nonclassical features.

  4. Tracking single-particle rotation during macrophage uptake

    DOE PAGES

    Sanchez, Lucero; Patton, Paul; Anthony, Stephen Michael; ...

    2015-06-10

    We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. As a result, the size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particlemore » rotation.« less

  5. Single-particle hydrodynamics in DPD: A new formulation

    NASA Astrophysics Data System (ADS)

    Pan, W.; Pivkin, I. V.; Karniadakis, G. E.

    2008-10-01

    We present a new formulation of dissipative particle dynamics (DPD) that leads to correct hydrodynamics in flows around bluff bodies represented by a single particle. In particular, we introduce a shear drag coefficient and a corresponding term in the dissipative force, which along with the angular momentum incorporate non-central shear forces between particles and preserve angular momentum. We consider several prototype flows to verify the performance of the proposed formulation with comparisons against theoretical and continuum-based simulation results. Our method is similar to the Fluid Particle Method (FPM) of Espanol (Phys. Rev. E, 57 (1998) 2930) and it has the computational and implementation simplicity of the standard DPD approach.

  6. Triboelectricity evaluation of single toner particle by electron holography

    NASA Astrophysics Data System (ADS)

    Okada, H.; Shindo, D.; Kim, J. J.; Murakami, Y.; Kawase, H.

    2007-09-01

    Understanding electrification is particularly important in materials science since the use of charged particles, e.g., the electrophotographic printer with toner particles, is one of the most successful applications of electrification. However, the charge generation mechanism still remains unclear due to the lack of an appropriate method for evaluating individual fine particles. In this study, we describe an approach for determining the charge of a single toner particle that uses electron holography in combination with a shielding technique. Two long-standing problems in holographic studies—namely, perturbation of the reference electron wave and unwanted charging by illumination—have been overcome by introducing two types of shields in a microscope. Using this method, the amount of charge on a single toner particle was determined, and the surface charge distribution was found to be inhomogeneous. Furthermore, an in situ observation of triboelectricity was conducted inside the microscope.

  7. Triboelectricity evaluation of single toner particle by electron holography

    SciTech Connect

    Okada, H.; Shindo, D.; Kim, J. J.; Murakami, Y.; Kawase, H.

    2007-09-01

    Understanding electrification is particularly important in materials science since the use of charged particles, e.g., the electrophotographic printer with toner particles, is one of the most successful applications of electrification. However, the charge generation mechanism still remains unclear due to the lack of an appropriate method for evaluating individual fine particles. In this study, we describe an approach for determining the charge of a single toner particle that uses electron holography in combination with a shielding technique. Two long-standing problems in holographic studies--namely, perturbation of the reference electron wave and unwanted charging by illumination--have been overcome by introducing two types of shields in a microscope. Using this method, the amount of charge on a single toner particle was determined, and the surface charge distribution was found to be inhomogeneous. Furthermore, an in situ observation of triboelectricity was conducted inside the microscope.

  8. Single particle structure and shapes of exotic Sr isotopes

    NASA Astrophysics Data System (ADS)

    Cruz, Steffen; S1389 Team

    2016-09-01

    States within a nucleus that have different shapes that are close in energy are referred to as shape coexisting. A dramatic occurrence of shape coexisting states is observed in nuclei in the vicinity of Z=40, N=60, which is the subject of substantial current experimental and theoretical effort. An important aspect in this context is the evolution of single particle structure for N < 60 leading up to the shape transition region, which can be calculated with modern large scale shell model calculations using a 78Ni core or Beyond Mean Field Models. One-neutron transfer reactions are a proven tool to study single-particle energies as well as occupation numbers. Here we report on the study of the single-particle structure in 96Sr via (d,p) one-neutron transfer reaction in inverse kinematics. The experiment presented was performed in the ISAC facility using the TIGRESS gamma-ray spectrometer in conjunction with the SHARC charged-particle detector. A thorough analysis of single particle states will improve our understanding of the onset of these unique structures, encouraging the ongoing theoretical discussions. Results discussed in the context of the evolution of single-particle structure will be presented. Work supported by the National Research Council of Canada, the Science and Technology Facilities Council of the United Kingdom, the Natural Sciences and the Engineering Research Council of Canada and the National Science Foundation, USA.

  9. Magnetophoretic circuits for digital control of single particles and cells

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  10. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  11. Magnetophoretic circuits for digital control of single particles and cells.

    PubMed

    Lim, Byeonghwa; Reddy, Venu; Hu, XingHao; Kim, KunWoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B; Kim, CheolGi

    2014-05-14

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  12. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV) in cattle

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating...

  13. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    SciTech Connect

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  14. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    PubMed Central

    Labonté, Jessica M.; Field, Erin K.; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K. Eric; Kieft, Thomas L.; Onstott, Tullis C.; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  15. A microfluidic-based hydrodynamic trap for single particles.

    PubMed

    Johnson-Chavarria, Eric M; Tanyeri, Melikhan; Schroeder, Charles M

    2011-01-21

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  16. New instrument for tribocharge measurement due to single particle impacts.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  17. New instrument for tribocharge measurement due to single particle impacts

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  18. New instrument for tribocharge measurement due to single particle impacts

    SciTech Connect

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.

    2007-02-15

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as {approx}100 {mu}m impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  19. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  20. A Novel Role of the Potyviral Helper Component Proteinase Contributes To Enhance the Yield of Viral Particles

    PubMed Central

    Gallo, Araíz; Calvo, María; Pérez, José de Jesús

    2014-01-01

    ABSTRACT The helper component proteinase (HCPro) is an indispensable, multifunctional protein of members of the genus Potyvirus and other viruses of the family Potyviridae. This viral factor is directly involved in diverse steps of viral infection, such as aphid transmission, polyprotein processing, and suppression of host antiviral RNA silencing. In this paper, we show that although a chimeric virus based on the potyvirus Plum pox virus lacking HCPro, which was replaced by a heterologous silencing suppressor, caused an efficient infection in Nicotiana benthamiana plants, its viral progeny had very reduced infectivity. Making use of different approaches, here, we provide direct evidence of a previously unknown function of HCPro in which the viral factor enhances the stability of its cognate capsid protein (CP), positively affecting the yield of virions and consequently improving the infectivity of the viral progeny. Site-directed mutagenesis revealed that the ability of HCPro to stabilize CP and enhance the yield of infectious viral particles is not linked to any of its previously known activities and helped us to delimit the region of HCPro involved in this function in the central region of the protein. Moreover, the function is highly specific and cannot be fulfilled by the HCPro of a heterologous potyvirus. The importance of this novel requirement in regulating the sorting of the viral genome to be subjected to replication, translation, and encapsidation, thus contributing to the synchronization of these viral processes, is discussed. IMPORTANCE Potyviruses form one of the most numerous groups of plant viruses and are a major cause of crop loss worldwide. It is well known that these pathogens make use of virus-derived multitasking proteins, as well as dedicated host factors, to successfully infect their hosts. Here, we describe a novel requirement for the proper yield and infectivity of potyviral progeny. In this case, such a function is performed by the

  1. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  2. Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model

    NASA Astrophysics Data System (ADS)

    Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi

    2016-12-01

    Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.

  3. Enveloped and non-enveloped viral-like particles in Trypanosoma cruzi epimastigotes

    PubMed Central

    Fernández-Presas, Ana María; Padilla-Noriega, Luis; Ingeborg-Becker; Robert, Lilia; Jiménez, José Agustín; Solano, Sandra; Delgado, Jose; Tato, Patricia; Molinari, José Luis

    2017-01-01

    ABSTRACT Electron microscopy is routinely used to identify viral infections in protozoan parasites. These viruses have been described as non-enveloped and icosahedral structures with a diameter of 30-60 nm. Most of them are classified within the non-segmented dsRNA Totiviridae family. We observed virus-like particles (VLPs) through transmission electron microscopy in the cytoplasm of Trypanosoma cruzi epimastigotes grown in cultures. Clusters of electrodense enveloped VLPs having a diameter of 48 nm were also observed. These clusters appear to have been released from distended Golgi cisternae. Furthermore, a paracrystalline array of electrodense, non-enveloped VLPs (with a diameter of 32 nm) were found in distended Golgi cisternae or as smaller clusters at a distance from the RE or Golgi. We cannot rule out that the 48 nm enveloped VLPs belong to the ssRNA Flaviviridae family because they are within its size range. The localization of enveloped VLPs is consistent with the replication strategy of these viruses that transit through the Golgi to be released at the cell surface. Due to the size and shape of the 32 nm non-enveloped VLPs, we propose that they belong to the dsRNA Totiviridae family. This is the first description of cytoplasmic enveloped and non-enveloped VLPs in T. cruzi epimastigotes. PMID:28793017

  4. Enveloped and non-enveloped viral-like particles in Trypanosoma cruzi epimastigotes.

    PubMed

    Fernández-Presas, Ana María; Padilla-Noriega, Luis; Becker, Ingeborg; Robert, Lilia; Jiménez, José Agustín; Solano, Sandra; Delgado, Jose; Tato, Patricia; Molinari, José Luis

    2017-08-07

    Electron microscopy is routinely used to identify viral infections in protozoan parasites. These viruses have been described as non-enveloped and icosahedral structures with a diameter of 30-60 nm. Most of them are classified within the non-segmented dsRNA Totiviridae family. We observed virus-like particles (VLPs) through transmission electron microscopy in the cytoplasm of Trypanosoma cruzi epimastigotes grown in cultures. Clusters of electrodense enveloped VLPs having a diameter of 48 nm were also observed. These clusters appear to have been released from distended Golgi cisternae. Furthermore, a paracrystalline array of electrodense, non-enveloped VLPs (with a diameter of 32 nm) were found in distended Golgi cisternae or as smaller clusters at a distance from the RE or Golgi. We cannot rule out that the 48 nm enveloped VLPs belong to the ssRNA Flaviviridae family because they are within its size range. The localization of enveloped VLPs is consistent with the replication strategy of these viruses that transit through the Golgi to be released at the cell surface. Due to the size and shape of the 32 nm non-enveloped VLPs, we propose that they belong to the dsRNA Totiviridae family. This is the first description of cytoplasmic enveloped and non-enveloped VLPs in T. cruzi epimastigotes.

  5. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  6. Single-particle motional oscillator powered by laser.

    PubMed

    Kaplan, A E

    2009-06-08

    An ion, atom, molecule or macro-particle in a trap can exhibit large motional oscillations due to the Doppler-affected radiation pressure by a laser, blue-detuned from an absorption line of a particle. This oscillator can be nearly thresholdless, but under certain conditions it may exhibit huge hysteretic excitation. Feasible applications include a "Foucault pendulum" in a trap, a rotation sensor, single atom spectroscopy, isotope separation, etc.

  7. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  8. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  9. Optical manipulation of a single human virus for study of viral-cell interactions

    NASA Astrophysics Data System (ADS)

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-09-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  10. Optical manipulation of a single human virus for study of viral-cell interactions.

    PubMed

    Hou, Ximiao; DeSantis, Michael C; Tian, Chunjuan; Cheng, Wei

    2016-08-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  11. Optical manipulation of a single human virus for study of viral-cell interactions

    PubMed Central

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-01-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses. PMID:27746582

  12. Manipulation and confinement of single particles using fluid flow.

    PubMed

    Tanyeri, Melikhan; Schroeder, Charles M

    2013-06-12

    High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional (2D) manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research.

  13. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels

    PubMed Central

    2016-01-01

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement. PMID:27960495

  14. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  15. Compressive Characterization of Single Porous SiC Hollow Particles

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Zeltmann, Steven E.; Gupta, Nikhil; Strbik, Oliver M.

    2014-06-01

    Silicon carbide hollow spheres are compression tested to understand their energy absorption characteristics. Two types of particles having tap densities of 440 kg/m3 and 790 kg/m3 (referred to as S1 and S2, respectively) were tested in the present study. The process used to fabricate the hollow spheres leads to porosity in the walls, which affects the mechanical properties of the hollow spheres. The porosity in the walls helps in obtaining mechanical bonding between the matrix material and the particle when such particles are used as fillers in composites. The single-particle compression test results show that the S1 and S2 particles had fracture energies of 0.38 × 10-3 J and 3.18 × 10-3 J, respectively. The modulus and fracture energy of the particles were found to increase with increasing diameter. However, the increasing trend shows variations because the wall thickness can vary as an independent parameter. Hollow particle fillers are used in polymer and metal matrices to develop porous composites called syntactic foams. The experimentally measured properties of these particles can be used in theoretical models to design syntactic foams with the desired set of properties for a given application.

  16. Generalized single-particle cryo-EM--a historical perspective.

    PubMed

    Frank, Joachim

    2016-02-01

    This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.

  17. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.

    PubMed

    Quan, Qimin; Floyd, Daniel L; Burgess, Ian B; Deotare, Parag B; Frank, Ian W; Tang, Sindy K Y; Ilic, Rob; Loncar, Marko

    2013-12-30

    We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

  18. A dual-wavelength single particle aerosol fluorescence monitor

    NASA Astrophysics Data System (ADS)

    Kaye, Paul H.; Stanley, Warren R.; Foot, Virginia; Baxter, Karen; Barrington, Stephen J.

    2005-10-01

    Laser diodes and light-emitting diodes capable of continuous sub-300 nm radiation emission will ultimately represent optimal excitation sources for compact and fieldable bio-aerosol monitors. However, until such devices are routinely available and whilst solid-state UV lasers remain relatively expensive, other low-cost sources of UV can offer advantages. This paper describes one such prototype that employs compact xenon discharge UV sources to excite intrinsic fluorescence from individual particles within an ambient aerosol sample. The prototype monitor samples ambient air via a laminar sheathed-flow arrangement such that particles within the sample flow column are rendered in single file as they intersect the beam from a continuous-wave 660nm diode laser. Each individual particle produces a scattered light signal from which an estimate of particle size (down to ~1 um) may be derived. This same signal also initiates the sequential firing (~10 us apart) of two xenon sources which irradiate the particle with UV pulses centred upon ~280 nm and ~370 nm wavelength, optimal for excitation of bio-fluorophores tryptophan and NADH respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Thus, for each particle, a 2-dimensional fluorescence excitation-emission matrix is recorded together with an estimate of particle size. Current measurement rates are up to ~125 particles/s (limited by the xenon recharge time), corresponding to all particles for concentrations up to ~2 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Analysis of results from aerosols of E.coli, BG spores, and a variety of non-biological materials are given.

  19. Production of Uninfectious Human Immunodeficiency Virus Type 1 Containing Viral Protein R Fused to a Single-Chain Antibody against Viral Integrase

    PubMed Central

    Okui, Nobuo; Kobayashi, Noriko; Kitamura, Yoshihiro

    1998-01-01

    A single-chain antibody (scAb) against human immunodeficiency virus type 1 (HIV-1) integrase was expressed as a fusion protein of scAb and HIV-1 viral protein R (Vpr), together with the HIV-1 genome, in human 293T cells. The expression did not affect virion production much but markedly reduced the infectivity of progeny virions. The fusion protein was found to be incorporated into the virions. The incorporation appears to account for the reduced infectivity. PMID:9658154

  20. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  1. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

    NASA Astrophysics Data System (ADS)

    Cardwell, Nicholas D.; Vlachos, Pavlos P.; Thole, Karen A.

    2011-10-01

    Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas-solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of

  2. Computational modeling of single particle scattering over large distances

    NASA Astrophysics Data System (ADS)

    Rapp, Rebecca; Plumley, Rajan; McCracken, Michael

    2016-09-01

    We present a Monte Carlo simulation of the propagation of a single particle through a large three-dimensional volume under the influence of individual scattering events. In such systems, short paths can be quickly and accurately simulated using random walks defined by individual scattering parameters, but the simulation time greatly increases as the size of the space grows. We present a method for reducing the overall simulation time by restricting the simulation to a cube of unit length; each `cell' is characterized by a set of parameters which dictate the distributions of allowable step lengths and polar scattering angles. We model propagation over large distances by constructing a lattice of cells with physical parameters that depend on position, such that the full set would represent a space within the entire volume available to the particle. With these, we propose the use of Markov chains to determine a probable path for the particle, thereby removing the need to simulate every step in the particle's path. For a single particle with constant velocity, we can use the step statistics to determine the travel time of the particle. We investigate the effect of scattering parameters such as average step distance and possible scattering angles on the probabilities of a cell.

  3. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  4. Single Particle Orientation and Rotational Tracking (SPORT) in biopysical studies

    SciTech Connect

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-08-02

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  5. Single particle density of trapped interacting quantum gases

    SciTech Connect

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  6. Single-particle spectroscopic factors for spherical nuclei

    SciTech Connect

    Gnezdilov, N. V.; Saperstein, E. E. Tolokonnikov, S. V.

    2015-01-15

    Within the self-consistent theory of finite Fermi systems, the total single-particle spectroscopic factors for seven doubly magic nuclei of {sup 40}Ca, {sup 48}Ca, {sup 56}Ni, {sup 78}Ni, {sup 100}Sn, {sup 132}Sn, and {sup 208}Pb and for the {sup 188–212}Pb chain of semimagic even lead isotopes are calculated by the energy-density-functional method implemented with a functional in the form proposed by Fayans and his coauthors. The spectroscopic factor is expressed in terms of the Z factor, which is the residue of the single-particle Green’s function at the single-particle pole. The total Z factor calculated in the present study involves both effects of coupling to phonons and the volume Z factor, which is due to the fact that the mass operator features an energy dependence not associated with surface phonons. The volume Z factor is on the same order of magnitude as the phonon-coupling contribution. The volume effect depends only slightly on the nuclear species and on the single-particle state λ. On the contrary, the phonon contribution to the total spectroscopic factor changes upon going over from one state to another and from one nuclear species to another.

  7. Feasible ``Kochen-Specker'' Experiment with Single Particles

    NASA Astrophysics Data System (ADS)

    Simon, Christoph; Żukowski, Marek; Weinfurter, Harald; Zeilinger, Anton

    2000-08-01

    We present a simple experimental scheme which can be used to demonstrate an all-or-nothing-type contradiction between noncontextual hidden variables and quantum mechanics. The scheme, which is inspired by recent ideas by Cabello and García-Alcaine, shows that even for a single particle, path and spin information cannot be predetermined in a noncontextual way.

  8. Analysis of Single Particle Trajectories: From Normal to Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Tejedor, V.; Jeon, J.-H.; He, Y.; Deng, W. H.; Burov, S.; Barkai, E.

    2009-05-01

    With modern experimental tools it is possible to track the motion of single nanoparticles in real time, even in complex environments such as biological cells. The quest is then to reliably evaluate the time series of individual trajectories. While this is straightforward for particles performing normal Brownian motion, interesting subtleties occur in the case of anomalously diffusing particles: it is no longer granted that the long time average equals the ensemble average. We here discuss for two different models of anomalous diffusion the detailed behaviour of time averaged mean squared displacement and related quantities, and present possible criteria to analyse single particle trajectories. An important finding is that although the time average may suggest normal diffusion the actual process may in fact be subdiffusive.

  9. The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ϕ11 Plays a Structural Role in the Viral Particle

    PubMed Central

    Rodríguez-Rubio, Lorena; Quiles-Puchalt, Nuria; Martínez, Beatriz; Rodríguez, Ana; Penadés, José R.

    2013-01-01

    The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage ϕ11, is not essential for phage growth but stabilizes the viral particles. ϕ11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype. PMID:23892745

  10. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection

    PubMed Central

    Jaspers, Ilona; Sheridan, Patricia A; Zhang, Wenli; Brighton, Luisa E; Chason, Kelly D; Hua, Xiaoyang; Tilley, Stephen L

    2009-01-01

    Background Viral infections and exposure to oxidant air pollutants are two of the most important inducers of asthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial cells in vitro and in mice in vivo. Therefore, we examined whether in the setting of allergic asthma, exposure to oxidant air pollutants enhances the susceptibility to respiratory virus infections, which in turn leads to increased virus-induced exacerbation of asthma. Ovalbumin-sensitized (OVA) male C57BL/6 mice were instilled with diesel exhaust particles (DEP) or saline and 24 hours later infected with influenza A/PR/8. Animals were sacrificed 24 hours post-infection and analyzed for markers of lung injury, allergic inflammation, and pro-inflammatory cytokine production. Results Exposure to DEP or infection with influenza alone had no significant effects on markers of injury or allergic inflammation. However, OVA-sensitized mice that were exposed to DEP and subsequently infected with influenza showed increased levels of eosinophils in lung lavage and tissue. In addition Th2-type cytokines, such as IL-4 and IL-13, and markers of eosinophil chemotaxis, such as CCL11 and CCR3, were increased in OVA-sensitized mice exposed to DEP prior to infection with influenza. These mice also showed increased levels of IL-1α, but not IL-10, RANTES, and MCP-1 in lung homogenates. Conclusion These data suggest that in the setting of allergic asthma, exposure to diesel exhaust could enhance virus-induced exacerbation of allergic inflammation. PMID:19682371

  11. On-line single particle analysis of environmental tobacco smoke

    SciTech Connect

    Prather, K.A.; Morrical, B.O.

    1995-12-01

    Environmental Tobacco Smoke (ETS) is a major component in indoor and outdoor air pollution. It has been estimated that ETS accounts for approximately 2.7% of fine organic aerosol emissions in the Los Angeles area and the adverse health effects of cigarette emissions have been well documented. Particulate analysis by conventional analytical methods, such as GC/MS, do not provide information on individual aerosol particles due to the off-line collection and sampling procedures. Aerosol Time-Flight Mass Spectrometry is an on-line analytical technique that is uniquely capable of single particle analysis, simultaneously providing information on particle size and chemical composition. It will be demonstrated that this technique can be used to show how the chemical composition of ETS particles changes as a function of size. Data demonstrating the ability to monitor chemical composition and size change as a function of time will also be presented.

  12. Reconstructing an icosahedral virus from single-particle diffraction experiments.

    PubMed

    Saldin, D K; Poon, H-C; Schwander, P; Uddin, M; Schmidt, M

    2011-08-29

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called "diffract-and-destroy" experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  13. Reconstructing an icosahedral virus from single-particle diffraction experiments

    NASA Astrophysics Data System (ADS)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  14. Characterisation of single particles from in-port ship emissions

    NASA Astrophysics Data System (ADS)

    Healy, Robert M.; O'Connor, Ian P.; Hellebust, Stig; Allanic, Arnaud; Sodeau, John R.; Wenger, John C.

    2009-12-01

    Emissions from shipping traffic may impact severely upon air quality in port cities. In this study, the size and composition of freshly emitted individual ship exhaust particles has been investigated using an aerosol time-of-flight mass spectrometer (ATOFMS) co-located with a suite of real-time instrumentation at a site in the Port of Cork, Ireland. The collected spectra were clustered using the K-means algorithm and a unique ship exhaust class containing internally mixed elemental and organic carbon, sodium, calcium, iron, vanadium, nickel and sulfate was identified. Over twenty sharp emission events were observed for this particle type during the three week measurement period in August 2008. Coincident increases in mass concentrations of sulfate, elemental carbon and particles below 2.5 μm in diameter (PM 2.5) were also observed during these events. Simultaneous scanning mobility particle sizer (SMPS) measurements indicate that the vast majority of freshly emitted ship exhaust particles lie in the ultrafine mode (<100 nm diameter). A second particle class consisted of internally mixed organic carbon, elemental carbon, ammonium and sulfate, and is tentatively attributed to aged or regionally transported ship exhaust. The results suggest that ATOFMS single particle mass spectra, when used in conjunction with other air quality monitoring instrumentation, may be useful in determining the contribution of local shipping traffic to air quality in port cities.

  15. Single-Molecule Studies of the Temperature Dependence of Viral DNA Packaging Motors

    NASA Astrophysics Data System (ADS)

    White, Michael; Raymer, Dorian; Rickgauer, Peter; Fuller, Derek; Grimes, Shelley; Jardine, Paul; Anderson, Dwight; Smith, Doug

    2007-03-01

    A key step in the assembly of many viruses is the packaging of dsDNA into a preformed capsid by the action of a portal molecular motor complex. We have developed methods for directly measuring viral DNA translocation at the single molecule level using optical tweezers and applied these methods to study bacteriophages φ29, lambda, and T4. Our previous measurements with φ29 were performed at room temperature. Here we report that the rate of DNA translocation is strongly temperature dependent. Preliminary measurements indicate that the motor velocity increases ˜2-fold, to ˜250-300 bp/s when the temperature is increased from ˜20 to 30 degrees C. As the viral packaging motors are enzymes that catalyze ATP hydrolysis, such a trend with increasing temperature is to be expected, at least up to the point where the motor complex is thermally dissociated or denatured. However, the detailed form of the temperature dependence is difficult to quantify using standard bulk assay methods. We have installed a heating/cooling system in our optical tweezers instrument that allows us to precisely control the temperature in our sample chamber. This system allows us to systematically study the temperature dependence of the DNA translocation rate.

  16. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists

    PubMed Central

    Esparo, Nicolle M.; Child, Stephanie J.; Geballe, Adam P.

    2016-01-01

    During millions of years of coevolution with their hosts, cytomegaloviruses (CMVs) have succeeded in adapting to overcome host-specific immune defenses, including the protein kinase R (PKR) pathway. Consequently, these adaptations may also contribute to the inability of CMVs to cross species barriers. Here, we provide evidence that the evolutionary arms race between the antiviral factor PKR and its CMV antagonist TRS1 has led to extensive differences in the species-specificity of primate CMV TRS1 proteins. Moreover, we identify a single residue in human PKR that when mutated to the amino acid present in African green monkey (Agm) PKR (F489S) is sufficient to confer resistance to HCMVTRS1. Notably, this precise molecular determinant of PKR resistance has evolved under strong positive selection among primate PKR alleles and is positioned within the αG helix, which mediates the direct interaction of PKR with its substrate eIF2α. Remarkably, this same residue also impacts sensitivity to K3L, a poxvirus-encoded pseudosubstrate that structurally mimics eIF2α. Unlike K3L, TRS1 has no homology to eIF2α, suggesting that unrelated viral genes have convergently evolved to target this critical region of PKR. Despite its functional importance, the αG helix exhibits extraordinary plasticity, enabling adaptations that allow PKR to evade diverse viral antagonists while still maintaining its critical interaction with eIF2α. PMID:27780231

  17. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    PubMed

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  18. Single- and multiple viral respiratory infections in children: disease and management cannot be related to a specific pathogen.

    PubMed

    Wishaupt, Jérôme O; van der Ploeg, Tjeerd; de Groot, Ronald; Versteegh, Florens G A; Hartwig, Nico G

    2017-01-11

    The number of viral pathogens associated with pediatric acute respiratory tract infection (ARI) has grown since the introduction of reverse transcription real-time polymerase chain reaction (RT-PCR) assays. Multiple viruses are detected during a single ARI episode in approximately a quarter of all cases. The clinical relevance of these multiple detections is unclear, as is the role of the individual virus. We therefore investigated the correlation between clinical data and RT-PCR results in children with single- and multiple viral ARI. Data from children with ARI were prospectively collected during two winter seasons. RT-PCR testing for 15 viruses was performed in 560 ARI episodes. In the patients with a single-viral etiology, clinical data, laboratory findings, patient management- and outcome data were compared between the different viruses. With this information, we compared data from children of whom RT-PCR data were negative, with children with single- and multiple viral positive results. The viral detection rate was 457/560 (81.6%) of which 331/560 (59.1%) were single infections and 126/560 (22.5%) were multiple infections. In single viral infections, some statistically significant differences in demographics, clinical findings, disease severity and outcome were found between children with different viral etiologies. However, no clinically recognizable pattern was established to be virus-specific. In a multivariate analysis, the only variables that were correlated with longer hospital stay were the use of oxygen and nebulizer therapy, irrespective of the viral pathogen. Children with RT-PCR positive test results had a significant higher disease severity, fever, length of hospital stay, days of extra oxygen supply, and days of antibiotic treatment than children with a negative RT-PCR test result. For children with single- versus children with multiple positive RT-PCR test results, these differences were not significant. Disease (severity), management and

  19. Particle interactions of fluticasone propionate and salmeterol xinafoate detected with single particle aerosol mass spectrometry (SPAMS).

    PubMed

    Jetzer, Martin; Morrical, Bradley; Fergenson, David; Imanidis, Georgios

    2017-08-29

    Particle co-associations between the active pharmaceutical ingredients fluticasone propionate and salmeterol xinafoate were examined in dry powder inhaled (DPI) and metered dose inhaled (MDI) combination products. Single Particle Aerosol Mass Spectrometry was used to investigate the particle interactions in Advair Diskus(®) (500/50 mcg) and Seretide(®) (125/25 mcg). A simple rules tree was used to identify each compound, either alone or co-associated at the level of the individual particle, using unique marker peaks in the mass spectra for the identification of each drug. High levels of drug particle co-association (fluticasone-salmeterol) were observed in the aerosols emitted from Advair Diskus(®) and Seretide(®). The majority of the detected salmeterol particles were found to be in co-association with fluticasone in both tested devices. Another significant finding was that rather coarse fluticasone particles (in DPI) and fine salmeterol particles (both MDI and DPI) were forming the particle co-associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Using Single-Particle Flourescence to Detect Bioaerosols

    NASA Astrophysics Data System (ADS)

    Fernandez, Elena; Huang, Hermes; Pan, Yong-Le; Hill, Steven; Pinnick, Ronald; Chang, Richard

    2008-10-01

    We have developed and operated an UV Laser-Induced Fluorescence single particle spectrometer which is capable of rapidly measuring the fluorescence emitted from individual aerosol particles, on-the-fly, as they are sampled by our sensor. Fluorescence-based detection methods have the advantage that they can deliver results in real-time and require little human labor in order to operate. We present ambient aerosol data measured in New Haven, CT, Las Cruces, NM, and Adelphi, MD. At the different locations, we find that the fluorescence characteristics of organic aerosols found remain rather similar. We also measured many different known samples in order to build a library of characteristic spectra to which we can compare the ambient data. In addition to measuring spectra from the aerosol particles, we have developed an air puffer technology which allows us to collect specific aerosol particles based on their fluorescence spectral signatures. The detection and collection of these Flourescent Bioaerosols is important as we can detect potentially harmful single airborne particles such as biowarfare agents. The research also extends to soldier health as the regional climate of Iraq is similar to that of the Chihuahuan desert where Las Cruces, NM is located.

  1. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters.

    PubMed

    Splettstoesser, Janine; Moskalets, Michael; Büttiker, Markus

    2009-08-14

    We propose a mesoscopic circuit in the quantum Hall effect regime comprising two uncorrelated single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes, which allows us in a controllable way to produce orbitally entangled electrons. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. The two-particle correlations manifest themselves as an Aharonov-Bohm effect in noise, while the current is insensitive to magnetic fluxes. In an appropriate time interval the concurrence reaches a maximum and a Bell inequality is violated.

  2. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.

    PubMed

    Abdulkarim, Muthanna; Agulló, Nuria; Cattoz, Beatrice; Griffiths, Peter; Bernkop-Schnürch, Andreas; Borros, Salvador Gómez; Gumbleton, Mark

    2015-11-01

    Multiple particle tracking (MPT) methodology was used to dissect the impact of nanoparticle surface charge and size upon particle diffusion through freshly harvested porcine jejunum mucus. The mucus was characterised rheologically and by atomic force microscopy. To vary nanoparticle surface charge we used a series of self-assembly polyelectrolyte particles composed of varying ratios of the negatively charged polyacrylic acid polymer and the positively charged chitosan polymer. This series included a neutral or near-neutral particle to correspond to highly charged but near-neutral viral particles that appear to effectively permeate mucus. In order to negate the confounding issue of self-aggregation of such neutral synthetic particles a sonication step effectively reduced particle size (to less than 340 nm) for a sufficient period to conduct the tracking experiments. Across the polyelectrolyte particles a broad and meaningful relationship was observed between particle diffusion in mucus (×1000 difference between slowest and fastest particle types), particle size (104-373 nm) and particle surface charge (-29 mV to +19.5 mV), where the beneficial characteristic promoting diffusion was a neutral or near-neutral charge. The diffusion of the neutral polyelectrolyte particle (0.02887 cm S(-1)×10(-9)) compared favourably with that of a highly diffusive PEGylated-PLGA particle (0.03182 cm(2) S(-1)×10(-9)), despite the size of the latter (54 nm diameter) accommodating a reduced steric hindrance with the mucin network. Heterogeneity of particle diffusion within a given particle type revealed the most diffusive 10% sub-population for the neutral polyelectrolyte formulation (5.809 cm(2) S(-1)×10(-9)) to be faster than that of the most diffusive 10% sub-populations obtained either for the PEGylated-PLGA particle (4.061 cm(2) S(-1)×10(-9)) or for a capsid adenovirus particle (1.922 cm(2) S(-1)×10(-9)). While this study has used a simple self-assembly polyelectrolyte system

  3. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  4. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  5. QUANTITATIVE SCREENING OF SINGLE COPIES OF HUMAN PAPILLOMA VIRAL DNA WITHOUT AMPLIFICATION

    PubMed Central

    Li, Jiangwei; Lee, Ji-Young; Yeung, Edward S.

    2008-01-01

    We describe a novel quantitative viral screening method based on single-molecule detection that does not require amplification. DNA of human papilloma virus (HPV), the major etiological agent of cervical cancer, served as the screening target in this study. Eight 100-nucleotide (nt) single-stranded (ss)-DNA probes were designed complementary to the E6-E7 gene of HPV-16 DNA. The probes were covalently stained with Alexa Fluor 532 and hybridized to the target in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell, and had a linear dynamic range of over six orders of magnitude. In the dual-color mode, we employed fluorescence resonance energy transfer (FRET) and added YOYO-3 dye as the acceptor. The two colors from Alexa Fluor 532 and YOYO-3 were dispersed by a transmission grating located in front of the ICCD. With this reinforced criteria for identifying the hybridized molecules, zero false-positive count was achieved. We also showed that DNA extracts from Pap test specimens did not interfere with the measurements. PMID:16970325

  6. Combustion of a single magnesium particle in water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ya; Xia, Zhi-Xun; Zhang, Wei-Hua; Huang, Xu; Hu, Jian-Xin

    2015-09-01

    The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified. Project supported by the National Natural Science Foundation of China (Grant No. 51406231).

  7. Two-Particle Nonlocal Aharonov-Bohm Effect from Two Single-Particle Emitters

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Janine

    2010-03-01

    High-frequency single-particle emitters have been realized experimentally in the integer quantum Hall effect regime [1]: the particles are injected into edge states, operating as wave guides, and encounter splitters realized by quantum point contacts. These tools allow for the implementation of complex interferometers in mesoscopic systems showing two-particle interference effects. An example for tunable two-particle correlations is manifest in the electronic analogue of the Hong-Ou-Mandel interferometer [2], where a noise suppression is found due to the Pauli principle. In the work presented here we explore the entanglement production from two uncorrelated sources. We therefore propose a mesoscopic circuit in the quantum Hall effect regime comprising two independent single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes. This and the tunability of the single-particle sources allow in a controllable way to produce orbitally entangled electrons [3]. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. While the current in this setup is insensitive to the magnetic flux, the two-particle correlations manifest themselves as an Aharonov-Bohm effect in the noise. In an appropriate time-interval the concurrence reaches a maximum and a Bell inequality is violated, proving the existence of time-bin entanglement.[4pt] [1] G. Fève, A. Mah'e, J.-M. Berroir, T. Kontos, B. Placais, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, Science 316, 1169 (2007).[0pt] [2] S. Ol'Khovskaya, J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett. 101, 166802 (2008).[0pt] [3] J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett.103, 076804 (2009).

  8. Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method

    PubMed Central

    Tejedor, Vincent; Bénichou, Olivier; Voituriez, Raphael; Jungmann, Ralf; Simmel, Friedrich; Selhuber-Unkel, Christine; Oddershede, Lene B.; Metzler, Ralf

    2010-01-01

    An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion. PMID:20371337

  9. Single particle behaviour at (and away from) stability

    NASA Astrophysics Data System (ADS)

    Duflo, J.; Zuker, A. P.

    1998-12-01

    Short of proposing a full microscopic mass formula, we outline the steps that should make it possible. The construction rests on defining the nuclear monopole Hamiltonian, Hm that has to be extracted phenomenologically because of the bad saturation properties of the realistic forces. We propose a preliminary form of Hm that makes clear the origin of shell effects, and with only three paraters, reproduces the known spectra of particle and hole states on doubly magic cores to within 300 keV. Predictions are made for the yet unobserved levels around 132Sn, and those associated to 22O, 34,42Si, 68,78Ni, 100Sn and for the particle-hole gaps in these nuclei. Finally we analyze the single particle gaps for the N=50 and 82 isotones, to conclude that the major closures are likely to persist away from stability.

  10. Phonon-particle coupling effects in the single-particle energies of semi-magic nuclei

    NASA Astrophysics Data System (ADS)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2016-11-01

    A method is presented to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei. In such nuclei, always there is a collective low-lying 2+ phonon, and a strong mixture of single-particle and particle-phonon states often occurs. As in magic nuclei the so-called g L 2 approximation, where g L is the vertex of the L-phonon creation, can be used for finding the PC correction δΣPC(ɛ) to the initial mass operator Σ0. In addition to the usual pole diagram, the phonon "tadpole" diagram is also taken into account. In semi-magic nuclei, the perturbation theory in δΣPC(ɛ) with respect to Σ0 is often invalid for finding the PC-corrected single-particle energies. Instead, the Dyson equation with the mass operator Σ(ɛ) = Σ0 + δΣPC(ɛ) is solved directly, without any use of the perturbation theory. Results for a chain of semi-magic Pb isotopes are presented.

  11. Holding forces of single-particle dielectrophoretic traps.

    PubMed Central

    Voldman, J; Braff, R A; Toner, M; Gray, M L; Schmidt, M A

    2001-01-01

    We present experimental results and modeling on the efficacy of dielectrophoresis-based single-particle traps. Dielectrophoretic forces, caused by the interaction of nonuniform electric fields with objects, have been used to make planar quadrupole traps that can trap single beads. A simple experimental protocol was then used to measure how well the traps could hold beads against destabilizing fluid flows. These were compared with predictions from modeling and found to be in close agreement, allowing the determination of sub-piconewton forces. This not only validates our ability to model dielectrophoretic forces in these traps but also gives insight into the physical behavior of particles in dielectrophoresis-based traps. Anomalous frequency effects, not explainable by dielectrophoretic forces alone, were also encountered and attributed to electrohydrodynamic flows. Such knowledge can now be used to design traps for cell-based applications. PMID:11159423

  12. Generalized seniority on a deformed single-particle basis

    NASA Astrophysics Data System (ADS)

    Jia, L. Y.

    2017-09-01

    Recently, I proposed a fast computing scheme for generalized seniority on a spherical single-particle basis [J. Phys. G: Nucl. Part. Phys. 42, 115105 (2015), 10.1088/0954-3899/42/11/115105]. This work redesigns the scheme to make it applicable to deformed single-particle basis. The algorithm is applied to the rare-earth-metal nucleus 94 64 158Gd for intrinsic (body-fixed frame) neutron excitations under the low-momentum NN interaction Vlow -k. By allowing as many as four broken pairs, I compute the lowest 300 intrinsic states of several multipolarities. These states converge well to the exact ones, showing generalized seniority is very effective in truncating the deformed shell model. Under realistic interactions, the picture remains approximately valid: The ground state is a coherent pair condensate and the pairs gradually break up as excitation energy increases.

  13. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  14. Single particle friction tests with cellulose acetate sphere samples

    SciTech Connect

    Tuezen, U.

    1989-05-31

    This reporter represents a detailed account of all the experimental work carried out for LLNL using the ''single particle shear cell'' in the department of Chemical Process Engineering of Surrey University, Guildford, United Kingdom. Experimental work with two spheres in contact was performed. Particles were positioned into the specially made sample holders by the micro screws. The contact centres were lined up under the magnifying glass. The behavior of the interparticle contact region between the two spheres was examined by performing the following series of tests: (i) normal force versus normal displacement test, (ii) tangential force limit at gross sliding with increased normal load and decreasing normal load, (iii) tangential force versus micro displacement during initial loading to friction limit and during unloading from friction limit. Work was also performed on single sphere against a flat wall surface. Results are discussed. 34 figs.

  15. A Primer to Single-Particle Cryo-Electron Microscopy

    PubMed Central

    Cheng, Yifan; Grigorieff, Nikolaus; Penczek, Pawel A.; Walz, Thomas

    2015-01-01

    Summary Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners. PMID:25910204

  16. [Study of the encapsulation and transport of several proteins to different organs by means of liposomal type particles of viral origin].

    PubMed

    Repanovici, R; Iliescu, R; Popa, L M

    1987-01-01

    Liposomal particles may be more efficiently incorporated by cells through mechanisms still incompletely elucidated. This property allowed to use them as a vehicle for macromolecules. Research was conducted to obtain liposomal type particles of viral origin charged with various proteins (bovine serum albumin, ovalbumin, ribosomes, human 125I-immunoglobulin G) and to establish the distribution of proteins encapsulated in viral envelopes among various organs after inoculation to laboratory animals.

  17. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  18. Tracking single fluorescent particles in three dimensions via extremum seeking

    PubMed Central

    Ashley, Trevor T.; Gan, Eric L.; Pan, Jane; Andersson, Sean B.

    2016-01-01

    The ability to track single fluorescent particles in three-dimensions with sub-diffraction limit precision as well as sub-millisecond temporal resolution has enabled the understanding of many biophysical phenomena at the nanometer scale. While there are several techniques for achieving this, most require complicated experimental setups that are expensive to implement. These methods can offer superb performance but their complexity may be overwhelming to the end-user whose aim is only to understand the feature being imaged. In this work, we describe a method for tracking a single fluorescent particle using a standard confocal or multi-photon microscope configuration. It relies only on the assumption that the relative position of the measurement point and the particle can be actuated and that the point spread function has a global maximum that coincides with the particle’s position. The method uses intensity feedback to calculate real-time position commands that “seek” the extremum of the point spread function as the particle moves through its environment. We demonstrate the method by tracking a diffusing quantum dot in a hydrogel on a standard epifluorescent confocal microscope. PMID:27699104

  19. Single-File Escape of Colloidal Particles from Microfluidic Channels.

    PubMed

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-15

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15}  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  20. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  1. Genetic Engineering of Single-Domain Magnetic Particles

    DTIC Science & Technology

    1990-02-14

    synthesize membrane-bound, nanometer-sized, single- domain magnetic particles known as magnetosomes. Because these bacteria have complex nutritional ...the presence of MNIS. Plasmid analysis indicated that all overlaved ,kith 3 ml soft aizar seeded with strain CL142. The clones carried recombinant...mutants of E. co/i and deoxyribonucleic acid damage in Escher/ chia co/i. MAicrobiol other bacteria. Ann Rev Genet 7:i67 -86 Rev 48:60 -93 Goldberg- 1

  2. Automated single particle detection and tracking for large microscopy datasets.

    PubMed

    Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping

    2016-05-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

  3. Automated single particle detection and tracking for large microscopy datasets

    PubMed Central

    Wilson, Rhodri S.; Yang, Lei; Dun, Alison; Smyth, Annya M.; Duncan, Rory R.; Rickman, Colin

    2016-01-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates. PMID:27293801

  4. Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy

    NASA Astrophysics Data System (ADS)

    Graeser, M.; Bente, K.; Buzug, T. M.

    2015-06-01

    The dynamical behaviour of superparamagnetic iron oxide nanoparticles (SPIONs) is not yet fully understood. In magnetic particle imaging (MPI) SPIONs are used to determine quantitative real-time medical images of a tracer material distribution. For reaching spatial resolution in the sub-millimetre range, MPI requires a well engineered instrumentation providing a magnetic field gradient exceeding 2 T m{}-{1} . However, as the particle performance strongly affects the sensitivity of the imaging process, optimization of the particle parameters is a crucial factor, which is not easy to address. Today most simulations of MPI use the Langevin model to describe the particle behaviour. In equilibrium, the model matches the measured data. If alternating fields in the mid kHz frequency range are applied, the dynamic behaviour of the particles differs from the Langevin theory due to anisotropy effects, particle-particle-interactions and/or exchange interaction in case of multi-core particles. In this paper a model based on previous work is introduced, which was adopted to include crystal and shape anisotropy of immobilised mono-domain single-core particles. The model is applied to typical MPI frequencies and field strengths with different possible superposition of the anisotropy effects, leading to differences in the particle response. It is shown that, despite comparatively high anisotropy constants, the magnetocrystalline anisotropy energy does not quench the signal response for MPI. The constructive superposition of shape and crystal anisotropy leads to the best performance in terms of sensitivity and resolution of the associated imaging modality and slightly reduces the energy barriers compared to a sole-shape anisotropy.

  5. Single particle conformations of human serum albumin by electron microscopy.

    PubMed

    Ueno, Yutaka; Mio, Muneyo; Sato, Chikara; Mio, Kazuhiro

    2007-06-01

    Using single particle images taken by electron microscopy, pH-dependent conformational changes of human serum albumin were investigated. Despite the noisy particle images of negatively stained serum albumin (67 kDa), our novel algorithm for automated particle picking and reference-free classification resulted in the appropriate grouping of the particle images. Iteratively aligned particle images in the same group provided recognizable image features for individual groups. In a pH 7.0 study, monomer images were consistent with an available crystal structure model; the dimer images were separated into different classes. At pH 3.5, the monomer images were similar to those at pH 7.0; slight differences included a small number of elongated conformations and increased population of larger multimers. Our images were also compared with projection images of an atomic model from crystallography, and demonstrated consistency of the molecular conformation both at pH 7.0 and pH 3.5. Our classification method was effective in discriminating monomers from a mixture of different conformations of the protein, enabling the study of the conformational dynamics of small proteins, using the atomic model as a reference.

  6. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  7. Drift correction of the dissolved signal in single particle ICPMS.

    PubMed

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  8. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae

    PubMed Central

    Ono, Chikako; Shiokawa, Mai; Mori, Hiroyuki; Uemura, Kentaro; Yamamoto, Satomi; Okamoto, Toru; Suzuki, Ryosuke; Yoshii, Kentaro; Kurosu, Takeshi; Igarashi, Manabu; Aoki, Hiroshi; Sakoda, Yoshihiro

    2017-01-01

    Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene. PMID:28644867

  9. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging.

    PubMed

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2016-08-01

    In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells(1, 2). Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions(3). Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems(4-8). Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles(5) we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.(9, 10).

  10. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-08-01

    In many viruses, molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.

  11. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    PubMed Central

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-01-01

    In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50–100 nm prohead shells1, 2. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions3. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems4–8. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles5 we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.9, 10 PMID:27540410

  12. Characterization of individual fine and ultrafine particles with a real-time single particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Reinard, Melissa S.

    2008-10-01

    Designed to analyze aerosols in ambient settings, the Real-Time Single Particle Mass Spectrometer (RSMS) provides a highly time-resolved measurement of the physical and chemical properties of individual fine (<2.5 mum dia.) and ultrafine (<0.1 mum dia.) particles. Understanding aerosols within this size range is crucial as these particles greatly impact both human health and the environment. Data collected by RSMS can be used identify particle sources and atmospheric processes. RSMS was deployed to Wilmington, DE during 2005-2006 as part of E-DATAS (Enhanced Delaware Air Toxics Assessment Study), a collaboration with the Delaware Department of Natural Resources (DNREC), the Environmental Protection Agency (EPA) and Duke University. Mass spectra acquired by RSMS were compared to a Scanning Mobility Particle Sizer (SMPS) to give a quantitative estimate of the chemical composition of PM1.0 (particulate matter <1.0 mum dia.) impacting the city. A method to collect and analyze particles directly from emission stacks of industrial facilities was developed to help identify sources of PM. Single particle mass spectrometry, in general, has remained primarily a qualitative technique due to several instrumental limitations which affect the data. First, the shot-to-shot variation in the laser pulse caused inconsistencies between the mass spectra of particles with the same composition. To determine whether this variation was systematic or random, the covariance between ions was calculated for laboratory generated aerosols. Second, RSMS was found to be highly sensitive to specific chemical species such as ammonium nitrate and transition/alkali metals. When these compounds are present in a particle they dominate the mass spectra and dwarf other the signal from other components to the baseline. To explore this bias, data collected by RSMS in Wilmington, DE was compared to data also collected in Wilmington by the quantitative NanoAerosol Mass Spectrometer (NAMS). Finally, a light

  13. Simultaneous Single-Particle Superlocalization and Rotational Tracking

    SciTech Connect

    Gu, Yan; Wang, Gufeng; Fang, Ning

    2013-01-30

    Superlocalization of single molecules and nanoparticles has become an essential procedure to bring new insights into nanoscale structures and dynamics of biological systems. In the present study, superlocalization is combined with the newly introduced differential interference contrast (DIC) microscopy-based single-particle orientation and rotational tracking. The new technique overcomes the difficulty in localization of the antisymmetric DIC point spread function by using a dual-modality microscope configuration for simultaneous rotational tracking and localization of single gold nanorods with nanometer-scale precision. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment. This technique has great potential in the study of biological processes where both localization and rotational information are required.

  14. Charged-particle spectroscopy in organic semiconducting single crystals

    SciTech Connect

    Ciavatti, A.; Basiricò, L.; Fraboni, B.; Fraleoni-Morgera, A.

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  15. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  16. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  17. The Use of Nanotrap Particles Technology in Capturing HIV-1 Virions and Viral Proteins from Infected Cells

    PubMed Central

    Sampey, Gavin; Shafagati, Nazly; Van Duyne, Rachel; Iordanskiy, Sergey; Kehn-Hall, Kylene; Liotta, Lance; Petricoin, Emanuel; Young, Mary; Lepene, Benjamin; Kashanchi, Fatah

    2014-01-01

    HIV-1 infection results in a chronic but incurable illness since long-term HAART can keep the virus to an undetectable level. However, discontinuation of therapy rapidly increases viral burden. Moreover, patients under HAART frequently develop various metabolic disorders and HIV-associated neuronal disease. Today, the main challenge of HIV-1 research is the elimination of the residual virus in infected individuals. The current HIV-1 diagnostics are largely comprised of serological and nucleic acid based technologies. Our goal is to integrate the nanotrap technology into a standard research tool that will allow sensitive detection of HIV-1 infection. This study demonstrates that majority of HIV-1 virions in culture supernatants and Tat/Nef proteins spiked in culture medium can be captured by nanotrap particles. To determine the binding affinities of different baits, we incubated target molecules with nanotrap particles at room temperature. After short sequestration, materials were either eluted or remained attached to nanotrap particles prior to analysis. The unique affinity baits of nanotrap particles preferentially bound HIV-1 materials while excluded albumin. A high level capture of Tat or Tat peptide by NT082 and NT084 particles was measured by western blot (WB). Intracellular Nef protein was captured by NT080, while membrane-associated Nef was captured by NT086 and also detected by WB. Selective capture of HIV-1 particles by NT073 and NT086 was measured by reverse transcriptase assay, while capture of infectious HIV-1 by these nanoparticles was demonstrated by functional transactivation in TZM-bl cells. We also demonstrated specific capture of HIV-1 particles and exosomes-containing TAR-RNA in patients' serum by NT086 and NT082 particles, respectively, using specific qRT-PCR. Collectively, our data indicate that certain types of nanotrap particles selectively capture specific HIV-1 molecules, and we propose to use this technology as a platform to enhance HIV-1

  18. Tensor interaction contributions to single-particle energies

    SciTech Connect

    Brown, B. A.; Duguet, T.; Otsuka, T.; Abe, D.; Suzuki, T.

    2006-12-15

    We calculate the contribution of the nucleon-nucleon tensor interaction to single-particle energies with finite-range G-matrix potentials and with zero-range Skyrme potentials. The Skx Skyrme parameters including the zero-range tensor terms with strengths calibrated to the finite-range results are refitted to nuclear properties. The fit allows the zero-range proton-neutron tensor interaction as calibrated to the finite-range potential results which gives the observed change in the single-particle gap {epsilon}(h{sub 11/2})-{epsilon}(g{sub 7/2}) going from {sup 114}Sn to {sup 132}Sn. However, the experimental l dependence of the spin-orbit splittings in {sup 132}Sn and {sup 208}Pb is not well described when the tensor is added, owing to a change in the radial dependence of the total spin-orbit potential. The gap shift and a good fit to the l dependence can be recovered when the like-particle tensor interaction is opposite in sign to that required for the G matrix.

  19. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    DOE PAGES

    Zawadowicz, Maria A.; Froyd, Karl D.; Murphy, Daniel M.; ...

    2017-06-16

    Measurements of primary biological aerosol particles (PBAP), especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS) has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture) using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology tomore » differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.« less

  20. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zawadowicz, Maria A.; Froyd, Karl D.; Murphy, Daniel M.; Cziczo, Daniel J.

    2017-06-01

    Measurements of primary biological aerosol particles (PBAP), especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS) has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture) using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04-2 % of particles in the 200-3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36-56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust-biological mixtures.

  1. Life and death of a single catalytic cracking particle

    PubMed Central

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  2. Inclusive photoproduction of single charged particles at high p T

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Voigtlaender-Tetzner, A.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1989-03-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.0< p T <5.0 GeV/c and 0.0< x F <1.0 at incident momenta from 70 to 170 GeV/c. The comparison between photon- and hadron-induced data indicates a relative excess of particles with p T >1.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.

  3. Hierarchical Ag mesostructures for single particle SERS substrate

    NASA Astrophysics Data System (ADS)

    Xu, Minwei; Zhang, Yin

    2017-01-01

    Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250-500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 106.

  4. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  5. Replicating Viral Particles and other Shape-controlled, Functional Particles for Targeted Delivery Applications Using Nano-molding Techniques

    DTIC Science & Technology

    2007-10-23

    are not toxic to B6 mice, don’t interfere with a PnP induced humeral response and don’t sequester themselves in a compartment that is...aminoethylmethacrylate incorporated (see Figure 6). We have reacted those amine groups on the surface with 2,4,6-trinitrobenzene 1-sulfonic acid ( TNBS ...solution containing amine-functionalized PRINT particles with TNBS (Figure 7). NP (nitrophenol)-decorated PRINT particles (conjugated to the surface

  6. A single viral gene determines lethal cross-species neurovirulence of baboon herpesvirus HVP2.

    PubMed

    Black, Darla; Ohsawa, Kazutaka; Tyler, Shaun; Maxwell, Lara; Eberle, R

    2014-03-01

    Alpha-herpesviruses can produce more severe infections in non-natural host species than in their natural host. Isolates of the baboon alpha-herpesvirus Papiine herpesvirus 2 (HVP2) are either very neurovirulent in mice (subtype nv) or non-virulent (subtype ap), but no such difference is evident in the natural baboon host. Comparative genome sequencing was used to identify subtype-specific sequence differences (SSDs) between HVP2nv and HVP2ap isolates. Some genes were identified that despite exhibiting sequence variation among isolates did not have any SSDs, while other genes had comparatively high levels of SSDs. Construction of genomic recombinants between HVP2nv and HVP2ap isolates mapped the mouse neurovirulence determinant to within three genes. Construction of gene-specific recombinants demonstrated that the UL39 ORF is responsible for determining the lethal neurovirulence phenotype of HVP2 in mice. These results demonstrate that differences in a single viral gene can determine the severity of herpesvirus infection in a non-natural host species.

  7. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    PubMed

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  8. Nature of single-particle states in disordered graphene

    NASA Astrophysics Data System (ADS)

    Nag, Sabyasachi; Garg, Arti; Ramakrishnan, T. V.

    2016-06-01

    We analyze the nature of the single-particle states, away from the Dirac point in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. For a disorder potential V (r ⃗) =V0exp(-| r ⃗-r⃗imp|2/ξ2) , we demonstrate that not only the Dirac state but all the single-particle states remain extended for weak-enough disorder. Based on our numerical calculations of inverse participation ratio, dc conductivity, diffusion coefficient, and the localization length from time evolution dynamics of the wave packet, we show that the threshold Vth required to localize a single-particle state of energy E (k ⃗) is minimum for the states near the band edge and is maximum for states near the band center, implying a mobility edge starting from the band edge for weak disorder and moving towards the band center as the disorder strength increases. This can be explained in terms of the low-energy Hamiltonian at any point k ⃗ which has the same nature as that at the Dirac point. From the nature of the eigenfunctions, it follows that a weak long-range impurity will cause weak antilocalization effects, which can be suppressed, giving localization if the strength of impurities is sufficiently large to cause intervalley scattering. The intervalley spacing 2 | k ⃗| increases as one moves in from the band edge towards the band center, which is reflected in the behavior of Vth and the mobility edge.

  9. Dirac single particle and plasmon excitations in topological insulators

    NASA Astrophysics Data System (ADS)

    Lupi, Stefano

    Topological Insulators (TIs), like Bi2Se3 and Bi2Te3, are one of the most intriguing issues at focus in Condensed Matter Physics. TIs exhibit a band gap in the bulk like ordinary insulators, but have intrinsic 2D conducting states on their edge and surface. This means that the topology, associated with the electronic wavefunctions of the system, changes discontinuously when passing from the bulk to the surface. The edge states arise from a strong spin-orbit coupling, and they are backscattering protected, i.e. not sensitive to disorder (except that coming from magnetic impurities). Such as graphene, TIs surface charge transport is carried out by Dirac fermions, with a very high surface carrier density (n >= 1013 cm-2) , compared to typical values on metal surfaces. Apart single particle excitations, Dirac fermions in TIs sustain exotic plasmonic (collective) modes whose properties of tunability and temperature dependence can be used for photonics applications at the nanoscale. Moreover, unlike plasmons in metals, Dirac plasmons in TIs are expected to be strongly affected by an external magnetic field B due to fact that the cyclotron frequency is comparable to the the plasmon frequency, in particular when plasmons are engineered in the terahertz region of the electromagnetic spectrum. In this talk, after a general review on the properties of Topological Insulators, I will discuss the terahertz linear response of Dirac plasmons in TIs and their behavior under a strong magnetic field up to 30 T. The appearance of strong non-linear optical effects, when the THz electric field reaches values on the order of 1 MV/cm, will be also discussed. In the second part of the talk, I will discuss the sub-ps dynamics of Dirac single-particle and collective excitations as measured by optical-pump THz-probe experiments. Both the steady state and time-resolved experiments provide a unifying picture of single particle and collective electronic excitations in Topological Insulators.

  10. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  11. Microswimmers - From Single Particle Motion to Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gompper, Gerhard; Bechinger, Clemens; Herminghaus, Stephan; Isele-Holder, Rolf; Kaupp, U. Benjamin; Löwen, Hartmut; Stark, Holger; Winkler, Roland G.

    2016-11-01

    Locomotion of autonomous microswimmers is a fascinating field at the cutting edge of science. It combines the biophysics of self-propulsion via motor proteins, artificial propulsion mechanisms, swimming strategies at low Reynolds numbers, the hydrodynamic interaction of swimmers, and the collective motion and synchronisation of large numbers of agents. The articles of this Special Issue are based on the lecture notes of an international summer school, which was organized by the DFG Priority Programme 1726 "Microswimmers - From Single Particle Motion to Collective Behaviour" in the fall of 2015. The minireviews provide a broad overview of the field, covering both elementary and advanced material, as well as selected areas from current research.

  12. Effect of ICRF Heating on Single Particle Confinement in Tokamaks,

    DTIC Science & Technology

    1980-03-01

    80 K W WHANG. 6 .J MORALES N0001IG75C4476 W4CLASSIFlED PP"-73 ML IND 4, LAa4 5 057 Effect of ICRP Heating on Single Particle Confinement in Tokamaks ...bas =akapmwd a b 11 1Af b tmhmdin4 -2- ABSTRACT The simultaneous effect of ion heating and spatial diffusion due to ICRF heating in tokamak geometry... Tokamak confinement devices. Previous theoretical studies I1 2 of this topic have dealt with important questions related to the efficiency of the heating

  13. Inactivation by bromine of single poliovirus particles in water.

    PubMed Central

    Floyd, R; Johnson, J D; Sharp, D G

    1976-01-01

    Quantitative electron microscopy shows that Freon-extracted poliovirus, velocity banded in a sucrose gradient, contains over 95% single particles. This well-dispersed virus reacts quite rapidly with bromine in turbulent flowing water, losing plaque titer at the rate of one log10 unit in 10s at pH 7, 2 C, and at a bromine concentration of 2.2 muM. At 10 and 20 C the rate of disinfection (log10 plaque-forming units per second) is faster, and at both temperatures it increases in approximately linear fashion with increasing bromine concentration. At 2 C such a linear relationship is not observed. Images PMID:11745

  14. Stability and single-particle properties of bosonized Fermi liquids

    NASA Astrophysics Data System (ADS)

    Houghton, A.; Kwon, H.-J.; Marston, J. B.

    1994-07-01

    We study the stability and single-particle properties of Fermi liquids in spatial dimensions greater than one via bosonization. For smooth nonsingular Fermi-liquid interactions we obtain Shankar's renormalization-group flows to second order in the BCS coupling and reproduce well-known results for quasiparticle lifetimes. We demonstrate by explicit calculation that spin-charge separation does not occur when the Fermi-liquid interactions are regular. We also explore the relationship between quantized bosonic excitations and zero-sound modes and present a concise derivation of both the spin and the charge collective-mode equations. Finally we discuss some aspects of singular Fermi-liquid interactions.

  15. Single-particle cryo-EM at crystallographic resolution

    PubMed Central

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  16. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping.

    PubMed

    Shuang, Bo; Chen, Jixin; Kisley, Lydia; Landes, Christy F

    2014-01-14

    Single particle tracking (SPT) techniques provide a microscopic approach to probe in vivo and in vitro structure and reactions. Automatic analysis of SPT data with high efficiency and accuracy spurs the development of SPT algorithms. In this perspective, we review a range of available techniques used in SPT analysis programs. In addition, we present an example SPT program step-by-step to provide a guide so that researchers can use, modify, and/or write a SPT program for their own purposes.

  17. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    NASA Astrophysics Data System (ADS)

    Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.

    2016-05-01

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  18. Inhibition of replication of HIV-1 at both early and late stages of the viral life cycle by single-chain antibody against viral integrase.

    PubMed

    Kitamura, Y; Ishikawa, T; Okui, N; Kobayashi, N; Kanda, T; Shimada, T; Miyake, K; Yoshiike, K

    1999-02-01

    Retroviruses including HIV-1 integrates a DNA copy of their RNA genome into cellular DNA of the infected cell. This reaction, essential and unique to replication of retroviruses, is mediated by the viral enzyme, integrase (IN). We constructed a recombinant gene encoding a single-chain, antigen-binding peptide (scAb2-19), which interacted with a carboxyl terminal part of HIV-1 IN. HeLa CD4 cells expressing scAb2-19 localized in either cytoplasmic or nuclear compartment were resistant to HIV-1 infection at an multiplicity of infection (MOI) of 0.25 or 0.063, but the resistance was overcome when MOI was increased to 1. To determine whether this resistance was due to inhibition of the early events, transduction experiments were performed with a replication-incompetent HIV-1 vector carrying bacterial lacZ driven by an internal Tat-independent cytomegalovirus immediate early promoter. Both cytoplasmic and nuclear expressions of scAb2-19 resulted in decrease in the transduction efficiency on HeLa CD4 cells. This implies that an early step of replication--before or during integration--was affected by the scAb2-19. Furthermore, cytoplasmic expression of scAb2-19 did not affect the viral amount released from the cells transfected with HIV-1 infectious clone DNA (pLAI). However, infectivity relative to reverse transcriptase activity was lower for virions released from the 293T cells cotransfected with pLAI and the cytoplasmic scAb2-19 expression plasmid than for those released from the 293T cells transfected with pLAI alone. This implies that scAb2-19 reduced infectivity of released virions by interfering a late step of the viral replication. The single-chain, antigen-binding peptide molecule may prove useful not only for studies of the functions of IN and its role in the viral life cycle but also for developing a gene therapy strategy against AIDS.

  19. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  20. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  1. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; ...

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  2. Single Event Rates for Devices Sensitive to Particle Energy

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.; Scheick, L. Z.; Banker, M. W.

    2012-01-01

    Single event rates (SER) can include contributions from low-energy particles such that the linear energy transfer (LET) is not constant. Previous work found that the environmental description that is most relevant to the low-energy contribution to the rate is a "stopping rate per unit volume" even when the physical mechanisms for a single-event effect do not require an ion to stop in some device region. Stopping rate tables are presented for four heavy-ion environments that are commonly used to assess device suitability for space applications. A conservative rate estimate utilizing limited test data is derived, and the example of SEGR rate in a power MOSFET is presented.

  3. Modeling Single Particle Transport in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hudson, Ben; Fiksel, Gennady; Prager, Stewart

    2001-10-01

    Single particle transport in a stochastic magnetic field is simulated via code ION and RIO. Developed in collaboration with a group in Novosibirsk, Russia, they simulate both single ion and multiple ion trajectories in a stochastic magnetic field. A sharp decrease in the relative diffusion of ions to magnetic field lines is seen in two gyro-radii regimes. One is explainable from the unbroken flux surfaces near the edge of the plasma. The other is thought to be due to a "gyro-averaging" effect that occurs when the gyro-radius exceeds the radial correlation length of the field lines. The simulations indicate a decrease in expected transport, most strongly as a function of gyro-radius, which will be tested experimentally with the MST neutral beam injector.

  4. Towards single particle imaging of human chromosomes at SACLA

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-12-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.

  5. Probing Black Carbon-containing Particle Microphysics with the Single-Particle Soot Photometer (SP2)

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lewis, E. R.; Onasch, T. B.; Lambe, A. T.; Davidovits, P.; Kleinman, L. I.

    2012-12-01

    Knowledge of the structure and mixing state of black-carbon containing particles is important for calculating their radiative forcing and provides insight into their source and life cycle. Recently analysis of black carbon-containing particles has demonstrated that for a fraction of such particles, the black carbon may reside on or near the surface of the particle as opposed to the traditional core-shell configuration typically assumed in which the black carbon core is surrounded by a shell of non-refractory material. During the DOE-sponsored Aerosol Lifecycle field campaign held in summer, 2011 at Brookhaven National Laboratory on Long Island, NY, episodes were encountered in which a high fraction of particles containing black carbon had such configurations, and these episodes corresponded to air masses that contained biomass burning plumes (Sedlacek et al., 2012). Subsequent analysis found other episodes in field campaigns in Colorado and California in which high fractions this configuration corresponded to biomass burning plumes. In an effort to evaluate this interpretation and explore formation mechanisms, a series of laboratory-based experiments examining the coagulation of regal black (surrogate for collapsed soot) with model non-refractory coatings [dioctyl sebacate (surrogate for organic aerosols with liquid-like character) and deliquesced ammonium sulfate (solid)] were carried out. The results of these experiments and their potential implications on black carbon radiative forcing will be discussed. Sedlacek, III, Arthur, E. R. Lewis, L. I. Kleinman, J. Xu and Q. Zhang (2012), Determination of and Evidence for Non-core-shell structure of particles containing black carbon using the single particle soot photometer (SP2). Geophys. Res. Lett., 39 L06802, doi:10.1029/2012GL050905

  6. Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Han, Bingxue; Bi, Xinhui; Dai, Shouhui; Huang, Wei; Chen, Duohong; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Zhou, Zhen

    2015-02-01

    Continuous ambient measurement of atmospheric aerosols was performed with a single particle aerosol mass spectrometer (SPAMS) in Guangzhou during summer of 2012. The aerosols mainly consisted of carbonaceous particles as major compositions in submicrometer range, including K-rich (29.8%), internally mixed organics and elemental carbon (ECOC, 13.5%), organic carbon-rich (OC, 18.5%), elemental carbon (EC, 12.3%) and high molecular OC (HMOC, 3.2%), and inorganic types (e.g., Na-rich Na-K, Fe-rich, V-rich, and Cu-rich) as major ones in supermicrometer range. Results show that carbonaceous particles were commonly internally mixed with sulfate and nitrate through atmospheric processing, in particular, with sulfate; inorganic types were dominantly internally mixed with nitrate rather than sulfate, indicative of different evolution processes for carbonaceous and inorganic particles in the atmosphere. It was observed that variations of these particle types were significantly influenced by air mass back trajectories (BTs). Under the influence of continental BTs, carbonaceous types were prevalent, while Na-K and Na-rich types considerably increased when the BTs originated from south marine regions. Number fraction of carbonaceous types exhibited obvious diurnal variation throughout the sampling period, which reflects their relatively stable emission and atmospheric processes. Two EC particle types LC-EC and NaK-EC showed different diurnal distributions, suggesting their different origins. The obtained information on the mixing state and the temporal variation of particle types is essential for developing an understanding on the origin and evolution processes of atmospheric aerosols.

  7. Chiral imprinting of diblock copolymer single-chain particles.

    PubMed

    Njikang, Gabriel; Liu, Guojun; Hong, Liangzhi

    2011-06-07

    This Article reports the molecular imprinting of polymer single-chain particles that have a radius ∼3.7 nm. For this, the template L-phenylalanine anilide or L-ΦAA and a diblock copolymer PtBA-b-P(CEMA-r-CA) were used. Here, PtBA denotes poly(tert-butyl acrylate), and P(CEMA-r-CA) denotes a random block consisting of cinnamoyloxyethyl methacrylate (CEMA) and carboxyl-bearing (CA) units. In CHCl(3)/cyclohexane (CHX) with 64 vol % of CHX or at f(CHX) = 64%, a block-selective solvent for PtBA, PtBA-b-P(CEMA-r-CA) formed spherical micelles. The core consisted of the insoluble P(CEMA-r-CA) block and L-ΦAA, which complexed with the CA groups. Pumping slowly this micellar solution into stirred CHCl(3)/(CHX) at f(CHX) = 64% triggered micelle dissociation into single-chain micelles, which comprised presumably a solubilized PtBA tail and a collapsed P(CEMA-r-CA)/L-ΦAA head. Because the solvent reservoir was under constant UV irradiation, the photo-cross-linkable units in the P(CEMA-r-CA) head cross-linked, and the single-chain micelles were converted into cross-linked single-chain micelles or tadpoles. Synchronizing the micelle addition and photoreaction rates allowed the preparation, from this protocol, of essentially pure tadpoles at high final polymer concentrations. Imprinted tadpoles were procured after L-ΦAA was extracted from the tadpole heads. Under optimized conditions, the produced imprinted tadpoles had exceptionally high binding capacity and high selectivity for L-ΦAA. In addition, the rates of L-ΦAA release from and rebinding by the particles were high.

  8. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  9. Optimal estimation of diffusion coefficients from single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  10. Optimal estimation of diffusion coefficients from single-particle trajectories.

    PubMed

    Vestergaard, Christian L; Blainey, Paul C; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  11. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  12. Single-particle excitations in disordered Weyl fluids

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Chou, Yang-Zhi; Goswami, Pallab; Huse, David A.; Nandkishore, Rahul; Radzihovsky, Leo; Das Sarma, S.

    2017-06-01

    We theoretically study the single-particle Green function of a three-dimensional disordered Weyl semimetal using a combination of techniques. These include analytic T -matrix and renormalization group methods with complementary regimes of validity and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: They instead have a nonzero linewidth that for weak short-range disorder arises from nonperturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single-particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find η =0.13 ±0.04 , which agrees well with a renormalization group analysis (η =0.125 ). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.

  13. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  15. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    PubMed

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation.

  16. The Potyvirus Particle Recruits the Plant Translation Initiation Factor eIF4E by Means of the VPg covalently Linked to the Viral RNA.

    PubMed

    Tavert-Roudet, Geneviève; Anne, Agnès; Barra, Amandine; Chovin, Arnaud; Demaille, Christophe; Michon, Thierry

    2017-09-01

    The viral protein genome-linked (VPg) of potyviruses is a protein covalently linked to the 5' end of viral RNA. It interacts with eIF4E, a component of the cellular translation initiation complex. It has been suggested that the 5' RNA-linked VPg could mimic the cellular mRNA cap, promoting synthesis of viral proteins. Here, we report evidence for recruitment of the plant eIF4E by Lettuce mosaic virus (LMV, potyvirus) particles via the 5' RNA-linked VPg. Analysis of the viral population was performed by enzyme-linked immunosorbent assay-based tests, either with crude extracts of LMV-infected tissues or purified viral particles. In both cases, LMV-VPg and LMV-eIF4E subpopulations could be detected. After reaching a maximum within the first 2 weeks postinoculation, these populations decreased and very few labeled particles were found later than 3 weeks postinoculation. The central domain of VPg (CD-VPg) was found to be exposed at the surface of the particles. Using a purified recombinant lettuce eIF4E and CD-VPg-specific antibodies, we demonstrate that the plant factor binds to the VPg via its central domain. Moreover, the plant eIF4E factor could be imaged at one end of the particles purified from LMV plant extracts, by immunoredox atomic force microscopy coupled to scanning electrochemical microscopy. We discuss the biological significance of these results.

  17. Single-radial-immunodiffusion as an in vitro potency assay for human inactivated viral vaccines.

    PubMed

    Williams, M S

    1993-11-01

    Single-radial-immunodiffusion (SRID) assays have been used to determine the potency of all human inactivated influenza virus vaccines licensed by the Food and Drug Administration for use in the United States since 1978. SRID replaced less reliable tests which were based on the aggregation of erythrocytes by the hemagglutinins of influenza viruses. Similar SRID assays have been used experimentally to determine the potency of inactivated polio and rabies vaccines. In each case, the assays are based on the diffusion of viral antigen into an agarose gel containing specific antibodies to the antigen being measured. For influenza and rabies, disruption of the virions with a detergent is necessary to permit the diffusion of the appropriate antigens, where as with polio, intact virions are allowed to diffuse. The interaction between antigen and antibody produces a zone of precipitation whose size is directly proportional to the amount of antigen applied. A potency value for unknowns is obtained by comparing the sizes of zones produced by unknown preparations to the sizes of zones obtained with a calibrated reference of known antigen content. Once the specific reference antigens and antibodies are prepared and the test standardized, it is a remarkably simple technique which unlike agglutination assays is very reproducible, relatively unaffected by minor variations in test conditions and is far less time consuming and cumbersome than in vivo assays for potency such as those done by inoculating mice or monkeys. More importantly, clinical studies demonstrate that standardization of influenza vaccines by SRID provides a better correlate of human immunogenicity than previous methods.

  18. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity

    PubMed Central

    Mamede, Joao I.; Hope, Thomas J.

    2016-01-01

    Summary Live cell imaging is a valuable technique that allows the characterization of the dynamic processes of the HIV-1 life-cycle. Here, we present a method of production and imaging of dual-labeled HIV viral particles that allows the visualization of two events. Varying release of the intravirion fluid phase marker reveals virion fusion and the loss of the integrity of HIV viral cores with the use of live wide-field fluorescent microscopy. PMID:26714704

  19. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  20. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  1. Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution.

    PubMed

    Asbahi, Mohamed; Mehraeen, Shafigh; Wang, Fuke; Yakovlev, Nikolai; Chong, Karen S L; Cao, Jianshu; Tan, Mei Chee; Yang, Joel K W

    2015-09-09

    Directed self-assembly of nanoparticles (DSA-n) holds great potential for device miniaturization in providing patterning resolution and throughput that exceed existing lithographic capabilities. Although nanoparticles excel at assembling into regular close-packed arrays, actual devices on the other hand are often laid out in sparse and complex configurations. Hence, the deterministic positioning of single or few particles at specific positions with low defect density is imperative. Here, we report an approach of DSA-n that satisfies these requirements with less than 1% defect density over micrometer-scale areas and at technologically relevant sub-10 nm dimensions. This technique involves a simple and robust process where a solvent film containing sub-10 nm gold nanoparticles climbs against gravity to coat a prepatterned template. Particles are placed individually into nanoscale cavities, or between nanoposts arranged in varying degrees of geometric complexity. Brownian dynamics simulations suggest a mechanism in which the particles are pushed into the template by a nanomeniscus at the drying front. This process enables particle-based self-assembly to access the sub-10 nm dimension, and for device fabrication to benefit from the wealth of chemically synthesized nanoparticles with unique material properties.

  2. Immunoevasive protein (IEP)-containing surface layer covering polydnavirus particles is essential for viral infection.

    PubMed

    Furihata, Shunsuke; Tanaka, Kohjiro; Ryuda, Masasuke; Ochiai, Masanori; Matsumoto, Hitoshi; Csikos, Gyorge; Hayakawa, Yoichi

    2014-01-01

    Polydnaviruses (PDVs) are unique symbiotic viruses associated with parasitoid wasps: PDV particles are injected into lepidopteran hosts along with the wasp eggs and express genes that interfere with aspects of host physiology such as immune defenses and development. Recent comparative genomic studies of PDVs have significantly improved our understanding of their origin as well as the genome organization. However, the structural features of functional PDV particles remain ambiguous. To clear up the structure of Cotesia kariyai PDV (CkPDV) particles, we focused on immunoevasive protein (IEP), which is a mediator of immunoevasion by the wasp from the encapsulation reaction of the host insect's hemocytes, because it has been demonstrated to be present on the surface of the virus particle. We discovered that IEP tends to polymerize and constitutes a previously unidentified thin surface layer covering CkPDV particles. This outermost surface layer looked fragile and was easily removed from CkPVD particles by mechanical stressors such as shaking, which prevented CkPDV from expressing the encoded genes in the host target tissues such as fat body or hemocytes. Furthermore, we detected IEP homologue gene expression in the wasp's venom reservoirs, implying IEP has another unknown biological function in the wasp or parasitized hosts. Taken together, the present results demonstrated that female C. kariyai wasps produce the fragile thin layer partly composed of IEP to cover the outer surfaces of CkPDV particles; otherwise, they cannot function as infectious agents in the wasp's host. The fact that IEP family proteins are expressed in both venom reservoirs and oviducts suggests an intimate relationship between both tissues in the development of the parasitism strategy of the wasp. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Three-dimensional single-particle tracking in live cells: news from the third dimension

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gorelashvili, M.; Schüller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D.

    2013-07-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased.

  4. Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis

    PubMed Central

    Wang, Chun-Yan; Zhang, Qin-Fen; Gao, Yuan-Zhu; Xie, Li; Li, Hong-Mei; Hong, Jian; Zhang, Chuan-Xi

    2015-01-01

    Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit. PMID:26442593

  5. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    SciTech Connect

    Jiang Jiyang; Aiken, Christopher . E-mail: chris.aiken@vanderbilt.edu

    2006-03-15

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4{sup +} T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo.

  6. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  7. Single-particle mapping of nonequilibrium nanocrystal transformations

    NASA Astrophysics Data System (ADS)

    Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; Chen, Qian; Powers, Alexander S.; Ercius, Peter; Dunn, Gabriel; Rotskoff, Grant M.; Nguyen, Son C.; Adiga, Vivekananda P.; Zettl, Alex; Rabani, Eran; Geissler, Phillip L.; Alivisatos, A. Paul

    2016-11-01

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.

  8. Single-particle mapping of nonequilibrium nanocrystal transformations.

    PubMed

    Ye, Xingchen; Jones, Matthew R; Frechette, Layne B; Chen, Qian; Powers, Alexander S; Ercius, Peter; Dunn, Gabriel; Rotskoff, Grant M; Nguyen, Son C; Adiga, Vivekananda P; Zettl, Alex; Rabani, Eran; Geissler, Phillip L; Alivisatos, A Paul

    2016-11-18

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.

  9. Single particle motion and gravitational measurements in magnetostatic antihydrogen traps

    NASA Astrophysics Data System (ADS)

    Zhmoginov, Andrey; Wurtele, Jonathan; Fajans, Joel; Charman, Andrew

    2012-10-01

    Recent progress in antihydrogen trapping [1-3] marks the beginning of physics measurements on neutral antimatter. One of the goals of such experiments is the observation of gravitational interaction of antimatter with matter. New methods for such measurements have been proposed, based on the statistical analysis of the temporal and spatial pattern of antihydrogen annihilations during slow (compared to bounce times) shutdowns of the mirror and octupole magnets that comprise the magnetic trap. These techniques require a thorough understanding of nonlinear dynamics of antihydrogen in magnetic traps. We apply a Hamiltonian perturbation theory to this system, analyze phase space dynamics and classify single particle orbits. The role of the stochasticity, and the Arnold diffusion accompanying it, on the accuracy of gravitational measurements is discussed. The analytical results are verified numerically, different approaches to slow particle release are compared, and implications for laser-cooling are discussed. [4pt] [1] G. B. Andresen and ALPHA Collaboration, Nature 468, 673 (2010). [2] G. B. Andresen and ALPHA Collaboration, Nature Physics 7, 558 (2011). [3] C. Amole and ALPHA Collaboration, Nature 483, 439 (2012).

  10. Nano-lens diffraction around a single heated nano particle.

    PubMed

    Selmke, Markus; Braun, Marco; Cichos, Frank

    2012-03-26

    The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [Appl. Opt. 34, 41-50 (1995)], [Jpn. J. Appl. Phys. 45, 7141-7151 (2006)], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic scattering treatment was established [Phys. Rev. B 73, 045424 (2006)] during the emergence of this new technique. Our recent study [ACS Nano, DOI: 10.1021/nn300181h] extended this approach into a full ab-initio model and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin, is also the lens-like action of the induced refractive index profile only hidden in the complicated guise of the theoretical generalized Mie-like framework. The diffraction model proposed here yields succinct analytical expressions for the axial photothermal signal shape and magnitude and its angular distribution, all showing the clear lens-signature. It is further demonstrated, that the Gouy-phase of a Gaussian beam does not contribute to the relative photothermal signal in forward direction, a fact which is not easily evident from the more rigorous EM treatment. The presented model may thus be used to estimate the signal shape and magnitude in photothermal single particle microscopy.

  11. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  12. [Visualization and identification of hepatitis C viral particles by atomic force microscopy combined with MS/MS analysis].

    PubMed

    Kaĭsheva, A L; Ivanov, Iu D; Zgoda, V G; Frantsuzov, P A; Pleshakova, T O; Krokhin, N V; Ziborov, V S; Archakov, A I

    2010-01-01

    Possibility of detection and identification of hepatitis C viral particles with mass spectrometry (MS) in combination with atomic force microscopy (AFM) had been investigated. AFM/MS approach is based on two technologies: (1) AFM-biospecific fishing that allows to detect, concentrate from solution and to count protein complexes on a surface of AFM-nanochip; (2) mass spectrometric identification of these complexes. AFM-biospecific fishing of HCVcoreAg from solution was carried onto surface of AFM-nanochips with immobilized anti-HCVcoreAg. It was shown that HCVcoreAg/anti-HCVcore(im) complexes were formed onto AFM-nanochips in quantity sufficient for mass spectrometric identification. Thus, AFM/MS approach allows to identify fragments of hepatitis C virus fished onto a surface of AFM-nanochip from serum.

  13. Binding of Norwalk virus viral-like particles to veins of romaine lettuce

    USDA-ARS?s Scientific Manuscript database

    Noroviruses (NoV) annually cause millions of cases of gastrointestinal disease in the United States. NoV are associated with raw shellfish outbreaks, particularly oysters, which are thought to bioaccumulate NoV particles during the filter feeding process. NoV outbreaks, however, have been known to o...

  14. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals

    PubMed Central

    Rast, Luke I.; Rouzine, Igor M.; Rozhnova, Ganna; Bishop, Lisa; Weinberger, Ariel D.; Weinberger, Leor S.

    2016-01-01

    The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV’s mutational escape (i.e., be ‘resistance-proof’). However, an outstanding question has been whether these engineered interfering particles—termed Therapeutic Interfering Particles (TIPs)—would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV (‘unilaterally’) evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. PMID:27152856

  15. Toward the detection of single virus particle in serum.

    PubMed

    Zhang, Yuexing; Bahns, John T; Jin, Qiaoling; Divan, Ralu; Chen, Liaohai

    2006-09-15

    There is a grand challenge for the detection of target molecules at single molecule sensitivity in a bulk body fluid for the early diagnosis of diseases. We report our progress on tackling this challenge via the combination of fluorescence cross-correlation spectroscopy (FCCS) and micro fabricated devices toward highly sensitive detection of the dengue virus. We demonstrate that by using a dengue-specific antibody, we can probe the individual dengue virus in a nanomolar bulk solution by following the specific association of dengue antibody using FCCS. Consequently, we designed and fabricated a microfluidic chamber array structure and were able to compartmentalize the bulk aqueous dengue sample into femtoliter volumes using such a device. More importantly we demonstrate that we can differentiate between the compartments containing the dengue virus and the virus-free compartments. Our experiment suggests that by expanding the throughput using microfluidic devices integrated with FCCS, both of which can be achieved practically, we should be able to detect single virus particle in human body fluids in the near future.

  16. Optical microresonators as single-particle absorption spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.; Thakkar, Niket; Horak, Erik H.; Quillin, Steven C.; Cherqui, Charles; Knapper, Kassandra A.; Masiello, David J.; Goldsmith, Randall H.

    2016-12-01

    Optical measurements of nanoscale objects offer major insights into fundamental biological, material and photonic properties. In absorption spectroscopy, sensitivity limits applications at the nanoscale. Here, we present a new single-particle double-modulation photothermal absorption spectroscopy method that employs on-chip optical whispering-gallery-mode (WGM) microresonators as ultrasensitive thermometers. Optical excitation of a nanoscale object on the microresonator produces increased local temperatures that are proportional to the absorption cross-section of the object. We resolve photothermal shifts in the resonance frequency of the microresonator that are smaller than 100 Hz, orders of magnitude smaller than previous WGM sensing schemes. The application of our new technique to single gold nanorods reveals a dense array of sharp Fano resonances arising from the coupling between the localized surface plasmon of the gold nanorod and the WGMs of the resonator, allowing for the exploration of plasmonic-photonic hybridization. In terms of the wider applicability, our approach adds label-free spectroscopic identification to microresonator-based detection schemes.

  17. Single-file diffusion of macroscopic charged particles.

    PubMed

    Coste, C; Delfau, J-B; Even, C; Saint Jean, M

    2010-05-01

    In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.

  18. HBV/HCV dual infection impacts viral load, antibody response, and cytokine expression differently from HBV or HCV single infection

    PubMed Central

    Chen, Fei; Zhang, Jian; Wen, Bo; Luo, Shan; Lin, Yingbiao; Ou, Wensheng; Guo, Fengfan; Tang, Ping; Liu, Wenpei; Qu, Xiaowang

    2016-01-01

    Hepatitis B virus/hepatitis C virus (HBV/HCV) dual infection is common among high-risk individuals. To characterize the virological and immunological features of patients with HBV/HCV dual infection, we enrolled 1,049 individuals who have been identified as injection drug users. Patients were divided into single and dual infection groups according to the serological markers. We found the average HCV RNA level was significantly lower; however, HBV viral load was significantly higher in HBV/HCV dual-infected patients (n = 42) comparing HCV single infection (n = 340) or HBV single infection (n = 136). The level of anti-HBs in patients who experienced spontaneous HBV clearance was higher than that in HCV single-infected patients with HBV spontaneous clearance. The level of anti-HCV E2 in HBV/HCV dual infection was lower than that detected in HCV single infection. Serum levels of IL-6, IL-8, and TNF-α were significantly lower in HBV/HCV dual-infected patients than in patients infected with HBV or HCV alone. Taken together, two viral replications are imbalanced in dual infected patients. The anti-HBs and anti-HCV E2 antibody production were impaired and proinflammatory IL-6, IL-8, and TNF-α also downregulated due to dual infection. These findings will help further understanding the pathogenesis of HBV/HCV dual infection. PMID:28009018

  19. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE PAGES

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; ...

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  20. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    SciTech Connect

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.

  1. Demonstration of human papillomavirus (HPV) genomic amplification and viral-like particles from CaSki cell line in SCID mice.

    PubMed

    Wu, T C; Hsieh, S T; Purow, B W; Kurman, R J

    1997-05-01

    We demonstrate that from the CaSki cervical cancer cell line, integrated HPV-16 genome was amplified and viral-like particles were generated in an in vivo SCID mouse model. The in vivo tumor growth of several HPV-containing cell lines and 2 HPV-negative cell lines was examined in SCID mice. Tumor growth was noted with the HeLa, CaSki, ME-180, and MS751 cell lines within 2 months after subcutaneous injection. Squamous differentiation was appreciated in focal areas of tumors derived from CaSki and ME-180. In the CaSki tumors, DNA in situ hybridization revealed homogeneous staining of nuclei in some cells in the differentiated areas, suggesting HPV genomic amplification. In contrast, punctate or speckled patterns of hybridization were identified in the less differentiated areas, suggesting continued integration of the HPV genome. Immunocytochemical staining for HPV-16 L1 capsid protein showed it to be concentrated in cells from the differentiated areas, correlating with the results of hybridization. Electron microscopic studies revealed 50 nm uniform particles, consistent with HPV viral-like particles, in the nuclei of some cells in well-differentiated areas. Furthermore, Southern transfer and hybridization of the Hirt's extract from the CaSki tumors was positive for HPV-16 DNA, indicating non-integrated, low molecular weight HPV-16 DNA. Our results show HPV genomic amplification of integrated viral DNA and generation of HPV viral-like particles in CaSki cancer cells in SCID mice and that viral DNA amplification and the formation of viral-like particles are coupled to cellular differentiation. This experimental model provides a potential system for studying the molecular pathogenesis of HPV infections.

  2. Report of the working group on single-particle nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.

    1999-04-01

    The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of acclerators. (AIP)

  3. Charge cluster distribution in nanosites traversed by a single ionizing particle An experimental approach

    NASA Astrophysics Data System (ADS)

    Pszona, S.; Bantsar, A.; Kula, J.

    2008-11-01

    A method for modeling charge cluster formation by a single ionizing particle in nanoelectronic structures of few nanometres size is presented. The method is based on experimental modeling of charge formation in the equivalent gaseous nanosites irradiated by single charged particles and the subsequent scaling procedure to a needed medium. Propane irradiated by alpha particles is presented as an example.

  4. Multi-party quantum summation without a trusted third party based on single particles

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen; Huang, Qiong; Yang, Pingle

    We propose multi-party quantum summation protocols based on single particles, in which participants are allowed to compute the summation of their inputs without the help of a trusted third party and preserve the privacy of their inputs. Only one participant who generates the source particles needs to perform unitary operations and only single particles are needed in the beginning of the protocols.

  5. ORF9p Phosphorylation by ORF47p Is Crucial for the Formation and Egress of Varicella-Zoster Virus Viral Particles

    PubMed Central

    Riva, Laura; Thiry, Marc; Bontems, Sebastien; Joris, Aline; Piette, Jacques; Lebrun, Marielle

    2013-01-01

    The role of the tegument during the herpesvirus lytic cycle is still not clearly established, particularly at the late phase of infection, when the newly produced viral particles need to be fully assembled before being released from the infected cell. The varicella-zoster virus (VZV) protein coded by open reading frame (ORF) 9 (ORF9p) is an essential tegument protein, and, even though its mRNA is the most expressed during the productive infection, little is known about its functions. Using a GalK positive/negative selection technique, we modified a bacterial artificial chromosome (BAC) containing the complete VZV genome to create viruses expressing mutant versions of ORF9p. We showed that ORF9p is hyperphosphorylated during the infection, especially through its interaction with the viral Ser/Thr kinase ORF47p; we identified a consensus site within ORF9p recognized by ORF47p and demonstrated its importance for ORF9p phosphorylation. Strikingly, an ultrastructural analysis revealed that the mutation of this consensus site (glutamate 85 to arginine) strongly affects viral assembly and release, reproducing the ORF47 kinase-dead VZV phenotype. It also slightly diminishes the infectivity toward immature dendritic cells. Taken together, our results identify ORF9p as a new viral substrate of ORF47p and suggest a determinant role of this phosphorylation for viral infectivity, especially during the process of viral particle formation and egress. PMID:23269791

  6. A Single Amino Acid Residue Change in the P Protein of Parainfluenza Virus 5 Elevates Viral Gene Expression▿

    PubMed Central

    Timani, Khalid A.; Sun, Dengyun; Sun, Minghao; Keim, Celia; Lin, Yuan; Schmitt, Phuong Tieu; Schmitt, Anthony P.; He, Biao

    2008-01-01

    Parainfluenza virus 5 (PIV5) is a prototypical paramyxovirus. The V/P gene of PIV5 encodes two mRNA species through a process of pseudotemplated insertion of two G residues at a specific site during transcription, resulting in two viral proteins, V and P, whose N termini of 164 amino acid residues are identical. Previously it was reported that mutating six amino acid residues within this identical region results in a recombinant PIV5 (rPIV5-CPI−) that exhibits elevated viral protein expression and induces production of cytokines, such as beta interferon and interleukin 6. Because the six mutations correspond to the shared region of the V protein and the P protein, it is not clear whether the phenotypes associated with rPIV5-CPI− are due to mutations in the P protein and/or mutations in the V protein. To address this question, we used a minigenome system and recombinant viruses to study the effects of mutations on the functions of the P and V proteins. We found that the P protein with six amino acid residue changes (Pcpi−) was more efficient than wild-type P in facilitating replication of viral RNA, while the V protein with six amino acid residue changes (Vcpi−) still inhibits minigenome replication as does the wild-type V protein. These results indicate that elevated viral gene expression in rPIV5-CPI− virus-infected cells can be attributed to a P protein with an increased ability to facilitate viral RNA synthesis. Furthermore, we found that a single amino acid residue change at position 157 of the P protein from Ser (the residue in the wild-type P protein) to Phe (the residue in Pcpi−) is sufficient for elevated viral gene expression. Using mass spectrometry and 33P labeling, we found that residue S157 of the P protein is phosphorylated. Based on these results, we propose that phosphorylation of the P protein at residue 157 plays an important role in regulating viral RNA replication. PMID:18614634

  7. Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages.

    PubMed

    Andrews-Pfannkoch, Cynthia; Fadrosh, Douglas W; Thorpe, Joyce; Williamson, Shannon J

    2010-08-01

    Metagenomics can be used to determine the diversity of complex, often unculturable, viral communities with various nucleic acid compositions. Here, we report the use of hydroxyapatite chromatography to efficiently fractionate double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), dsRNA, and ssRNA genomes from known bacteriophages. Linker-amplified shotgun libraries were constructed to generate sequencing reads from each hydroxyapatite fraction. Greater than 90% of the reads displayed significant similarity to the expected genomes at the nucleotide level. These methods were applied to marine viruses collected from the Chesapeake Bay and the Dry Tortugas National Park. Isolated nucleic acids were fractionated using hydroxyapatite chromatography followed by linker-amplified shotgun library construction and sequencing. Taxonomic analysis demonstrated that the majority of environmental sequences, regardless of their source nucleic acid, were most similar to dsDNA viruses, reflecting the bias of viral metagenomic sequence databases.

  8. Single-particle characterization of indoor aerosol particles collected at an underground shopping area in Seoul, Korea.

    PubMed

    Maskey, Shila; Kang, TaeHee; Jung, Hae-Jin; Ro, Chul-Un

    2011-02-01

    In this study, single-particle characterization of aerosol particles collected at an underground shopping area was performed for the first time. A quantitative single-particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize a total of 7900 individual particles for eight sets of aerosol samples collected at an underground shopping area in Seoul, Korea. Based on secondary electron images and X-ray spectral data of individual particles, fourteen particle types were identified, in which primary soil-derived particles were the most abundant, followed by carbonaceous, Fe-containing, secondary soil-derived, and secondary sea-salt particles. Carbonaceous particles exist in three types: organic carbon, carbon-rich, and CNO-rich. A significant number of textile particles with chemical composition C, N, and O were encountered in some of the aerosol samples, which were from the textile shops and/or from clothes of passersby. Primary soil-derived particles showed seasonal variation, with peak values in spring samples, reflecting higher air exchange between indoor and outdoor environments in the spring. Secondary soil-derived, secondary sea-salt, and ammonium sulfate particles were frequently encountered in winter samples. Fe-containing particles, contributed from a nearby subway station, were in the range of about 19% relative abundances for all samples. In underground shopping areas, particulate matters can be a considerable health hazard to the workers, shoppers, passersby, and shop-keepers as they spend their considerable time in this closed microenvironment. However, no study on the characteristics of indoor aerosols in an underground shopping area has been reported to our knowledge. This work provides detailed information on characteristics of underground shopping area aerosols on a single particle level. © 2010 John Wiley & Sons A/S.

  9. Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5'-noncoding region of the viral RNA.

    PubMed

    Racaniello, V R; Meriam, C

    1986-12-01

    The effect on viral replication of deleting nucleotide 10 of the poliovirus RNA genome was determined. This deletion, which removes a base pair from a predicted hairpin structure in the viral RNA, was introduced into full-length cDNA. Virus recovered after transfection of HeLa cells with the mutated cDNA contained the expected deletion and was temperature sensitive for plaque formation. Analysis of viral replication by one-step growth experiments indicated that mutant virus production at the nonpermissive temperature was at least 100 times less than that of wild type virus, and release of virus from mutant-infected cells was delayed. The synthesis of positive- and negative-strand viral RNA in mutant virus-infected cells was temperature sensitive. Virus-specific protein synthesis in mutant virus-infected cells was not temperature sensitive but occurred at a slower rate than that of wild type virus at permissive and nonpermissive temperatures. Replication of the mutant virus was sensitive to actinomycin D, in contrast to the wild type parent virus, which was resistant to the drug. Mutant virus stocks contained a small percentage of ts+ viruses that were able to form plaques at the nonpermissive temperature. Nucleotide sequence analysis of genomic RNA from these ts+ viruses revealed a single base change at position 34 from a G to U. In the positive RNA strand, the effect of this mutation is to restore to the hairpin structure the single base pair whose formation was prevented by the original deletion. The ts+ pseudorevertants replicated to similar titers as wild type virus at 33 and 38.5 degrees and were partially sensitive to actinomycin D.

  10. N-terminally myristoylated feline foamy virus Gag allows Env-independent budding of sub-viral particles.

    PubMed

    Liu, Yang; Kim, Yong-Boum; Löchelt, Martin

    2011-11-01

    Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation.

  11. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    PubMed

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  12. Purification and Characterization of Enterovirus 71 Viral Particles Produced from Vero Cells Grown in a Serum-Free Microcarrier Bioreactor System

    PubMed Central

    Liu, Chia-Chyi; Guo, Meng-Shin; Lin, Fion Hsiao-Yu; Hsiao, Kuang-Nan; Chang, Kate Hsuen-Wen; Chou, Ai-Hsiang; Wang, Yu-Chao; Chen, Yu-Ching; Yang, Chung-Shi; Chong, Pele Choi-Sing

    2011-01-01

    Background Enterovirus 71 (EV71) infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD) and can cause neurological disease during acute infection. Principal Finding In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >106 TCID50/mL by 6 days post infection when a MOI of 10−5 was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24–28% sucrose fractions had an icosahedral structure 30–31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3) were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35–38% sucrose were 33–35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211–225). Conclusion These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification. PMID:21603631

  13. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  14. Nanoscale structural features determined by AFM for single virus particles.

    PubMed

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  15. Nanoscale structural features determined by AFM for single virus particles

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  16. Microscopic calculations of {lambda} single-particle energies.

    SciTech Connect

    Usmani, Q. N.

    1998-02-12

    {Lambda} binding energy data for total baryon number A {le} 208 and for {Lambda} angular momenta {ell}{sub {Lambda}} {le} 3 are analyzed in terms of phenomenological (but generally consistent with meson-exchange) {Lambda}N and {Lambda}NN potentials. The Fermi-Hypernetted-Chain technique is used to calculate the expectation values for the {Lambda} binding to nuclear matter. Accurate effective {Lambda}N and {Lambda}NN potentials are obtained which are folded with the core nucleus nucleon densities to calculate the {Lambda} single particle potential U{sub {Lambda}}(r). We use a dispersive {Lambda}NN potential but also include an explicit {rho} dependence to allow for reduced repulsion in the surface, and the best fits have a large {rho} dependence giving consistency with the variational Monte Carlo calculations for {sub {Lambda}}{sup 5}He. The exchange fraction of the {Lambda}N space-exchange potential is found to be 0.2-0.3 corresponding to m{sub {Lambda}}* {approx_equal} (0.74-0.82)m{sub {Lambda}}. Charge symmetry breaking is found to be significant for heavy hypernuclei with a large neutron excess, with a strength consistent with that obtained from the A = 4 hypernuclei.

  17. Single-particle and collective excitations in Ni62

    DOE PAGES

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; ...

    2016-09-01

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf7/2 and νg9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg(48Ca,2α4nγ)62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. As a result, two collectivemore » bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7/2 protons and g9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  18. Structured dark-field imaging for single nano-particles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gao, Kun; Wang, Zhi-Li; Yun, Wen-Bing; Wu, Zi-Yu

    2015-08-01

    In this work, we extensively describe and demonstrate the structured dark-field imaging (SDFI). SDFI is a newly proposed x-ray microscopy designed for revealing the fine features below Rayleigh resolution, in which different orders of scattered x-ray photons are collected by changing the numerical aperture of the condenser. Here, the samples of single particles are discussed to extend the scope of the SDFI technique reported in a previous work (Chen J, Gao K, Ge X, et al. 2013 Opt. Lett. 38 2068). In addition, the details of the newly invented algorithm are explained, which is able to calculate the intensity of any pixel on the image plane rapidly and reliably. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the National Natural Science Foundation of China (Grant No. 11321503), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42), and the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, and 11305173).

  19. Automation in single-particle electron microscopy connecting the pieces.

    PubMed

    Lyumkis, Dmitry; Moeller, Arne; Cheng, Anchi; Herold, Amber; Hou, Eric; Irving, Christopher; Jacovetty, Erica L; Lau, Pick-Wei; Mulder, Anke M; Pulokas, James; Quispe, Joel D; Voss, Neil R; Potter, Clinton S; Carragher, Bridget

    2010-01-01

    Throughout the history of single-particle electron microscopy (EM), automated technologies have seen varying degrees of emphasis and development, usually depending upon the contemporary demands of the field. We are currently faced with increasingly sophisticated devices for specimen preparation, vast increases in the size of collected data sets, comprehensive algorithms for image processing, sophisticated tools for quality assessment, and an influx of interested scientists from outside the field who might lack the skills of experienced microscopists. This situation places automated techniques in high demand. In this chapter, we provide a generic definition of and discuss some of the most important advances in automated approaches to specimen preparation, grid handling, robotic screening, microscope calibrations, data acquisition, image processing, and computational infrastructure. Each section describes the general problem and then provides examples of how that problem has been addressed through automation, highlighting available processing packages, and sometimes describing the particular approach at the National Resource for Automated Molecular Microscopy (NRAMM). We contrast the more familiar manual procedures with automated approaches, emphasizing breakthroughs as well as current limitations. Finally, we speculate on future directions and improvements in automated technologies. Our overall goal is to present automation as more than simply a tool to save time. Rather, we aim to illustrate that automation is a comprehensive and versatile strategy that can deliver biological information on an unprecedented scale beyond the scope available with classical manual approaches. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Surface chemistry and morphology in single particle optical imaging

    NASA Astrophysics Data System (ADS)

    Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim

    2017-05-01

    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.

  1. Single particle fluorescence burst analysis of epsin induced membrane fission.

    PubMed

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  2. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  3. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    NASA Astrophysics Data System (ADS)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (<20 μL). A number of diverse experiments were performed in order to characterise different microphysical properties of SOA. The equilibrium hygroscopic response of SOA was determined with comparative evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to

  4. Excoecarianin, Isolated from Phyllanthus urinaria Linnea, Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles

    PubMed Central

    Cheng, Hua-Yew; Yang, Chien-Min; Lin, Ta-Chen; Lin, Liang-Tzung; Chiang, Lien-Chai; Lin, Chun-Ching

    2011-01-01

    Phyllanthus urinaria Linnea (Euphorbiaceae) is one of the traditional medicinal plants widely used by oriental people to treat various diseases. We have previously demonstrated that the acetone extract of P. urinaria inhibits herpes simplex virus type 2 (HSV-2) but not HSV-1 infection. In a continuing effort to clarify the antiviral mechanisms of P. urinaria, we isolated the pure compound excoecarianin from the whole plant of P. urinaria through acetone extraction, and investigated its anti-HSV-1 and HSV-2 activities. Our results indicated that excoecarianin protected Vero cells from HSV-2 but not HSV-1 infection, and its 50% inhibitory concentration (IC50) was 1.4 ± 0.1 μM. The antiviral effective concentration of excoecarianin did not affect the viability or the morphology of Vero cells. Although excoecarianin inhibited HSV-2 infection, the inhibitory effect, however, was most prominent when excoecarianin was concurrently added with the virus. Pretreatment of Vero cells with excoecarianin with removal of the drug prior to infection did not yield any antiviral effects, and the same observation was made for post viral entry treatment. Subsequent studies revealed that excoecarianin inactivated HSV-2 virus particles to prevent viral infection. A synergistic antiviral effect against HSV-2 was also observed when Vero cells were treated with a combination of acyclovir (ACV) and excoecarianin. These results suggested that excoecarianin merits to be further explored as an entry inhibitor against HSV-2 and could potentially be investigated for combinatorial drug treatment with nucleoside analogues such as ACV in therapeutic management of HSV-2 infection. PMID:19808846

  5. Excoecarianin, Isolated from Phyllanthus urinaria Linnea, Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles.

    PubMed

    Cheng, Hua-Yew; Yang, Chien-Min; Lin, Ta-Chen; Lin, Liang-Tzung; Chiang, Lien-Chai; Lin, Chun-Ching

    2011-01-01

    Phyllanthus urinaria Linnea (Euphorbiaceae) is one of the traditional medicinal plants widely used by oriental people to treat various diseases. We have previously demonstrated that the acetone extract of P. urinaria inhibits herpes simplex virus type 2 (HSV-2) but not HSV-1 infection. In a continuing effort to clarify the antiviral mechanisms of P. urinaria, we isolated the pure compound excoecarianin from the whole plant of P. urinaria through acetone extraction, and investigated its anti-HSV-1 and HSV-2 activities. Our results indicated that excoecarianin protected Vero cells from HSV-2 but not HSV-1 infection, and its 50% inhibitory concentration (IC(50)) was 1.4 ± 0.1 μM. The antiviral effective concentration of excoecarianin did not affect the viability or the morphology of Vero cells. Although excoecarianin inhibited HSV-2 infection, the inhibitory effect, however, was most prominent when excoecarianin was concurrently added with the virus. Pretreatment of Vero cells with excoecarianin with removal of the drug prior to infection did not yield any antiviral effects, and the same observation was made for post viral entry treatment. Subsequent studies revealed that excoecarianin inactivated HSV-2 virus particles to prevent viral infection. A synergistic antiviral effect against HSV-2 was also observed when Vero cells were treated with a combination of acyclovir (ACV) and excoecarianin. These results suggested that excoecarianin merits to be further explored as an entry inhibitor against HSV-2 and could potentially be investigated for combinatorial drug treatment with nucleoside analogues such as ACV in therapeutic management of HSV-2 infection.

  6. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  7. Characterization of aerodynamic drag force on single particles: Final report

    SciTech Connect

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  8. Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei

    SciTech Connect

    Litvinova, E. V.; Afanasjev, A. V.

    2011-07-15

    The impact of particle-vibration coupling and polarization effects due to deformation and time-odd mean fields on single-particle spectra is studied systematically in doubly magic nuclei from low-mass {sup 56}Ni up to superheavy ones. Particle-vibration coupling is treated fully self-consistently within the framework of the relativistic particle-vibration coupling model. Polarization effects due to deformation and time-odd mean field induced by odd particle are computed within covariant density functional theory. It has been found that among these contributions the coupling to vibrations makes a major impact on the single-particle structure. The impact of particle-vibration coupling and polarization effects on calculated single-particle spectra, the size of the shell gaps, the spin-orbit splittings and the energy splittings in pseudospin doublets is discussed in detail; these physical observables are compared with experiment. Particle-vibration coupling has to be taken into account when model calculations are compared with experiment since this coupling is responsible for observed fragmentation of experimental levels; experimental spectroscopic factors are reasonably well described in model calculations.

  9. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles.

    PubMed

    Cockrell, Adam S; van Praag, Henriette; Santistevan, Nicholas; Ma, Hong; Kafri, Tal

    2011-06-24

    The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional

  10. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    PubMed Central

    2011-01-01

    Background The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into HIV-1 viral particles

  11. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  12. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  13. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  14. Proton Single-Particle States In The Heaviest Actinide Nuclei

    SciTech Connect

    Ahmad, I.; Kondev, F.G.; Moore, E.F.; Chasman, R.R.; Carpenter, M.P.; Greene, J.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Hoff, R.W.; Evans, J.E.; Lougheed, R.W.; Porter, C.E.; Felker, L.K.

    2005-04-05

    The level structure of 249Bk has been investigated by measuring the {gamma}-ray spectra following the {alpha} decay of a chemically and isotopically pure 253Es sample. Alpha-gamma coincidence measurement was performed using a Si detector for {alpha} particles and a 25% Ge detector for {gamma} rays. A gamma-gamma coincidence measurement was performed with the Gammasphere spectrometer. The Es sample was obtained by extracting the 253Es which grew in a 253Cf source material produced in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Additional information on the 249Bk levels was obtained from the study of {gamma} rays produced in the {beta}- decay of 249Cm. The 249Cm sample was produced by neutron irradiation of 248Cm. Using the results of the present study and the results of previous 248Cm({alpha},t) and 248Cm(3He,d) reaction spectra, the following single-particle states have been identified in 249Bk: 7/2+[633], 0.0 keV; 3/2-[521], 8.78 keV; 1/2+[400], 377.55 keV: 5/2+[642], 389.17 keV; 1/2-[530], 569.19 keV; 1/2-[521], 643.0 keV; 5/2-[523], 672.8 keV; 9/2+[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7 and 1223.0 keV with tentative assignments of {l_brace}7/2+[633]x1-{r_brace}9/2-, {l_brace}7/2+[633]x0-{r_brace}7/2-, {l_brace}7/2+[633]x1-{r_brace}5/2- and {l_brace}7/2+[633]x0+{r_brace}7/2+, respectively.

  15. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    PubMed Central

    Pearson, Victoria M.; Caudle, S. Brian

    2016-01-01

    Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae), and model organisms for genetics and evolution studies (Microviridae). Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group. PMID:27781171

  16. Particle-verification for single-particle, reference-based reconstruction using multivariate data analysis and classification.

    PubMed

    Shaikh, Tanvir R; Trujillo, Ramon; LeBarron, Jamie S; Baxter, William T; Frank, Joachim

    2008-10-01

    As collection of electron microscopy data for single-particle reconstruction becomes more efficient, due to electronic image capture, one of the principal limiting steps in a reconstruction remains particle-verification, which is especially costly in terms of user input. Recently, some algorithms have been developed to window particles automatically, but the resulting particle sets typically need to be verified manually. Here we describe a procedure to speed up verification of windowed particles using multivariate data analysis and classification. In this procedure, the particle set is subjected to multi-reference alignment before the verification. The aligned particles are first binned according to orientation and are binned further by K-means classification. Rather than selection of particles individually, an entire class of particles can be selected, with an option to remove outliers. Since particles in the same class present the same view, distinction between good and bad images becomes more straightforward. We have also developed a graphical interface, written in Python/Tkinter, to facilitate this implementation of particle-verification. For the demonstration of the particle-verification scheme presented here, electron micrographs of ribosomes are used.

  17. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  18. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.

    PubMed

    Redding, Brandon; Schwab, Mark; Pan, Yong-le

    2015-08-04

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  19. Single-crystal YBa2Cu3O7 particle formation by aerosol decomposition

    NASA Astrophysics Data System (ADS)

    Kodas, Toivo; Datye, Abhaya; Lee, Victor; Engler, Edward

    1989-03-01

    Single-crystal YBa2Cu3O7 particles have been formed in a carbon-free gaseous flow system by thermally decomposing droplets containing the nitrate salts of Y, Ba, and Cu in water followed by calcining and annealing in the gas phase. The electron diffraction pattern for particles ranging in size from 0.1 to 1.5 μm corresponded to single crystals of orthorhombic YBa2Cu3O7 while the powder x-ray diffraction pattern confirmed the presence of single-phase material. Energy dispersive spectroscopy showed a similar composition for all particles examined. Iodometric titration showed that the particles were fully oxygenated. Two types of single-crystal particles were observed, equiaxed and elongated. Formation of solid single-crystal particles is favored by operation near the melting point of the material and by long reactor-residence times.

  20. Detection of Bioaerosols using Single Particle Thermal Emission Spectroscopy

    DTIC Science & Technology

    2013-03-01

    Distribution List 21 iv List of Figures Figure 1. Plot of the characteristic cooling period, τ (sec), for a spherical glycerin particle...the surrounding gas. To get an idea of the magnitude for the possible values of τ, we consider a glycerin particle of varying diameters, with the...4 Figure 1. Plot of the characteristic cooling period, τ (sec), for a spherical glycerin particle heated to some initial temperature Tp

  1. Single particle dynamics and nonlinear resonances in circular accelerators

    SciTech Connect

    Ruth, R.D.

    1985-11-01

    The purpose of this paper is to introduce the reader to single particle dynamics in circular accelerators with an emphasis on nonlinear resonances. We begin with the Hamiltonian and the equations of motion in the neighborhood of the design orbit. In the linear theory this yields linear betatron oscillations about a closed orbit. It is useful then to introduce the action-angle variables of the linear problem. Next we discuss the nonlinear terms which are present in an actual accelerator, and in particular, we motivate the inclusion of sextupoles to cure chromatic effects. To study the effects of the nonlinear terms, we next discuss canonical perturbation theory which leads us to nonlinear resonances. After showing a few examples of perturbation theory, we abandon it when very close to a resonance. This leads to the study of an isolated resonance in one degree of freedom with a 'time'-dependent Hamiltonian. We see the familiar resonance structure in phase space which is simply closed islands when the nonlinear amplitude dependence of the frequency or 'tune' is included. To show the limits of the validity of the isolated resonance approximation, we discuss two criteria for the onset of chaotic motion. Finally, we study an isolated coupling resonance in two degrees of freedom with a 'time'-dependent Hamiltonian and calculate the two invariants in this case. This leads to a surface of section which is a 2-torus in 4-dimensional phase space. However, we show that it remains a 2-torus when projected into particular 3-dimensional subspaces, and thus can be viewed in perspective.

  2. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  3. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.

  4. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  5. Single point mutation in tick-borne encephalitis virus prM protein induces a reduction of virus particle secretion.

    PubMed

    Yoshii, Kentarou; Konno, Akihiro; Goto, Akiko; Nio, Junko; Obara, Mayumi; Ueki, Tomotaka; Hayasaka, Daisuke; Mizutani, Tetsuya; Kariwa, Hiroaki; Takashima, Ikuo

    2004-10-01

    Flaviviruses are assembled to bud into the lumen of the endoplasmic reticulum (ER) and are secreted through the vesicle transport pathway. Virus envelope proteins play important roles in this process. In this study, the effect of mutations in the envelope proteins of tick-borne encephalitis (TBE) virus on secretion of virus-like particles (VLPs), using a recombinant plasmid expression system was analysed. It was found that a single point mutation at position 63 in prM induces a reduction in secretion of VLPs. The mutation in prM did not affect the folding of the envelope proteins, and chaperone-like activity of prM was maintained. As observed by immunofluorescence microscopy, viral envelope proteins with the mutation in prM were scarce in the Golgi complex, and accumulated in the ER. Electron microscopic analysis of cells expressing the mutated prM revealed that many tubular structures were present in the lumen. The insertion of the prM mutation at aa 63 into the viral genome reduced the production of infectious virus particles. This data suggest that prM plays a crucial role in the virus budding process.

  6. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    PubMed

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Single-Cell Platform for Monitoring Viral Proteolytic Cleavage in Different Cellular Compartments

    PubMed Central

    Abbadessa, Darin; Smurthwaite, Cameron A.; Reed, Connor W.; Wolkowicz, Roland

    2015-01-01

    Infectious diseases affect human health despite advances in biomedical research and drug discovery. Among these, viruses are especially difficult to tackle due to the sudden transfer from animals to humans, high mutational rates, resistance to current treatments, and the intricacies of their molecular interactions with the host. As an example of these interactions, we describe a cell-based approach to monitor specific proteolytic events executed by either the viral-encoded protease or by host proteins on the virus. We then emphasize the significance of examining proteolysis within the subcellular compartment where cleavage occurs naturally. We show the power of stable expression, highlighting the usefulness of the cell-based multiplexed approach, which we have adapted to two independent assays previously developed to monitor (a) the activity of the HIV-1-encoded protease or (b) the cleavage of the HIV-1-encoded envelope protein by the host. Multiplexing was achieved by mixing cells each carrying a different assay or, alternatively, by engineering cells expressing two assays. Multiplexing relies on the robustness of the individual assays and their clear discrimination, further enhancing screening capabilities in an attempt to block proteolytic events required for viral infectivity and spread. PMID:27688710

  8. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  9. Real time analysis of lead-containing atmospheric particles in Beijing during springtime by single particle aerosol mass spectrometry.

    PubMed

    Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2016-07-01

    Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Single-Dose Immunization with Virus Replicon Particles Confers Rapid Robust Protection against Rift Valley Fever Virus Challenge

    PubMed Central

    Dodd, Kimberly A.; Metcalfe, Maureen G.; Nichol, Stuart T.; Albariño, César G.

    2012-01-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRPRVF) vaccine candidate. Using a mouse model, we show that VRPRVF immunization provides the optimal balance of safety and single-dose robust efficacy. VRPRVF can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRPRVF proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRPRVF, although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD50). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRPRVF immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection. PMID:22345465

  11. Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge.

    PubMed

    Dodd, Kimberly A; Bird, Brian H; Metcalfe, Maureen G; Nichol, Stuart T; Albariño, César G

    2012-04-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRP(RVF)) vaccine candidate. Using a mouse model, we show that VRP(RVF) immunization provides the optimal balance of safety and single-dose robust efficacy. VRP(RVF) can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRP(RVF) proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRP(RVF), although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD(50)). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRP(RVF) immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection.

  12. Single-Beam Optical Conveyor Belt for Chiral Particles

    NASA Astrophysics Data System (ADS)

    Fernandes, David E.; Silveirinha, Mário G.

    2016-07-01

    A different paradigm is proposed to selectively manipulate and transport small engineered chiral particles and discriminate different enantiomers using unstructured chiral light. It is theoretically shown that the response of a chiral metamaterial particle may be tailored to enable an optical conveyor-belt operation with no optical traps, such that for a fixed incident light helicity the nanoparticle is either steadily pushed towards the direction of the photon flow or steadily pulled against the photon flow, independent of its position. Our findings create distinct opportunities for unconventional optical manipulations of tailored nanoparticles and may have applications in sorting racemic mixtures of artificial chiral molecules and in particle delivery.

  13. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors

    PubMed Central

    Lee, Donald W.; Allison, Andrew B.; Bacon, Kaitlyn B.

    2016-01-01

    Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons—a newly recognized CPV host—to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity. PMID:26889026

  14. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  15. Single-Particle Quantum Dynamics in a Magnetic Lattice

    SciTech Connect

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  16. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  17. Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji

    2015-04-01

    By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.

  18. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities.

    PubMed

    Guo, Yang; Kragelund, Birthe B; White, Malcolm F; Peng, Xu

    2015-06-19

    The majority of archaeal viral genes are of unknown function hindering our understanding of the virus life cycle and viral interactions with their host. Here, we first describe functional characterization of ORF131b (gp17) and ORF436 (gp18) of Sulfolobus islandicus rod-shaped virus 2 (SIRV2), both encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5' → 3' ssDNA exonuclease activity, in addition to the previously demonstrated ssDNA endonuclease activity. Further, in vitro pull-down assay demonstrated interactions between gp17 and gp18 and between gp18 and gp19 with the former being mediated by the intrinsically disordered C-terminus of gp17. The strand-displacement replication mode proposed previously for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair.

  19. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  20. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  1. Systematic Functional Comparative Analysis of Four Single-Stranded DNA-Binding Proteins and Their Affection on Viral RNA Metabolism

    PubMed Central

    Guo, Jinlei; Zhang, Xun; Song, Haiyan; Lv, Jianxin; Gao, Jimin; Wang, Yuepeng; Chen, Litian; Wang, Yue

    2013-01-01

    The accumulation of single-stranded DNA-binding (SSB) proteins is essential for organisms and has various applications. However, no study has simultaneously and systematically compared the characteristics of SSB proteins. In addition, SSB proteins may bind RNA and play an unknown biological role in RNA metabolism. Here, we expressed a novel species of SSB protein derived from Thermococcus kodakarensis KOD1 (KOD), as well as SSB proteins from Thermus thermophilus (TTH), Escherichia coli, and Sulfolobus Solfataricus P2 (SSOB), abbreviated kod, tth, bl21, and ssob, respectively. These SSB proteins could bind ssDNA and viral RNA. bl21 resisted heat treatment for more than 9 h, Ssob and kod could withstand 95°C for 10 h and retain its ssDNA- and RNA-binding ability. Four SSB proteins promoted the specificity of the DNA polymerase in PCR-based 5- and 9-kb genome fragment amplification. kod also increased the amplification of a 13-kb PCR product, and SSB protein–bound RNA resisted Benzonase digestion. The SSB proteins could also enter the host cell bound to RNA, which resulted in modulation of viral RNA metabolism, particularly ssob and bl21. PMID:23365690

  2. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-06-02

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.

  3. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  4. Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    NASA Technical Reports Server (NTRS)

    Wiscombe, W. J.; Mugnai, A.

    1986-01-01

    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.

  5. Chaotic orbit effects in a stationary single particle probabilistic density

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Leoncini, Xavier; Vittot, Michel; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-10-01

    Chaotic particle orbit effects in a stationary density function or macroscopic quantities are investigated. A considered field consists with static magnetic field and null electric field in a cylinder, then a test particle is driven by the Lorentz force. We firstly consider an axisymmetric magnetic field, where three integrals of motion coexist. So that the test particle motion is completely integrable, and its Hamiltonian is reduced to an effective one degree of freedom Hamiltonian. For some initial states, the effective potential of this reduced Hamiltonian has a saddle point and a separatrix bringing about some chaos when a perturbation is added to the magnetic field. We investigate how this chaos modifies the stationary density function. We acknowledge support of the A *MIDEX project (n ∘ ANR-11- IDEX-0001-02) funded by the ``investissements d'Avenir'' French Government program, managed by the French National Research Agency (ANR).

  6. Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles: application to viral nucleic acid extraction from serum.

    PubMed

    Sun, Ning; Deng, Congliang; Liu, Yi; Zhao, Xiaoli; Tang, Yan; Liu, Renxiao; Xia, Qiang; Yan, Wenlong; Ge, Guanglu

    2014-01-17

    We present a detailed study of nucleic acid adsorption onto silica-coated magnetic particles in the presence of guanidinium thiocyanate, and extraction of nucleic acid from two important transfusion-transmitted viruses using these particles. Silica-coated magnetic particles were prepared by encapsulating Fe3O4 nanoparticles with tetraethylorthosilicate (TEOS) hydrolysis. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrating sample magnetometer (VSM) were used for particle characterization. The results indicate that silica-coated magnetic particles are spheroid with a narrow hydrodynamic size distribution of about 500nm. VSM data indicates that these particles display paramagnetic behavior with saturation magnetization of about 30emu/g. The adsorption capacities were evaluated with DNA from salmon sperm and RNA of Escherichia coli strain JM109 in the presence of guanidinium thiocyanate. The maximum of adsorption is up to 10.6mg DNA or 7.7mg RNA per 1g of silica-coated magnetic particles with 4M guanidinium thiocyanate (GTC) at pH 5.5 without adding ethanol. The influencing factors were analyzed in term of the adsorption of nucleic acids onto silica-coated magnetic particles. The adsorption capacity in acidic condition is found to be larger than that in alkaline condition and increases with adding equivalent volume of ethanol. A simple method was therefore established to extract nucleic acids of two important transfusion-transmitted viruses from serum and compared with the commercial kits. The results indicate that the extraction method based on silica-coated magnetic particles can be adapted to rapidly and facilely isolate viral nucleic acid for diagnosis of viral infection from serum within 30min, irrespective of genome compositions of virus.

  7. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  8. Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals.

    PubMed

    Cai, Y; Peng, W P; Kuo, S J; Lee, Y T; Chang, H C

    2002-01-01

    High-resolution mass spectra of single submicrometer-sized particles are obtained using an electrospray ionization source in combination with an audio frequency quadrupole ion-trap mass spectrometer. Distinct from conventional methods, light scattering from a continuous Ar-ion laser is detected for particles ejected out of the ion trap. Typically, 10 particles are being trapped and interrogated in each measurement. With the audio frequency ion trap operated in a mass-selective instability mode, analysis of the particles reveals that they all differ in mass-to-charge ratio (m/z), and the individual peak in the observed mass spectrum is essentially derived from one single particle. A histogram of the spectra acquired in 10(2) repetitions of the experiment is equivalent to the single spectrum that would be observed when an ion ensemble of 10(3) particles is analyzed simultaneously using the single-particle mass spectrometer (SPMS). To calibrate such single-particle mass spectra, secular frequencies of the oscillatory motions of the individual particle within the trap are measured, and the trap parameter qz at the point of ejection is determined. A mass resolution exceeding 10(4) can readily be achieved in the absence of ion ensemble effect. We demonstrate in this work that the SPMS not only allows investigations of monodisperse polystyrene microspheres, but also is capable of detecting diamond nanoparticles with a nominal diameter of 100 nm, as well.

  9. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also

  10. Detection of infectious viral particles in plant protoplasts inoculated with transcripts of full-length shallot virus X cDNA.

    PubMed

    Vishnichenko, V K; Zavriev, S K

    2001-01-01

    Flexible filamentous shallot virus X (ShVX) particles were detected in extracts of Beta vulgaris protoplasts inoculated with transcripts from a full-length ShVX cDNA. Extracts from ShVX-infected protoplast were infectious for ShVX-healthy shallot seedlings. Western blot analysis of inoculated plants revealed the accumulation of the ShVX coat protein, while electron microscopy confirmed the presence of ShVX virions. The results suggest that the in vitro RNA transcripts from full-length ShVX cDNA give rise to infectious viral particles.

  11. Mass Spectrometric Analysis of Soot Particles: Combining Bulk and Single Particle Instrumentation

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Mensah, A. A.; Corbin, J. C.

    2011-12-01

    Soot aerosols are of major interest in current atmospheric research in part because they absorb radiation and influence cloud formation and precipitation by acting as cloud condensation and ice nuclei. In order to predict the properties of atmospheric soot particles, a thorough understanding of their chemical composition and mixing state is of major importance. While freshly emitted soot is initially hydrophobic and externally mixed, it can become internally mixed by coagulating with other particles or by condensation of secondary species such as sulfate, ammonium, organics, nitrate and water. Via these mechanisms, a large fraction of BC is expected to be in an internally mixed state in the atmosphere. Additionally, the combustion process itself leads to a high variability in the chemical composition of the emitted soot particles, depending on the burnt fuel and the burning process. The Soot Particle Aerosol Mass Spectrometer (SP-AMS) is a new instrument especially suited for the chemical characterization of soot particles and their surface coatings. We report on experiments using the SP-AMS for the investigation of soot and black carbon particles produced under well-defined laboratory conditions. The focus of the study is put on a detailed characterization of the new SP-AMS instrument and its capabilities to detect and quantify the mass of the particle's soot core and eventually that of surface coatings. Different soot sources, e.g. particles produced by the miniCAST (Combustion Aerosol STandard) propane burner or aerosolized by an atomizer, are studied. The coating of aerosol particles is achieved by using a laminar flow tube in which secondary species can condense on their surface. The SP-AMS is characterized in conjunction with measurements from an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) that is deployed in parallel. The ATOFMS is capable of sizing and analyzing aerosol particles individually, and gives insight into the mixing state of the analyzed

  12. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect

    Lin, Jinda; Li, Yong-qing

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  13. Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods

    PubMed Central

    Watanabe, Tomonobu M.; Fujii, Fumihiko; Jin, Takashi; Umemoto, Eiji; Miyasaka, Masayuki; Fujita, Hideaki; Yanagida, Toshio

    2013-01-01

    Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees. PMID:23931303

  14. Analysis of single particle diffusion with transient binding using particle filtering.

    PubMed

    Bernstein, Jason; Fricks, John

    2016-07-21

    Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Computation of single solid particle impact on the target of ductile material to study the rebound characteristics of particle

    NASA Astrophysics Data System (ADS)

    Yeuan, Jian Jong

    1992-04-01

    The objective of this research work is to simulate a single solid particle impact on a solid target using elastic-plastic theory. The entire impact process involves the adhesion, deformation and rebound process interacting between the solid particle and the target. The governing equations for two dimensional elastic-plastic flow are formulated in Lagrangian coordinates. The equation of state in the elastic region is the time rate of change of Hooke's law. In the plastic region, the experimental Hugoniot equation of state and the yield condition of R. von Mises are used. The effect of strain rate on the material strength is considered using a semi-empirical formulation. The developed computer program employs a finite volume numerical technique and two step explicit MacCormack scheme, which is second order accurate in time, allowing finer resolution of the transient phenomena of impact. Results are presented for a hard tool steel particle impacting on a mild steel target at impact angles of 20 to 90 degrees. The computational results are compared with experimental data for a range of impacting velocities up to 350 m/sec. The effect of particle in the particle rebound characteristics are also investigated. In the previous research, the particle rebound characteristics obtained from experiments were correlated and used in the calculation of particle trajectories in turbomachinery flows. Here, the computational results are applied to predict solid particle trajectories in a highly loaded axial flow turbine.

  16. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  17. Low aspect ratio micropores for single-particle and single-cell analysis.

    PubMed

    Goyal, Gaurav; Mulero, Rafael; Ali, Jamel; Darvish, Armin; Kim, Min Jun

    2015-05-01

    This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis.

  18. Laboratory and Ambient Studies Using an Automated Semi-Continuous Single-Particle Aerosol Raman Spectrometer

    NASA Astrophysics Data System (ADS)

    Doughty, D., III; Hill, S. C.

    2015-12-01

    Single-particle Raman spectra can yield extensive information about in-situ ambient particulate composition. However, Raman spectral measurements of individual aerosol particles typically require collection of samples in the field followed by offline Raman spectral measurements in a laboratory. The process requires considerable operator time. We report results obtained with an automated, single-particle Aerosol Raman Spectrometer built by Battelle, which is the core of Battelle's Resource Effective Bioidentification System (REBS). This instrument collects aerosol particles onto a metallized polymer tape and simultaneously measures Raman spectra of particles obtained during the previous collection period. At the end of each collection period (typically 15 minutes), the tape is advanced and the next collection and measurement period is begun. In this way, particles are semi-continuously sampled and their Raman spectra are measured. We show laboratory data from different sizes of polystyrene latex spheres. We also show results from calcium sulfate particles, vehicular emission soot, and other particles. We discuss the influence of imaging time on the quality of the Raman spectra measured and on the ability of the instrument to resolve aerosol particles. Finally, we present results from an outdoor sampling period during the summer of 2015 where the instrument ran unattended for more than one week collecting particles and measuring their Raman spectra. We suggest that the routine use of such an automated particle-sampling instrument should increase our understanding of inorganic and organic aerosols including biological aerosols and sources and fates of these particles.

  19. Robust upper limit of the neutron i13/2 single-particle energy

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Jiang, H.

    2014-10-01

    The upper limit of the neutron i13/2 single-particle energy (ɛi13/2) is estimated in the random quasiparticle ensemble with single-particle energies. The ɛi13/2 distributions under constraints from Te134,135 and Xe136,137 spectra demonstrate that the i13/2 single-particle state can be physically mixed with the f7/2⊗3- configuration only if ɛi13/2<3 MeV. Thus, our ensemble calculation suggests a robust upper limit of 3 MeV.

  20. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly

    PubMed Central

    Tomko, Robert J.; Taylor, David W.; Chen, Zhuo A.; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-01-01

    Summary Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. PMID:26451487

  1. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly.

    PubMed

    Tomko, Robert J; Taylor, David W; Chen, Zhuo A; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-10-08

    Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes.

  2. Prospects for single-particle imaging at XFELs

    SciTech Connect

    Chapman, H N; Hau-Riege, S P; London, R A; Marchesini, S; Noy, A; Szoke, A; Szoke, H; Ingerman, E; Hajdu, J; Huldt, G; Howells, M R; He, H; Spence, J H; Weierstall, U

    2004-04-25

    X-ray free-electron lasers will produce pulses of x-rays that are 10 orders of magnitude brighter than today's undulator sources at synchrotrons. This may enable atomic resolution imaging of single macromolecules.

  3. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of < 20 %. While these could be explained as IPR by ice break-up, for INP their IN-ability pathway is less clear. After removal of the contamination artifacts, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH

  4. An instrument for charge measurement due to a single collision between two spherical particles

    NASA Astrophysics Data System (ADS)

    Xie, L.; Bao, N.; Jiang, Y.; Han, K.; Zhou, J.

    2016-01-01

    It universally exists in moving particular systems that particles can be electrified, in which the particles are chemically identical, just as toner particles, coal dust, and pharmaceutical powders. However, owing to the limit of experimental instruments, so far, there are yet no experiments to illustrate whether a particle can be electrified due to a single collision between two spherical particles, and there are also no experiments to measure the charge carried by a single particle due to a single collision between two particles. So we have developed an instrument for charge measurement due to a single collision between two spheres. The instrument consists of two-sphere collision device, collision charge measurement apparatus, and particles' trajectory tracking system. By using this instrument, we can investigate the collision contact electrification due to a single collision between two spheres and simultaneously record the moving trajectories of spheres after the collision to calculate the rebound angles to identify the contribution of the triboelectrification due to the rubbing between the contact surfaces and the collision contact electrification due to the normal pressure between the contact surfaces.

  5. Identification of volume phase transition of a single microgel particle using optical tweezers

    NASA Astrophysics Data System (ADS)

    Karthickeyan, D.; Gupta, Deepak K.; Tata, B. V. R.

    2016-10-01

    Poly (N-isopropyl acrylamide-co-acrylic acid) (PNIPAM-co-Aac) microgel particles are pH responsive and exhibit volume phase transition (VPT) upon variation of pH. Dynamic light scattering (DLS) is used conventionally to identify VPT and requires a dilute suspension with particle concentration ˜107 particles cm-3 and if particles are polydisperse in nature, DLS data interpretation is relatively difficult. Here we show that optical tweezers allow one to measure the VPT of a single microgel particle by measuring the optical trap stiffness, κ of trapped particle as a function of pH. We report here a sudden change in κ at VPT, which is shown to arise from a sudden decrease in particle diameter with a concomitant increase in the refractive index of the particle at VPT.

  6. Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines.

    PubMed

    Wei, Hung-Ju; Chang, Weihau; Lin, Shih-Chang; Liu, Wen-Chun; Chang, Ding-Kao; Chong, Pele; Wu, Suh-Chin

    2011-09-22

    Influenza virus-like particles (VLPs) are noninfectious and the assembly of influenza VLPs depends on the interactions of M1 proteins and/or other viral surface proteins, such as HA, NA, and M2, with the cellular lipid membranes. In this study we propose that M2 protein can be used as a molecular fabricator without disrupting the assembly of VLPs and while retaining the native structures of HA and NA envelope protein oligomers on the particle surfaces. First, we demonstrated that influenza VLPs can be fabricated by the M2 fusion of enhanced green fluorescent protein for imaging single virus entering A549 cells. Second, we engineered two molecular adjuvants (flagellin and profilin) fused to M2 protein to generate molecular adjuvanted VLPs. Theses molecular adjuvanted VLPs had stimulatory functions, including increasing TNF-α production and promoting the maturation of dendritic cells. Immunization of mice with molecular adjuvanted VLPs also enhanced the response of the neutralizing antibodies against homologous and heterologous H5N1 viruses. The results can provide useful information for imaging single viruses and designing novel vaccines against influenza virus infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of salmonid fish viruses on Mx gene expression and resistance to single or dual viral infections.

    PubMed

    Saint-Jean, Sylvia Rodríguez; Pérez-Prieto, Sara I

    2007-08-01

    We examined the ability of several fish viruses to induce protection against homologous or heterologous viruses in single or double infections, and assessed whether such protection is correlated with innate immunity or expression of the Mx gene. Monolayers of BF2 cells pre-treated with supernatants of brown trout (Salmo trutta L.) macrophage cultures that had been stimulated with either polyinosinic polycytidylic acid (poly I:C) or viruses, such as infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) or a mixture of the two, showed varying degrees of protection against viral infections. The virus showing the strongest induction was IPNV, and the antiviral activity against IHNV was also high: around 6 log(10) reduction of virus yield. Consequently, the IPNV-IHNV co-infection yield was also reduced by varying amounts. In vivo, the cumulative mortality observed in the IPNV-IHNV co-infected fish was always less than that in those with a single infection. Stimulation with poly I:C for 7 days significantly reduced cumulative mortality in single-infected fish, but not in the double-infected, in which the IPNV was the only virus isolated from moribund animals. By RT-PCR, Mx was expressed in all the organ samples tested (kidney, liver and spleen) from virus-stimulated fish at 1, 2 and 3 days. By qRT-PCR the extent and timing of Mx expression was shown to differ in the poly I:C and the single or dual viral infections. The highest increase in Mx expression (21.6-fold above basal levels) occurred (after 24 h) in fish infected with the IHNV, and expression remained high until day 7. Mx expression in fish infected with IPNV peaked later, at 2 days post infection, and also remained high until day 7. The dual infection with IPNV-IHNV induced high Mx expression on day 1, which peaked on day 2 and remained high until day 7. These results indicate that activation of the immune system could explain the interference and loss of IHNV in the IPNV

  8. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  9. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    PubMed

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM2.5, and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    PubMed

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  11. Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.

    PubMed

    Li, Jingyan; Xu, Tingting; Lu, Xiaohui; Chen, Hong; Nizkorodov, Sergey A; Chen, Jianmin; Yang, Xin; Mo, Zhaoyu; Chen, Zhiming; Liu, Huilin; Mao, Jingying; Liang, Guiyun

    2017-03-01

    Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO2, coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than 70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak (80SO3(-)) followed by an increase of sulfate peaks (97HSO4(-)+96SO4(-)) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO2 on particles. High concentration of gaseous SO2, high relative humidity and high particle loading likely promoted SO2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays. Copyright © 2016. Published by Elsevier B.V.

  12. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    NASA Astrophysics Data System (ADS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-09-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle-cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  13. ACMEV-SP2 (Single Particle Soot Photometer)

    DOE Data Explorer

    Sedlacek, Arthur

    2015-06-01

    The SP2 provides information on the amounts of rBC (refractory black carbon) and of other, non-refractory substances associated with individual rBC containing particles by simultaneously measuring the scattering and incandescence signals of such particles that are directed through the cavity of a 1064 nm Nd:YAG laser. (refractory Black Carbon) rBC mixing ratio (ng/Kg) and number size distribution time series collected during the DOE-ARM sponsored ACME-V field campaign held from June 1 to September 15, 2015 rBC mixing ratio is reported at STP conditions Time resolution: 10 sec Uncertainty: ~ 30% SP2 Unit: 25 Location: Deadhorse, AK Location: N 70-degree 11' 41'' - W 148-degress. 27' 55'' SP2_dateTime: UTC rBC concentration is in units of ng/Kg - dry air. Mass Equivalent Diameters [MED] used for size distribution (SP2_min; SP2_geo; and SP2_max) are in units of micrometers dN/dlogDp counts for a given size bin (SP2_geo) listed as 'SP2_cnts_0 - SP2_cnts_199' and are in units of #/cc. Column naming convention: 'SP2_cnts_X' are the number of particles in bin number _X. , where _X is the row number within the 'SP2_geo' size bin column that contains the mass equivalent diameter (e.g., SP2_cnts_0 = 0.01 microns; SP2_cnts_10 = 0.060 microns, etc.). The dN/dlogDp data is time-resolved where a given row is associated with the timestamp for that row. Note that the rBC column length is one field shorter than the SP2_datetime column. Last time field is not relevant to the rBC time series (see comment below on length of SP2_datetime column) Lengths for SP2_max; SP2_min; SP2_geo are one field longer then the number of SP2_cnts_XX columns . This is to provide bounds for image plots (if desired). Length for SP2_datetime is one field longer than that length of the SP2_cnts_XX columns This is to provide bounds for image plots (if desired) SP2 Calibration: Fullerene soot with corrrection applied for particle density as a function of particle size. No correction for OC content in

  14. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  15. Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles.

    PubMed

    Soleilhac, Antonin; Girod, Marion; Dugourd, Philippe; Burdin, Béatrice; Parvole, Julien; Dugas, Pierre-Yves; Bayard, François; Lacôte, Emmanuel; Bourgeat-Lami, Elodie; Antoine, Rodolphe

    2016-04-26

    Nanoparticle-based temperature imaging is an emerging field of advanced applications. Herein, the sensitivity of the fluorescence of rhodamine B-doped latex nanoparticles toward temperature is described. Submicrometer size latex particles were prepared by a surfactant-free emulsion polymerization method that allowed a simple and inexpensive way to incorporate rhodamine B into the nanoparticles. Also, rhodamine B-coated latex nanoparticles dispersed in water were prepared in order to address the effect of the dye location in the nanoparticles on their temperature dependence. A better linearity of the temperature dependence emission of the rhodamine B-embedded latex particles, as compared to that of free rhodamine B dyes or rhodamine B-coated latex particles, is observed. Temperature-dependent fluorescence measurements by fluorescent confocal microscopy on individual rhodamine B-embedded latex particles were found similar to those obtained for fluorescent latex nanoparticles in solution, indicating that these nanoparticles could be good candidates to probe thermal processes as nanothermometers.

  16. Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Corbin, J. C.; Mensah, A. A.; Keller, A.; Kim, J.; Petzold, A.; Sierau, B.

    2012-07-01

    The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL). It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2. Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5-10 nm). It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total particle mass

  17. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  18. A novel coding-region RNA element modulates infectious dengue virus particle production in both mammalian and mosquito cells and regulates viral replication in Aedes aegypti mosquitoes

    PubMed Central

    Groat-Carmona, Anna Maria; Orozco, Susana; Friebe, Peter; Payne, Anne; Kramer, Laura; Harris, Eva

    2013-01-01

    Dengue virus (DENV) is an enveloped flavivirus with a positive-sense RNA genome transmitted by Aedes mosquitoes, causing the most important arthropod-borne viral disease affecting humans. Relatively few cis-acting RNA regulatory elements have been described in the DENV coding-region. Here, by introducing silent mutations into a DENV-2 infectious clone, we identify the conserved capsid-coding region 1 (CCR1), an RNA sequence element that regulates viral replication in mammalian cells and to a greater extent in Ae. albopictus mosquito cells. These defects were confirmed in vivo, resulting in decreased replication in Ae. aegypti mosquito bodies and dissemination to the salivary glands. Furthermore, CCR1 does not regulate translation, RNA synthesis or virion retention but likely modulates assembly, as mutations resulted in the release of non-infectious viral particles from both cell types. Understanding the role of CCR1 could help characterize the poorly-defined stage of assembly in the DENV life cycle and uncover novel anti-viral targets. PMID:22840606

  19. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  20. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  1. Copackaging of multiple adeno-associated viral vectors in a single production step.

    PubMed

    Doerfler, Phillip A; Byrne, Barry J; Clément, Nathalie

    2014-10-01

    Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing.

  2. Fabrication of Discrete Nanosized Cobalt Particles Encapsulated Inside Single-Walled Carbon Nanotubes

    SciTech Connect

    Zoican Loebick, C.; Majewska, M; Ren, F; Haller, G; Pfefferle, L

    2010-01-01

    Single-walled carbon nanotubes (SWNT) with encapsulated nanosized cobalt particles have been synthesized by a facile and scalable method. In this approach, SWNT were filled with a cobalt acetylacetonate solution in dichloromethane by ultrasonication. In a second step, exposure to hydrogen at different temperatures released discrete cobalt particles of controllable size inside the SWNT cavity. The SWNT-Co particles systems were characterized by transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, and thermal gravimetric analysis.

  3. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Mensah, A. A.; Corbin, J. C.; Keller, A.; Kim, J.; Petzold, A.; Sierau, B.

    2012-12-01

    The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2. Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5-10 nm). Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5-10, as reported here for PALAS soot, was not expected. In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective density. By contrast, the BC mass per primary particle

  4. Experimental test of nonclassicality for a single particle.

    PubMed

    Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Schettini, Valentina; Polyakov, Sergey V; Migdall, Alan

    2008-08-04

    In a recent paper [R. Alicki and N. Van Ryn, J. Phys. A: Math. Theor., 41, 062001 (2008)] a test of nonclassicality for a single qubit was proposed. Here, we discuss the class of hidden variables theories to which this test applies and present an experimental realization.

  5. Controlling High-Frequency Collective Electron Dynamics via Single-Particle Complexity

    NASA Astrophysics Data System (ADS)

    Alexeeva, N.; Greenaway, M. T.; Balanov, A. G.; Makarovsky, O.; Patanè, A.; Gaifullin, M. B.; Kusmartsev, F.; Fromhold, T. M.

    2012-07-01

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  6. Controlling high-frequency collective electron dynamics via single-particle complexity.

    PubMed

    Alexeeva, N; Greenaway, M T; Balanov, A G; Makarovsky, O; Patanè, A; Gaifullin, M B; Kusmartsev, F; Fromhold, T M

    2012-07-13

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  7. Enhanced single-particle brightness and photostability of semiconductor polymer dots by enzymatic oxygen scavenging system

    NASA Astrophysics Data System (ADS)

    Liu, Zhihe; Yang, Yingkun; Sun, Zezhou; Wu, Changfeng

    2016-12-01

    Semiconductor polymer dots (Pdots) are emerging as an excellent fluorescent probe in biology and medicine. However, the photostability of Pdots can't meet the requirements of long term single-particle imaging and tracking applications. Here we describe the enhanced single-particle brightness and photostability of Pdots by using an efficient enzymatic oxygen scavenging system (OSS). Pdots with particle diameters of 21 nm and 43 nm (PFBT21 and PFBT43) were prepared by a nanoprecipitation method. Single-particle imaging and photobleaching were performed to investigate the effect of OSS on the per-particle brightness and photostability of Pdots. Our results indicate that the single-particle brightness of the PFBT21 Pdots in OSS was enhanced nearly two times as compare to the PFBT21 Pdots in water. The photobleaching percentages of PFBT21 and PFBT43 in OSS were determined to be 29% and 33%, respectively. These values are decreased by 2-3 times as compared to those of the same Pdots in water, indicating the significantly improved photostability of Pdots by OSS. This study provides a promising approach for enhancing photostability of Pdots in long term single-particle tracking.

  8. Copackaging of Multiple Adeno-Associated Viral Vectors in a Single Production Step

    PubMed Central

    Doerfler, Phillip A.; Byrne, Barry J.

    2014-01-01

    Abstract Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing. PMID:25143183

  9. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.

    PubMed

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-11-23

    The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin

  10. Template-assisted GLAD: approach to single and multipatch patchy particles with controlled patch shape.

    PubMed

    He, Zhenping; Kretzschmar, Ilona

    2013-12-23

    Template-assisted glancing angle deposition (GLAD) is explored for the fabrication of single and multipatch patchy particles with one or more patches of controlled but asymmetric shape. The template is used to ensure the formation of uniform patchy particles, whereas rotation of the template gives access to a large number of asymmetric patch shapes caused by the shadowing effect of the templating groove and/or the neighboring particle. Careful analysis with a straightforward geometric model reveals the effect of the angle of incidence, rotational angle, groove size, and particle size on the patch shape. Initial magnetic field assembly results are presented to illustrate the removal of patchy particles from their template and accessibility to a large number of patchy particles. Two-patch particles with overlapping patches are also accessible by means of secondary metal vapor deposition. The connectivity of these two patches on each particle and the predictable size of the overlapping section provide access to functional patchy particles. The combination of the template-assisted GLAD method with rotation of the template and secondary evaporation is demonstrated to be a good method for fabricating patchy particles with a variety of asymmetric patch shapes, sizes, and multipatches where every particle of a batch carries exactly the same patch pattern and thereby provides valuable input on experimentally accessible patch shapes for future experimental and computational studies of patchy particles.

  11. Analysis of the ideal phase-Doppler System: Limitations imposed by the single-particle constraint

    SciTech Connect

    Edwards, C.F.; Marx, K.D.

    1991-06-01

    This paper explores the effects of particles statistics on the ability of a phase-Doppler system (or any single-particle diagnostic) to make accurate measurements of complex particle flows. This is accomplished by analyzing the response of an ideal phase-Doppler system to a postulated particle flux. The ideal system defined here senses particles of all sizes and velocities with perfect accuracy, but is subject to one constraint: in order for a measurement to be considered valid there must be only one particle in the probe volume at a time. A consequence of this constraint is that the measured flux of particles is similar to the true flux, but reduced by passage through two stages of filters. The first rejects particles for insufficient spacing and is controlled by a spatial Poisson process, while the second rejects particles for excessive residence time and is driven by a temporal Poisson process. The key filter parameters are the expected values of the number of particles in the probe volume and the number of particles entering the probe region during the residence time of a previous particle. Only if these values are kept below order 10{sup {minus}2} can the measured joint distribution function, flux rate, and derived quantities, be assumed to reflect the true nature of the flow. 8 refs., 30 figs., 2 tabs.

  12. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    PubMed

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  13. Lab-on-a-chip Single Particle Dielectrophoretic Traps

    NASA Astrophysics Data System (ADS)

    Wang, Weina; Shao, Hua; Lear, Kevin

    2007-03-01

    Cell-patterning and cell-manipulation in micro-environments are fundamental to biological and biomedical applications, for example, spectroscopic cytology based cancer detection. Dielectrophoresis (DEP) traps with transparent centers for stabilized cell and particle optofluidic intracavity spectroscopy (OFIS) were fabricated by patterning 10 μm wide, planar gold electrodes on glass substrates. The capturing strength of DEP traps was quantified based on the minimum AC voltage required to capture and hold varying diameter polystyrene or was it some other material, e.g. silica or PMMA microspheres in water as a function of frequency required under a constant flowrate of 20 μm/s. The maximum required trapping voltage in the negative DEP regime of f = 1 kHz to 40 MHz was 5.0 VAC. The use of AC fields effectively suppressed hydrolysis. New geometries of DEP traps are being explored on the basis of 3-D electrostatic field simulations.

  14. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  15. DNA Repair Enzyme Uracil DNA Glycosylase Is Specifically Incorporated into Human Immunodeficiency Virus Type 1 Viral Particles through a Vpr-Independent Mechanism

    PubMed Central

    Willetts, Karen E.; Rey, Françoise; Agostini, Isabelle; Navarro, Jean-Marc; Baudat, Yves; Vigne, Robert; Sire, Joséphine

    1999-01-01

    The Vpr protein, encoded by the human immunodeficiency virus type 1 (HIV-1) genome, is one of the nonstructural proteins packaged in large amounts into viral particles. We have previously reported that Vpr associates with the DNA repair enzyme uracil DNA glycosylase (UDG). In this study, we extended these observations by investigating whether UDG is incorporated into virions and whether this incorporation requires the presence of Vpr. Our results, with highly purified viruses, show that UDG is efficiently incorporated either into wild-type virions or into Vpr-deficient HIV-1 virions, indicating that Vpr is not involved in UDG packaging. Using an in vitro protein-protein binding assay, we reveal a direct interaction between the precursor form of UDG and the viral integrase (IN). Finally, we demonstrate that IN-defective viruses fail to incorporate UDG, indicating that IN is required for packaging of UDG into virions. PMID:9882380

  16. The host-cell restriction factor SERINC5 restricts HIV-1 infectivity without altering the lipid composition and organization of viral particles.

    PubMed

    Trautz, Birthe; Wiedemann, Hannah; Lüchtenborg, Christian; Pierini, Virginia; Kranich, Jan; Glass, Bärbel; Kräusslich, Hans-Georg; Brocker, Thomas; Pizzato, Massimo; Ruggieri, Alessia; Brügger, Britta; Fackler, Oliver T

    2017-08-18

    The host-cell restriction factor SERINC5 potently suppresses the infectivity of HIV, type 1 (HIV-1) particles, and is counteracted by the viral pathogenesis factor Nef. However, the molecular mechanism by which SERINC5 restricts HIV-1 particle infectivity is still unclear. Because SERINC proteins have been suggested to facilitate the incorporation of serine during the biosynthesis of membrane lipids and because lipid composition of HIV particles is a major determinant of the infectious potential of the particles, we tested whether SERINC5-mediated restriction of HIV particle infectivity involves alterations of membrane lipid composition. We produced and purified HIV-1 particles from SERINC5293T cells with very low endogenous SERINC5 levels under conditions in which ectopically expressed SERINC5 restricts HIV-1 infectivity and is antagonized by Nef and analyzed both virions and producer cells with quantitative lipid MS. SERINC5 restriction and Nef antagonism were not associated with significant alterations in steady-state lipid composition of producer cells and HIV particles. Sphingosine metabolism kinetics were also unaltered by SERINC5 expression. Moreover, the levels of phosphatidylserine on the surface of HIV-1 particles, which may trigger uptake into non-productive internalization pathways in target cells, did not change upon expression of SERINC5 or Nef. Finally, saturating the phosphatidylserine-binding sites on HIV target cells did not affect SERINC5 restriction or Nef antagonism. These results demonstrate that the restriction of HIV-1 particle infectivity by SERINC5 does not depend on alterations in lipid composition and organization of HIV-1 particles and suggest that channeling serine into lipid biosynthesis may not be a cardinal cellular function of SERINC5. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    PubMed Central

    Greulich, Karl Otto

    2010-01-01

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise—only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified. PMID:20162017

  18. Single molecule experiments challenge the strict wave-particle dualism of light.

    PubMed

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  19. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  20. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  1. Penetration of ambient submicron particles into single-family residences and associations with building characteristics.

    PubMed

    Stephens, B; Siegel, J A

    2012-12-01

    This work improves knowledge of particle penetration into buildings by (i) refining a particle penetration test method that minimizes the duration and invasiveness required by individual tests without sacrificing accuracy, (ii) applying the method in an unoccupied manufactured test house and 18 single-family homes in Austin, Texas, USA, and (iii) exploring correlations between particle penetration and building characteristics, including results from blower door air leakage tests. The mean (± s.d.) measured penetration factor of submicron particles (20-1000 nm, not size-resolved) was 0.47 ± 0.15 in 19 residences that relied on infiltration for ventilation air, ranging from 0.17 ± 0.03 to 0.72 ± 0.08. Particle penetration factors (P) and outdoor particle source terms (P × air exchange rates) were both significantly and positively correlated with results from blower door air leakage tests. Outdoor particle source terms were also significantly and negatively correlated with the year of construction. These results suggest that occupants of leakier and older homes are exposed to higher indoor concentrations of outdoor submicron particles than those in tighter and newer homes, and that simple air leakage tests may be able to provide an approximate prediction of outdoor particle infiltration into single-family residences. Results from this work suggest that knowledge of simple building characteristics (i.e., the year of construction and blower door test results) may be used to predict the ability of outdoor particles to infiltrate into single-family residences, which could facilitate easier estimates of indoor exposures to outdoor particulate matter across the building stock. The methods within can also be extended to other buildings and can be used to assess possible changes in penetration factors because of envelope retrofits. Because outdoor particle size distributions were not measured during this study, these tests should also be repeated with size

  2. Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection.

    PubMed

    Betts, Gareth; Poyntz, Hazel; Stylianou, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew; Hill, Adrian; McShane, Helen

    2012-01-01

    The Bacillus Calmette - Guerin (BCG) vaccine provides a critical but limited defense against Mycobacterium tuberculosis (M.tb). More than 60 years after the widespread introduction of BCG, there is an urgent need for a better vaccine. A large body of pre-clinical research continues to support ongoing clinical trials to assess whether viral vectors expressing M.tb antigens that are shared by BCG and M.tb, can be used alongside BCG to enhance protection. A major focus involves using multiple unique viral vectors to limit anti-vector immunity and thereby enhance responses to the insert antigen delivered. The successful introduction of viral vector vaccines to target M.tb and other pathogens will be reliant on reducing the costs when using multiple vectors and inhibiting the development of unwanted anti-vector responses that interfere with the response to insert antigen. This study examines methods to reduce the logistical costs of vaccination by mixing different viral vectors that share the same insert antigen in one vaccine; and whether combining different viral vectors reduces anti-vector immunity to improve immunogenicity to the insert antigen. Here we show that a homologous prime-boost regimen with a mixture of MVA (Modified Vaccinia virus Ankara) and Ad5 (human adenovirus type 5) vectors both expressing Ag85A in a single vaccine preparation is able to reduce anti-vector immunity, compared with a homologous prime-boost regimen with either vector alone. However, the level of immunogenicity induced by the homologous mixture remained comparable to that induced with single viral vectors and was less immunogenic than a heterologous Ad5 prime-MVA-boost regimen. These findings advance the understanding of how anti-vector immunity maybe reduced in viral vector vaccination regimens. Furthermore, an insight is provided to the impact on vaccine immunogenicity from altering vaccination methods to reduce the logistical demands of using separate vaccine preparations in the

  3. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  4. Simultaneous Measurement of Size, Composition, Hygroscopicity, and Density of Single Ambient Particles

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Han, J.; Oatis, S.

    2003-12-01

    The holly grail in aerosol climate interaction is a roadmap that takes one from emissions of aerosol and aerosol precursors through aerosol transformations, to optical and cloud effects and finally to climate impacts. A critical element on this path must be the behavior of aerosol as a function of atmospheric relative humidity, which in turn requires an understanding of the correlation between aerosol composition and hygroscopicity. For single component particles this problem is tractable and reasonably understood. But, the vast majority of particles in the real atmosphere are internal mixtures of hygroscopic salts, organic acids and or bases, long chain hydrocarbons, soot, mineral dust and the list go on. Hundreds of organic compounds with highly varying hygroscopicities can be found in single particles. It would be unrealistic to expect global climate models to include and track each of these compounds. A similar problem faces the experimental world, where measuring the size, detailed molecular composition and hygroscopicity of individual particles although, in principle possible, is impractical. Single particle mass spectroscopy can be used to classify particles as organics mixed with sulfate, for example. Or in some cases pinpoint the class of some of the organics found in the mixture. But it cannot yield a quantitative measure of relative amounts. In an attempt to address this issue we have developed the method to measure simultaneously hygroscopicity, size, and composition of individual ambient particles. However, the data from Long Island NY, where the vast majority of particles were internally mixed sulfate with organics, the correlation between composition and hygroscopicity was rather weak. This is due to the fact that single-laser single particle mass spectra cannot quantitatively measure the ratio of organics to sulfates. In contrast, we found a very clear correlation between hygroscopicity and particle density for a given class of particles. In this

  5. Measuring the complex field scattered by single submicron particles

    SciTech Connect

    Potenza, Marco A. C. Sanvito, Tiziano

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  6. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.

    PubMed

    Rakcheev, Denis; Philippe, Allan; Schaumann, Gabriele E

    2013-11-19

    Studying the environmental fate of engineered or natural colloids requires efficient methods for measuring their size and quantifying them in the environment. For example, an ideal method should maintain its correctness, accuracy, reproducibility, and robustness when applied to samples contained in complex matrixes and distinguish the target particles from the natural colloidal background signals. Since it is expected that a large portion of nanoparticles will form homo- or heteroagglomerates when released into environmental media, it is necessary to differentiate agglomerates from primary particles. At present, most sizing techniques do not fulfill these requirements. In this study, we used online coupling of two promising complementary sizing techniques: hydrodynamic chromatography (HDC) and single-particle ICPMS analysis to analyze gold nanoparticles agglomerated under controlled conditions. We used the single-particle mode of the ICPMS detector to detect single particles eluted from an HDC-column and determine a mass and an effective diameter for each particle using a double calibration approach. The average agglomerate relative density and fractal dimension were calculated using these data and used to follow the morphological evolution of agglomerates over time during the agglomeration process. The results demonstrate the ability of HDC coupled to single-particle analysis to identify and characterize nanoparticle homoagglomerates and is a very promising technique for the analysis of colloids in complex media.

  7. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiu-Lin; Liu, Wei

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  8. Discrimination between spheres and spheroids in a detection system for single particles based on polarization characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Zhai, Mengran; Sun, Jinlu; Zhou, Ye; Jia, Dagong; Liu, Tiegen; Zhang, Yimo

    2017-01-01

    The polarization characteristics of light scattered by particles are sensitive to the morphology of the scatterers. In this study, we employed the finite element method (FEM) with a finite element software (COMSOL multiphysics) to retain the potentiality to extend the theoretical study of scattering in this work to single particles with more complex morphology and arbitrary orientation. The angular distribution profiles of the scattering field components perpendicular and parallel to the incident polarization direction are obtained for spherical and spheroidal particles. By comparison with the spheres' preservation of the polarization, cross-polarization effects for differently oriented spheroidal particles are revealed. The question how to experimentally discriminate the particles with smooth surface moving freely in the detected area at single-particle level according to polarization is addressed. To this end, polarizing devices are inserted into an interference particle imaging (IPI) system. By detecting the orthogonally polarized components of the light, the preservation of the polarization state after scattering by spheres and the occurrence of cross-polarization effects after scattering by spheroids are verified experimentally with the fringes in the IPI system as a reference. A feasible method for distinguishing a spheroidal from a spherical shape at the single-particle level based on the existence of a cross-polarized component of the scattered light is proposed.

  9. Tagged particle in single-file diffusion with arbitrary initial conditions

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Kundu, A.

    2017-08-01

    We compute the full probability distribution of the positions of a tagged particle exactly for the given arbitrary initial positions of the particles, and for general single-particle propagators. We consider the thermodynamic limit of our exact expressions in quenched and annealed settings. For a particular class of single-particle propagators, the exact formula is expressed in a simple integral form in the quenched case whereas in the annealed case, it is expressed as a simple combination of Bessel functions. In particular, we focus on the step and the power-law initial configurations. In the former case, a drift is induced even when the one-particle propagators are symmetric. On the other hand, in the later case the scaling of the cumulants of the position of the tracer differs from the uniform case. We provide numerical verifications of our results.

  10. Full control of heat transfer in single-particle structural materials

    NASA Astrophysics Data System (ADS)

    Yang, S.; Xu, L. J.; Wang, R. Z.; Huang, J. P.

    2017-09-01

    Thermal metamaterials have been applied to implement thermal phenomena, such as invisibility, illusion, and refraction. However, during the fabrication, they probably have complicated issues which are on account of the complicated structures. To get around this, here we put forward a single-particle structure. The theory helps to simplify the existing methods, which will undoubtedly contribute to the efficiency of fabrication. For clarity, we show the simulation and experimental results of thermal invisibility and illusion based on our proposed single-particle structural materials. Moreover, by tailoring the shape factor of the single particle appropriately, we can simultaneously realize thermal invisibility and illusion with only one device. The adjustable area fraction also indicates that these types of structural materials are highly adaptable. Such a single-particle device may have broad applications in misleading infrared detection. This work not only opens an avenue to design thermal materials based on single-particle structures but also holds for other physical fields like electrostatics, magnetostatics, and particle dynamics.

  11. Silver Nanoflowers for Single-Particle SERS with 10 pM Sensitivity.

    PubMed

    Roy, Shrawan; Ajmal, C Muhammed; Baik, Seunghyun; Kim, Jeongyong

    2017-09-13

    Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220~620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9~22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530~620 nm) can detect as little as 10<sup>-11</sup> M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors (AEFs) for single Ag NF particles were found to be as high as 8.0x10<sup>9</sup>, providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle. © 2017 IOP Publishing Ltd.

  12. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    SciTech Connect

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K. E-mail: tim.yeh@austin.utexas.edu; Yeh, H.-C. E-mail: tim.yeh@austin.utexas.edu

    2015-10-12

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  13. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K.; Yeh, H.-C.

    2015-10-01

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  14. Progress report of the single particle irradiation system to cell (SPICE)

    NASA Astrophysics Data System (ADS)

    Imaseki, Hitoshi; Ishikawa, Takahiro; Iso, Hiroyuki; Konishi, Teruaki; Suya, Noriyoshi; Hamano, Takeshi; Wang, Xufei; Yasuda, Nakahiro; Yukawa, Masae

    2007-07-01

    At the National Institute of Radiological Sciences (NIRS), we constructed a microbeam system in 2003, the single particle irradiation to cell, SPICE. From the beginning of 2005, we redesigned it to improve the stability of the optical alignment of the system, and obtained an reduction of the beam size proportional to the vertical dimension of the object slits. As a result, SPICE is now capable of producing a beam size of approximately 10 μm diameter, and the particle numbers controllable to an intensity as low as single particles per second, and therefore a single particle irradiation facility has been successfully implemented. Moreover, these conditions can be easily reproduced with a employing a routine procedure. We describe in detail the modifications of the beam line and results, demonstrating the improvements. In addition, results from our first biological experiments are shown.

  15. Volumetric restrictions in single particle 3DEM reconstruction

    PubMed Central

    Sorzano, C.O.S.; Velázquez-Muriel, J.A.; Marabini, R.; Herman, G.T.; Carazo, J.M.

    2009-01-01

    3D electron microsscopy aims at the reconstruction of density volumes corresponding to the electrostatic potential distribution of macro-molecules. There are many factors limiting the resolution achievable when this technique is applied to biological macromolecules: microscope imperfections, molecule flexibility, lack of projections from certain directions, unknown angular distribution, noise, etc. In this communication we explore the quality gain in the reconstruction by including a priori knowledge such as particle symmetry, occupied volume, known surface relief, density nonnegativity and similarity to a known volume in order to improve the quality of the reconstruction. If the reconstruction is represented as a series expansion, such constraints can be expressed by set of equations that the expansion coefficients must satisfy. In this work, these equation sets are specified and combined in a novel way with the ART + blobs reconstruction algorithm. The effect of each one on the reconstruction of a realistic phantom is explored. Finally, the application of these restrictions to 3D reconstructions from experimental data are studied. PMID:20119498

  16. Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice.

    PubMed

    Gil, Lázaro; López, Carlos; Lazo, Laura; Valdés, Iris; Marcos, Ernesto; Alonso, Ruby; Gambe, Ailyn; Martín, Jorge; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-10-01

    Virus-like particles are a highly effective type of subunit vaccine that mimics the overall structure of virus particles without containing infectious genetic material. In this work, a particulate form of the recombinant capsid protein from dengue-2 was evaluated in mice to determine the level of protection against viral challenge and to measure the antigen-induced cell-mediated immunity (CMI). The nucleocapsid-like particles (NLPs) adjuvanted with alum did not induce antiviral antibodies. However, splenocytes from the immunized animals secreted high levels of IFN-gamma upon virus stimulation, and a significant protection rate was achieved after challenge with lethal dengue-2 virus. Finally, both IFN-gamma secretion and protection against viral encephalitis were demonstrated to be dependent on CD4(+) and CD8(+) cells. This study provides new evidences regarding the protective role of the CMI in the mouse model without the induction of neutralizing antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.

  17. [Atomic force microscopy: a tool to analyze the viral cycle].

    PubMed

    Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine

    2015-05-01

    Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level.

  18. A new coincidence model for single particle counters, Part II: Advances and applications.

    PubMed

    Knapp, J Z; Lieberman, A; Abramson, L R

    1994-01-01

    Accuracy, acceptance limits and methods for U.S.P. (788) contaminating particle assays published in the XXII Revision are refined in U.S.P. XXIII. In both Revisions, although different numerical values and methods are employed, particle contamination limits remain constants for all S.V.I. container volumes. The effect of this quality standard is high particle concentration acceptance limits in the smallest S.V.I. container sizes. The effect of these high concentrations is to introduce both undercount errors and false counts into U.S.P. (788) SVI contaminating particle assays. There is general agreement that the count of high concentrations of particles by a single particle light extinction counter result in an increase of the average size of the distribution of particles reported and a decrease in their total number. The error mechanism is termed "signal coincidence." Understanding and control of both these problems is unified with the introduction of the count efficiency parameter. Part I of this paper makes available two core concepts with which evaluation and control of coincidence error in single particle counters can be accurately quantified. These two core concepts are the "Particle Triggered Poisson Model," a new more accurate statistical model of the particle counting process and a concentration measure that includes the effect of particle size on the counting capability of a detector. Use of these concepts make it possible to evaluate particle detector count efficiency capability from experimental data of the coincidence effect. This is an application paper. It combines the theory in the Part I paper with the replicability of particle counters into a simple test protocol. The test results can be used to calculate a contour of particle size and count within which both undercount errors and the introduction of false counts into U.S.P. (788) particle assays are controlled. From the data analyzed it can be seen that any single particle size test cannot

  19. Study of the comminution characteristics of coal by single particle breakage test device

    SciTech Connect

    Sahoo, R.

    2005-09-01

    Single-particle breakage tests of South Blackwater and Ensham coal from the Bowen Basin area in Queensland were conducted by a computer-monitored twin-pendulum device to measure the energy utilization pattern of the breakage particles. Three particle sizes (-16.0+13.2mm, -13.2+11.2mm, -11.2+9.5mm) of each coal were tested by a pendulum device at five input energy levels to measure the specific comminution energy. When particles were tested at constant input energy, the variation of comminution energy between the same size broken particles of Ensham coal was minimal, because Ensham coal is a softer and higher friability coal, which absorbs more input energy than harder coal during breakage tests. For different particle sizes, the specific comminution energy increases linearly with the input energy and the fineness of the breakage products increases with the specific comminution energy. The size distribution graphs are curved but approach linearity in the finer region. At a constant input energy, the twin pendulum breakage product results show that the fineness of the products increases with decrease in particle size and South Blackwater coal produced finer products than the Ensham coal. The t-curves are the family of size distribution curves, which can describe the product size distribution of the breakage particles during single-particle breakage tests.

  20. A Single Particle Soot Photometer for the Measurement of Aerosol Black Carbon

    NASA Astrophysics Data System (ADS)

    Kok, G. L.; Baumgardner, D.; Spuler, S.

    2002-12-01

    A Single Particle Soot Photometer (SP2) has been developed for the measurement of black carbon mass in single particles. The analytical technique is the incandescence of light absorbing particles. An aerosol stream is directed intra-cavity across the beam of a Nd:YAG laser where the laser intensity is in excess of 1 MW/cm2. Non-light absorbing particles only scatter light but particles containing black carbon absorb sufficient energy to heat and incandesce as they vaporize. Four optical detectors are used to measure the scattered and incandescence radiation from the particles. One measures the scattered, 1064 nm radiation while the other three detectors measure the light of incandescence over different wavelength regions. The ratio of intensities at the different wavelengths yields the temperature at which the particle incandesced whereas the absolute intensity is proportional to the carbon mass. The minimum size of non-incandescing particles that can be measured is approximately 100 nm and for incandescing particles it is 80 nm. Data will be presented on the operation of the instrumentation and examples of ambient measurements of black carbon.

  1. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  2. ORBXYZ: A 3D single-particle orbit code for following charged particle trajectories in equilibrium magnetic fields

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Cohen, R. H.; Ferguson, J. R.; Johnston, B. M.; Sharp, C. B.; Willmann, P. A.

    1981-06-01

    The single particle orbit code, TIBRO, was modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications.

  3. Analysis and Interpretation of Superresolution Single-Particle Trajectories

    PubMed Central

    Holcman, D.; Hoze, N.; Schuss, Z.

    2015-01-01

    A large number (tens of thousands) of single molecular trajectories on a cell membrane can now be collected by superresolution methods. The data contains information about the diffusive motion of molecule, proteins, or receptors and here we review methods for its recovery by statistical analysis of the data. The information includes the forces, organization of the membrane, the diffusion tensor, the long-time behavior of the trajectories, and more. To recover the long-time behavior and statistics of long trajectories, a stochastic model of their nonequilibrium motion is required. Modeling and data analysis serve extracting novel biophysical features at an unprecedented spatiotemporal resolution. The review presents data analysis, modeling, and stochastic simulations applied in particular on surface receptors evolving in neuronal cells. PMID:26536253

  4. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    PubMed Central

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  5. Digital atom interferometer with single particle control on a discretized space-time geometry

    PubMed Central

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-01-01

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 × 10-4 in units of gravitational acceleration g. PMID:22665771

  6. Digital atom interferometer with single particle control on a discretized space-time geometry.

    PubMed

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  7. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance

    PubMed Central

    Wang, Shaopeng; Shan, Xiaonan; Patel, Urmez; Huang, Xinping; Lu, Jin; Li, Jinghong; Tao, Nongjian

    2010-01-01

    We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm2). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles. PMID:20798340

  8. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  9. Projection operator method CPA to single-particle excitation spectra

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro

    2005-03-01

    Single-site theories for electron correlations such as the many-body CPA, the dynamical CPA, and the dynamical-mean field theory are useful as a starting point to describe strongly correlated electron systems. Nevertheless, simple and useful treatments of correlations being applicable to the realistic system has not yet been well developed. We propose here the projection operator technique combined with the many-body CPA which allows us to calculate the excitation spectrum directly from the retarded Green function. The basic idea is to introduce an energy dependent Liouville operator for the description of the dynamics of correlated electrons. The self-energy obtained by a renormalized perturbation scheme describes the overall features of excitation spectra. The quasiparticle weight for a half-filled band in infinite dimensions show a simple analytic form Z=[1-(U/Uc2)^2]/[1+(U/U2)^2] with Uc2=3.705 and U2=2.522 (hypercubic lattice) which reproduces well the result of the numerical renormalization group calculations. The critical Coulomb interaction Uc1 for a gap formation is 3.69 when the Hartree-Fock wave function is used for the evaluation of the static average, and 3.24 when the correlated wave function is used. The latter agrees with the result of the NRG within 1% error.

  10. Single particle detection: Phase control in submicron Hall sensors

    SciTech Connect

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-11-15

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 {mu}m. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of {mu}{approx_equal}10{sup 8} {mu}{sub B} has been achieved with a 600 nm-wide sensor.

  11. Studying biofuel aerosol evaporation rates with single particle manipulation

    NASA Astrophysics Data System (ADS)

    Corsetti, S.; Miles, R. E. H.; Reid, J. P.; Kiefer, J.; McGloin, D.

    2014-09-01

    The significant increase in the air pollution, and the impact on climate change due to the burning of fossil fuel has led to the research of alternative energies. Bio-ethanol obtained from a variety of feedstocks can provide a feasible solution. Mixing bio-ethanol with gasoline leads to a reduction in CO emission and in NOx emissions compared with the use of gasoline alone. However, adding ethanol leads to a change in the fuel evaporation. Here we present a preliminary investigation of evaporation times of single ethanol-gasoline droplets. In particular, we investigated the different evaporation rate of the droplets depending on the variation in the percentage of ethanol inside them. Two different techniques have been used to trap the droplets. One makes use of a 532nm optical tweezers set up, the other of an electrodynamics balance (EDB). The droplets decreasing size was measured using video analysis and elastic light scattering respectively. In the first case measurements were conducted at 293.15 K and ambient humidity. In the second case at 280.5 K and a controlled environment has been preserved by flowing nitrogen into the chamber. Binary phase droplets with a higher percentage of ethanol resulted in longer droplet lifetimes. Our work also highlights the advantages and disadvantages of each technique for such studies. In particular it is challenging to trap droplets with low ethanol content (such as pure gasoline) by the use of EDB. Conversely such droplets are trivial to trap using optical tweezers.

  12. Competing single-particle and collective behavior in 71Se

    NASA Astrophysics Data System (ADS)

    Howe, A. R.; Haring-Kaye, R. A.; Döring, J.; Baker, N. R.; Kuhn, S. J.; Tabor, S. L.; Arora, S. R.; Bruckman, J. K.; Hoffman, C. R.

    2012-07-01

    The high-spin decay of 71Se was studied using the 54Fe(23Na,αpn) reaction at 80 MeV and the Florida State University Compton-suppressed Ge array consisting of three clover detectors and seven single-crystal detectors. Based on prompt γ-γ coincidences measured in the experiment, the known level scheme was enhanced and extended to higher spin with 19 new transitions. A band that was previously suggested to have positive parity was reassigned as the “missing” signature partner of an existing negative-parity band. Spins were assigned based on directional correlation of oriented nuclei ratios. Lifetimes of 17 excited states were measured using the Doppler-shift attenuation method. Experimental Qt values imply an intermediate degree of collective behavior for 71Se at high spin. Theoretical Qt values determined from cranked Woods-Saxon (CWS) calculations show better agreement with the experimental ones for the positive-parity states than the negative-parity states. Shape competition and γ softness characterize the low-spin states of the lowest positive- and negative-parity bands based on the CWS calculations. At high spin, triaxial shapes with γ>0∘ are predicted.

  13. Single particle detection: Phase control in submicron Hall sensors

    NASA Astrophysics Data System (ADS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-11-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ ≈108 μB has been achieved with a 600 nm-wide sensor.

  14. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  15. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    SciTech Connect

    Cahill, J. F.; Fei, H.; Cohen, S. M.; Prather, K. A.

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for an uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.

  16. Silencing Viral MicroRNA as a Novel Antiviral Therapy?

    PubMed Central

    Moens, Ugo

    2009-01-01

    Viruses are intracellular parasites that ensure their existence by converting host cells into viral particle producing entities or into hiding places rendering the virus invisible to the host immune system. Some viruses may also survive by transforming the infected cell into an immortal tumour cell. MicroRNAs are small non-coding transcripts that function as posttranscriptional regulators of gene expression. Viruses encode miRNAs that regulate expression of both cellular and viral genes, and contribute to the pathogenic properties of viruses. Hence, neutralizing the action of viral miRNAs expression by complementary single-stranded oligonucleotides or so-called anti-miRNAs may represent a strategy to combat viral infections and viral-induced pathogenesis. This review describes the miRNAs encoded by human viruses, and discusses the possible therapeutic applications of anti-miRNAs against viral diseases. PMID:19704916

  17. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    PubMed

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated.

  18. Optimizing the acquisition and analysis of confocal images for quantitative single-mobile-particle detection.

    PubMed

    Friaa, Ouided; Furukawa, Melissa; Shamas-Din, Aisha; Leber, Brian; Andrews, David W; Fradin, Cécile

    2013-08-05

    Quantification of the fluorescence properties of diffusing particles in solution is an invaluable source of information for characterizing the interactions, stoichiometry, or conformation of molecules directly in their native environment. In the case of heterogeneous populations, single-particle detection should be the method of choice and it can, in principle, be achieved by using confocal imaging. However, the detection of single mobile particles in confocal images presents specific challenges. In particular, it requires an adapted set of imaging parameters for capturing the confocal images and an adapted event-detection scheme for analyzing the image. Herein, we report a theoretical framework that allows a prediction of the properties of a homogenous particle population. This model assumes that the particles have linear trajectories with reference to the confocal volume, which holds true for particles with moderate mobility. We compare the predictions of our model to the results as obtained by analyzing the confocal images of solutions of fluorescently labeled liposomes. Based on this comparison, we propose improvements to the simple line-by-line thresholding event-detection scheme, which is commonly used for single-mobile-particle detection. We show that an optimal combination of imaging and analysis parameters allows the reliable detection of fluorescent liposomes for concentrations between 1 and 100 pM. This result confirms the importance of confocal single-particle detection as a complementary technique to ensemble fluorescence-correlation techniques for the studies of mobile particle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  20. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  1. High Precision Density Measurements of Single Particles: The Density of Metastable Phases

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Chieffo, Logan; Imre, Dan G.

    2005-10-01

    We describe a system designed to measure the size, composition and density of individual particles in real-time. It uses a DMA to select a monodisperse particle population and the single particle mass spectrometer to measure individual particle mass spectrometer to measure individual particle aerodynamic diameter and composition. Mobility and aerodynamic diameters are used to extract particle density. The addition of individual particle density to the mass spectrum is intended to improve the data classification process. In the present paper we demonstrate that the system has the requisite accuracy and resolution to make this approach practicable. We also present a high precision variant that uses an internal calibrant to remove any of the systematic errors and significantly improves the measurement quality. The high precision scheme is most suitable for laboratory studies making it possible to follow slight changes in particle density. An application of the system to measure the density of hygroscopic particles of atmospheric importance in metastable phases near zero relative humidity is presented. The density data are consistent with conclusions reached in a number of other studies that some particle systems of atmospheric significance once deliquesced persist as droplets down to near zero relative humidity.

  2. Coexisting single-particle and collective excitations in 70As

    NASA Astrophysics Data System (ADS)

    Haring-Kaye, R. A.; Elder, R. M.; Döring, J.; Tabor, S. L.; Volya, A.; Allegro, P. R. P.; Bender, P. C.; Medina, N. H.; Morrow, S. I.; Oliviera, J. R. B.; Tripathi, V.

    2015-10-01

    High-spin states in 70As were studied using the 55Mn(18O,3 n ) fusion-evaporation reaction at a beam energy of 50 MeV. Prompt γ -γ coincidences were measured using the Florida State University Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. A reinvestigation of the known level scheme resulted in the addition of 32 new transitions and the rearrangement of 10 others. The high-spin decay pattern of yrast negative-parity states was modified and enhanced extensively. Spins were assigned based on directional correlation of oriented nuclei ratios. Lifetimes of seven excited states were measured using the Doppler-shift attenuation method. The B (E 2 ) rates inferred from the lifetimes of states in the yrast positive-parity band imply substantial collectivity, in agreement with the results of previous studies. Substantial signature splitting and large alternations in the B (M 1 ) strengths were observed in this band as well, supporting the interpretation of an aligned π g9 /2⊗ν g9 /2 intrinsic configuration for this structure beginning at the lowest 9+ state. Large-scale shell-model calculations performed for 70As reproduce the relative energy differences between adjacent levels and the B (M 1 ) rates in the yrast positive-parity band rather well, but underestimate the B (E 2 ) strengths. The g9 /2 orbital occupancies for the lowest 9+ state predicted by the shell-model calculations provide additional evidence of a stretched π g9 /2⊗ν g9 /2 configuration for this state.

  3. The magic nature of 132Sn explored through the single-particle states of 133Sn

    SciTech Connect

    Jones, K. L.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Harlin, Christopher W; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian; Nesaraja, Caroline D; Nunes, F. M.; Pain, S. D.; Patterson, N. P.; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.

    2010-05-01

    Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lies outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.

  4. Single-Particle Composition Measured in an Alpine Valley: Wood Smoke, EC and BC

    NASA Astrophysics Data System (ADS)

    Liepmann, C.; Gross, D. S.; Benzaid, S.; Christensen, J.; Turetsky, E.; Musicant, D.; Sandradewi, J.; Prevot, A.; Baltensperger, U.

    2007-12-01

    Particulate pollution is an issue of concern in today's society. Current regulations focus on the mass of particulate matter (PM) per volume of air, and not the source or chemical composition of the PM. Here we will present results from the AEROWOOD campaign in Roveredo, Switzerland where we investigated the PM composition measured using a single-particle mass spectrometer (TSI 3800 ATOFMS) to identify the sources of ambient particles. The goal was to differentiate wood smoke particles from diesel emissions. Roveredo is located in a deep alpine valley with strong wintertime thermal inversions, trapping the emissions. Local homes are predominantly heated by wood fires, and the village is located along a motorway that crosses the Swiss alps, providing two distinct particle sources. The particles sampled with the ATOFMS have been analyzed in a variety of ways with a focus on the temporal trends of the different particle types identified. Of particular interest is the distinction made between elemental carbon (EC) and black carbon (BC). During AEROWOOD, EC was measured chemically using real- time thermo/optical methods. BC was recorded directly by absorption, using an aethalometer. Regression models have been constructed to predict the EC and BC values using the single-particle mass spectra, providing chemical insight into the differences in these quantities. Additionally, comparing the timeline plots of EC, BC and the particle types found from the ATOFMS data should provide an idea as to the sources of EC and BC in this location.

  5. Achieving Size Independent Hit-Rate in Single Particle Mass Spectrometry

    SciTech Connect

    Zelenyuk, Alla; Yang, Juan; Imre, Dan G.; Choi, Eric Y.

    2009-04-01

    Recent improvements in single particle mass spectrometers make it possible to optically detect, size, and characterize the compositions of individual particles with diameters larger than a micron and smaller than 100 nm. Based on particle detection in two stages of optical detection these instruments generate a precisely timed trigger pulse, which is used to fire the ion generation laser or lasers. Practical experience shows that the wide size range results in small, but significant differences in laser trigger timing between small and large particles. If not treated, the instrument hit-rate becomes size dependent and instrument operator is forced to optimize the instrument for the desired size range, while having to contend with a lower hit-rate for the other. The present paper presents an analysis of the problem, demonstrating that size dependence of laser trigger timing stems from the differences in the particle position within the detection laser beam at the instant of detection. It shows that it is possible to compensate for these differences by generation a laser trigger delay coefficient for individual particles as a function of particle time of flight, i.e. its size. The study also shows that a single function can be used to characterize particles with a wide range of densities.

  6. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  7. Efficient Induction of Nuclear Aggresomes by Specific Single Missense Mutations in the DNA-binding Domain of a Viral AP-1 Homolog*

    PubMed Central

    Park, Richard; Wang'ondu, Ruth; Heston, Lee; Shedd, Duane; Miller, George

    2011-01-01

    Nuclear aggresomes induced by proteins containing an expanded polyglutamine (polyQ) tract are pathologic hallmarks of certain neurodegenerative diseases. Some GFP fusion proteins lacking a polyQ tract may also induce nuclear aggresomes in cultured cells. Here we identify single missense mutations within the basic DNA recognition region of Bam HI Z E B virus replication activator (ZEBRA), an Epstein-Barr virus (EBV)-encoded basic zipper protein without a polyQ tract, that efficiently induced the formation of nuclear aggresomes. Wild-type (WT) ZEBRA was diffusely distributed within the nucleus. Four non-DNA-binding mutants, Z(R179E), Z(R183E), Z(R190E), and Z(K178D) localized to the periphery of large intranuclear spheres, to discrete nuclear aggregates, and to the cytoplasm. Other non-DNA-binding mutants, Z(N182K), Z(N182E), and Z(S186E), did not exhibit this phenotype. The interior of the spheres contained promyelocytic leukemia and HSP70 proteins. ZEBRA mutants directly induced the nuclear aggresome pathway in cells with and without EBV. Specific cellular proteins (SC35 and HDAC6) and viral proteins (WT ZEBRA, Rta, and BMLF1) but not other cellular or viral proteins were recruited to nuclear aggresomes. Co-transfection of WT ZEBRA with aggresome-inducing mutants Z(R183E) and Z(R179E) inhibited late lytic viral protein expression and lytic viral DNA amplification. This is the first reported instance in which nuclear aggresomes are induced by single missense mutations in a viral or cellular protein. We discuss conformational changes in the mutant viral AP-1 proteins that may lead to formation of nuclear aggresomes. PMID:21233201

  8. Single crystal structure analysis of a single Sm{sub 2}Fe{sub 17}N{sub 3} particle

    SciTech Connect

    Inami, Nobuhito Takeichi, Yasuo; Saito, Kotaro; Sagayama, Ryoko; Kumai, Reiji; Ono, Kanta; Ueno, Tetsuro

    2014-05-07

    We performed single crystal structure analysis of Sm{sub 2}Fe{sub 17}N{sub 3} using X-ray diffraction. A pick-up system combined with a micromanipulation tool driven by piezoelectric actuators and a microgripper was used. A single Sm{sub 2}Fe{sub 17}N{sub x} particle with the diameter of about 20 μm was picked up, and X-ray diffraction was measured using an X-ray diffractometer at the synchrotron radiation beamline at the Photon Factory, KEK. Single crystal structure analysis of a Sm{sub 2}Fe{sub 17}N{sub 3} particle was performed and the structure was successfully determined from X-ray diffraction patterns. The space group and the lattice constants were determined to be R-3m (number sign166) a = b = 8.7206 Å and c = 12.6345 Å, respectively. Atomic positions of Sm and Fe atoms were accurately determined by single crystal structure analysis of only one particle.

  9. Sensing, capturing, and interrogation of single virus particles with solid state nanopores

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Kim, Minjun

    2015-05-01

    Solid-state nanopores have gained much attention as a bioanalytical platform. By virtue of their tunable nanoscale dimensions, nanopore sensors can a spatial resolution that spans a wide range of biological species from a single-molecule to a single virus or microorganism. Several groups have already used solid-state nanopores for tag-free detection of viruses. However, no one has reported use of nanopores to capture a single virus for further interrogation by the electric field inside nanopores. In this paper we will report detection of single HIV-1 particle with solid-state nanopores and demonstrate the ability to trap a single HIV-1 particle on top of a nanopore and force it to squeeze through the pore using an electric field.

  10. Isolation of Single-Domain Antibody Fragments That Preferentially Detect Intact (146S) Particles of Foot-and-Mouth Disease Virus for Use in Vaccine Quality Control.

    PubMed

    Harmsen, Michiel M; Seago, Julian; Perez, Eva; Charleston, Bryan; Eblé, Phaedra L; Dekker, Aldo

    2017-01-01

    Intact (146S) foot-and-mouth disease virus (FMDVs) can dissociate into specific (12S) viral capsid degradation products. FMD vaccines normally consist of inactivated virions. Vaccine quality is dependent on 146S virus particles rather than 12S particles. We earlier isolated two llama single-domain antibody fragments (VHHs) that specifically recognize 146S particles of FMDV strain O1 Manisa and shown their potential use in quality control of FMD vaccines during manufacturing. These 146S-specific VHHs were specific for particular O serotype strains and did not bind strains from other FMDV serotypes. Here, we describe the isolation of 146S-specific VHHs against FMDV SAT2 and Asia 1 strains by phage display selection from llama immune libraries. VHHs that bind both 12S and 146S particles were readily isolated but VHHs that bind specifically to 146S particles could only be isolated by phage display selection using prior depletion for 12S particles. We obtained one 146S-specific VHH-M332F-that binds to strain Asia 1 Shamir and several VHHs that preferentially bind 146S particles of SAT2 strain SAU/2/00, from which we selected VHH M379F for further characterization. Both M332F and M379F did not bind FMDV strains from other serotypes. In a sandwich enzyme-linked immunosorbent assay (ELISA) employing unlabeled and biotinylated versions of the same VHH M332F showed high specificity for 146S particles but M379F showed lower 146S-specificity with some cross-reaction with 12S particles. These ELISAs could detect 146S particle concentrations as low as 2.3-4.6 µg/l. They can be used for FMD vaccine quality control and research and development, for example, to identify virion stabilizing excipients.

  11. Single particle tracking reveals biphasic transport during nanorod magnetophoresis through extracellular matrix.

    PubMed

    Mair, L O; Superfine, R

    2014-06-21

    Magnetic drug targeting has been proposed as a means of efficiently targeting drugs to tumors. However, the extracellular matrix (ECM) remains a significant barrier to long-range magnetophoretic transport through the tumor volume. While ensemble measurements of nanoparticle magnetophoresis have been reported, a single particle level understanding of magnetophoretic transport remains at large. We quantify nanorod magnetophoresis through ECM based on single particle observations. We find that smaller diameter particles achieve larger velocities through ECM despite experiencing smaller magnetic forces. Additionally, two interesting dynamics are elucidated. First, 18 nm diameter nanorods experience bimodal stick-slip motion through ECM during static field magnetophoresis, while similar bimodal transport is not observed for 55 nm nor 200 nm diameter nanorods. Second, smaller particles experience larger deviations in their orientation angle with respect to the magnetic field. This work elucidates important dynamics of nanoparticle transport through complex, porous biomaterials that may go unnoticed during ensemble measurements.

  12. Single Particle Tracking Reveals Biphasic Transport During Nanorod Magnetophoresis Through Extracellular Matrix

    PubMed Central

    Mair, L.O.; Superfine, R.

    2014-01-01

    Magnetic drug targeting has been proposed as a means of efficiently targeting drugs to tumors. However, the extracellular matrix (ECM) remains a significant barrier to long-range magnetophoretic transport through the tumor volume. While ensemble measurements of nanoparticle magnetophoresis have been reported, a single particle level understanding of magnetophoretic transport remains at large. We quantify nanorod magnetophoresis through ECM based on single particle observations. We find that smaller diameter particles achieve larger velocities through ECM despite experiencing smaller magnetic forces. Additionally, two interesting dynamics are elucidated. First, 18 nm diameter nanorods experience bimodal stick-slip motion through ECM during static field magnetophoresis, while similar bimodal transport is not observed for 55 nm nor 200 nm diameter nanorods. Second, smaller particles experience larger deviations in their orientation angle with respect to the magnetic field. This work elucidates important dynamics of nanoparticle transport through complex, porous biomaterials that may go unnoticed during ensemble measurements. PMID:24744160

  13. A focused scanning vertical beam for charged particle irradiation of living cells with single counted particles.

    PubMed

    Merchant, Michael J; Jeynes, Jonathan C G; Grime, Geoffrey W; Palitsin, Vladimir; Tullis, Iain D W; Barber, Paul R; Vojnovic, Boris; Webb, Roger P; Kirkby, Karen J

    2012-09-01

    The Surrey vertical beam is a new facility for targeted irradiation of cells in medium with singly counted ions. A duo-plasmatron ion source and a 2 MV Tandem™ accelerator supply a range of ions from protons to calcium for this beamline and microscope endstation, with energy ranges from 0.5 to 12 MeV. A magnetic quadrupole triplet lens is used to focus the beam of ions. We present the design of this beamline, and early results showing the capability to count single ions with 98% certainty on CR-39 track etch. We also show that the beam targeting accuracy is within 5 μm and selectively target human fibroblasts with a <5 μm carbon beam, using γ-H2AX immunofluorescence to demonstrate which cell nuclei were irradiated. We discuss future commissioning steps necessary to achieve submicron targeting accuracy with this beamline.

  14. NA49 Results on Single Particle and Correlation Measurements in Central PB+PB Collisions

    SciTech Connect

    Wang, F.

    1998-12-01

    Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.

  15. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  16. Fabs enable single particle cryoEM studies of small proteins

    PubMed Central

    Wu, Shenping; Avila-Sakar, Agustin; Kim, JungMin; Booth, David S.; Greenberg, Charles H.; Rossi, Andrea; Liao, Maofu; Li, Xueming; Alian, Akram; Griner, Sarah L.; Juge, Narinobu; Yu, Yadong; Mergel, Claudia M.; Chaparro-Riggers, Javier; Strop, Pavel; Tampé, Robert; Edwards, Robert H.; Stroud, Robert M.; Craik, Charles S.; Cheng, Yifan

    2012-01-01

    Summary In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of a ~65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM. PMID:22483106

  17. Fabs enable single particle cryoEM studies of small proteins.

    PubMed

    Wu, Shenping; Avila-Sakar, Agustin; Kim, JungMin; Booth, David S; Greenberg, Charles H; Rossi, Andrea; Liao, Maofu; Li, Xueming; Alian, Akram; Griner, Sarah L; Juge, Narinobu; Yu, Yadong; Mergel, Claudia M; Chaparro-Riggers, Javier; Strop, Pavel; Tampé, Robert; Edwards, Robert H; Stroud, Robert M; Craik, Charles S; Cheng, Yifan

    2012-04-04

    In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Analysis of proton single-particle properties of zinc and germanium isotopes

    SciTech Connect

    Bespalova, O. V. Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2014-12-15

    Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.

  19. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-27

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  20. Accounting for changes in particle charge, dry mass and composition occurring during studies of single levitated particles.

    PubMed

    Haddrell, Allen E; Davies, James F; Yabushita, Akihiro; Reid, Jonathan P

    2012-10-11

    The most used instrument in single particle hygroscopic analysis over the past thirty years has been the electrodynamic balance (EDB). Two general assumptions are made in hygroscopic studies involving the EDB. First, it is assumed that the net charge on the droplet is invariant over the time scale required to record a hygroscopic growth cycle. Second, it is assumed that the composition of the droplet is constant (aside from the addition and removal of water). In this study, we demonstrate that these assumptions cannot always be made and may indeed prove incorrect. The presence of net charge in the humidified vapor phase reduces the total net charge retained by the droplet over prolonged levitation periods. The gradual reduction in charge limits the reproducibility of hygroscopicity measurements made on repeated RH cycles with a single particle, or prolonged experiments in which the particle is held at a high relative humidity. Further, two contrasting examples of the influence of changes in chemical composition changes are reported. In the first, simple acid-base chemistry in the droplet leads to the irreversible removal of gaseous ammonia from a droplet containing an ammonium salt on a time scale that is shorter than the hygroscopicity measurement. In the second example, the net charge on the droplet (<100 fC) is high enough to drive redox chemistry within the droplet. This is demonstrated by the reduction of iodic acid in a droplet made solely of iodic acid and water to form iodine and an iodate salt.

  1. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    PubMed

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  2. Integrated particles sensor formed on single substrate using fringes formed by diffractive elements

    NASA Technical Reports Server (NTRS)

    Gharib, Morteza (Inventor); Fourguette, Dominique (Inventor); Modarress, Darius (Inventor); Taugwalder, Frederic (Inventor); Forouhar, Siamak (Inventor)

    2005-01-01

    Integrated sensors are described using lasers on substrates. In one embodiment, a first sensor forms a laser beam and uses a quartz substrate to sense particle motion by interference of the particles with a diffraction beam caused by a laser beam. A second sensor uses gradings to produce an interference. In another embodiment, an integrated sensor includes a laser element, producing a diverging beam, and a single substrate which includes a first diffractive optical element placed to receive the diverging beam and produce a fringe based thereon, a scattering element which scatters said fringe beam based on particles being detected, and a second diffractive element receiving scattered light.

  3. Single-crystal CVD diamond detector for high-resolution particle spectrometry

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Murakami, H.; Shimaoka, T.; Tsubota, M.; Kaneko, J. H.

    2014-11-01

    The performance of a single-crystal diamond detector, grown by chemical vapour deposition, as an energy spectrometer for charged particles was studied. The detector was able to identify four different energies of 241\\text{Am} α -particles (5.389, 5.443, 5.486, and 5.545 MeV) thanks to a superior intrinsic energy resolution of ˜0.4{%} (full width at half maximum). The electrode configuration, specifically the electric field configuration inside the diamond crystal, and the electrode materials, strongly affect the energy resolution for charged particles. The charge collection efficiency inside the diamond crystal was ˜97{%} for both electrons and holes.

  4. Correlation effects in single-particle overlap functions and one-nucleon removal reactions

    NASA Astrophysics Data System (ADS)

    Gaidarov, M. K.; Pavlova, K. A.; Dimitrova, S. S.; Stoitsov, M. V.; Antonov, A. N.; van Neck, D.; Müther, H.

    1999-08-01

    Single-particle overlap functions and spectroscopic factors are calculated on the basis of the one-body density matrices (ODM) obtained for the nucleus 16O employing different approaches to account for the effects of correlations. The calculations use the relationship between the overlap functions related to bound states of the (A-1)-particle system and the ODM for the ground state of the A-particle system. The resulting bound-state overlap functions are compared and tested in the description of the experimental data from (p,d) reactions for which the shape of the overlap function is important.

  5. Single-molecule and single-particle imaging of molecular motors in vitro and in vivo.

    PubMed

    Fili, Natalia

    2014-01-01

    Motor proteins are multi-potent molecular machines, whose localisation, function and regulation are achieved through tightly controlled processes involving conformational changes and interactions with their tracks, cargos and binding partners. Understanding how these complex machines work requires dissection of these processes both in space and time. Complementing the traditional ensemble measurements, single-molecule assays enable the detection of rare or short-lived intermediates and molecular heterogeneities, and the measurements of subpopulation dynamics. This chapter is focusing on the fluorescence imaging of single motors and their cargo. It discusses what is required in order to achieve single-molecule imaging with high temporal and spatial resolution and how these requirements are met both in vitro and in vivo. It also presents a general overview and applied examples of the major single-molecule imaging techniques and experimental assays which have been used to study motor proteins.

  6. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes.

    PubMed

    Ewers, Helge; Smith, Alicia E; Sbalzarini, Ivo F; Lilie, Hauke; Koumoutsakos, Petros; Helenius, Ari

    2005-10-18

    The lateral mobility of individual murine polyoma virus-like particles (VLPs) bound to live cells and artificial lipid bilayers was studied by single fluorescent particle tracking using total internal reflection fluorescence microscopy. The particle trajectories were analyzed in terms of diffusion rates and modes of motion as described by the moment scaling spectrum. Although VLPs bound to their ganglioside receptor in lipid bilayers exhibited only free diffusion, analysis of trajectories on live 3T6 mouse fibroblasts revealed three distinct modes of mobility: rapid random motion, confined movement in small zones (30-60 nm in diameter), and confined movement in zones with a slow drift. After binding to the cell surface, particles typically underwent free diffusion for 5-10 s, and then they were confined in an actin filament-dependent manner without involvement of clathrin-coated pits or caveolae. Depletion of cholesterol dramatically reduced mobility of VLPs independently of actin, whereas inhibition of tyrosine kinases had no effect on confinement. The results suggested that clustering of ganglioside molecules by the multivalent VLPs induced transmembrane coupling that led to confinement of the virus/receptor complex by cortical actin filaments.

  7. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes

    PubMed Central

    Ewers, Helge; Smith, Alicia E.; Sbalzarini, Ivo F.; Lilie, Hauke; Koumoutsakos, Petros; Helenius, Ari

    2005-01-01

    The lateral mobility of individual murine polyoma virus–like particles (VLPs) bound to live cells and artificial lipid bilayers was studied by single fluorescent particle tracking using total internal reflection fluorescence microscopy. The particle trajectories were analyzed in terms of diffusion rates and modes of motion as described by the moment scaling spectrum. Although VLPs bound to their ganglioside receptor in lipid bilayers exhibited only free diffusion, analysis of trajectories on live 3T6 mouse fibroblasts revealed three distinct modes of mobility: rapid random motion, confined movement in small zones (30–60 nm in diameter), and confined movement in zones with a slow drift. After binding to the cell surface, particles typically underwent free diffusion for 5–10 s, and then they were confined in an actin filament-dependent manner without involvement of clathrin-coated pits or caveolae. Depletion of cholesterol dramatically reduced mobility of VLPs independently of actin, whereas inhibition of tyrosine kinases had no effect on confinement. The results suggested that clustering of ganglioside molecules by the multivalent VLPs induced transmembrane coupling that led to confinement of the virus/receptor complex by cortical actin filaments. PMID:16219700

  8. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  9. Carbon Nanotube-Quantum Dot Nanohybrids: Coupling with Single-Particle Control in Aqueous Solution.

    PubMed

    Attanzio, Antonio; Sapelkin, Andrei; Gesuele, Felice; van der Zande, Arend; Gillin, William P; Zheng, Ming; Palma, Matteo

    2017-02-10

    A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.

  10. Wavelength resolved polarized elastic scatter measurements from micron-sized single particles

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Czege, Jozsef; Eversole, Jay D.

    2013-05-01

    The goal of this project is to investigate correlations of polarimetric angular scattering patterns from individual aerosol particles with the particles' physical structure and composition. Such signature patterns may be able to provide particle classification capability, such as, for example, discrimination between man-made and naturally occurring aerosols. If successful, this effort could improve current detection methods for biological warfare (BW) agent aerosols. So far, we have demonstrated an experimental arrangement to measure polarization-state resolved, multi-angle, scattering intensities from single aerosol particles on-the-fly. Our novel approach is a radical departure from conventional polarimetric measurement methods, and a key factor is the use of a multiple-order retarder to prepare different polarization states, depending on the wavelength of the incident light. This novel experimental technique uses a supercontinuum light source, an array of optical fibers, an imaging spectrometer and an EMCCD camera to simultaneously acquire wavelength and angle dependent particle light scattering data as a two-dimensional snapshot. Mueller matrix elements were initially measured from individual particles held in an optical trap (at 405 nm). Since particles can be stably trapped for long periods (hours), we were able to change the optical configuration to acquire multiple Mueller matrix element measurements on a single particle. We have computationally modeled these measurements at specific angles, and the comparison with experimental measurements shows good agreement. Similar measurements have also been made on slowly falling particles, and our current efforts are focused on improving experimental technique sufficiently to make such measurements on flowing particles.

  11. A single-particle characterization of a mobile Versatile Aerosol Concentration Enrichment System for exposure studies

    PubMed Central

    Freney, Evelyn J; Heal, Mathew R; Donovan, Robert J; Mills, Nicholas L; Donaldson, Kenneth; Newby, David E; Fokkens, Paul HB; Cassee, Flemming R

    2006-01-01

    Background An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to investigate the size and chemical composition of fine concentrated ambient particles (CAPs) in the size range 0.2–2.6 μm produced by a Versatile Aerosol Concentration Enrichment System (VACES) contained within the Mobile Ambient Particle Concentrator Exposure Laboratory (MAPCEL). The data were collected during a study of human exposure to CAPs, in Edinburgh (UK), in February-March 2004. The air flow prior to, and post, concentration in the VACES was sampled in turn into the ATOFMS, which provides simultaneous size and positive and negative mass spectral data on individual fine particles. Results The particle size distribution was unaltered by the concentrator over the size range 0.2–2.6 μm, with an average enrichment factor during this study of ~5 (after dilution of the final air stream). The mass spectra from single particles were objectively grouped into 20 clusters using the multivariate K-means algorithm and then further grouped manually, according to similarity in composition and time sequence, into 8 main clusters. The particle ensemble was dominated by pure and reacted sea salt and other coarse inorganic dusts (as a consequence of the prevailing maritime-source climatology during the study), with relatively minor contributions from carbonaceous and secondary material. Very minor variations in particle composition were noted pre- and post-particle concentration, but overall there was no evidence of any significant change in particle composition. Conclusion These results confirm, via single particle analysis, the preservation of the size distribution and chemical composition of fine ambient PM in the size range 0.2–2.6 μm after passage through the VACES concentration instrumentation. PMID:16723024

  12. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  13. Collective ion diffusion and localized single particle dynamics in pyridinium-based ionic liquids.

    PubMed

    Burankova, Tatsiana; Hempelmann, Rolf; Wildes, Andrew; Embs, Jan P

    2014-12-11

    Quasielastic neutron scattering with polarized neutrons allows for an experimental separation of single-particle and collective processes, as contained in the incoherent and coherent scattering contributions. This technique was used to investigate the dynamical processes in the pyridinium-based ionic liquid 1-butylpyridinium bis(trifluoromethylsulfonyl)-imide. We observed two diffusion processes with different time scales. The slower diffusional process was present in both the coherent and the incoherent contribution, meaning that this process has at least a partial collective nature. The second faster localized process is only present in the incoherent scattering contribution. We conclude that it is a true single-particle process on a shorter time scale.

  14. Neutron single-particle structure of molybdenum isotopes within the dispersive optical model

    SciTech Connect

    Bespalova, O. V. Klimochkina, A. A.; Spasskaya, T. I.

    2016-07-15

    The evolution of neutron single-particle spectra in molybdenum isotopes was calculated on the basis of the dispersive optical model over the region extending from stable isotopes to the neutron drip line. The question of how the dependence of surface absorption on the neutron–proton asymmetry and the weakening of spin–orbit interaction affect the single-particle spectra in question is studied. The results agree with the concept according to which the shell effect becomes weaker near the neutron drip line.

  15. Electrical detection of single pollen allergen particles using electrode-embedded microchannels

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Chihiro; Noda, Tetsuya; Tsutsui, Makusu; Taniguchi, Masateru; Kawano, Satoyuki; Kawai, Tomoji

    2012-04-01

    We report on the development of a microfluidic system for the electrical detection of single pollen allergen particles. Our device consists of 500 nm electrode gaps fabricated in an 800 nm wide fluidic channel. We flowed pollen allergen particles of average size 330 nm along the channel via fluid pumping and simultaneously monitored temporal change in dc current flowing through the sensing electrodes. Current spikes were detected, which can be attributed to a capacitance discharging upon trapping/detrapping of single allergens in the electrode gap. This sensing mechanism may open new avenues for a highly sensitive pollen allergen sensor.

  16. Potassium (De-)insertion Processes in Prussian Blue Particles: Ensemble versus Single Nanoparticle Behaviour.

    PubMed

    Zampardi, Giorgia; Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-08-17

    Potassium (de-)insertion from Prussian Blue (PB) is investigated at the single and multi-particle scale. The electrochemical behaviour is found to differ between the two measurement types. At the single particle level oxidation of the PB nanoparticles with concomitant K+ deinsertion occurs more readily than the associated reduction, relating to K+ insertion. In contrast, the cyclic voltammetry of PB in a composite electrode containing conductive additives and polymeric binder suggests the opposite behaviour. Implications for assessing battery materials are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Viral Infections

    MedlinePlus

    ... to fight it off. For most viral infections, treatments can only help with symptoms while you wait ... for viral infections. There are antiviral medicines to treat some viral infections. Vaccines can help prevent you ...

  18. Comparison of the localization of an electron as determined by the two-particle distribution function and by the single-particle sharing index.

    PubMed

    Fulton, Robert L

    2006-11-09

    A comparison of the measure of the delocalization of a particle based on the two-particle distribution function and that based on the single-particle density matrix is made using a simple set of wave functions which span states ranging from single determinant ground and doubly excited states through states mimicking correlated states and which include the singly excited state for electrons and for bosons replacing electrons in H2. The comparison further includes an analysis of the application of the measures to a classical ideal gas and a compressible fluid. It is found that the values of the integrated atom-atom measures agree for a range of wave functions involving combinations of the two single determinant (and equivalent Bose) wave functions but disagree for a different range of these wave functions and for the singly excited wave functions. Aside from the single determinant (and equivalent Bose) wave functions, the two sets of point-point measures that underlie the integrated measures all differ. For the sets of wave functions considered, the values of the measures are identical for electrons and bosons. When applied to a closed classical ideal gas and to a closed compressible fluid, the delocalization measure based on the two-particle distribution has a residual long range term, whereas the sharing index in the classical limit gives a completely localized particle. In general, the two measures describe different aspects of the behavior of the particles. The measures based on the two-particle distribution function give only two-particle properties and the single-particle density, and the sharing quantities give only single-particle properties. The latter includes, however, the quantitative measures of the delocalization of a single particle, the point-point sharing index and the sharing amplitude.

  19. Conversion of bacteriophage G4 single-stranded viral DNA to double-stranded replicative form in dna mutants of Escherichia coli.

    PubMed

    Kodaira, K I; Taketo, A

    1977-05-17

    Host functions involved in synthesis of parental replicative form of bacteriophage G4 were investigated using various replication mutants of Escheria coli. In dna+ bacteria, conversion of single-stranded viral DNA to replicative form DNA was insensitive to 200 microng/ml of rifampicin or 25 microng/ml of chloramphenicol. At high temperature, synthesis of parental replicative form was unaffected in mutants thermosensitive for dnaA, dnaB, dnaC(D), dnaE or dnaH. In dnaG or dnaZ mutants, however, parental replicative from DNA synthesis was clearly thermosensitive at 43 degrees C. Although the host rep product was essential for viral multiplication, the conversion of single stranded to replicative form was independent of the rep function.

  20. Experimental and numerical study of single and multiple impacts of angular particles on ductile metals

    NASA Astrophysics Data System (ADS)

    Takaffoli, Mahdi

    Solid particle erosion occurs when small high speed particles im