Sample records for single-crystal diffraction techniques

  1. Growth and characterization of 4-chloro-3-nitrobenzophenone single crystals using vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravinth, K., E-mail: anandcgc@gmail.com; Babu, G. Anandha, E-mail: anandcgc@gmail.com; Ramasamy, P., E-mail: anandcgc@gmail.com

    2014-04-24

    4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.

  2. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  3. Studies on the growth, structural, spectral and third-order nonlinear optical properties of ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate single crystal.

    PubMed

    Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R

    2015-01-25

    An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less

  5. Studies on the growth, structural, optical, mechanical properties of 8-hydroxyquinoline single crystal by vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, SP.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Velusamy, P.

    2011-11-15

    Highlights: {yields} Growth of bulk single crystal of 8-hydroxyquinoline (8-HQ) by vertical Bridgman technique for the first time. {yields} The crystalline perfection is reasonably good. {yields} The photoluminescence spectrum shows that the material is suitable for blue light emission. -- Abstract: Single crystal of organic nonlinear optical material, 8-hydroxyquinoline (8-HQ) of dimension 52 mm (length) x 12 mm (dia.) was grown from melt using vertical Bridgman technique. The crystal system of the material was confirmed by powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. Low angular spread around 400'' ofmore » the diffraction curve and the low full width half maximum values show that the crystalline perfection is reasonably good. The recorded photoluminescence spectrum shows that the material is suitable for blue light emission. Optical transmittance for the UV and visible region was measured and mechanical strength was estimated from Vicker's microhardness test along the growth face of the grown crystal.« less

  6. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  7. Energy-dispersive neutron imaging and diffraction of magnetically driven twins in a Ni2MnGa single crystal magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton

    2016-09-01

    Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.

  8. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  9. Crystal growth, structural, thermal and mechanical behavior of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals.

    PubMed

    Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y

    2014-12-10

    Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Growth and microtopographic study of CuInSe{sub 2} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  11. Study of structural and optical properties of YAG and Nd:YAG single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less

  12. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    NASA Astrophysics Data System (ADS)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  13. Growth and characterization of organic NLO material: Clobetasol propionate

    NASA Astrophysics Data System (ADS)

    Purusothaman, R.; Rajesh, P.; Ramasamy, P.

    2015-06-01

    Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.

  14. Studies on synthesis, growth, structural, thermal, linear and nonlinear optical properties of organic picolinium maleate single crystals.

    PubMed

    Pandi, P; Peramaiyan, G; Sudhahar, S; Chakkaravarthi, G; Mohan Kumar, R; Bhagavannarayana, G; Jayavel, R

    2012-12-01

    Picolinium maleate (PM), an organic material has been synthesised and single crystals were grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. PM crystal belongs to the monoclinic crystallographic system with space group P2(1)/c. The crystalline perfection of the grown crystals was analyzed by high-resolution X-ray diffraction rocking curve measurements. The presence of functional groups in PM was identified by FTIR and FT-NMR spectral analyses. Thermal behaviour and stability of picolinium maleate were studied by TGA/DTA analyses. UV-Vis spectral studies reveal that PM crystals are transparent in the wavelength region 327-1100 nm. The laser damage threshold value of PM crystal was found to be 4.3 GW/cm(2) using Nd:YAG laser. The Kurtz and Perry powder second harmonic generation technique confirms the nonlinear optical property of the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Crystal growth, piezoelectric, non-linear optical and mechanical properties of lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-05-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution growth technique at 35 °C. Single crystal X-ray diffraction study showed that the grown crystal belongs to the triclinic system with space group P1. The mechanical strength decreases with increasing load. The piezoelectric coefficient is found to be 1.41 pC/N. The nonlinear optical property was measured using Kurtz Perry powder technique and SHG efficiency was almost equal to that of KDP.

  16. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals.

    PubMed

    Rose, A S J Lucia; Selvarajan, P; Perumal, S

    2011-10-15

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Crystal growth, structural, low temperature thermoluminescence and mechanical properties of cubic fluoroperovskite single crystal (LiBaF3)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu

    2017-10-01

    Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.

  18. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  19. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  20. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  1. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Crystalline perfection and optical studies of L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) single crystals

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.; Bhagavannarayana, G.

    2015-10-01

    Single crystals of L-Histidinium dihydrogenphosphate orthophosphoric acid (LHDP) were grown by slow evaporation solution growth technique. The grown crystals were confirmed by single crystal X-ray diffraction techniques. The HRXRD rocking curve measurements revealed the crystalline perfection of grown crystal and the absence of structural grain boundaries. The lower optical cut-off wavelength for this crystal was observed at 240 nm. The third order nonlinear refractive index (n2), nonlinear absorption coefficient (β) and susceptibility (χ(3)) were calculated by Z-scan studies using Nd: YAG laser as a source. The single shot laser damage threshold of grown crystal was measured to be 6.286 GW/cm2 using Nd: YAG laser.

  3. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    NASA Astrophysics Data System (ADS)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  4. Studies on 2-amino-5-nitropyridinium nitrate (2A5NPN): A semi-organic third order nonlinear optical single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasubramani, V.; Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Ramasamy, P.

    2016-05-23

    2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photonmore » absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.« less

  5. Spectroscopy and crystal structures of natural stereoisomers of neoclerodane diterpenoids from Teucrium yemense of Saudi medicinal plant

    NASA Astrophysics Data System (ADS)

    Nur-e-Alam, Mohammad; Kanthasamy, Gopikkaa; Yousaf, Muhammad; Alqahtani, Ali S.; Ghabbour, Hazem A.; Al-Rehaily, Adnan J.

    2017-11-01

    3-O-deacetylteugracilin (1) and teugracilin B (2), two natural stereoisomers, are isolated from Teucrium yemense (Defl). These two compounds are almost identical to each other, differing only at the C6 stereocenter. We now crystallise these two compounds and for the first time, determine the crystal structure through single crystal X-ray diffraction, and the stereochemistry for all positions using spectroscopic data. These techniques enable us to establish the difference between the two compounds. Careful interpretation of the results indicates that HRMS and 1 and 2D NMR spectroscopy, are in agreement with single crystal X-ray diffraction data.

  6. New Techniques in Characterization of Ferroelectric Materials

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp

    2008-01-01

    Two new techniques have been developed to characterize Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) based ferroelectric single crystals: (i) electro-thermal imaging, and (ii) single crystal x-ray diffraction in the transmission mode. (i) Electro-thermal imaging is a remote sensing technique that can detect the polarization direction and poling state of a whole crystal slice. This imaging technique utilizes an IR camera to determine the field induced temperature change and does not require any special or destructive sample preparation. In the resulting images it is possible to distinguish regions of 180 deg domains. This powerful technique can be used remotely during poling to determine the poling state of the crystal to avoid over-poling that can result in inferior properties and/or cracking of the crystals. Electro-thermal imaging produced the first direct observations of polarization rotation. Under bipolar field, the domains near the corners were the first to switch direction. As the field increased above the coercive field, domains at the center part of the crystals switched direction. (ii) X-ray diffraction in the transmission mode has long been used in structure determination of organic crystals and proteins; however, it is not used much to characterize inorganic systems. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were examined by this XRD technique for the first time, and a never-before-seen super-lattice was revealed with a doubling of the unit cell in all three directions, giving a cell volume eight times that of a traditional perovskite unit cell. The significance of the super-lattice peaks increased with poling, indicating a structural contribution to ordering. Lack of such observations by electron diffraction in the transmission electron microscope examinations suggests the presence of a bulk effect.

  7. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    powder x-ray diffraction (PXRD), thermogravimentric analysis (TGA), and Fourier transform infrared (FTIR). 15. SUBJECT TERMS Metal organic frame work...the inclusion by using a variety of analytical techniques, such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier...Characterizations Analysis of the MOF and the complexes with the MOF and the guest molecules was performed using an Agilent GC-MS (Model 6890N GC and Model 5973N

  8. A microcrystal selection technique in protein crystallization

    NASA Astrophysics Data System (ADS)

    Han, Qing; Lin, Sheng-Xiang

    1996-10-01

    The goal of protein crystallization is to obtain high quality single crystals for X-ray diffraction analysis. A new and easy technique was employed to control the number and quality of crystals by eliminating poor microcrystals after the spontaneous nucleation. The process was carried out with two samples: human 17β-hydroxysteroid dehydrogenase (17β-HSD) and hen egg white lysozyme. The present study suggests a useful method for the successful crystal growth of biomacromolecules.

  9. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  10. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lapidus; P Stephens; K Arora

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  11. Crystal growth of triphenylphosphine oxide 4-nitrophenol (TP4N) for nonlinear optical (NLO) applications

    NASA Astrophysics Data System (ADS)

    Pandian, Muthu Senthil; Karuppasamy, P.; Kamalesh, T.; Ramasamy, P.; Verma, Sunil

    2018-04-01

    The optically good quality organic single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) were successfully grown by slow evaporation solution technique (SEST) using methanol as solvent. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the TP4N crystal were obtained by UV-Vis NIR spectrum analysis. The photoluminescence studies were carried out to find out the luminesce properties of TP4N single crystal. The photoconductivity studies reveal that the TP4N crystal has negative photoconductive nature. The third order nonlinear susceptibility (χ(3)) of TP4N crystal was evaluated using the Z-scan technique at 640 nm.

  12. Growth, optical, ICP and thermal studies of nonlinear optical single crystal: Sodium acid phthalate (NaAP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.

    2017-07-01

    Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.

  13. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    NASA Astrophysics Data System (ADS)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  14. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  15. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2010-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy and neutron diffraction are well established and have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches and high-speed computing and visualization, now provide specialists and non-specialists alike with a steady flow of molecular images of unprecedented detail. The present chapter combines a general overview of diffraction methods with a step-by-step description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  16. Diffraction Techniques in Structural Biology.

    PubMed

    Egli, Martin

    2016-06-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    PubMed Central

    Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon

    2016-01-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503

  18. Synthesis, growth and characterization of 3-nitroacetanilide—A new organic nonlinear optical crystal by Bridgman technique

    NASA Astrophysics Data System (ADS)

    Lenin, M.; Ramasamy, P.

    2008-10-01

    Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.

  19. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    PubMed Central

    Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148

  20. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.

    PubMed

    Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U

    2015-01-25

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Diffraction of three-colour radiation on an acoustic wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, V M

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  2. Growth and characterization of Cadmium Thiosemicarbazide Bromide crystals for antibacterial and nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Thomas Joseph Prakash, J.; Martin Sam Gnanaraj, J.

    2015-01-01

    Semiorganic nonlinear optical crystals of Cadmium Thiosemicarbazide Bromide was grown by slow evaporation solution growth technique. The unit cell parameters were estimated by subjecting the crystals to single crystal X-ray diffraction. The grown crystals were subjected to Powder X-ray diffraction for analyzing the crystalline nature of the sample. FTIR studies reveal the functional groups and the optical characters were analyzed by UV-Vis spectral studies. Mechanical stability of the sample was assessed by Vicker's micro hardness test. The presence of surface dislocations was identified by chemical etching technique. Antibacterial study was carried out against ACDP declared harmful pathogens. SHG efficiency of CTSB crystal was tested using Nd: YAG laser and it was found to be ∼1.8 times that of potassium dihydrogen phosphate.

  3. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  4. X-ray diffraction, spectroscopic and mechanical studies on potential organic NLO materials of metaNitroaniline and N-3-Nitrophenyl Acetamide single crystals

    NASA Astrophysics Data System (ADS)

    Senthil, S.; Madhavan, J.

    2015-02-01

    In the present paper, attempts were made to grow good quality metaNitroaniline (mNA) and N-3-Nitrophenyl (3-NAA) single crystals. The lattice parameter values from the Powder X-ray diffraction pattern confirms that mNA belongs to orthorhombic crystal system with the unit cell parameter values of a = 6.501 Å, b = 19.330 Å and c = 5.082 Å with space group Pbc21. Similarly the powder XRD data indicates that 3-NAA crystal retained its monoclinic structure with lattice parameter values a = 9.762 Å, b =13.287 Å, c =13.226 Å, and β = 102.99°. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier Transform infrared spectroscopy technique. The SHG efficiency of mNA and 3NAA was determined by Kurtz and Perry powder technique. The Optical absorption study confirms the suitability of the crystals for device applications. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester.

  5. Synthesis, crystal growth and characterization of a phase matchable nonlinear optical single crystal: p-chloro dibenzylideneacetone

    NASA Astrophysics Data System (ADS)

    Ravindra, H. J.; John Kiran, A.; Nooji, Satheesha Rai; Dharmaprakash, S. M.; Chandrasekharan, K.; Kalluraya, Balakrishna; Rotermund, Fabian

    2008-05-01

    Good quality single crystals of p-chloro dibenzylideneacetone (CDBA) of size 13 mm×8 mm×2 mm were grown by slow evaporation solution growth technique. The grown crystals were confirmed by elemental analysis, Fourier transform infrared (FTIR) analysis and single crystal X-ray diffraction techniques. From the thermo gravimetric/differential thermal (TG/DT) analysis, the CDBA was found to be thermally stable up to 250 °C. The mechanical stability of the crystal is comparable with that of the other reported chalcones. The lower optical cut-off wavelength for this crystal was observed at 440 nm. The laser damage threshold of the crystal was 0.6 GW/cm 2 at 532 nm. The second harmonic generation conversion efficiency of the powder sample of CDBA was found to be 4.5 times greater than that of urea. We also demonstrate the existence of the phase matching property in this crystal using Kurtz powder technique.

  6. Growth, structural, thermal, linear and nonlinear optical and laser damage threshold studies of picolinium tartrate monohydrate single crystals.

    PubMed

    Peramaiyan, G; Pandi, P; Sornamurthy, B M; Bhagavannarayana, G; Mohan Kumar, R

    2012-09-01

    Picolinium tartrate monohydrate (PTM), a novel organic nonlinear optical material was synthesized and bulk crystals were grown from aqueous solution by slow cooling technique. The cell parameters of the grown crystal were found by single and powder X-ray diffraction analyses. The crystalline perfection of the grown crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The presence of functional groups in the grown crystal was identified by FTIR and FT-Raman spectral analyses. UV-Vis spectral studies reveal PTM crystals are transparent in the wavelength region of 295-1100 nm. The thermal characteristics of PTM were analyzed by TGA/DTA studies. The dielectric and mechanical behaviours of PTM crystals were investigated. Dislocation density was estimated to be 2.89 × 10(3) cm(-2) on the flat-surface of PTM crystals from the etching studies. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser. Its second harmonic generation relative efficiency was measured by Kurtz and Perry powder technique and was observed to be comparable with KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Growth, nonlinear optical, thermal, dielectric and laser damage threshold studies of semiorganic crystal: monohydrate piperazine hydrogen phosphate.

    PubMed

    Krishnan, P; Gayathri, K; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G

    2013-02-01

    Monohydrate piperazine hydrogen phosphate (MPHP), a semi organic nonlinear optical material has been synthesized and single crystals were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction study on grown crystal reveals that they belong to monoclinic crystal system with space group P2(1)/c; (a=6.39Å; b=12.22Å; c=11.16Å; β=97.14°; V=864Å(3)). The structural perfection of the grown crystal was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. FTIR spectrum confirms the presence of the functional groups in synthesized material. UV-Vis spectrum indicates that the crystal is transparent in the entire visible region with a lower cut off wavelength of 387 nm. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Thermal analysis carried out on the MPHP crystal shows that the crystal is stable up to 135°C. Relative powder second harmonic generation efficiency tested by Kurtz-Perry powder technique, which was about 0.638 times that of Potassium dihydrogen phosphate. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrooptic crystal growth and properties

    NASA Astrophysics Data System (ADS)

    1994-02-01

    A new member in the tungsten-bronze family of ferroelectric lead potassium niobate (PKN), with general formula Pb(1-x)K(2x)Nb2O6, has been grown as bulk single crystal. Growth of PKN with charge composition x = 0.23 has been achieved using the Czochralski technique of crystal pulling. Large diameter boules were grown in platinum crucibles at temperatures between 1280 and 1300 C. Crystallographic studies were conducted using x ray diffraction techniques. The samples were characterized for ferroelectric properties between 25 and 600 C and for optical absorption. This paper presents the crystal synthesis and the results of ferroelectric and optical characterization. Bulk single crystals of potassium tantalate niobate, KTa(1-x)Nb(x)O3, ferroelectric with different values of Ta/Nb ratios have been grown by temperature gradient transport technique (TGTT). A second attached paper presents the results of the crystal growth experiments, ferroelectric characterization techniques, and properties of potassium tantalate niobate crystals.

  9. Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals.

    PubMed

    Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P

    2014-04-24

    Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  11. Nucleation kinetics of urea succinic acid –ferroelectric single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhivya, R.; Voohrees College, Vellore-632014, Tamilnadu; Vizhi, R. Ezhil, E-mail: rezhilvizhi@vit.ac.in, E-mail: revizhi@gmail.com

    2015-06-24

    Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.

  12. Investigations on synthesis, growth and physicochemical properties of semi-organic NLO crystal bis(thiourea) ammonium nitrate for nonlinear frequency conversion

    NASA Astrophysics Data System (ADS)

    Anbarasi, A.; Ravi Kumar, S. M.; Sundar, G. J. Shanmuga; Mosses, M. Allen; Raj, M. Packiya; Prabhakaran, M.; Ravisankar, R.; Gunaseelan, R.

    2017-10-01

    Bis(thiourea) ammonium nitrate (BTAN), a new nonlinear optical crystal was grown successfully by slow evaporation technique using water as solvent at room temperature. The grown crystals were optically good quality with dimensions upto 10 × 6 × 3 mm3. Single crystal X-Ray diffraction analysis reveals that the crystal lattice is orthorhombic. From Powder X-ray diffraction analysis the diffraction planes have been indexed. The presence of the various functional groups of BTAN was identified through FTIR spectroscopic analysis. UV cut-off wavelength was observed from optical absorbance spectrum and it was found to be 240 nm. Second harmonic efficiency was determined using Kurtz powder method in comparison with KDP to confirm the nonlinearity of the material. Thermal analysis confirmed that grown crystal is thermally stable upto 184 °C. Microhardness studies show that hardness number (Hv) increases with load. Conductivity measurements such as dielectric, ac and photoconductivity were studied. Growth mechanism and surface features of the as grown single crystal was analysed by chemical etching analysis.

  13. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  14. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  15. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  16. Synthesis, growth, structural and optical studies of a novel organic Piperazine (bis) p-toluenesulfonate single crystal.

    PubMed

    Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R

    2015-03-15

    A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Magnetic and thermal behavior of a family of compositionally related zero-dimensional fluorides

    NASA Astrophysics Data System (ADS)

    Felder, Justin B.; Smith, Mark D.; Sefat, Athena; zur Loye, Hans-Conrad

    2018-07-01

    The mild hydrothermal crystal growth technique has been leveraged to synthesize four new zero-dimensional transition metal fluorides. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction. The thermal, optical, and magnetic properties were investigated and the presence of thermal polymorphism and antiferromagnetism were observed. In addition, the potential application of these materials as precursors for advanced functional materials was explored.

  18. Synthesis, growth, structural, spectroscopic and optical studies of a new semiorganic nonlinear optical crystal: L-valine hydrochloride.

    PubMed

    Kirubavathi, K; Selvaraju, K; Valluvan, R; Vijayan, N; Kumararaman, S

    2008-04-01

    Single crystals of a new semiorganic nonlinear optical (NLO) material, L-valine hydrochloride (LVHCl), having dimensions up to 20 mm x 6 mm x 4 mm have been grown by slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to the monoclinic system. The functional groups presented in the crystal were confirmed by Fourier transform infrared (FTIR) technique. Optical transmission spectrum shows very low absorption in the entire visible region. Differential thermal and thermogravimetric analyses confirmed that the crystal is stable up to 211 degrees C. The powder second harmonic generation (SHG) efficiency of LVHCl is 1.7 times efficient as potassium dihydrogen phosphate (KDP).

  19. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  20. Growth and characterization of an organic single crystal: 2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Kalainathan, S.; Ruban Kumar, A.

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. 1H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker’s hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal.

  1. Growth and characterization of an organic single crystal: 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide.

    PubMed

    Senthil, K; Kalainathan, S; Ruban Kumar, A

    2014-05-05

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. (1)H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker's hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Diagnosing the Internal Architecture of Zeolite Ferrierite

    PubMed Central

    Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong

    2017-01-01

    Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081

  3. Hydrogen positions in single nanocrystals revealed by electron diffraction

    NASA Astrophysics Data System (ADS)

    Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S.

    2017-01-01

    The localization of hydrogen atoms is an essential part of crystal structure analysis, but it is difficult because of their small scattering power. We report the direct localization of hydrogen atoms in nanocrystalline materials, achieved using the recently developed approach of dynamical refinement of precession electron diffraction tomography data. We used this method to locate hydrogen atoms in both an organic (paracetamol) and an inorganic (framework cobalt aluminophosphate) material. The results demonstrate that the technique can reliably reveal fine structural details, including the positions of hydrogen atoms in single crystals with micro- to nanosized dimensions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.

    L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less

  5. Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-Ornithine monohydrochloride.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2009-03-01

    Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.

  6. The effect of Fe 3+ doping in Potassium Hydrogen Phthalate single crystals on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan

    2011-02-01

    This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.

  7. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    NASA Astrophysics Data System (ADS)

    Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.

    2014-08-01

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  8. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. S. Latha; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. Jerome

    2016-11-01

    A third order nonlinear optical (NLO)single crystals of sodium succinate hexahydrate (SSH) (β phase) has been grown by a slow evaporation growth technique using aqueous solution at ambient temperature. The lattice parameters and morphology of SSH were determined by single crystal X-ray diffraction analysis. SSH crystallizes in centrosymmetric monoclinic system with space group P 21 / c and the crystalline purity was analyzed by powder X-ray diffraction analysis. The UV-vis-NIR spectrum reveals that the crystal is transparent in the entire visible region. The recorded FT-IR spectrum verified the presence of various functional groups in the material. NMR analysis of the grown crystal confirms the structural elucidation and detects the major and minor functional groups present in the title compound. ICP-OES analysis proved the presence of sodium in SSH. TG-DTA/DSCanalysis was used to investigate the thermal stability of the material. The dielectric permittivity and dielectric loss of SSH were carried out as a function of frequency for different temperatures and the results were discussed. The mechanical stability was evaluated from Vicker's microhardness test. The third order nonlinear optical properties of SSH has been investigated employing Z-scan technique with He-Ne laser operating at 632.8 nm wavelength.

  9. BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements

    NASA Astrophysics Data System (ADS)

    Kantor, I.; Prakapenka, V.; Kantor, A.; Dera, P.; Kurnosov, A.; Sinogeikin, S.; Dubrovinskaia, N.; Dubrovinsky, L.

    2012-12-01

    We present a new design of a universal diamond anvil cell, suitable for different kinds of experimental studies under high pressures. Main features of the cell are an ultimate 90-degrees symmetrical axial opening and high stability, making the presented cell design suitable for a whole range of techniques from optical absorption to single-crystal X-ray diffraction studies, also in combination with external resistive or double-side laser heating. Three examples of the cell applications are provided: a Brillouin scattering of neon, single-crystal X-ray diffraction of α-Cr2O3, and resistivity measurements on the (Mg0.60Fe0.40)(Si0.63Al0.37)O3 silicate perovskite.

  10. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  11. Translation effects on vertical Bridgman growth and optical, mechanical and surface analysis of 2-phenylphenol single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S., E-mail: sadha.phy1@gmail.com; Perumal, Rajesh Narayana

    2-phenylphenol optical crystals were grown in cone ampoules using vertical Bridgman technique. Single crystal of 2-phenylphenol with 150 mm length has been grown. The inclination on the conical part of the ampoule reduces the growth defects in the 2-phenylphenol single crystal. The lattice parameters and structure studied using single crystal X-ray diffraction method. 2-phenylphenol single crystal belongs to orthorhombic space group Fdd2. The micro translation rate affects crystal growth of 2-phenylphenol crystal was studied. The translation rate dependent defects present in the crystal were investigated by transmittance, indentation and etching characterizations. The dislocation induced indentation crack lengths variations were studied. Etchmore » pits and striations observed for the selective etchants furnish significant information on growth aspects and degree of defect present in the crystal.« less

  12. Thermal, mechanical, optical and conductivity studies of a novel NLO active L-phenylalanine L-phenylalaninium dihydrogenphosphate single crystal

    NASA Astrophysics Data System (ADS)

    Sujatha, T.; Cyrac Peter, A.; Vimalan, M.; Merline Shyla, J.; Madhavan, J.

    2010-08-01

    An efficient, novel, semi-organic, nonlinear optical (NLO) material L-phenylalanine L-phenylalaninium dihydrogenphosphate (LPADHP), single crystal of dimension 11×5×2 mm 3, has been grown by the slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to monoclinic system with the space group P2 1. The functional groups present in the crystal were confirmed by the Fourier transform infrared technique. Optical absorption spectrum shows that the material possesses very low absorption in the entire visible region. Thermal analysis confirmed that the crystal is thermally stable up to 161 °C. The frequency dependent dielectric properties of the grown crystal were studied for various temperatures. The second harmonic generation (SHG) efficiency of the grown crystal is 1.2 times greater than that of the potassium dihydrogenphosphate (KDP) single crystal. The laser induced surface damage threshold for the grown crystal was found to be 6.3 GW cm -2 with Nd:YAG laser assembly AC and DC conductivity and photoconductivity experiments are also carried out and the results are discussed.

  13. Hydrogen bond-Driven Self-Assembly between Amidinium Cations and Carboxylate Anions: A Combined Molecular Dynamics, NMR Spectroscopy, and Single Crystal X-ray Diffraction Study.

    PubMed

    Thomas, Michael; Anglim Lagones, Thomas; Judd, Martyna; Morshedi, Mahbod; O'Mara, Megan L; White, Nicholas G

    2017-07-04

    A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Philominathan, P.

    2017-11-01

    An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.

  15. A novel organic nonlinear optical crystal: Creatininium succinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom

    2015-06-24

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance inmore » the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.« less

  16. Electron irradiation induced effects on the physico-chemical properties of L-Arginine Maleate Dihydrate (LAMD) single crystals

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.

    2018-07-01

    Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.

  17. Conformational dimorphism of isochroman-1-ones in the solid state

    NASA Astrophysics Data System (ADS)

    Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert

    2014-12-01

    Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.

  18. Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

    NASA Astrophysics Data System (ADS)

    Rajkumar, R.; Praveen Kumar, P.

    2018-05-01

    Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

  19. Synthesis, growth, structural, optical, spectral, thermal and mechanical studies of 4-methoxy 4-nitrostilbene (MONS): a new organic nonlinear optical single crystal.

    PubMed

    Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S

    2012-11-01

    4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Crystal structure, thermal and optical properties of Benzimidazole benzimidazolium picrate crystal

    NASA Astrophysics Data System (ADS)

    Jagadesan, A.; Peramaiyan, G.; Srinivasan, T.; Kumar, R. Mohan; Arjunan, S.

    2016-02-01

    A new organic framework of benzimidazole with picric acid has been synthesized. A single crystal with a size of 38×10×4 mm3 was grown by a slow evaporation solution growth technique. X-ray diffraction study revealed that the BZP crystal belongs to triclinic system with space group P-1. High resolution X-ray diffraction study shows the absence of grain boundaries without any defects. The thermal stability and specific heat capacity of BZP were investigated by TG/DT and TG/DSC analyses. From the UV-vis-NIR spectral study, optical transmission window and band gap of BZP were found out. The nonlinear refractive index (n2) and third order susceptibility Re(χ(3)) values of BZP crystal are estimated to be 1.73×10-7 cm2/W and 1.26×10-5 esu, respectively using a Z-scan technique.

  1. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  2. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE PAGES

    Popp, David; Loh, N. Duane; Zorgati, Habiba; ...

    2017-06-02

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  3. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popp, David; Loh, N. Duane; Zorgati, Habiba

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  4. Floating zone growth of α-Na 0.90MnO 2 single crystals

    DOE PAGES

    Dally, Rebecca; Clement, Raphaele J.; Chisnell, Robin; ...

    2016-12-03

    Here, single crystal growth of α-Na xMnO 2 (x=0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmospheres. Chemical and structural characterizations of the resulting α-Na 0.90MnO 2 crystals are performed using ICP-AES NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, α-Na xMnO 2 is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed.

  5. Structural, spectral and birefringence studies of semiorganic nonlinear optical single crystal: Calcium5-sulfosalicylate

    NASA Astrophysics Data System (ADS)

    Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.

    2017-11-01

    Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.

  6. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals.more » Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.« less

  7. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  8. Growth, piezoelectric study and particle size dependent SHG of an 80 mm long SR grown imidazolium l-tartrate single crystals

    NASA Astrophysics Data System (ADS)

    Jauhar, RO MU; Era, Paavai; Murugakoothan, P.

    2018-05-01

    Single crystal of imidazolium l-tartrate (IMLT), an organic nonlinear optical material, was successfully grown by slow evaporation solution growth technique (SEST) and Sankaranarayanan - Ramasamy (SR) method. The crystal structure and its lattice parameters were confirmed by single crystal X-ray diffraction study. The IMLT crystal belongs to monoclinic crystal system having a = 7.579(6) Å, b = 6.911(4) Å, c = 8.9281(5) Å, β = 101.45(8)°, volume, V = 458.33 Å3. The d33 coefficient found from the the piezoelectric study is 23 pC/N. The relative second harmonic generation efficiency of IMLT was found to be 3.16 times that of reference KDP material.

  9. Growth and characterization of benzyl 4-hydroxybenzoate single crystal by vertical Bridgman technique for optical applications

    NASA Astrophysics Data System (ADS)

    Solanki, S. Siva Bala; Rajesh, N. P.; Suthan, T.

    2018-07-01

    The benzyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique. The grown crystal was confirmed by single crystal X-ray diffraction studies. The presence of functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) spectral studies. The thermal behaviour of the grown crystal was analyzed by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies. Optical behaviour of the grown benzyl 4-hydroxybenzoate crystal was studied by UV-Vis-NIR spectral analysis. Fluorescence spectrum shows near violet light emission. The second harmonic generation behaviour of benzyl 4-hydroxybenzoate was analyzed. The laser damage threshold value of benzyl 4-hydroxybenzoate was measured as 2.16 GW/cm2. The dielectric measurements of benzyl 4-hydroxybenzoate crystal were carried out with different frequencies 1 kHz to 1 MHz versus different temperatures ranging from 313 to 353 K. Photoconductivity study shows that the grown benzyl 4-hydroxybenzoate crystal belongs to negative photoconductivity property. The mechanical strength of the crystal was calculated by Vickers microhardness study.

  10. Growth and physicochemical properties of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) single crystals

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, K.; Vinothkumar, P.; Irshad Ahamed, J.; Murali Manohar, P.; Priya, M.; Liu, Jinghe

    2018-04-01

    Single crystals of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) (TUDLC) have been grown from methanol solution by using the slow evaporation of solvent growth technique. The lattice structure and crystalline perfection have been determined by carrying out single crystal X-ray diffraction and high resolution X-ray diffraction measurements. The grown crystal was characterized thermally and mechanically by carrying out thermo-gravimetric and micro hardness measurements. The linear and nonlinear optical characterizations were made by carrying out optical transmittance, surface laser damage threshold, particle size-dependent second harmonic generation (SHG) efficiency and photo conductivity measurements. The grown crystal was electrically characterized by carrying out frequency-dependent dielectric measurements. Chemical etching study was also carried out and the dislocation density was estimated. Results obtained in the present study indicate that the grown TUDLC crystal is optically transparent with lower cut-off wavelength 304 nm, mechanically soft, thermally stable up to 101 °C and NLO active with SHG efficiency 2.13 (in KDP unit). The grown crystal is found to have considerably large size, good crystalline perfection, large specific heat capacity, higher surface laser damage threshold and negative photoconductivity.

  11. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.

  12. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  13. Preparation and characterization of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) by partial melting

    NASA Astrophysics Data System (ADS)

    Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.

    2018-07-01

    In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.

  14. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    PubMed

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.

    PubMed

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-15

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts

    NASA Astrophysics Data System (ADS)

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-01

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.

  17. ZnTeO{sub 3} crystal growth by a modified Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawash, Jalal M., E-mail: nawashj@uww.edu; Lynn, Kelvin G.

    2014-12-15

    Highlights: • ZnTeO{sub 3} single crystals were grown for the first time by a modified Bridgman method. • The growth is still possible in a system that lacks congruent melting. • A growth is best when melt is exposed to a steeper axial thermal gradient. • Optical and electrical properties were investigated for the grown crystals. - Abstract: Zinc Tellurite (ZnTeO{sub 3}) crystals were grown for the first time using a modified Bridgman method with a 2.5 kHz radio frequency (RF) furnace. Single crystal growth of ZnTeO{sub 3} was hindered by many complicating factors, such as the evaporation of TeO{submore » 2} above 700 °C and the formation of more than one phase during crystal growth. While there were several successful runs that produced ZnTeO{sub 3} single crystals, it was found that large (≥10 cm{sup 3}) single ZnTeO{sub 3} crystals resulted when the crucible was exposed to a steeper vertical thermal gradient and when the temperature of the melt was raised to at least 860 °C. The results of powder X-ray diffraction (XRD) patterns were in accordance with the X-ray powder diffraction file (PDF) for ZnTeO{sub 3}. Some optical, electrical and structural properties of ZnTeO{sub 3} single crystals were reported in this paper.« less

  18. Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.

  19. Growth and physicochemical properties of second-order nonlinear optical 2-amino-5-chloropyridinium trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renugadevi, R.; Kesavasamy, R.

    2015-09-01

    The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.

  20. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Low-energy transmission electron diffraction and imaging of large-area graphene

    PubMed Central

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-01-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233

  2. Low-energy transmission electron diffraction and imaging of large-area graphene.

    PubMed

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-09-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.

  3. Synthesis, crystal growth, structural, thermal and optical properties of naphthalene picrate an organic NLO material.

    PubMed

    Chandramohan, A; Bharathikannan, R; Kandavelu, V; Chandrasekaran, J; Kandhaswamy, M A

    2008-12-01

    Crystalline substance of naphthalene picrate (NP) was synthesized and single crystals were grown using slow evaporation solution growth technique. The solubility of the naphthalene picrate complex was estimated using different solvents such as chloroform and benzene. The material was characterized by elemental analysis, powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and fourier transform-infrared (FT-IR) techniques. The electronic absorption was studied through UV-vis spectrophotometer. Thermal behavior and stability of the crystal were studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The second harmonic generation (SHG) of the material was confirmed using Nd:YAG laser.

  4. Investigations on structural and photoluminescence mechanism of cerium doped L-Histidine hydrochloride mono hydrate single crystals for optical applications

    NASA Astrophysics Data System (ADS)

    Rajyalakshmi, S.; Ramachandra Rao, K.; Brahmaji, B.; Samatha, K.; Visweswara Rao, T. K.; Ramakrishna, Y.

    2017-02-01

    Semi organic nonlinear optical material of Ce3+ ion added L-Histidine hydrochloride monohydrate (LHHC) crystals have been grown successfully by the slow evaporation solution technique (SEST) as well as Sankaranarayanan-Ramasamy (SR) technique. Unit cell data have been measured from the single crystal X-ray diffraction analysis and High resolution X-ray diffraction analysis (HRXRD) study shows relatively a good crystalline perfection. Fourier transform infra-red spectroscopy (FTIR) spectra indicates that the Ce3+ ion is coordinated with carboxylate group of grown crystal. The lower UV-cutoff wavelength of the incorporation of Ce3+ ion in LHHC is 240 nm. The incorporation of Ce3+ ion in the crystal lattice was observed by energy dispersive X-ray analysis (EDAX). The nonlinear optical (NLO) efficiency of SR-grown crystal is 3.7 times greater with respect to potassium dihydrogen phosphate (KDP). We report first-time the photoluminescence (PL) mechanism of emission spectrum, which shows broad band located at 350 nm corresponding to 5d → 4f transition of Ce3+ ion and excited by 250 nm wavelength. The excitation spectrum shows a band at 258 nm due to the 4f → 5d transition of Ce3+ ion. The nature of decay curve of the grown crystal is bi-exponential with a long life time of τ2 is 8.8270 μs.

  5. Practical macromolecular cryocrystallography

    PubMed Central

    Pflugrath, J. W.

    2015-01-01

    Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to help prevent the stresses that damage crystals when flash-cooling are described. A method of using isopentane to assess whether cryogenic temperatures have been preserved when dismounting screened crystals is also presented. PMID:26057787

  6. Bulk growth of <001> organic nonlinear optical (NLO) L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals by SR method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Sivasubramani, V.; Ramasamy, P.

    2015-06-24

    A transparent uniaxial L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP) single crystal having dimension of 20 mm diameter and 45 mm length was grown by Sankaranarayanan-Ramasamy (SR) method with a growth rate of 1 mm per day. Using an identical solution the conventional crystal grown to a dimension of 8×5×5 mm{sup 3} was obtained over a period of 30 days. The crystal structure has been confirmed by single crystal X-ray diffraction measurement. The crystalline perfection of LAPP crystals grown by slow evaporation solution technique (SEST) and SR method were characterized using Vickers microhardness, UV-Vis NIR, chemical etching, dark and photo current measurements. The above study indicatesmore » that the crystal quality of the Sankaranarayanan-Ramasamy (SR) method grown LAPP is good compared to the conventional method grown crystal.« less

  7. Investigation on the growth and characterization of 4-aminobenzophenone single crystal by the vertical dynamic gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.

    2014-03-01

    Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.

  8. Compressive auto-indexing in femtosecond nanocrystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maia, Filipe; Yang, Chao; Marchesini, Stefano

    2010-09-20

    Ultrafast nanocrystallography has the potential to revolutionize biology by enabling structural elucidation of proteins for which it is possible to grow crystals with 10 or fewer unit cells. The success of nanocrystallography depends on robust orientation-determination procedures that allow us to average diffraction data from multiple nanocrystals to produce a 3D diffraction data volume with a high signal-to-noise ratio. Such a 3D diffraction volume can then be phased using standard crystallographic techniques."Indexing" algorithms used in crystallography enable orientation determination of a diffraction data from a single crystal when a relatively large number of reflections are recorded. Here we show thatmore » it is possible to obtain the exact lattice geometry from a smaller number of measurements than standard approaches using a basis pursuit solver.« less

  9. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  10. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  11. Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments

    PubMed Central

    Pagan, Darren C.; Miller, Matthew P.

    2014-01-01

    A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242

  12. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Patel, Abhishek; Pathak, V. M.; Solanki, G. K.; Patel, K. D.

    2018-05-01

    Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40 mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.

  13. Crystalline perfection, optical and piezoelectric properties of a novel semi-organic single crystal: Zinc guanidinium sulphate

    NASA Astrophysics Data System (ADS)

    Nandhini, S.; Murugakoothan, P.

    2018-04-01

    Zinc Guanidinium Sulfate (ZGuS), a semi-organic single crystal, was synthesized using slow evaporation solution growth technique. It is a non-centrosymmetric crystal with space group I4 ¯2d . The crystalline nature of the crystal and the strain were determined using powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was revealed using HR-XRD analysis. The UV-vis-NIR transmittance spectrum depicts 60% transparency with lower-cut off wavelength of 210 nm. The emission spectrum of the crystal was determined using photoluminescence study. Piezoelectricity was confirmed by determining the piezoelectric charge coefficient (d33). These findings shows that the title compound can be employed for photonic and transducer applications.

  14. Synthesis, crystal structure and antitumor activities of water soluble protonated salt of 20(S)-camptothecin

    NASA Astrophysics Data System (ADS)

    Lu, Wen; Wang, Yong; Wang, Luna; Zhao, Fengyi; Yang, Shilong; Xi, Chengjie; Yang, Yu; Xu, Li; Chi, Xingwei

    2018-03-01

    A water soluble camptothecin protonated salt has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR and 1H NMR. The CPT was protonated as (CPT+H+) cations, the cationic protonation occurred on the N position at pyridine group, which fromed a cation-anion compound with perchlorate ion that determined by X-Ray diffraction. Its activities against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver) and HUVEC (umbilical vein, normal cell) were investigated. The toxicity of the protonated salt was slightly lower than camptothecin. IC50 values of 7.01 μM against HepG-2 cell, 8.61 μM against A549 cell, 17.82 μM against McF-7 cell, all of them are lower than the IC50 values of CPT against these cells except Hela cell.

  15. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Laser scattering induced holograms in lithium niobate. [observation of diffraction cones

    NASA Technical Reports Server (NTRS)

    Magnusson, R.; Gaylord, T. K.

    1974-01-01

    A 3.0-mm thick poled single crystal of lithium niobate doped with 0.1 mole% iron was exposed to a single beam and then to two intersecting beams of an argon ion laser operating at 515-nm wavelength. Laser scattering induced holograms were thus written and analyzed. The presence of diffraction cones was observed and is shown to result from the internally recorded interference pattern resulting from the interference of the original incident laser beam with light scattered from material inhomogeneities. This phenomenon is analyzed using Ewald sphere construction techniques which reveal the geometrical relationships existing for the diffraction cones.

  17. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  18. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  19. Structural, thermal and optical characterization of an organic NLO material--benzaldehyde thiosemicarbazone monohydrate single crystals.

    PubMed

    Santhakumari, R; Ramamurthi, K

    2011-02-01

    Single crystals of the organic NLO material, benzaldehyde thiosemicarbazone (BTSC) monohydrate, were grown by slow evaporation method. Solubility of BTSC monohydrate was determined in ethanol at different temperatures. The grown crystals were characterized by single crystal X-ray diffraction analysis to determine the cell parameters and by FT-IR technique to study the presence of the functional groups. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. UV-vis-NIR spectrum shows excellent transmission in the region of 200-1100 nm. Theoretical calculations were carried out to determine the linear optical constants such as extinction coefficient and refractive index. Further the optical nonlinearities of BTSC have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Mechanical properties of the grown crystal were studied using Vickers microhardness tester. Second harmonic generation efficiency of the powdered BTSC monohydrate was tested using Nd:YAG laser and it is found to be ∼5.3 times that of potassium dihydrogen orthophosphate. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Growth and characterization of an efficient new NLO single crystal L-phenylalanine D-methionine for frequency conversion and optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, P.; Jayaprakash, P.; Nageshwari, M.; Rathika Thaya Kumari, C.; Sudha, S.; Prakash, M.; Vinitha, G.; Lydia Caroline, M.

    2017-11-01

    Optically active single crystals of L-phenylalanine D-methionine (LPDM) were grown by slow evaporation technique by co-crystallization of amino acids L-phenylalanine and D-methionine in water. The unit cell dimensions have been identified from single crystal X-ray diffraction technique. The existences of various hydrocarbyls were examined by FTIR and FT-Raman spectroscopy. The carbon and hydrogen environment of the grown crystals were analyzed by FT NMR spectrum. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 259 nm and there by optical band gap energy Eg is calculated to be 5.35 eV. The Urbach energy, extinction coefficient, reflectance were calculated from UV-absorption data. Further, the thermal stability and accurate melting point has been investigated by TG/DSC techniques. The Kurtz powder SHG was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. The dielectric behavior of the specimen has been determined for various temperatures (313 K, 333 K, 353 K, 373 K) at different frequencies. Fluorescence study and the time resolved decay calculation was also performed for the LPDM crystal. Optical nonlinear susceptibility was measured in LPDM and the real and imaginary part of χ3 was evaluated by Z-scan technique using open and closed apertures.

  1. Growth and spectroscopic, thermodynamic and nonlinear optical studies of L-threonine phthalate crystal

    NASA Astrophysics Data System (ADS)

    Theras, J. Elberin Mary; Kalaivani, D.; Jayaraman, D.; Joseph, V.

    2015-10-01

    L-threonine phthalate (LTP) single crystal has been grown using a solution growth technique at room temperature. Single crystal X-ray diffraction analysis reveals that LTP crystallizes in monoclinic crystal system with space group C2/c. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut-off wavelength 309 nm. The optical band gap is found to be 4.05 eV. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The functional groups present in the material were also confirmed by FT-RAMAN spectroscopy. Surface morphology and the presence of various elements were studied by SEM-EDAX analysis. The thermal stability of LTP single crystal has been analyzed by TGA/DTA studies. The thermodynamic parameters such as activation energy, entropy, enthalpy and Gibbs free energy were determined for the grown material using TG data and Coats-Redfern relation. Since the grown crystal is centrosymmetric, Z-Scan studies were carried out for analyzing the third order nonlinear optical property. The nonlinear absorption coefficient, nonlinear refractive index and susceptibility have been measured using Z-Scan technique.

  2. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    NASA Astrophysics Data System (ADS)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  3. Growth, structural, spectral, optical, and thermal studies on amino acid based new NLO single crystal: L-phenylalanine-4-nitrophenol.

    PubMed

    Prakash, M; Lydia Caroline, M; Geetha, D

    2013-05-01

    A new organic nonlinear optical single crystal, L-phenylalanine-4-nitrophenol (LPAPN) belonging to the amino acid group has been successfully grown by slow evaporation technique. The lattice parameters of the grown crystal have been determined by X-ray diffraction studies. FT-IR spectrum was recorded to identify the presence of functional group and molecular structure was confirmed by NMR spectrum. Thermal strength of the grown crystal has been studied using TG-DTA analyses. The grown crystals were found to be transparent in the entire visible region. The existence of second harmonic generation signals was observed using Nd:YAG laser with fundamental wavelength of 1064 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal

    NASA Astrophysics Data System (ADS)

    Priyadharshini, A.; Kalainathan, S.

    2018-04-01

    2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.

  5. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  6. Synthesis, growth and characterization of L-Phenylalaninium methanesulfonate nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, K.; Ravichandran, A. T.; Anitha, K.; Manivel, A.

    2018-03-01

    The titled compound, L-Phenylalaninium methanesulfonate (LPA-MS) was synthesized and grown into single crystals by slow solvent evaporation solution growth technique in aqueous solution containing equimolar concentrations of L-phenylalanine and methanesulfonic acid at room temperature. The grown crystals were subjected to single crystal X-ray diffraction studies. It crystallizes in the monoclinic crystal structure with P21 space group and the unit cell parameters are a = 5.312 (10) Å, b = 8.883 (2) Å and c = 25.830 (7) Å. The functional groups of the LPA-MS crystal were confirmed with FT-IR and FT-Raman analysis. The carbon-hydrogen skeleton was confirmed with 1H NMR and 13C NMR analysis. TG-DTG and DSC studies were carried out to determine the thermal stability of the crystals. The optical transparency ranges were studied through UV-vis-spectroscopy and the crystal was found to be transparent in the visible region. The second Harmonic generation (SHG) efficiency of the grown LPA-MS crystal was measured by the Kurtz-Perry powder technique. The dipolar nature of the L-phenylalaninium methanesulfonate and the presence of the intermolecular hydrogen bonding between the molecules are the vital factors responsible for the existence of SHG activity in the crystal.

  7. Synthesis, structural, thermal and optical studies of 1-ethyl-2,6-dimethyl-4-hydroxy pyridinium halides.

    PubMed

    Dhanuskodi, S; Manivannan, S; Kirschbaum, K

    2006-05-15

    1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.

  8. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalasemore » (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.« less

  9. Growth and characterization of metal halide perovskite crystals: Benzyltributyl ammonium tetrachloro manganate(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Dhandapani, M.; Sugandhi, K.; Nithya, S.; Muthuraja, P.; Balachandar, S.; Aranganayagam, K. R.

    2018-05-01

    The perovskite type organic-inorganic hybrid benzyltributyl ammoniumtetrachloro manganate (II) monohydrates (BTBA-Mn) are synthesized and the single crystals are grown by slow evaporation solution growth technique. The structure of the grown crystals are confirmed by using X-ray diffraction (XRD), unit cell parameter analysis, Fourier transform Infrared (FTIR), elemental analysis and 13C-NMR spectral studies. Thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning colorimetric (DSC) analysis were carried out to understand thermal stability and occurrence of phase transition.

  10. Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals

    NASA Astrophysics Data System (ADS)

    Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng

    2015-05-01

    An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.

  11. Mono- and multimeric ferrocene congeners of quinoline-based polyamines as potential antiparasitics

    USDA-ARS?s Scientific Manuscript database

    A series of mono- and multimeric polyamine-containing ferrocenyl complexes bearing a quinoline motif were prepared. The complexes were characterised by standard techniques. The molecular structure of the monomeric salicylaldimine derivative was elucidated using single crystal X-ray diffraction and w...

  12. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang

    The fundamental mechanical properties of a dense metal–organic framework material, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02−1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge–strut structural motif. - Graphical abstract: The structure of framework, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}], and its indicatrix of thermal expansion. - Highlights: • The elastic modulus, hardness, and yieldmore » stress properties of a rare earth metal–organic framework material were studied via nanoindentation technique. • Variable-temperature powder X-ray diffraction experiments reveal that this framework shows significant negative thermal expansion along its b axis. • Based on variable-temperature single-crystal X-ray diffraction experiments, the mechanism of negative thermal expansion can be explained by a hinge–strut structural motif.« less

  13. A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhenming; Guo Zhenqi; Li Jianguo

    2004-12-15

    A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less

  14. Development of technique for three-dimensional visualization of grain boundaries by white X-ray microbeam

    NASA Astrophysics Data System (ADS)

    Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.

    2014-04-01

    A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.

  15. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  16. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  17. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Jordan M.; Walton, Ian M.; Bateman, Gage

    2017-07-25

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy) 0.5(H 2O)]·2H 2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  18. One-step model of photoemission from single-crystal surfaces

    DOE PAGES

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; ...

    2017-02-28

    In our paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we also show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electronmore » sources for particle accelerator and ultrafast electron diffraction applications.« less

  19. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-01

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  20. Crystallization and X-ray diffraction analysis of a putative bacterial class I labdane-related diterpene synthase.

    PubMed

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; Stojanoff, Vivian; Rodríguez-Sanoja, Romina; Rudiño-Piñera, Enrique; Sánchez, Sergio

    2015-09-01

    Labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg(2+) (LrdC-Mg(2+)) and in complex with inorganic pyrophosphate (PPi) (LrdC-Mg(2+)-PPi). Crystals of native LrdC-Mg(2+) diffracted to 2.50 Å resolution and belonged to the trigonal space group P3221, with unit-cell parameters a = b = 107.1, c = 89.2 Å. Crystals of the LrdC-Mg(2+)-PPi complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3221. Crystals of the LrdC-Mg(2+)-PPi complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.

  1. Structural, thermal and optical properties of KTi(0.92)La(0.08)OPO4 and KTi(0.94)Nd(0.06)OPO4.

    PubMed

    Sadhasivam, S; Perumal, Rajesh Narayana; Ramasamy, P

    2015-10-05

    KTi0.92La0.08OPO4 (KTP:La) and KTi0.94Nd0.06OPO4 (KTP:Nd) single crystals are grown using high temperature top seeded flux growth technique. The strain derived from doping is calculated from Williamson-Hall relation. The packing structure and lattice parameter of the grown crystals are analyzed using single crystal X-ray diffraction. The bonding, distortion and change in inter-atomic distances by strain effects of doping are assessed by Raman spectroscopy. Thermal stabilities of grown crystals are evaluated by specific heat capacity measurement. Pronounced high specific heat capacity is recorded as 1.16 J/gK at 498 K for KTP:Nd. Second harmonic generation intensities are measured for KTP:Nd and KTP:La single crystal. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  3. High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms

    DOE PAGES

    Li, Fankang; Feng, Hao; Thaler, Alexander N.; ...

    2017-04-13

    The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. Our experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. Here, we conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup canmore » be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. Furthermore, the use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.« less

  4. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  5. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  6. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2015-01-01

    The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.

  7. Investigation and characterization of ZnO single crystal microtubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  8. Controlled dehydration improves the diffraction quality of two RNA crystals.

    PubMed

    Park, HaJeung; Tran, Tuan; Lee, Jun Hyuck; Park, Hyun; Disney, Matthew D

    2016-11-03

    Post-crystallization dehydration methods, applying either vapor diffusion or humidity control devices, have been widely used to improve the diffraction quality of protein crystals. Despite the fact that RNA crystals tend to diffract poorly, there is a dearth of reports on the application of dehydration methods to improve the diffraction quality of RNA crystals. We use dehydration techniques with a Free Mounting System (FMS, a humidity control device) to recover the poor diffraction quality of RNA crystals. These approaches were applied to RNA constructs that model various RNA-mediated repeat expansion disorders. The method we describe herein could serve as a general tool to improve diffraction quality of RNA crystals to facilitate structure determinations.

  9. New supramolecular cocrystal of 2-amino-5-chloropyridine with 3-methylbenzoic acids: Syntheses, structural characterization, Hirshfeld surfaces and quantum chemical investigations

    NASA Astrophysics Data System (ADS)

    Thanigaimani, Kaliyaperumal; Khalib, Nuridayanti Che; Temel, Ersin; Arshad, Suhana; Razak, Ibrahim Abdul

    2015-11-01

    2-amino-5-chloropyridine: 3-methylbenzoic acid [(2A5CP) (3MBA)] (I) cocrystal was synthesized and its single crystal was grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction technique. The cocrystal belongs to the monoclinic crystallographic system with space group P21/c, Z = 4, and a = 13.3155 (5) Å, b = 5.5980 (2) Å, c = 18.3787 (7) Å, β = 110.045 (2)°. The crystal structure is stabilized by Npyridine-H•••Odbnd C, Cdbnd O-H•••Npyridine and C-H⋯O type hydrogen bonding interactions. The presence of unionized -COOH functional group in the cocrystal was identified both by spectral methods and X-ray structural analysis. The experimental studies obtained by using the methods of single crystal X-ray analysis, powder X-ray diffraction (PXRD) analysis, FTIR, 1H NMR and 13C NMR spectroscopies confirmed the predicted cocrystal. The supramolecular assembly of the cocrystal was analyzed and discussed. The molecular geometry, vibrational frequencies of the compound in the ground state were calculated by using the density functional theory (DFT) method with 6-311++G (d,p) basis set and were compared with the experimental data. Additionally, HOMO-LUMO energy gap, natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of the compound were performed at B3LYP/6-311++G (d,p) level. Hirshfeld surfaces were used to confirm the existence of inter-molecular interactions in the compound.

  10. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    ERIC Educational Resources Information Center

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  11. Synthesis, structural, optical and thermal studies of an organic nonlinear optical 4-aminopyridinium maleate single crystal.

    PubMed

    Pandi, P; Peramaiyan, G; Kumar, M Krishna; Kumar, R Mohan; Jayavel, R

    2012-03-01

    Synthesis and growth of a novel organic nonlinear optical (NLO) crystal of 4-aminopyridinium maleate (4APM) in larger size by the slow evaporation solution growth technique are reported. Single crystal and powder X-ray diffraction analyses reveal that 4APM crystallizes in monoclinic system with space group P2(1) with cell parameters a=8.140(4)Å, b=5.457(5)Å, c=10.926(10)Å and volume=481.4(7)Å(3). The grown crystal has been characterized by Fourier transform infrared and UV-visible spectral analyses. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been carried out to study its thermal properties. Dielectric measurements have been carried out to study the distribution of charges within the crystal. The mechanical strength of the crystal has been studied by using Vickers' microhardness test. The etching studies have been carried out on the grown crystal. The Kurtz and Perry powder SHG technique confirms the NLO property of the grown crystal and the SHG efficiency of 4APM was found to be 4.8 times greater than that of KDP crystal. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Syntheses, structural characterization, and DPPH radical scavenging activity of cocrystals of caffeine with 1- and 2-naphthoxyacetic acids

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Sumathi, D.; Bhuvanesh, N.; Kumaresan, S.

    2013-03-01

    Caffeine:1-naphthoxyacetic acid [(caf)(1-naa)] and caffeine:2-naphthoxyacetic acid [(caf)(2-naa)] cocrystals have been synthesized and single crystals were grown by slow evaporation technique. The structures of the grown crystals were elucidated using single crystal X-ray diffraction analysis. Both the cocrystals belong to the monoclinic crystallographic system with space group P21/c, Z = 4, and α = γ = 90°, whereas β = 111.4244(18)° for [(caf)(1-naa)] and β = 109.281(6)° for [(caf)(2-naa)]. The crystal packing is predominantly stabilized by hydrogen bonding and π-π stacking interactions. The presence of unionized -COOH functional group in both the cocrystals was identified by FTIR spectral analysis. Thermal behavior and stability of both the cocrystals were studied by TGA/DTA analyses. Solvent-free formation of these cocrystals was confirmed by powder X-ray diffraction analyses. The theoretical energy of cocrystals showed that the formers have higher energy than cocrystals 1 and 2. DPPH radical scavenging activity of cocrystals 1 and 2 is slightly greater than the formers.

  13. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes.

    PubMed

    Rius, Jordi; Mugnaioli, Enrico; Vallcorba, Oriol; Kolb, Ute

    2013-07-01

    δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now available for structure determination by direct methods. To check the tolerance of δ recycling to missing data-collection corrections and to deviations from kinematical behaviour of ADT intensities, δ recycling has been applied to differently shaped nanocrystals of various inorganic materials. The results confirm that it can phase ADT data very efficiently. In some cases even more complete structure models than those derived from conventional direct methods and least-squares refinement have been found. During this study it has been demonstrated that the Wilson-plot scaling procedure is largely insensitive to sample thickness variations and missing absorption corrections affecting electron ADT intensities.

  14. Green synthesis, characterization and some physico-chemical studies on a novel intermolecular compound; 4-nitro-o-phenylenediamine-N, N-dimethylaminobenzaldehyde system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    An inter-molecular compound (IMC) L1 was synthesized by taking 1:1 molar ratio of p-nitro-o-phenylenediamine (NOPDA) and N, N-dimethylaminobenzaldehyde (DMAB) via thermally initiated solid state reaction. It was characterized by X-ray diffraction, spectral and optical studies. The single crystal of the (L1) was grown from saturated solution of ethanol using slow evaporation technique at 29 °C. From the single crystal X-ray diffraction analysis, it can be inferred that it crystallizes in triclinic unit cell with P-1 space group (CCDC No 1422765). Absorption spectrum of IMC (L1) shows a band at 318 nm attributed to the intra-molecular charge-transfer (ICT) excited state absorption and the other band at 376 nm is due to n→π* transition. The IMC (L1) shows a strong fluorescence at 418 nm with a Stokes shift (≈100 nm) and quantum efficiency (0.22) upon excitation in methyl alcohol at 318 nm.

  15. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    PubMed

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  16. In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge

    This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less

  17. In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels

    DOE PAGES

    Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...

    2018-11-21

    This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less

  18. Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system

    NASA Astrophysics Data System (ADS)

    Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.

    2018-05-01

    Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.

  19. High Pressure Single Crystal Diffraction at PX 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongzhou; Dera, Przemyslaw K.; Eng, Peter J.

    2017-01-01

    In this report, we describe detailed procedures for carrying out single crystal X-ray diffraction experiments with a diamond anvil cell at the GSECARS 13-BM-C beamline at the Advanced Photon Source. ATREX and RSV programs are used to analyze the data.

  20. Growth and characterization of unidirectional benzil single crystal for photonic applications

    NASA Astrophysics Data System (ADS)

    Saranraj, A.; Thirupathy, J.; Dhas, S. Sahaya Jude; Jose, M.; Vinitha, G.; Dhas, S. A. Martin Britto

    2018-06-01

    Organic nonlinear optical benzil single crystal of fine quality with the dimensions of 168 × 14 mm2 was successfully grown in (100) plane from saturated solution by unidirectional SR method. The structural identity of the grown crystal was confirmed by powder XRD. High-resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzil crystal. The optical analysis was carried out by UV-visible spectroscopy which shows that the benzil crystal's cut off wavelength is 437 nm. The dielectric constant and dielectric loss of benzil crystal are found to be very much depending upon temperature and frequency. Ferroelectric nature of grown crystal was identified by P- E hysteresis analysis and to find the values of spontaneous polarization and coercive field. The laser damage threshold energy was studied with the help of Nd:YAG laser. The presence of third harmonic generation was identified by z-scan techniques.

  1. Synthesis and structural study of 4-(2-chlorophenyl)-2-ethoxy-5,6,7,8,9,10-hexahydrocycloocta[B]pyridine-3-carbonitrile

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Vasumathi, M.; Anitha, K.

    2016-05-01

    The novel organic material C20H21ClN2O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P21/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å3 and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. The structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.

  2. Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.

    2016-12-01

    Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.

  3. Microgravity

    NASA Image and Video Library

    1992-06-25

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  4. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  5. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  6. Protein crystallization: Eluding the bottleneck of X-ray crystallography

    PubMed Central

    Holcomb, Joshua; Spellmon, Nicholas; Zhang, Yingxue; Doughan, Maysaa; Li, Chunying; Yang, Zhe

    2017-01-01

    To date, X-ray crystallography remains the gold standard for the determination of macromolecular structure and protein substrate interactions. However, the unpredictability of obtaining a protein crystal remains the limiting factor and continues to be the bottleneck in determining protein structures. A vast amount of research has been conducted in order to circumvent this issue with limited success. No single method has proven to guarantee the crystallization of all proteins. However, techniques using antibody fragments, lipids, carrier proteins, and even mutagenesis of crystal contacts have been implemented to increase the odds of obtaining a crystal with adequate diffraction. In addition, we review a new technique using the scaffolding ability of PDZ domains to facilitate nucleation and crystal lattice formation. Although in its infancy, such technology may be a valuable asset and another method in the crystallography toolbox to further the chances of crystallizing problematic proteins. PMID:29051919

  7. New Polymorph Form of Dexamethasone Acetate.

    PubMed

    Silva, Ronaldo Pedro da; Ambrósio, Mateus Felipe Schuchter; Piovesan, Luciana Almeida; Freitas, Maria Clara Ramalho; Aguiar, Daniel Lima Marques de; Horta, Bruno Araújo Cautiero; Epprecht, Eugenio Kahn; San Gil, Rosane Aguiar da Silva; Visentin, Lorenzo do Canto

    2018-02-01

    A new monohydrated polymorph of dexamethasone acetate was crystallized and its crystal structure characterized. The different analytical techniques used for describing its structural and vibrational properties were: single crystal and polycrystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy. A Hirshfeld surface analysis was carried out through self-arrangement cemented by H-bonds observed in this new polymorph. This new polymorph form appeared because of self-arrangement via classical hydrogen bonds around the water molecule. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    PubMed Central

    Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu

    2017-01-01

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088

  9. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    DOE PAGES

    Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less

  10. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

    PubMed

    Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.

  11. Crystallization and x-ray diffraction analysis of a putative bacterial class I labdane-related diterpene synthase [Crysallization and preliminary x-ray diffraction analysis of a bacterial class I labdane-related diterpene synthase

    DOE PAGES

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; ...

    2015-08-25

    Here, labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg 2+ (LrdC-Mg 2+) and in complex with inorganic pyrophosphate (PP i) (LrdC-Mg 2+–PP i). Crystals of native LrdC-Mg 2+ diffracted to 2.50 Å resolution and belonged to the trigonal space group P3 221, with unit-cell parameters a = b = 107.1, c = 89.2 Å.more » Crystals of the LrdC-Mg 2+–PP i complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3 221. Crystals of the LrdC-Mg 2+–PP i complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P2 1, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.« less

  12. Synthesis, structural and spectral characterization of a novel NLO crystal N,N‧-diphenylguanidinium picrate: diacetone solvate

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, T.; Dhandapani, M.; Naveen, S.; Lokanath, N. K.

    2017-09-01

    An organic NLO active material N,N‧-diphenylguanidinium picrate: diacetone solvate (C13H14N3+. C6H2N3O7-. 2C3H6O) (DPGPD) was synthesized and single crystals were grown by slow evaporation-solution growth technique at room temperature. DPGPD crystallizes in monoclinic crystal system with noncentrosymmetric space group, Cc confirmed by single crystal X-ray diffraction analysis. The presence of various functional groups was identified from FT-IR spectral analysis and the proton transfer during the formation of compound was confirmed by NMR spectroscopic techniques. The thermal stability was investigated by TG/DTA analyses. Optical transmittance was measured by UV-Vis-NIR spectroscopy and band gap energy was calculated. Photoluminescence spectrum was used to explore its applicability towards laser diodes. Dielectric property of the material was ascertained at different temperatures and it is found that the grown crystal has higher dielectric constant in low frequencies. Photoconductivity study revealed that DPGPD exhibits positive photoconductivity. SHG property was found to be 0.6 times higher than that of KDP.

  13. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  14. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  15. Synthesis, structure and characterization of a hybrid centrosymmetric material (4-dimethylaminopyridinium nitrate gallic acid monohydrate) well-designed for non-linear optics

    NASA Astrophysics Data System (ADS)

    Ennaceur, Nasreddine; Jalel, Boutheina; Henchiri, Rokaya; Cordier, Marie; Ledoux-Rak, Isabelle

    2018-01-01

    Hybrid material: 4-Dimethylaminopyridinium nitrate gallic acid monohydrate abbreviated DNGA monohydrate has been successfully synthesized by slow evaporation method at room temperature. X-ray diffraction (XRD) on a single crystal showed that the latter was crystallized in P-1 space group. Likewise, thermal analyses demonstrated the stability of our crystal up to 80 °C. Besides, the analysis of the infrared spectrum (FTIR), allowed us to confirm the presence of the different groups present in the structure. Furthermore, by studying the UV-Visible spectrum, the transparency of our crystal was proven. Despite the fact that of having a centrosymmetric structure, the nonlinear optical properties of our single crystal, which was tested by Kurtz-Perry technique, proved that its second harmonic generation efficiency was 1.22 times more than that of KDP (potassium dihydrogen phosphate) single crystal. This nonlinear optical behavior of the studied compound was also determined through the calculations of polarizability and first hyperpolarizability values.

  16. Investigation on synthesis, growth, structure and physical properties of AgGa0.5In0.5S2 single crystals for Mid-IR application

    NASA Astrophysics Data System (ADS)

    Karunagaran, N.; Ramasamy, P.

    2018-02-01

    Silver Gallium Indium Sulfide (AgGa0.5In0.5S2) belongs to the family of AIBIIIC2VI ternary compound semiconductors which crystallize in the chalcopyrite structure. Synthesis of the polycrystalline material from the starting elements is achieved using melt temperature oscillation method. The AgGa0.5In0.5S2 single crystals have been grown by the vertical Bridgman technique. The synthesized AgGa0.5In0.5S2 polycrystalline charge was confirmed by powder XRD. The peak positions are in good agreement with the powder diffraction file. Thermal property was analyzed using differential scanning calorimetry (DSC) technique. The melting point of the crystal is 896 °C and freezing point is 862 °C. The unit cell parameters were confirmed by single crystal X-ray. The transmittance of the grown crystal is 55% in the NIR region and 60% in the mid-IR region. The optical band gap was found to be 2.0 eV. The stoichiometric composition of AgGa0.5In0.5S2 was measured using energy dispersive spectrometry (EDS). The photoluminescence behavior of AgGa0.5In0.5S2 has been analyzed. The resistivity of the grown single crystal has been measured.

  17. OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2016-08-01

    This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.

  18. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  19. Individual analysis of inter and intragrain defects in electrically characterized polycrystalline silicon nanowire TFTs by multicomponent dark-field imaging based on nanobeam electron diffraction two-dimensional mapping

    NASA Astrophysics Data System (ADS)

    Asano, Takanori; Takaishi, Riichiro; Oda, Minoru; Sakuma, Kiwamu; Saitoh, Masumi; Tanaka, Hiroki

    2018-04-01

    We visualize the grain structures for individual nanosized thin film transistors (TFTs), which are electrically characterized, with an improved data processing technique for the dark-field image reconstruction of nanobeam electron diffraction maps. Our individual crystal analysis gives the one-to-one correspondence of TFTs with different grain boundary structures, such as random and coherent boundaries, to the characteristic degradations of ON-current and threshold voltage. Furthermore, the local crystalline uniformity inside a single grain is detected as the difference in diffraction intensity distribution.

  20. Polymorphism of Alprazolam (Xanax): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III).

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert

    2007-05-01

    A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  1. Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: L-lysine hydrochloride dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaiselvi, D.; Mohan Kumar, R.; Jayavel, R.

    2008-07-01

    Single crystals of L-lysine hydrochloride dihydrate (LLHCD), a nonlinear optical material, have been grown by slow cooling technique from its aqueous solution. LLHCD was found to be highly soluble in water. The grown crystals have been subjected to single crystal X-ray diffraction to confirm the structure and to estimate the lattice parameters. The vibrational structure of the molecule is elucidated from FTIR spectra. Thermal analysis revealed the thermal stability of the grown crystals. The optical transmittance spectrum shows that the material possesses good optical transparency in the entire visible region with a UV cut-off wavelength at 228 nm. The mechanicalmore » properties of the grown crystal have been studied using Vicker's microhardness test. The laser damage threshold of 52.25 MW/cm{sup 2} has been measured by irradiating Q-switched Nd:YAG laser (1064 nm)« less

  2. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  3. Experimental and theoretical investigations of non-centrosymmetric 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R., E-mail: nagaphys@yahoo.com

    Graphical abstract: ORTEP diagram of HQDBT. - Highlights: • Single crystal XRD and NMR studies confirm the formation of the title compound. • SHG efficiency was found to be 0.6 times that of KDP. • First-order hyperpolarizability (β) was calculated using HF and B3LYP methods. - Abstract: A novel 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate crystal has been grown by slow evaporation technique. The single crystal X-ray diffraction analysis has been done for the title compound and is found to crystallize in orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. The optical absorption cut-off wavelength is found to be 440 nm. The vibrationalmore » analysis has been carried out to assess the functional groups present in the title compound. The molecular structure of the title compound has been confirmed by nuclear magnetic resonance spectroscopy. Thermogravimetric, differential scanning calorimetric and differential thermal analyses reveal the melting point and thermal stability of the title compound. The second harmonic generation efficiency is confirmed by Kurtz–Perry powder technique. Further quantum chemical calculations are performed using Gaussian 03 software.« less

  4. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  5. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arjunan, S.; Department of Physics, Presidency College, Chennai 600005; Mohan Kumar, R.

    2008-08-04

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-argininemore » trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.« less

  6. Studies of electrode structures and dynamics using coherent X-ray scattering and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, H.; Liu, Y.; Ulvestad, A.

    2017-08-01

    Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.

  7. High-energy x-ray diffraction from surfaces and nanoparticles

    NASA Astrophysics Data System (ADS)

    Hejral, U.; Müller, P.; Shipilin, M.; Gustafson, J.; Franz, D.; Shayduk, R.; Rütt, U.; Zhang, C.; Merte, L. R.; Lundgren, E.; Vonk, V.; Stierle, A.

    2017-11-01

    High-energy surface-sensitive x-ray diffraction (HESXRD) is a powerful high-energy photon technique (E > 70 keV) that has in recent years proven to allow a fast data acquisition for the 3D structure determination of surfaces and nanoparticles under in situ and operando conditions. The use of a large-area detector facilitates the direct collection of nearly distortion-free diffraction patterns over a wide q range, including crystal truncation rods perpendicular to the surface and large-area reciprocal space maps from epitaxial nanoparticles, which is not possible in the conventional low-photon energy approach (E =10 -20 keV ). Here, we present a comprehensive mathematical approach, explaining the working principle of HESXRD for both single-crystal surfaces and epitaxial nanostructures on single-crystal supports. The angular calculations used in conventional crystal truncation rod measurements at low-photon energies are adopted for the high-photon-energy regime, illustrating why and to which extent large reciprocal-space areas can be probed in stationary geometry with fixed sample rotation. We discuss how imperfections such as mosaicity and finite domain size aid in sampling a substantial part of reciprocal space without the need of rotating the sample. An exact account is given of the area probed in reciprocal space using such a stationary mode, which is essential for in situ or operando time-resolved experiments on surfaces and nanostructures.

  8. Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.

    2014-09-01

    Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.

  9. Syntheses, Characterizations, and Applications of Molecular Metal Wires

    DTIC Science & Technology

    2011-08-05

    treated with KPF6 (500 mg, 2.7 mmol). A dark greenish-brown complex was obtained after evaporation. The single crystals suitable for X-ray diffraction...CH2Cl2. Recrystallization from a CH2Cl2 solution layered with hexane gave deep brown single crystals suitable for X-ray diffraction. Yield: 83 mg...5 Synthetic challenges Conductance of single molecules Concluding Remarks

  10. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  11. Single beam write and/or replay of spatial heterodyne holograms

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  12. Study on optical properties of L-valine doped ADP crystal

    NASA Astrophysics Data System (ADS)

    Shaikh, R. N.; Anis, Mohd.; Shirsat, M. D.; Hussaini, S. S.

    2015-02-01

    Single crystal of L-valine doped ammonium dihydrogen phosphate has been grown by slow evaporation method at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction technique. The different functional groups of the grown crystal were identified using Fourier transform infrared analysis. The UV-visible studies were employed to examine the high optical transparency and influential optical constants for tailoring materials suitability for optoelectronics applications. The cutoff wavelength of the title crystal was found to be 280 nm with wide optical band gap of 4.7 eV. The dielectric measurements were carried to determine the dielectric constant and dielectric loss at room temperature. The grown crystal has been characterized by thermogravimetric analysis. The second harmonic generation efficiency of the grown crystal was determined by the classical Kurtz powder technique and it is found to be 1.92 times that of potassium dihydrogen phosphate. The grown crystal was identified as third order nonlinear optical material employing Z-scan technique using He-Ne laser operating at 632.8 nm.

  13. Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2

    NASA Technical Reports Server (NTRS)

    Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam

    1990-01-01

    This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.

  14. Crystallization and preliminary X-ray diffraction study of recombinant ribokinase from Thermus Species 2.9

    NASA Astrophysics Data System (ADS)

    Abramchik, Yu. A.; Timofeev, V. I.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-11-01

    Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P1211 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, β = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.

  15. Development of an X-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Bewer, Brian E.

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.

  16. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  17. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.

    2008-09-15

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  18. Growth, structural, physical and computational perspectives of trans-4-hydroxy-l-proline: a promising organic nonlinear optical material with large laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Thirumurugan, Ramaiah; Anitha, Kandasamy

    2017-05-01

    In this work, a systematic study of an organic nonlinear optical (NLO) material, trans-4-hydroxy-l-proline (THP), C5H9NO3 is reported. An optical quality single crystals of THP have been successfully grown by using slow evaporation solution growth technique (SEST). The single crystal x-ray diffraction (SXRD) analysis reveals that grown crystal belongs to the orthorhombic system with non-centrosymmetric space group (NCS), P212121. Powder x-ray diffraction (PXRD) analysis shows relatively a good crystalline nature. The molecular structure of THP was recognized by NMR (1H and 13C) studies and its vibrational modes were confirmed by FTIR and FT-Raman vibrational studies. UV-Vis-NIR spectrum of grown crystal shows high optical transparency in the visible and near-IR region with low near-UV cut-off wavelength at 218 nm. Photoluminescence study confirms ultraviolet wavelength emission of THP crystal. The second harmonic generation (SHG) efficiency of grown crystal is 1.6 times greater with respect to standard potassium dihydrogen phosphate (KDP). Nonlinear refractive index (n 2) and nonlinear absorption coefficient (β) were determined using the Z-scan technique. The title compound owns high thermal stability of 294 °C and specific heat capacity (C P) of 1.21 J g-1 K-1 at 300 K and 11.33 J g-1 K-1 at 539 K (melting point). The laser-induced damage threshold (LDT) value of grown crystal was measured as 7.25 GW cm-2. The crystal growth mechanism and defects of grown crystal were studied by chemical etching technique. Mechanical strength was extensively studied by Vickers microhardness test and crystal void percentage analysis. Moreover, density functional theory (DFT) studies were carried out to probe the Mulliken charge distribution, frontier molecular orbitals (FMOs) and first order hyperpolarizability (β) of the optimized molecular structure to get a better insight of the molecular properties. These characterization results endorse that grown THP crystal as a suitable candidate for NLO applications with large LDT.

  19. Synthesis, growth and characterization of a nonlinear optical crystal: Bis l-proline hydrogen nitrate.

    PubMed

    Selvaraju, K; Kirubavathi, K

    2013-11-01

    The single crystals of bis l-proline hydrogen nitrate (BLPHN) belonging to non-centrosymmetric space group were successfully grown by the slow evaporation solution growth technique. The BLPHN crystals of size 10×7×3mm(3) were obtained in 35days. Initially, the solubility tests were carried out for two solvents such as deionized water and mixed of deionized water-acetone. Among the two solvents, the solubility of BLPHN was found to be the highest in deionized water, so crystallization of BLPHN was done from its aqueous solution. As grown, crystals were characterized by single crystal X-ray diffraction studies and optical transmission spectral studies. Infrared spectroscopy, thermo gravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of the grown BLPHN crystals. Nonlinear optical (NLO) behavior of BLPHN crystal was studied by Kurtz and Perry powder method. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less

  1. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less

  2. Structural, vibrational, thermal and optical studies of organic single crystal: Benzotriazolium p-toluene sulfonate (BTPTS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R. Ramesh; Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@yahoo.com

    Benzotriazolium p-toluene sulfonate (BTPTS) was grown by solution growth technique. The powder X-ray diffraction analysis was carried out to evaluate crystal system of the compound. LeBail Profile fitting analysis was performed to extract the individual peak intensities. FTIR spectrum analysis was recorded to study vibration frequencies of the prepared organic salt. Thermal studies were carried out using TG-DSC analysis. Optical absorption and energy band gap of the title compound was evaluated by UV-Vis spectral study.

  3. Investigations on structural, optical, electrical, mechanical and third-order nonlinear behaviour of 3-aminopyridinium 2,4-dinitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Mohanbabu, B.; Bharathikannan, R.; Siva, G.

    2017-10-01

    The single crystals of 3-aminopyridinium 2,4-dinitrophenolate (APDP) have been synthesized and grown by slow evaporation technique at room temperature. The crystal system was identified and lattice dimensions were measured from the single-crystal X-ray diffraction (SXRD) analysis. UV-visible absorption and transmittance spectra have been recorded in the region between 250 and 1100 nm. The different vibrational modes of the molecule were studied by Fourier transform infrared (FTIR) spectroscopic analysis. The decreasing tendency of dielectric constant with increasing frequency was analysed in dielectric study. The polarizability value calculated using Penn analysis well agrees with the value calculated using Clausius-Mossotti equation. The photoconductivity and photoluminescence behaviour were also studied on grown APDP crystal. The mechanical strength of the crystal has been studied using a Vickers' microhardness test. The stiffness constant and yield strength of the crystal were also calculated from the microhardness test. The third-order nonlinear optical parameters such as refractive index, absorption coefficient and third-order susceptibility were estimated by Z-scan studies.

  4. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  5. Synthesis and characterization of a novel schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: Single crystal structures and biological activities

    NASA Astrophysics Data System (ADS)

    Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.

    2018-01-01

    A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.

  6. Synthesis and characterization of 3-acetoxy-2-methyl-N-(phenyl)benzamide and 3-acetoxy-2-methyl-N-(4- methylphenyl)benzamide

    NASA Astrophysics Data System (ADS)

    Kırca, Başak Koşar; Çakmak, Şükriye; Kütük, Halil; Odabaşoğlu, Mustafa; Büyükgüngör, Orhan

    2018-01-01

    This study treats about two successfully synthesized secondary amide compounds 3-Acetoxy-2-methyl-N-(phenyl)benzamide, I and 3-Acetoxy-2-methyl-N-(4-methylphenyl)benzamide, II. Compounds were characterized by FTIR, 1H NMR, 13C NMR and X-ray single crystal diffraction analysis techniques. Single crystal X-ray diffraction analyses show that while I crystallized in the orthorhombic system with space group Pbca, II crystallized in the triclinic system with space group P-1 and the asymmetric unit of II consists of two crystallographically independent molecules. Lattice constants are a = 7.9713 (3) Å, b = 9.5059 (3) Å, c = 37.1762 (2) Å, Z = 8 for I and a = 7.5579 (8) Å, b = 8.8601 (8) Å, c = 23.363 (3) Å, α = 97.011 (9) °, β = 96.932 (9)°, γ = 90.051 (8)°, Z = 4 for II. Crystallographic studies also show that the supramolecular structures were stabilized by intramolecular, intermolecular hydrogen bonds and Csbnd H … π interactions for both compounds. Characteristic amide bonds were observed in IR and NMR spectra.

  7. 1D cyanide complexes with 2-pyridinemethanol: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-12-01

    Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.

  8. Preparation of Gd(OH){sub 3} large single crystals by solid KOH assisted hydrothermal method and their luminescent and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong

    Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less

  9. Neutron and X-ray single-crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels.

    PubMed

    Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa

    2016-07-01

    Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.

  10. Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil

    2016-07-27

    Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less

  11. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siva Sankari, R.; Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a functionmore » of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.« less

  12. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  13. New mixed ligand cobalt(II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties

    NASA Astrophysics Data System (ADS)

    Abu Ali, Hijazi; Abu Shamma, Amani; Kamel, Shayma

    2017-08-01

    New cobalt valproate complexes with different nitrogen based ligands were synthesized and characterized using various techniques such as IR, UV-Vis, single crystal X-ray diffraction as well as other physical properties. The general formula of the prepared complexes is [Con(valp)m(L)z], (n = 1, 2 …; m = 1, 2, …; Z = 1, 2 …). The complexes [Co2(valp)4] (1), [Co(valp)2(2-ampy)2] (2) and [Co2(valp)4(quin)2] (3) showed different carboxylate coordination modes. The crystal structures of the complexes 2 and 3 were determined using single crystal X-ray diffraction. Kinetic studies of hydrolysis reactions of BNPP [bis-(p-nitrophenyl)phosphate] with complexes 2 and 3 were performed. The hydrolysis rate of BNPP was studied at different temperatures, pH and concentrations by UV-Vis spectrophotometric method. The results showed that the hydrolysis rate of BNPP was 7.70 × 102 L mol-1 s-1 for (3) and 2.60 × 10-1 L mol-1 s-1 for (2).

  14. X-ray investigations related to the shock history of the Shergotty achondrite

    NASA Technical Reports Server (NTRS)

    Horz, F.; Hanss, R.; Serna, C.

    1986-01-01

    The shock stress suffered by naturally shocked materials from the Shergotty achondrite was studied using X-ray diffraction techniques and experimentally shocked augite and enstatite as standards. The Shergotty pyroxenes revealed the formation of continuous diffraction rings, line broadening, preferred orientation of small scale diffraction domains, and other evidence of substantial lattice disorders. As disclosed by the application of Debye-Scherrer techniques, they are hybrids between single crystals and fine-grained random powders. The pyroxene lattice is very resistant to shock damage on smaller scales. While measurable lattice disaggregation and progressive fragmentation occur below 25 GPa, little additional damage is suffered from application of pressures between 30 to 60 GPa, making pressure calibration of naturally shocked pyroxenes via X-ray methods difficult. Powder diffractometer scans on pure maskelynite fractions of Shergotty revealed small amounts of still coherently diffracting plagioclase, which may contribute to the high refractive indices of the diaplectic feldspar glasses of Shergotty.

  15. Synthesis and characterization of a prominent NLO active MOF of lead with 1,5-naphthalenedisulfonic acid

    NASA Astrophysics Data System (ADS)

    Prasad, S. Shibu; Sudarsanakumar, M. R.; Dhanya, V. S.; Suma, S.; Kurup, M. R. Prathapachandra

    2018-09-01

    A new metal-organic framework of lead, [Pb(1,5-nds)(H2O)3]n (1,5-nds = 1,5-naphthalenedisulfonate) having prominent nonlinear optical property has been prepared by single gel diffusion technique at ambient condition using sodium metasilicate. The second harmonic generation efficiency was analyzed using Kurtz and Perry powder method and was found to be 30 times as large as potassium dihydrogen phosphate (KDP). Single crystal X-ray diffraction studies reveal the crystal structure. The grown crystals were further characterized by elemental analysis, powder XRD study, thermogravimetry, FT-IR and UV-visible spectral studies. The Pb2S2O4 rings in the crystal structure form a 1D channel. Hydrogen bonding and π-π interactions provide additional stability to the compound. Photoluminescence studies were also carried out.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'micheva, G. M., E-mail: galkuz@mitht.ru; Zaharko, O.; Tyunina, E. A.

    Langatate crystals of the general composition La{sub 3}(Ga{sub 0.5}Ta{sub 0.5})Ga{sub 5}O{sub 14}, grown by the Czochralski method, have been investigated by neutron diffraction (single crystals) and X-ray diffraction (ground single crystals). The crystals were grown in an atmosphere of 99% Ar + 1% O{sub 2} in the Y54{sup o} direction (rotation by 54{sup o} with respect to the y axis), without subsequent annealing (orange crystal) or with vacuum annealing (colorless crystal). It is established that colorless crystals have a higher gallium content and, therefore, a larger number of oxygen vacancies in comparison with colored crystals; this is a possible reasonmore » for their lower microhardness.« less

  17. Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues.

    PubMed

    Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G

    2004-11-01

    We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.

  18. Synthesis and structural study of 4-(2-chlorophenyl)-2-ethoxy-5,6,7,8,9,10-hexahydrocycloocta[B] pyridine-3-carbonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathima, K. Saiadali; Vasumathi, M.; Anitha, K., E-mail: singlecrystalxrd@gmail.com

    2016-05-23

    The novel organic material C{sub 20}H{sub 21}ClN{sub 2}O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P2{sub 1}/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å{sup 3} and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. Themore » structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.« less

  19. Crystallization and preliminary X-ray diffraction study of recombinant ribokinase from Thermus Species 2.9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.

    2016-11-15

    Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P12{sub 1}1 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, βmore » = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.« less

  20. Growth, spectral, optical, thermal, and mechanical behaviour of an organic single crystal: Quinolinium 2-carboxy 6-nitrophthalate monohydrate

    NASA Astrophysics Data System (ADS)

    Mohana, J.; Ahila, G.; Bharathi, M. Divya; Anbalagan, G.

    2016-09-01

    Organic single crystals of quinolinium 2-carboxy 6-nitrophthalate monohydrate (QN) were grown by slow evaporation solution growth technique using ethanol and water as a mixed solvent. X-ray powder diffraction analysis revealed that the crystal belongs to the monoclinic crystal system with space group of P21/c. The functional groups present in the crystallized material confirmed its molecular structure. The optical transparency range and the lower cutoff wavelength were identified from the UV-vis spectrum. The optical constants were determined by UV-visible transmission spectrum at normal incidence, measured over the 200-700 nm spectral range. The dispersion of the refractive index was discussed in terms of the single-oscillator Wemple and DiDomenico model. The calculated HOMO and LUMO energies show that the charge transfer occur within the molecule. Electronic excitation properties were discussed within the framework of two level model on the basis of an orbital analysis. The nonlinear optical absorption coefficient (β) and nonlinear refraction (n2) of QN was measured by Z-scan technique and reported here. Thermal stability of QN was determined using TGA/DSC curves. Vicker's microhardness studies were carried out on the (1 1 ̅0) plane to understand the mechanical properties of the grown crystal. The microhardness measurements showed a Vickers hardness value as 18.4 kg/mm2 which is comparable to well-known organic crystal, urea.

  1. Imaging photonic crystals using hemispherical digital condensers and phase-recovery techniques.

    PubMed

    Alotaibi, Maged; Skinner-Ramos, Sueli; Farooq, Hira; Alharbi, Nouf; Alghasham, Hawra; de Peralta, Luis Grave

    2018-05-10

    We describe experiments where Fourier ptychographic microscopy (FPM) and dual-space microscopy (DSM) are implemented for imaging photonic crystals using a hemispherical digital condenser (HDC). Phase-recovery imaging simulations show that both techniques should be able to image photonic crystals with a period below the Rayleigh resolution limit. However, after processing the experimental images using both phase-recovery algorithms, we found that DSM can, but FPM cannot, image periodic structures with a period below the diffraction limit. We studied the origin of this apparent contradiction between simulations and experiments, and we concluded that the occurrence of unwanted reflections in the HDC is the source of the apparent failure of FPM. We thereafter solved the problem of reflections by using a single-directional illumination source and showed that FPM can image photonic crystals with a period below the Rayleigh resolution limit.

  2. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  3. A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Saheli, Sania; Rezvani, Alireza

    2017-01-01

    A new metal-organic framework (MOF) formulated as [Ni(H2btc)(OH)(H2O)2] (1) (H3btc = 1,3,5-benzenetricarboxylic acid) was synthesized using the hydrothermal technique. The complex 1 was characterized by elemental analysis, infrared spectroscopy, and powder X-ray diffraction in addition to single crystal X-ray diffraction. X-ray crystal structural analysis displayed that the compound belonged to the monoclinic space group P21/n with cell parameters a = 6.8658(14) Å, b = 18.849(4) Å, c = 8.5608(17) Å. In the title complex, ligand is linked to metal centers through two μ-oxo bridges and forming a 2D layer which is led to form an interesting geometry. The thermal stability and fluorescence property of 1 have also been investigated.

  4. Single Hit Energy-resolved Laue Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limitedmore » aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.« less

  5. Crystal growth and characterization of third order nonlinear optical piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) single crystal

    NASA Astrophysics Data System (ADS)

    Pichan, Karuppasamy; Muthu, Senthil Pandian; Perumalsamy, Ramasamy

    2017-09-01

    The organic single crystal of piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) was grown by slow evaporation solution technique (SEST) at room temperature. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. Functional groups of P4HBS crystal were confirmed by FTIR spectrum analysis. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis. The grown crystal has good optical transmittance in the range of 410-1100 nm. In photoluminescence spectrum, sharp emission peaks are observed, which indicates the ultraviolet (UV) emission. The photoconductivity study reveals that the grown crystal has negative photoconductive nature. The thermal behaviour of the P4HBS crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). The mechanical stability of grown crystal was analyzed and the indentation size effect (ISE) was explained by Hays-Kendall's (HK) approach and proportional specimen resistance model (PSRM). Chemical etching study was carried out and the etch pit density (EPD) was calculated. The dielectric constant (ε‧) and dielectric loss (tan δ) as a function of frequency were measured for the grown crystal. The solid state parameters such as valence electron, plasma energy, Penn gap and Fermi energy were evaluated theoretically for the P4HBS using the empirical relation. The estimated values are used to calculate the electronic polarizability. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 632.8 nm using He-Ne laser.

  6. Transfiguring structural, optical and dielectric properties of cadmium thiourea acetate crystal by the addition of L-threonine for laser assisted device applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.

    2018-03-01

    Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.

  7. Synthesis, nucleation, growth, structural, spectral, thermal, linear and nonlinear optical studies of novel organic NLO crystal: 4-fluoro 4-nitrostilbene (FONS).

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-03-15

    A novel organic nonlinear optical material 4-fluoro 4-nitrostilbene (FONS), with molecular formula (C(14)H(10)FNO(2)) has been synthesized. Using ethyl methyl ketone as solvent, the synthesized material has been repeatedly recrystallized to minimize the impurities and good optical quality single crystals were harvested by slow evaporation method. Single crystal X-ray diffraction analysis reveals that the grown FONS crystal belongs to monoclinic system with noncentrosymmetric space group "P2(1)". The powder X-ray diffraction pattern of FONS has been recorded. Functional groups of the title compound were confirmed by FTIR and the molecular structure was confirmed by (1)HNMR. The UV-vis-NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 408 nm. Optical band gap (E(g)) of the grown crystal was found to be 3.27 eV and also the optical constants were determined. Thermal behaviour of the FONS has been studied by TGA/DTA analyses. From the mass spectrum, the ratio of compound formation of FONS was analyzed. The NLO property has been confirmed by Kurtz and Perry powder SHG technique and the SHG efficiency of FONS (262 mV) crystal was found to be 12 times greater than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakizako, Tsukasa; Tanaka, Yoshiki; Hipolito, Christopher J.

    A V. cholerae MATE transporter was crystallized using the lipidic cubic phase (LCP) method. X-ray diffraction data sets were collected from single crystals obtained in a sandwich plate and a sitting-drop plate to resolutions of 2.5 and 2.2 Å, respectively. Multidrug and toxic compound extrusion (MATE) transporters, one of the multidrug exporter families, efflux xenobiotics towards the extracellular side of the membrane. Since MATE transporters expressed in bacterial pathogens contribute to multidrug resistance, they are important therapeutic targets. Here, a MATE-transporter homologue from Vibrio cholerae, VcmN, was overexpressed in Escherichia coli, purified and crystallized in lipidic cubic phase (LCP). X-raymore » diffraction data were collected to 2.5 Å resolution from a single crystal obtained in a sandwich plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.3, b = 93.7, c = 100.2 Å. As a result of further LCP crystallization trials, crystals of larger size were obtained using sitting-drop plates. X-ray diffraction data were collected to 2.2 Å resolution from a single crystal obtained in a sitting-drop plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.9, b = 91.8, c = 100.9 Å. The present work provides valuable insights into the atomic resolution structure determination of membrane transporters.« less

  9. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

    PubMed

    Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute

    2018-03-01

    Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.

  10. Novel diamond cells for neutron diffraction using multi-carat CVD anvils.

    PubMed

    Boehler, R; Molaison, J J; Haberl, B

    2017-08-01

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

  11. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  12. Single crystal X-ray diffraction, spectroscopic and mass spectrometric studies of furanocoumarin peucedanin.

    PubMed

    Bartnik, Magdalena; Arczewska, Marta; Hoser, Anna A; Mroczek, Tomasz; Kamiński, Daniel M; Głowniak, Kazimierz; Gagoś, Mariusz; Woźniak, Krzysztof

    2014-01-01

    The structure of peucedanin, isolated from Peucedanum tauricum Bieb. (Apiaceae), has been established using single crystal X-ray diffraction. This furanocoumarin isolated from the light petroleum extract of P. tauricum fruits was characterized by high resolution EI-MS, sATR-FTIR and 2D NMR spectroscopic techniques. The EI-MS showed the typical fragmentation pattern of methoxyfuranocoumarins. Extensive 1D (1H and 13C) as well as 2D NMR data enabled complete assignment of the carbon atoms in the peucedanin molecule. The FTIR data confirms intermolecular hydrogen bonding between peucedanin molecules in polar solvents. Peucedanin crystallises in the R-3 space group from the trigonal system with one molecule in the asymmetric part of the unit cell. The crystal lattice of peucedanin consists of the molecules arranged in separate columns. They are related by two fold screw axes and centres of symmetry. Interestingly, peucedanin columns form two channels per unit cell with a diameter of 7.5angstrom going through the crystal lattice in the Z-direction. These channels are filled with disordered water molecules, which are surrounded by hydrophobic methyl groups and are located exactly at the centres of the channels. The peucedanin molecules are stacked in a single column with the opposite orientation of the neighbouring molecules. These results could be interesting in further application of this molecule, for example in biological tests of its activity.

  13. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE PAGES

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...

    2017-09-12

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  14. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  15. Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.

    1989-02-01

    Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.

  16. Spectroscopic investigations using density functional theory on 2-methoxy- 4(phenyliminomethyl)phenol: A non linear optical material

    NASA Astrophysics Data System (ADS)

    Hijas, K. M.; Madan Kumar, S.; Byrappa, K.; Geethakrishnan, T.; Jeyaram, S.; Nagalakshmi, R.

    2018-03-01

    Single crystals of 2-methoxy-4(phenyliminomethyl)phenol were grown from ethanol by slow evaporation solution growth technique. Single crystal X-ray diffraction experiment reveals the crystallization in orthorhombic system having non-centrosymmetric space group C2221. Geometrical optimization by density functional theory method was carried out using Gaussian program and compared with experimental results. Detailed experimental and theoretical vibrational analyses were carried out and the results were correlated to find close agreement. Thermal analyses show the material is thermally stable with a melting point of 159 °C. Natural bond orbital analysis was carried out to explain charge transfer interactions through hydrogen bonding. Relatively smaller HOMO-LUMO band gap favors the non linear optical activity of the molecule. Natural population analysis and molecular electrostatic potential calculations visualize the charge distribution in an isolated molecule. Calculated first-order molecular hyperpolarizability and preliminary second harmonic generation test carried out using Kurtz-Perry technique establish 2-methoxy-4(phenyliminomethyl)phenol crystal as a good non linear optical material. Z-scan proposes the material for reverse saturable absorption.

  17. Growth, structural, optical, piezoelectric and etching analysis of L-lysine p-nitrophenolate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Alexandar, A.; Lakshmanan, A.; Sakthy Priya, S.; Surendran, P.; Rameshkumar, P.

    2017-09-01

    Nonlinear optical single crystals of L-lysine p-nitrophenolate monohydrate (LLPNP) were grown in aqueous solution by the slow evaporation solution technique (SEST). The grown crystals were subjected to powder X-ray diffraction analysis, (PXRD) and it was found that the title compound was crystallized in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The vibrational frequencies of various functional groups present in the crystal were analyzed using the FTIR spectrum with a wavenumber range between 450 cm-1 and 4000 cm-1. The microhardness analysis of the sample revealed that the crystal belongs to the soft material category. Piezoelectric analysis was performed to measure the value of the piezoelectric (d33) coefficient. Blue light emission of the material was confirmed using the photoluminescence spectrum. Thermal stability of the grown crystal was analyzed using a melting point apparatus and it was found that the LLPNP is stable upto 175∘C. Etching analysis was performed at various durations, in order to identify the surface properties of the LLPNP crystal.

  18. TL and PL studies on cubic fluoroperovskite single crystal (KMgF3: Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2014-04-01

    The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF3 and CeF3) Co-doped KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu2+ at 360 nm attributed to the f → f transition (6P7/2→8S7/2) could only be observed due to the energy transfer from Ce3+ to Eu2+.

  19. Crystal structure and thermal expansion of a CsCe 2Cl 7 scintillator

    DOE PAGES

    Zhuravleva, M.; Lindsey, A.; Chakoumakos, B. C.; ...

    2015-04-06

    Here we used single-crystal X-ray diffraction data to determine crystal structure of CsCe 2Cl 7. It crystallizes in a P112 1/b space group with a = 19.352(1) Å, b = 19.352(1) Å, c = 14.838(1) Å, γ = 119.87(2) ° , and V = 4818.6(5) Å 3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe 2Cl 7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 10 -6/ °C) withmore » respect to the b and c axes (27.0 10 -6/ °C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. Lastly, these findings suggest that the reported cracking behavior during melt growth of CsCe 2Cl 7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.« less

  20. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  1. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  2. Structural and electronic evolution of Cr[subscript 2]O[subscript 3] on compression to 55 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dera, Przemyslaw; Lavina, Barbara; Meng, Yue

    2016-08-15

    Synchrotron single-crystal x-ray diffraction experiments have been performed on corundum-type Cr{sub 2}O{sub 3} up to a pressure of 55 GPa in Ne and He pressure transmitting media. Diffraction experiments were complemented by measurements of optical absorption spectra with single crystal samples up to 60 GPa. Results of the diffraction data analysis rule out the earlier reported monoclinic distortion at 15-30 GPa, but indicate evidence of two discontinuous transitions of electronic or magnetic nature, most likely associated with a change in magnetic ordering and charge transfer. The compression mechanism established from single crystal refinements indicates much smaller distortion of the Cr{supmore » 3+} coordination environment than was previously assumed.« less

  3. Influence of bis-thiourea nickel nitrate on the structural, optical, electrical, thermal and mechanical behavior of a KDP single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Rasal, Y. B.; Shaikh, R. N.; Shirsat, M. D.; Kalainathan, S.; Hussaini, S. S.

    2017-03-01

    A single crystal of bis-thiourea nickel nitrate (BTNN) doped potassium dihydrogen phosphate (KDP) has been grown from solution at room temperature by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal x-ray diffraction analysis. The different functional groups of the grown crystal were confirmed using Fourier transform infrared analysis. The improved optical parameters of the grown crystal have been evaluated in the range of 200-900 nm using UV-visible spectral analysis. The grown crystal was transparent in the entire visible region and the band gap value was found to be 4.96 eV. The influence of BTNN on the third order nonlinear optical properties of KDP crystal has been investigated by means of the Z-scan technique. The second harmonic generation (SHG) efficiency of grown crystal measured using a Nd-YAG laser is 1.98 times higher than that of pure KDP. The third order nonlinear optical susceptibility (χ 3) and nonlinear absorption coefficient (β) of BTNN doped KDP crystal is found to be 1.77  ×  10-5 esu and 5.57  ×  10-6 cm W-1 respectively. The laser damage threshold (LDT) energy for the grown crystal has been measured by using a Q-switched Nd:YAG laser source. The bis-thiourea nickel nitrate shows authoritative impact on the dielectric properties of doped crystal. The influence of bis-thiourea nickel nitrate on the mechanical behavior of KDP crystal has been investigated using Vickers microhardness intender. The thermal behavior of BTNN doped KDP crystal has been analyzed by TGA/DTA analysis.

  4. Development of an x-ray prism for analyzer based imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewer, Brian; Chapman, Dean

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less

  5. Development of an x-ray prism for analyzer based imaging systems

    NASA Astrophysics Data System (ADS)

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  6. Development of an x-ray prism for analyzer based imaging systems.

    PubMed

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  7. Homogeneity of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hermon, H.; Schieber, M.; James, R. B.; Lund, J.; Antolak, A. J.; Morse, D. H.; Kolesnikov, N. N. P.; Ivanov, Y. N.; Goorsky, M. S.; Yoon, H.; Toney, J.; Schlesinger, T. E.

    1998-02-01

    We describe the current state of nuclear radiation detectors produced from single crystals of Cd 1- xZn xTe(CZT), with 0.04 < x < 0.4, grown by the vertical high pressure Bridgman (VHPB) method. The crystals investigated were grown commercially both in the USA and at the Institute of Solid State Physics, Chernogolska, Russia. The CZT was evaluated by Sandia National Laboratories and the UCLA and CMU groups using proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), photoluminescence (PL), infrared (IR) transmission microscopy, leakage current measurements and response to nuclear radiation. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.

  8. Growth and characterizaion of urea p-nitrophenol crystal: an organic nonlinear optical material for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Manikandan, N.; Jauhar, RO. MU.; Murugakoothan, P.; Vinitha, G.

    2018-06-01

    Urea p-nitrophenol, an organic nonlinear optical crystal was synthesized and grown adopting slow evaporation and seed rotation method. Single crystal X-ray diffraction study confirmed the formation of the desired crystal. High resolution X-ray diffraction study showed the defect nature of the crystal. The presence of functional groups in the material was confirmed by FTIR analysis. UV-Vis-NIR study indicates that the grown crystal has a wider transparency region with the lower cutoff wavelength at 423 nm. The grown crystal is thermally stable up to 120 °C as assessed by TG-DTA analysis. The optical homogeneity of the grown crystal was confirmed by birefringence study. The 1064 nm Nd-YAG laser was used to obtain laser induced surface damage threshold which was found to be 0.38, 0.25 and 0.33 GW/cm2 for (0 1 0), (1 1 - 1) and (0 1 1) planes, respectively. The dielectric study was performed to find the charge distribution inside the crystal. The hardness property of the titular material has been found using Vicker's microhardness study. The optical nonlinearity obtained from third order nonlinear optical measurements carried out using Z-scan technique showed that these samples could be exploited for optical limiting studies.

  9. Melt growth of organic 4-(2-Phenylisopropyl) phenol single crystal and its structural, thermal, dielectric permittivity and optical properties

    NASA Astrophysics Data System (ADS)

    Sadhasivam, S.; Rajesh, N. P.

    2017-12-01

    A nonlinear optical (NLO) organic crystal 4-(2-Phenylisopropyl) phenol has been grown by a top seeded melt growth technique. The melt growth kinetics of solid-liquid (molten) interface and facets formation in melt growth were studied. The melt grown crystal has the (001), (00 1 bar),(110)(1 bar 1 bar 0) ,(1 bar 20),(1 2 bar 0),(2 bar 10) and(2 1 bar 0) different morphological face. The morphological characteristics of melt grown crystal helps to better infer the kinetic influence of melt and hone growth of organic material. The rhombohedral lattice cell parameters were measured by single crystal X-ray diffraction. 4-(2-Phenylisopropyl) phenol crystallizes in space group of R 3 bar . Thermal study shows that solid to liquid transition occurring at 350 K and decomposes at 597 K. The grown crystal was optically transparent in the wavelength range of 300-1100 nm. The low dielectric constant (9-11) was measured in the [001] of 4-(2-Phenylisopropyl) phenol crystal.

  10. Trapezoidal diffraction grating beam splitters in single crystal diamond

    NASA Astrophysics Data System (ADS)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  11. Single crystal growth, magnetic and thermal properties of perovskite YFe0.6Mn0.4O3 single crystal

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Hui; Zhao, Xiangyang; Man, Peiwen; Wu, Anhua; Su, Liangbi; Xu, Jiayue

    2016-11-01

    High quality YFe0.6Mn0.4O3 single crystal was grown by floating zone technique using a four-mirror-image-furnace under flowing air. Powder X-ray diffraction gives well evidence that the specimen has an orthorhombic structure, with space group Pbnm. Temperature dependence of the magnetizations of YFe0.6Mn0.4O3 single crystal were studied under ZFC and FC modes in the temperature range from 5 K to 400 K. A clear spin reorientation transition behavior (Γ4→Γ1) is observed in the temperature range of 322-316 K, due to the substitution of Mn at the Fe site of YFeO3. Its Néel temperature is around 385 K. Moreover, the spin reorientation is verified by the change of magnetic hysteresis loops of the sample along [001] axis in the temperature range of 50-385 K. The thermal properties of the sample were measured by the differential scanning calorimeter (DSC) from 300 K to 500 K, which also clearly appear anomaly in the spin reorientation region.

  12. Single-Crystal Structure of a Covalent Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, YB; Su, J; Furukawa, H

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is anmore » important advance in the development of COF chemistry.« less

  13. Nonlinear optical and microscopic analysis of Cu2+ doped zinc thiourea chloride (ZTC) monocrystal

    NASA Astrophysics Data System (ADS)

    Ramteke, S. P.; Anis, Mohd; Pandian, M. S.; Kalainathan, S.; Baig, M. I.; Ramasamy, P.; Muley, G. G.

    2018-02-01

    Organometallic crystals offer considerable nonlinear response therefore, present article focuses on bulk growth and investigation of Cu2+ ion doped zinc thiourea chloride (ZTC) crystal to explore its technological impetus for laser assisted nonlinear optical (NLO) device applications. The Cu2+ ion doped ZTC bulk single crystal of dimension 03 × 2.4 × 0.4 cm3 has been grown from pH controlled aqueous solution by employing slow solvent evaporation technique. The structural analysis has been performed by means of single crystal X-ray diffraction technique. The doping of Cu2+ ion in ZTC crystal matrix has been confirmed by means of energy dispersive spectroscopic (EDS) technique. The origin of nonlinear optical properties in Cu2+ ion doped ZTC crystal has been studied by employing the Kurtz-Perry test and Z-scan analysis. The remarkable enhancement in second harmonic generation (SHG) efficiency of Cu2+ ion doped ZTC crystal with reference to ZTC crystal has been determined. The He-Ne laser assisted Z-scan analysis has been performed to determine the third order nonlinear optical (TONLO) nature of grown crystal. The TONLO parameters such as susceptibility, absorption coefficient, refractive index and figure of merit of Cu-ZTC crystal have been evaluated using the Z-scan transmittance data. The laser damage threshold of grown crystal to high intensity of Nd:YAG laser is found to be 706.2 MW/cm2. The hardness number, work hardening index, yield strength and elastic stiffness coefficient of grown crystal has been investigated under microhardness study. The etching study has been carried out to determine the growth likelihood, nature of etch pits and surface quality of grown crystal.

  14. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution

    PubMed Central

    Schenk, Anna S.; Kim, Yi-Yeoun; Kulak, Alexander N.; Campbell, James M.; Nisbet, Gareth; Meldrum, Fiona C.; Robinson, Ian K.

    2015-01-01

    Atomic level defects such as dislocations play key roles in determining the macroscopic properties of crystalline materials 1,2. Their effects range from increased chemical reactivity 3,4 to enhanced mechanical properties 5,6. Dislocations have been widely studied using traditional techniques such as X-ray diffraction and optical imaging. Recent advances have enabled atomic force microscopy to study single dislocations 7 in two-dimensions (2D), while transmission electron microscopy (TEM) can now visualise strain fields in three-dimensions (3D) with near atomic resolution 8–10. However, these techniques cannot offer 3D imaging of the formation or movement of dislocations during dynamic processes. Here, we describe how Bragg Coherent Diffraction Imaging (BCDI) 11,12 can be used to visualize in 3D, the entire network of dislocations present within an individual calcite crystal during repeated growth and dissolution cycles. These investigations demonstrate the potential of BCDI for studying the mechanisms underlying the response of crystalline materials to external stimuli. PMID:26030304

  15. Experimental and computational studies on creatininium 4-nitrobenzoate - An organic proton transfer complex

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Anitha, K.

    2017-10-01

    A new organic proton transfer complex of creatininium 4-nitrobenzoate (C4NB) has been synthesized and its single crystals were grown successfully by slow evaporation technique. The grown single crystal was subjected to various characterization techniques like single crystal X-ray diffraction (SCXRD), FTIR, FT-Raman and Kurtz-Perry powder second harmonic generation (SHG). The SCXRD analysis revealed that C4NB was crystallized into orthorhombic crystal system, with noncentrosymmetric (NCS), P212121 space group. The creatininium cation and 4-nitrobenzoate anion were connected through a pair of N__H⋯O hydrogen bonds (N(3)__H(6) ⋯ O(3) (x+1, y, z) and N(2)__H(5) &ctdot O(2) (x-1/2, -y-1/2, -z+2)) and fashioned a R22(8) ring motif. The crystal structure was stabilized by strong N__H⋯O and weak C__H⋯O intermolecular interactions and it was quantitatively analysed by Hirshfeld surface and fingerprint (FP) analysis. FTIR and FT-Raman studies confirmed the vibrational modes of functional groups present in C4NB compound indubitably. SHG efficiency of grown crystal was 4.6 times greater than that of standard potassium dihydrogen phosphate (KDP) material. Moreover, density functional theory (DFT) studies such as Mulliken charge distribution, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) map, natural bond orbital analysis (NBO) and first order hyperpolarizability (β0) were calculated to explore the structure-property relationship.

  16. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    NASA Astrophysics Data System (ADS)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  17. Pressure induced phase transitions studies using advanced synchrotron techniques

    NASA Astrophysics Data System (ADS)

    Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration

    2013-06-01

    In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.

  18. Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications

    NASA Astrophysics Data System (ADS)

    Vediyappan, Sivasubramani; Arumugam, Raja; Pichan, Karuppasamy; Kasthuri, Ramachandran; Muthu, Senthil Pandian; Perumal, Ramasamy

    2017-12-01

    Semi-organic nonlinear optical (NLO) 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals have been grown by slow evaporation solution technique (SEST) with the growth period of 60 days. The single-crystal XRD analysis confirms the unit cell parameters of the grown crystal. The crystallinity of grown 2A5NPBr was analyzed by powder X-ray diffraction (PXRD) measurement. The presence of functional groups of 2A5NPBr crystal was confirmed by Fourier transform infrared (FTIR) spectrum analysis. The optical transmittance of the grown crystal was analyzed by UV-Vis-NIR analysis. It shows good transparency in the visible and NIR region and it is favorable for nonlinear optical (NLO) device applications. The chemical etching study was carried out and it reveals that the grown crystal has less dislocation density. The photoconductivity study reveals that the grown crystal possesses positive photoconductive nature. The thermal stability of the crystal has been investigated by thermogravimetric (TG) and differential thermal analysis (DTA). The dielectric constant and dielectric loss as a function of frequency were measured. The electronic polarizability (α) of 2A5NPBr molecule has been calculated theoretically by different ways such as Penn analysis, Clausius-Mossotti relation, Lorentz-Lorenz equation, optical bandgap, and coupled dipole method (CDM). The obtained values of electronic polarizability (α) are in good agreement with each other. Laser damage threshold (LDT) of 2A5NPBr crystal has been measured using Nd:YAG laser with the wavelength of 1064 nm. Third-order nonlinear optical property of the grown crystal was studied by Z-scan technique using He-Ne laser of wavelength 632.8 nm.

  19. In situ neutron diffraction study of twin reorientation and pseudoplastic strain in Ni-Mn-Ga single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Alexandru Dan

    2011-01-01

    Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, {approx}85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplasticstrain of {approx}5.5%, which is in agreement with measured macroscopic strain.

  20. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  1. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy)1-xCaxCoO3-δ

    NASA Astrophysics Data System (ADS)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.

    2017-10-01

    Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.

  2. Novel diamond cells for neutron diffraction using multi-carat CVD anvils

    DOE PAGES

    Boehler, R.; Molaison, J. J.; Haberl, B.

    2017-08-17

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less

  3. Crystal Growth and Scintillation Properties of Eu2+ doped Cs4CaI6 and Cs4SrI6

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Chakoumakos, B.; Johnson, J.; Loyd, M.; Wu, Y.; Koschan, M.; Melcher, C. L.

    2018-03-01

    In this work we present the crystal growth and scintillation properties of two new ternarymetal halide scintillators activated with divalent europium, Cs4CaI6 and Cs4SrI6. Single crystals of each compound were grown in evacuated quartz ampoules via the vertical Bridgman technique using a two-zone transparent furnace. Single crystal X-ray diffraction experiments showed that both crystals have a trigonal (R-3c) structure, with a density of 3.99 g/cm3 and 4.03 g/cm3. The radioluminescence and photoluminescence measurements showed typical luminescence properties due to the 5d-4f radiative transitions in Eu2+. At this early stage of development Cs4SrI6:Eu and Cs4CaI6:Eu have shown very promising scintillation properties, with light yields and energy resolutions of 62,300 ph/MeV and 3.3%, and 51,800 photons/MeV and 3.6% at 662 keV, respectively.

  4. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  5. The collection of MicroED data for macromolecular crystallography.

    PubMed

    Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir

    2016-05-01

    The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.

  6. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  7. On the Chemistry and Physical Properties of Flux and Floating Zone Grown SmB6 Single Crystals

    PubMed Central

    Phelan, W. A.; Koohpayeh, S. M.; Cottingham, P.; Tutmaher, J. A.; Leiner, J. C.; Lumsden, M. D.; Lavelle, C. M.; Wang, X. P.; Hoffmann, C.; Siegler, M. A.; Haldolaarachchige, N.; Young, D. P.; McQueen, T. M.

    2016-01-01

    Recent theoretical and experimental findings suggest the long-known but not well understood low temperature resistance plateau of SmB6 may originate from protected surface states arising from a topologically non-trivial bulk band structure having strong Kondo hybridization. Yet others have ascribed this feature to impurities, vacancies, and surface reconstructions. Given the typical methods used to prepare SmB6 single crystals, flux and floating-zone procedures, such ascriptions should not be taken lightly. We demonstrate how compositional variations and/or observable amounts of impurities in SmB6 crystals grown using both procedures affect the physical properties. From X-ray diffraction, neutron diffraction, and X-ray computed tomography experiments we observe that natural isotope containing (SmB6) and doubly isotope enriched (154Sm11B6) crystals prepared using aluminum flux contain co-crystallized, epitaxial aluminum. Further, a large, nearly stoichiometric crystal of SmB6 was successfully grown using the float-zone technique; upon continuing the zone melting, samarium vacancies were introduced. These samarium vacancies drastically alter the resistance and plateauing magnitude of the low temperature resistance compared to stoichiometric SmB6. These results highlight that impurities and compositional variations, even at low concentrations, must be considered when collecting/analyzing physical property data of SmB6. Finally, a more accurate samarium-154 coherent neutron scattering length, 8.9(1) fm, is reported. PMID:26892648

  8. On the Chemistry and Physical Properties of Flux and Floating Zone Grown SmB 6 Single Crystals

    DOE PAGES

    Phelan, W. A.; Koohpayeh, S. M.; Cottingham, P.; ...

    2016-02-19

    Recent theoretical and experimental findings suggest the long-known but not well understood low temperature resistance plateau of SmB 6 may originate from protected surface states arising from a topologically non-trivial bulk band structure having strong Kondo hybridization. Yet others have ascribed this feature to impurities, vacancies, and surface reconstructions. Given the typical methods used to prepare SmB 6 single crystals, flux and floating-zone procedures, such ascriptions should not be taken lightly. We demonstrate how compositional variations and/or observable amounts of impurities in SmB 6 crystals grown using both procedures affect the physical properties. From X-ray diffraction, neutron diffraction, and X-raymore » computed tomography experiments we observe that natural isotope containing (SmB 6) and doubly isotope enriched ( 154Sm 11B 6) crystals prepared using aluminum flux contain co-crystallized, epitaxial aluminum. Further, a large, nearly stoichiometric crystal of SmB 6 was successfully grown using the float-zone technique; upon continuing the zone melting, samarium vacancies were introduced. These samarium vacancies drastically alter the resistance and plateauing magnitude of the low temperature resistance compared to stoichiometric SmB 6. Finally, these results highlight that impurities and compositional variations, even at low concentrations, must be considered when collecting/analyzing physical property data of SmB 6. Finally, a more accurate samarium-154 coherent neutron scattering length, 8.9(1) fm, is reported.« less

  9. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  10. Structural, thermal and optical characterization of a Schiff base as a new organic material for nonlinear optical crystals and films with reversible noncentrosymmetry.

    PubMed

    Rodríguez, Mario; Ramos-Ortíz, Gabriel; Maldonado, José Luis; Herrera-Ambriz, Víctor M; Domínguez, Oscar; Santillan, Rosa; Farfán, Norberto; Nakatani, Keitaro

    2011-09-01

    Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C. Second-order nonlinear optical properties of DNP were experimentally investigated in solution through EFISH technique and in solid state through the Kurtz-Perry powder technique. Crystals of compound DNP exhibited a second-harmonic signals 39 times larger than of the technologically useful potassium dihydrogenphosphate (KDP) under excitation at infrared wavelengths. In addition, the second-order nonlinear optical properties of DNP were also studied at visible wavelengths through the photorefractive effect and applied to demonstrate dynamic holographic reconstruction. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Dielectric studies on struvite urinary crystals, a gateway to the new treatment modality for urolithiasis

    NASA Astrophysics Data System (ADS)

    Rajan, Reshma; Raj, N. Arunai Nambi; Madeswaran, S.; Babu, D. Rajan

    2015-09-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAPH) are biological crystals, found in the kidney, which are formed due to the infection caused by urea splitting bacteria in the urinary tract. The struvite crystals observe different morphologies and were developed using single diffusion gel growth technique. The crystalline nature and its composition were studied from different characterization techniques like X-ray Diffraction (XRD) and FTIR. The dielectric behavior of the developed crystal was studied by varying temperature and at different frequencies. The parameters like dielectric constant, dielectric loss, ac conductivity, ac resistivity, impedance and admittance of the struvite crystals were calculated. The studies proved that the dielectric loss or dissipation heat is high in lower frequencies at normal body temperature, which develops a plasma state in the stones and in turn leads to the disintegration of urinary stones. The dielectric nature of the stones leads to the dielectric therapy, which will be a gateway for future treatment modality for urolithiasis.

  12. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, Abhijit, E-mail: apramani@cityu.edu.hk; Stoica, Alexandru D.; An, Ke

    2016-08-29

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. It is observed that only ∼25% of domains undergo reorientation or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve complex mesoscale phenomena in other functional materials.

  13. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE PAGES

    Pramanick, Abhijit; Stoica, Alexandru D.; An, Ke

    2016-09-02

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. We observed that only 25% of domains undergo reorienta- tion or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve com- plex mesoscale phenomena in other functional materials.

  14. Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound

    NASA Astrophysics Data System (ADS)

    Bordet, P.; Duc, F.; Lefloch, S.; Capponi, J. J.; Alexandre, E.; Rosa-Nunes, M.; Antipov, E. V.; Putilin, S.

    1996-02-01

    A high precision X-ray diffraction analysis up to sin θ/λ = 1.15 of a HgBa2CuO4+δ single crystal having a Tc of ~ 90 K is presented. The cell parameters are a = 3.8815(4), c = 9.485 (7) Å. The refinements indicate the existence of a split barium site due to the presence of excess oxygen in the mercury layer. The position of this excess oxygen might be slightly displaced from the (1/2 1/2 0) position. A 6% mercury deficiency is observed. Models, including mercury defects, substitution by copper cations, or carbonate groups, are compared. However, we obtain no definite evidence for either of the three models. A possible disorder of the Hg position, due to the formation of chemical bonds with neighbouring extra oxygen anions, could correlate to the refinements of mixed species at the Hg site. A low temperature single crystal x-ray diffraction study, and comparison of refinements for the same single crystal with different extra oxygen contents, are in progress to help clarify this problem.

  15. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    NASA Astrophysics Data System (ADS)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  16. The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law.

    PubMed

    Humphreys, C J

    2013-01-01

    Bragg's second law, which deserves to be more widely known, is recounted. The significance of Bragg's law in electron diffraction and microscopy is then discussed, with particular emphasis on differences between X-ray and electron diffraction. As an example of such differences, the critical voltage effect in electron diffraction is described. It is then shown that the lattice imaging of crystals in high-resolution electron microscopy directly reveals the Bragg planes used for the imaging process, exactly as visualized by Bragg in his real-space law. Finally, it is shown how in 2012, for the first time, on the centennial anniversary of Bragg's law, single atoms have been identified in an electron microscope using X-rays emitted from the specimen. Hence atomic resolution X-ray maps of a crystal in real space can be formed which give the positions and identities of the different atoms in the crystal, or of a single impurity atom in the crystal.

  17. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  18. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saburi, Wataru; Hondoh, Hironori, E-mail: hondoh@abs.agr.hokudai.ac.jp; Unno, Hideaki

    2007-09-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, cmore » = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.« less

  19. Crystallization of Ulex europaeus lectin I.

    PubMed

    Vandonselaar, M; Delbaere, L T

    1994-10-21

    The lectin I from Ulex europaeus (UEAI) has a strong affinity for the H-type 2 human blood group determinant. Single crystals of UEAI have been grown in the monoclinic crystal system. Initial crystals were obtained after 11 months from a solution of 10 mg/ml protein, 40% 2,4-methylpentanediol and 0.1 N acetate buffer at pH 5.2. The technique of washing and reseeding was used to generate large suitable crystals. The space group is C2 with a = 78.84 A, b = 69.85 A, c = 120.62 A, beta = 108.74 degrees and Z = 4; there is one molecular dimer per asymmetric unit and the solvent content is estimated to be 58%. The crystals diffract to at least 2.8 A d spacings and are stable in the X-ray beam for more than three days.

  20. 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source

    PubMed Central

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan

    2014-01-01

    Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166

  1. Generation of Protein Crystals Using a Solution-Stirring Technique

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-06-01

    Crystals of bovine adenosine deaminase (ADA) were grown over a two week period in the presence of an inhibitor, whereas ADA crystals did not form using conventional crystallization methods when the inhibitor was excluded. To obtain ADA crystals in the absence of the inhibitor, a solution-stirring technique was used. The crystals obtained using this technique were found to be of high quality and were shown to have high structural resolution for X-ray diffraction analysis. The results of this study indicate that the stirring technique is a useful method for obtaining crystals of proteins that do not crystallize using conventional techniques.

  2. Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide.

    PubMed

    An, Haoyun; Hu, Xiurong; Gu, Jianming; Chen, Linshen; Xu, Weiming; Mo, Xiaopeng; Xu, Wanhong; Wang, Xiaobo; Xu, Xiao

    2008-01-01

    The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.

  3. RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagielski, Jacek; Jozwik, Przemyslaw A.; Jozwik Biala, Iwona

    2013-05-14

    Damage accumulation in argon-irradiated SrTiO3 single crystals has been studied by using combination of Rutherford Backscattering/Channeling (RBS/C), High Resolution Transmission Electron Microscopy (HRTEM) and High Resolution X-Ray Diffraction (HRXRD) techniques. The RBS/C spectra were fitted using McChasy, a Monte Carlo simulation code allowing the quantitative analysis of amorphous-like and dislocation-like types of defects. The results were interpreted by using a Multi-Step Damage Accumulation model which assumes, that the damage accumulation occurs in a series of structural transformations, the defect transformations are triggered by a stress caused by formation of a free volume in the irradiated crystal. This assumption has beenmore » confirmed by High Resolution Transmission Electron Microscopy and High Resolution X-Ray Diffraction analysis.« less

  4. Preliminary crystallographic analysis of avian infectious bronchitis virus main protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Shen, Wei; Liao, Ming, E-mail: mliao@scau.edu.cn

    The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed inmore » Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.« less

  5. Single crystal growth by gel technique and characterization of lithium hydrogen tartrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2015-02-01

    Single crystal growth of lithium hydrogen tartrate by gel encapsulation technique is reported. Dependence of crystal count on gel density, gel pH, reactant concentration and temperature are studied and the optimum conditions for these crystals are worked out. The stoichiometric composition of the grown crystals is determined using EDAX/AES and CH analysis. The grown crystals are characterized by X-ray diffraction, FTIR and Uv-Visible spectroscopy. It is established that crystal falls under orthorhombic system and space group P222 with the cell parameters as: a=10.971 Å, b=13.125 Å and c=5.101 Å; α=90.5o, β=γ=90°. The morphology of the crystals as revealed by SEM is illustrated. Crystallite size, micro strain, dislocation density and distortion parameters are calculated from the powder XRD results of the crystal. UV-vis spectroscopy shows indirect allowed transition with an optical band gap of 4.83 eV. The crystals are also shown to have high transmittance in the entire visible region. Dependence of dielectric constant, dielectric loss and conductivity on frequency of the applied ac field is analyzed. The frequency-dependent real part of the complex ac conductivity is found to follow the universal dielectric response: σac (ω) ωs. The trend in the variation of frequency exponent with frequency corroborates the fact that correlated barrier hopping is the dominant charge-transport mechanism in the present system.

  6. Sulfaguanidine cocrystals: Synthesis, structural characterization and their antibacterial and hemolytic analysis.

    PubMed

    Abidi, Syed Sibte Asghar; Azim, Yasser; Khan, Shahper Nazeer; Khan, Asad U

    2018-02-05

    Sulfaguanidine (SG), belongs to the class of sulfonamide drug used as an effective antibiotic. In the present work, using crystal engineering approach two novel cocrystals of SG were synthesized (SG-TBA and SG-PT) with thiobarbutaric acid (TBA) and 1,10-phenanthroline (PT), characterized by solid state techniques viz., powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and the crystal structures were determined by single crystal X-ray diffraction studies. A comparative antibacterial activity and hemolytic potential was done on SG drug, coformers and their cocrystals. The tested cocrystals formulations showed almost two fold higher antibacterial activity against the tested strains of bacteria Gram-positive bacteria (S. mutans and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumonia and E. clocae) over SG alone and their coformers. Cocrystal SG-TBA showed better antibacterial activity and reduced hemolysis, thereby, reduced cytotoxicity than SG-PT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ferroelectrics under the Synchrotron Light: A Review.

    PubMed

    Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis

    2015-12-30

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  8. Structural studies of crystalline forms of triamterene with carboxylic acid, GRAS and API molecules

    PubMed Central

    Rehman, Abida

    2018-01-01

    Pharmaceutical salt solvates (dimethyl sulfoxide, DMSO) of the drug triamterene with the coformers acetic, succinic, adipic, pimelic, azelaic and nicotinic acid and ibuprofen are prepared by liquid-assisted grinding and solvent-evaporative crystallization. The modified ΔpK a rule as proposed by Cruz-Cabeza [(2012 ▸). CrystEngComm, 14, 6362–6365] is in close agreement with the results of this study. All adducts were characterized by X-ray diffraction and thermal analytical techniques, including single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermal gravimetric analysis. Hydrogen-bonded motifs combined to form a variety of extended tapes and sheets. Analysis of the crystal structures showed that all adducts existed as salt solvates and contained the amino­pyridinium–carboxyl­ate heterodimer, except for the solvate containing triamterene, ibuprofen and DMSO, as a result of the presence of a strong and stable hemitriamterenium duplex. A search of the Cambridge Structural Database (CSD 5.36, Version 1.18) to determine the frequency of occurrence of the putative supramolecular synthons found in this study showed good agreement with previous work. PMID:29755747

  9. Growth, structural, spectroscopic and optical characterization of barium doped calcium tartrate

    NASA Astrophysics Data System (ADS)

    Verma, Seema; Raina, Bindu; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Barium doped calcium tartrates synthesized by controlled diffusion using silica gel technique at ambient temperature was characterized by single crystal X-ray diffraction which establishes monoclinic crystal system with volume of the unit cell 923.97(10) Ǻ3 and the space group being P21. UV - Vis characterization gives various linear optical constants like absorption, transmittance, reflectance, band gap, extinction coefficient, urbach energy, complex dielectric constant, optical and electrical conductivity. These constants are considered to be essential in characterizing materials that are used in various applications like fabrication of optoelectronic devices. FTIR spectrum establishes the presence of various bands of functional groups expected from metal tartrate with water of crystallization.

  10. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  11. Structural, optical, thermal and mechanical properties of Urea tartaric acid single crystals.

    PubMed

    Vinothkumar, P; Rajeswari, K; Kumar, R Mohan; Bhaskaran, A

    2015-06-15

    Urea tartaric acid (UT) an organic nonlinear optical (NLO) material was synthesized from aqueous solution and the crystals were grown by the slow evaporation technique. The single crystal X-ray diffraction (XRD) analysis revealed that the UT crystal belongs to the orthorhombic system. The functional groups of UT have been identified by the Fourier transform infrared spectral studies. The optical transparent window in the visible and near the IR regions was investigated. The transmittance of UT has been used to calculate the refractive index (n) as a function of the wavelength. The nonlinear optical property of the grown crystal has been confirmed by the Kurtz powder second harmonic generation test. The birefringence of the crystal was determined using a tungsten halogen lamp source. The laser induced surface damage threshold for the grown crystal was measured using the Nd:YAG laser. The anisotropic in mechanical property of the grown crystals was studied using Vicker's microhardness tester at different planes. The etch pit density of UT crystals was investigated. The thermal behavior of UT was investigated using the TG-DTA and DSC studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  13. Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal

    NASA Astrophysics Data System (ADS)

    Chhaganlal Gandhi, Ashish; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace

    2017-05-01

    Understanding of magnetocrystalline anisotropy in CaFe2O4 is a matter of importance for its future applications. A high quality single crystal CaFe2O4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe2O4.

  14. PbF2-based single crystals and phase diagrams of PbF2-MF2 systems (M = Mg, Ca, Sr, Ba, Cd)

    NASA Astrophysics Data System (ADS)

    Buchinskaya, I. I.; Fedorov, Pavel P.; Sobolev, B. P.

    1997-07-01

    Optical grade single crystals of Pb0.67Cd0.33F2 and Pb1-xCaxF2 (x less than 0.05) were grown by the Bridgman technique in graphite crucibles under fluorinating atmosphere of teflon pyrolysis products. For determinations of concentration areas of solid solutions, suitable for crystal growth, the phase interactions in the systems PbF2 with fluorides of alkaline-earth elements and Cd were studied by DTA and x-ray powder diffraction techniques. Phase diagrams were described by corresponding thermodynamic models. Transition from pure PbF2 to two- component Pb0.67Cd0.33F2 crystal is accompanied by some increase in radiation hardness of the latter and positive changes of mechanical characteristics (the Pb0.67Cd0.33F2 composition microhardness is 147 plus or minus 5 kg/mm2 that is 5 times that of a pure lead fluoride, 28 plus or minus 4 kg/mm2). These solid solutions have a cubic Fm3m fluorite-type lattice as a high-temperature modification of PbF2.

  15. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation, Lorentz-Lorentz equation, optical band gap and coupled dipole method (CDM). The Z-scan technique was carried out using solid state laser (640 nm) to analyze the nonlinear optical properties of the TP4N crystal. It exhibits the self-defocusing and saturable absorbance effect during analysis of closed and open aperture respectively. The nonlinear optical parameters such as refractive index (n2), absorption coefficient (β) and the third order nonlinear optical susceptibility (χ(3)) were analyzed.

  16. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  17. A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.

    PubMed

    Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir

    2017-06-01

    This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.

  18. Growth of high quality and large-sized Rb 0.3MoO 3 single crystals by molten salt electrolysis method

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing

    2005-05-01

    High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.

  19. Establishment of the structural and enhanced physicochemical properties of the cocrystal-2-benzyl amino pyridine with oxalic acid

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Mathammal, R.

    2017-09-01

    We report on a cocrystal of 2-(benzyl amino) pyridine (BAP) with oxalic acid (OA) in the ratio 1:1. The cocrystal was synthesised and single crystals were grown under slow evaporation technique at room temperature. Single crystal X-ray diffraction (SCXRD) analysis determined the structure of the cocrystal formed and it belongs to orthorhombic system with Cc space group. It was also subjected to X-ray Powder diffraction (XRPD) to confirm the cocrystal structure. Hirshfeld surfaces and fingerprints were plotted to analyze the intermolecular interactions. Spectroscopic techniques such as FTIR, FT-Raman and NMR were carried out to identify the functional groups present in the cocrystal. The bioactivity of the cocrystal was revealed from the UV-Vis analysis. Computational Density Functional Theory (DFT) was adopted at the B3LYP/6-31+G** level to calculate the optimized geometrical parameters and the vibrational frequencies of the cocrystal. The non-linear optical property of the cocrystal was revealed from the SHG test. The different types of interactions and delocalization of charge were analysed from Natural Bond Orbital (NBO) calculations. The HOMO-LUMO energies and MEP surface maps confirmed the pharmaceutical importance of the (1:1) BAPOA cocrystal. The cocrystal has been explored for the invitro antioxidant activity and insilico molecular docking studies.

  20. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1–yY y) 1–xCa xCoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  1. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1–yY y) 1–xCa xCoO 3-δ

    DOE PAGES

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...

    2017-06-27

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  2. Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon

    2017-05-01

    We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.

  3. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    PubMed

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  4. Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains

    PubMed Central

    DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.

    2013-01-01

    Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165

  5. Growth of NBT-BT single crystals by flux method and their structural, morphological and electrical characterizations

    NASA Astrophysics Data System (ADS)

    Kanuru, Sreenadha Rao; Baskar, K.; Dhanasekaran, R.; Kumar, Binay

    2016-05-01

    In this paper, one of the important, eco-friendly polycrystalline material, (1-x)(Na0.5Bi0.5)TiO3 (NBT) - xBaTiO3 (BT) of different compositions (x=0.07, 0.06 and 0.05 wt%) around the morphotropic phase boundary (MPB) were synthesized by solid state reaction technique. And the single crystals with 13×7×7 mm3, 12×12×7 mm3 and 10×7×4 mm3 dimensions were grown by self flux method. The morphology, crystal structure and unit-cell parameters have been studied and the monoclinic phase has been identified for 0.07 wt% of BT. Higher BT concentration changes the crystal habit and the mechanism has been studied clearly. Raman spectroscopy at room-temperature confirms the presence of functional groups. The quality of the as grown single crystals was examined by high resolution x-ray diffraction analysis. The dielectric properties of the as grown crystals were investigated in the frequency range of 20 Hz-2 MHz from room temperature to 450 °C. The broad dielectric peak and frequency dispersion demonstrates the relaxor behavior of grown crystals. The dielectric constant (εr), transition temperature (Tm), and depolarization temperature (Td) of the grown crystals are found to be comparatively good. The diffusive factor (γ) from Curie-Weiss law confirms the as grown NBT-BT single crystals are relaxor in nature.

  6. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    PubMed

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  7. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines

    PubMed Central

    Roessler, Christian G.; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M.; Allaire, Marc; Soares, Alexei S.; Héroux, Annie

    2013-01-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide ‘conveyor belt’. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second. PMID:23955046

  8. Crystal Structure of Hydrazinium Iodide by Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.

    The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.

  9. Crystal Structure of Hydrazinium Iodide by Neutron Diffraction

    DOE PAGES

    Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.

    2017-10-31

    The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.

  10. Study of the inhibition effect of thiazone on muscle optical clearing

    NASA Astrophysics Data System (ADS)

    Jin, Xiaowei; Deng, Zhichao; Wang, Jin; Ye, Qing; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2016-10-01

    We investigated the effect of thiazone, a widely used penetration enhancer, on in vitro porcine skin and muscle tissue by single-integrating sphere technique during optical clearing (OC) treatment. The results showed that thiazone induced an increase on the total transmittance of skin which led to a reduction in that of muscle in the spectral range from 400 to 800 nm. Small particles crystalized out from the thiazone-treated muscle were observed by microscopy imaging. With the help of x-ray diffraction measurement, we ascertained that the crystal was a single-crystal of thiazone, which mainly induced an increase of the scattering. Contrast transmittance measurements carried on the mixture of water, thizaone-propylene glycol solution showed that the free water in muscle could be the main reason for the thiazone crystallization. Therefore, during OC treatment of thiazone, the remarkable effect on skin and the noticeable inhibition effect on subcutaneous muscle tissue after penetrating into the skin should be considered. The experimental results provide such a reference for the choice of penetration enhancer.

  11. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.

    PubMed

    Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R

    2008-09-29

    We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.

  12. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  13. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals

    NASA Astrophysics Data System (ADS)

    Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.

    2013-03-01

    In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.

  14. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals.

    PubMed

    Prasanyaa, T; Jayaramakrishnan, V; Haris, M

    2013-03-01

    In this paper, we report the successful growth of pure, Cu(2+) ions and Cd(2+) ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu(2+) and Cd(2+) ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd(2+) and Cu(2+) doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Vapor Growth and Characterization of Cr-Doped ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.

    1999-01-01

    Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.

  16. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  17. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less

  18. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove.

    PubMed

    Kafka, K R P; Austin, D R; Li, H; Yi, A Y; Cheng, J; Chowdhury, E A

    2015-07-27

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.

  19. Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Han; Yang, Bin

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  20. Structural, optical and device characteristics of 1-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1 H-pyrazol-4-yl)-2-oxoethyl)pyridinium chloride

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Elagamey, A. A.; Elgogary, S. R.; Shalof, R. T.

    2016-03-01

    1-(2-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1 H-pyrazol-4-yl)-2-oxoethyl)pyridinium chloride (DOPC) was chemically synthesized and showed thermal stability up to 220 °C. DOPC powder has polycrystalline structure and crystallizes in triclinic structure with space group, Pbar{1} . Miller indices for each diffraction plan in X-ray diffraction spectra are determined. DOPC films have been prepared via spin-coating technique onto quartz and silicon single crystal substrates. The optical properties of the films are investigated by spectrophotometric measurements of the transmittance and reflectance over the spectral range 200-2500 nm. The absorption coefficient and the refractive index of the films are calculated in which the optical band gap and single oscillator parameters are estimated. Hybrid Au/DOPC/p-Si/Al heterojunction is constructed, and the dark current-voltage characteristics are recorded. The device exhibited rectification behavior and the basic parameters such as ideality factor, barrier height, series resistance and charge carrier mobility are evaluated.

  1. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  2. Using Two-Dimensional Colloidal Crystals to Understand Crystallography

    ERIC Educational Resources Information Center

    Bosse, Stephanie A.; Loening, Nikolaus M.

    2008-01-01

    X-ray crystallography is an essential technique for modern chemistry and biochemistry, but it is infrequently encountered by undergraduate students owing to lack of access to equipment, the time-scale for generating diffraction-quality molecular crystals, and the level of mathematics involved in analyzing the resulting diffraction patterns.…

  3. The potential for the indirect crystal structure verification of methyl glycosides based on acetates' parent structures: GIPAW and solid-state NMR approaches

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna

    2017-10-01

    A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.

  4. Diffraction-geometry refinement in the DIALS framework

    DOE PAGES

    Waterman, David G.; Winter, Graeme; Gildea, Richard J.; ...

    2016-03-30

    Rapid data collection and modern computing resources provide the opportunity to revisit the task of optimizing the model of diffraction geometry prior to integration. A comprehensive description is given of new software that builds upon established methods by performing a single global refinement procedure, utilizing a smoothly varying model of the crystal lattice where appropriate. This global refinement technique extends to multiple data sets, providing useful constraints to handle the problem of correlated parameters, particularly for small wedges of data. Examples of advanced uses of the software are given and the design is explained in detail, with particular emphasis onmore » the flexibility and extensibility it entails.« less

  5. Habit control of deuterated potassium dihydrogen phosphate crystal for laser applications

    NASA Astrophysics Data System (ADS)

    Guzman, L. A.; Suzuki, M.; Fujimoto, Y.; Fujioka, K.

    2016-03-01

    In this study we investigate the habit of partially deuterated potassium dihydrogen phosphate (DKDP) crystals in the presence of Al3+ ions. We have grown single DKDP crystals in (50wt% and 80wt%) partially deuterated solutions and in solutions doped with Al3+ ions (2 ppm) by the point-seed rapid growth technique at controlled supercooling (ΔT=10°C). The growth length of each crystal face was measured and the aspect ratio was calculated. We found that crystals grown in partially deuterated solutions are similar in aspect ratio, while, crystals grown in deuterated solutions doped with Al3+ ions showed a relative change in aspect ratio, the crystal increased in size in the pyramidal direction (vertical axis direction). Crystal characteristics were also analyzed by X-ray diffraction, FTIR and Raman spectroscopy. We have speculated that the relative habit modification is due to a probably adsorption and inclusions of Al3+ ions in the prismatic section of the crystal.

  6. Hydrothermal Synthesis, Crystal Structure, and Photoluminescent Properties of Li[UO2(CH3COO)3]3[Co(H2O)6

    NASA Astrophysics Data System (ADS)

    AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.

    2017-12-01

    Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.

  7. Crystal growth of enzymes in low gravity (L-5)

    NASA Technical Reports Server (NTRS)

    Morita, Yuhei

    1993-01-01

    Recent developments in protein engineering have expanded the possibilities of studies of enzymes and other proteins. Now such studies are not limited to the elucidation of the relationship between the structure and function of the protein. They also aim at the production of proteins with new and practical functions, based on results obtained during investigation of structure and function. For continuing research in this field, investigation of the tertiary structure of proteins is important. X-ray diffraction of single crystals of protein is usually used for this purpose. The main difficulty is the preparation of the crystals. The theme of the research is to prepare such crystals at very low gravity, with the main purpose being to obtain large single crystals of proteins suitable for x-ray diffraction studies.

  8. Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL-Mandelic acid single crystal

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Mohamed, M. Peer; Caroline, M. Lydia

    2017-04-01

    An organic nonlinear optical single crystal, D-alanine DL-mandelic acid was synthesized and successfully grown by slow evaporation solution growth technique at ambient temperature using solvent of aqueous solution. The unit cell parameters were assessed from single crystal X-ray diffraction analysis. The presence of diverse functional groups and vibrational modes were identified using Fourier Transform Infra Red and Fourier Transform Raman spectral analyses. The chemical structure of grown crystal has been identified by Nuclear Magnetic Resonance spectroscopic study. Ultraviolet-visible spectral analysis reveal that the crystal has lower cut-off wavelength down to 259 nm, is a key factor to exhibit second harmonic generation signal. The electronic optical band gap and Urbach energy is calculated as 5.31 eV and 0.2425 eV respectively from the UV absorption profile. The diverse optical properties such as, extinction coefficient, reflectance, linear refractive index, optical conductivity was calculated using UV-visible data. The relative second harmonic efficiency of the compound is found to be 0.81 times greater than that of KH2PO4 (KDP). The thermal stability of the grown crystal was studied by thermogravimetric analysis and differential thermal analysis techniques. The luminescence spectrum exhibited two peaks (520 nm, 564 nm) due to the donation of protons from carboxylic acid to amino group. The Vickers microhardness test was carried out employing one of the as-grown hard crystal and there by hardness number (Hv), Meyer's index (n), yield strength (σy), elastic stiffness constant (C11) and Knoop hardness number (HK) were assessed. The dielectric behaviour of the as-grown crystal was analyzed for different temperatures (313 K, 333 K, 353 K, and 373 K) at different frequencies.

  9. Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O -demethylase crystals by the microseeding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi

    2016-11-30

    A tetrahydrofolate-dependentO-demethylase, LigM, from Sphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtained P3 121 orP3 221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding using P3 121/P3 2 21 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space group P2 12 12, with unit-cell parametersa= 102.0,b= 117.3,c = 128.1 Å. The P2 12 12 crystals diffracted to better than 2.0 Å resolution after optimizing themore » cryoconditions. Phasing using the single anomalous diffraction method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.« less

  10. Crystallization of human nicotinamide phosphoribosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryo; Nakamura, Shota; Yoshida, Takuya

    2007-05-01

    Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution. In the NAD biosynthetic pathway, nicotinamide phosphoribosyltransferase (NMPRTase; EC 2.4.2.12) plays an important role in catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide and 5′-phosphoribosyl-1′-pyrophosphate. Because the diffraction pattern of the initally obtained crystals was not suitable for structure analysis, the crystal quality was improved by successive use of the microseeding technique. The resultant crystals diffracted to 2.0 Å resolution. These crystals belonged to space group P21, with unit-cell parameters a = 60.56, b = 106.40, c = 82.78 Å.more » Here, the crystallization of human NMPRTase is reported in the free form; the crystals should be useful for inhibitor-soaking experiments on the enzyme.« less

  11. Characterization of a bent Laue double-crystal beam-expanding monochromator

    DOE PAGES

    Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo; ...

    2017-10-19

    A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less

  12. Characterization of a bent Laue double-crystal beam-expanding monochromator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo

    A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less

  13. Corrosion and Passivity Studies with Titanium

    DTIC Science & Technology

    1955-09-30

    the (00.1) Face of a Titanium Single Crystal . - Part 3 Secondary Electron Emission from the Titanium Crystal , and from the Copper-Covered Titanium...ner upon the (00.1) face of a titaniuT single crystal . Low- energy electron diffraction is used to investigate the struc- ture of the deposit. Before...cathode emisaion is strongly dependent on the work function k. 8ince varies with crystal faces and the tip is generally so small that it is a single

  14. Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xian-Rong; Gog, Thomas; Kim, Jungho

    Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less

  15. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    NASA Astrophysics Data System (ADS)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  16. Purification, isolation, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Popov, V. O.

    2017-11-01

    The spatial organization of the genome is controlled by a special class of architectural proteins, including proteins containing BTB domains that are able to dimerize or multimerize. The centrosomal protein 190 is one of such architectural proteins. The purification, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 are reported. The crystallization conditions were found by the vapor-diffusion technique. The crystals diffracted to 1.5 Å resolution and belonged to sp. gr. P3221. The structure was solved by the molecular replacement method. The structure refinement is currently underway.

  17. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  18. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  19. Phase transition sequence in ferroelectric Aurivillius compounds investigated by single crystal X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boullay, P.; Tellier, J.; Mercurio, D.; Manier, M.; Zuñiga, F. J.; Perez-Mato, J. M.

    2012-09-01

    The investigation of the phase transition sequence in SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) is reported using single-crystal X-ray diffraction. By monitoring specific reflections as a function of temperature, sensitive either to the superstructure formation or to polar displacements, it was possible to check the existence or not of an intermediate phase. This latter was confirmed in SBT, but within experimental accuracy could not be detected in SBN.

  20. Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).

    PubMed

    Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P

    2009-06-01

    The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.

  1. Atoms in Action: Observing Atomic Motion with Dynamic in situ X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cox, Jordan Michael

    Metal-organic framework (MOF) materials are rich in both structural diversity and application. These materials are comprised of metal atoms or clusters which are connected in a three-dimensional polymer-like network by bridging organic linker molecules. One of the major attractive features in MOFs is their permanent pore space which can potentially be used to adsorb or exchange foreign molecules from/with the surrounding environment. While MOFs are an active area of scientific interest, MOF materials are still relatively new, only 20 years old. As such, there is still much that needs to be understood about these materials before they can be effectively applied to widespread chemical problems like CO2 sequestration or low-pressure hydrogen fuel storage. One of the most important facets of MOF chemistry to understand in order to rationally design MOF materials with tailor-made properties is the relationship between the structural features in a MOF and the chemical and physical properties of that material. By examining in detail the atomic structure of a MOF with known properties under a variety of conditions, scientists can begin to unravel the guiding principles which govern these relationships. X-ray diffraction remains one of the most effective tools for determining the structure of a crystalline material with atomic resolution, and has been applied to the determination of MOF structures for years. Typically these experiments have been carried out using powder X-ray diffraction, but this technique lacks the high-resolution structural information found in single-crystal methods. Some studies have been reported which use specialized devices, sometimes called Environmental Control Cells, to study single crystalline MOFs under non-ambient chemical conditions in situ . However, these in situ studies are performed under static conditions. Even in cases where the ECC provides continued access to the local chemical environment during diffraction data collections, the environment is left static or data is not collected until after the material has equilibrated to its new environment. First, a unique ECC has been designed and constructed which allows continuous access to the local chemical environment of a single-crystal sample while maintaining ease of use, minimizing size, and which is easily adaptable to a wide variety of gaseous and liquid chemical stimuli. Novel methods have been developed and are herein described for utilizing this ECC and in situ X-ray diffraction methods in a dynamic manner for monitoring the structural responses of single crystals to changes in their local chemical environment. These methods provide the opportunity for the determination of changes in unit cell parameters and even complete crystal structures during adsorption, desorption, and exchange processes in MOF materials. The application of these methods to the determination of the dehydration process of a previously reported cobalt-based MOF have revealed surprising structural and dynamics data. Several new intermediate structures have been determined in this process, including one metastable species and several actively transitioning species during the dehydration process. Applying these methods to the ethanol solvation process in the same material again yielded results which were richer in structural information than the previously reported ex situ structures. A computational study of rotational potential energy surfaces in a family of photochromic MOF linkers revealed the important role rotational stereoisomers can play in maintaining light-activated functionality when these linkers are incorporated into next-generation functional MOF materials. Finally, the application of novel photocrystallography techniques were used in conjunction with spectroscopic methods to determine the nature of the anomalous behavior of a photochromic diarylethene single-crystal.

  2. Electric current generation in photorefractive bismuth silicon oxide without application of external electric field

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Kukhtarev, Nickolai; Kukhtareva, Tatiana; Edwards, Matthew E.; Reagan, Michael A.; Lyuksyutov, Sergei F.

    2003-10-01

    A holographic radial diffraction grating (HRDG) is an efficient optical element for splitting single laser beam on three 0, -1st, and +1st- diffraction order beams. The rotation of the grating at certain velocity allows a window for quality control over the frequency detuning between -1st, and +1st diffracted beams. The running interference fringes produced by the beams and projected on photorefractive crystal induce running holographic gratings in the crystal. This simple configuration is an effective tool for the study of such phenomena as space charge waves [1], domains motion [2], and electric current generation [3]. Specifics of photorefractive mechanism in cubic photorefractive crystals (BSO, BTO) normally require a use of external electric field to produce reasonable degree of refractive index modulation to observe associated with it phenomena. In this work we provide a direct experimental observation of the electric current generated in photorefractive BSO using running grating technique without an applied electric field. Moving interference fringes modulate a photoconductivity and an electric field in photorefractive crystal thus creating the photo electro-motive force (emf) and the current. The magnitude of the current varies between 1 and 10 nA depending on the rotation speed of HRDG. The peculiarities of the current behavior include a backward current flow, and current oscillations. The holographic current generated through this technique can find applications in non-destructive testing for ultra-sensitive vibrometry, materials characterization, and for motion sensors. References [1] S.F. Lyuksyutov, P. Buchhave, and M.V. Vasnetsov, Physical Review Letters, 79, No.1, 67-70 (1997) [2] P. Buchhave, S. Lyuksyutov, M. Vasnetsov, and C. Heyde, Journal Optical Society of America B, 13, No.11 2595-2602 (1996) [3] M. Vasnetsov, P. Buchhave, and S. Lyuksyutov Optics Communications, 137, 181-191 (1997)

  3. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  4. Fabrication and convergent X-ray nanobeam diffraction characterization of submicron-thickness SrTiO 3 crystalline sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilka, J. A.; Park, J.; Sampson, K. C.

    The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction rocking curve widths of these SrTiO3 sheets are less than 0.02 degrees, less than a factor of two larger than bulk SrTiO3, making these crystals suitable substrates for epitaxial thin film growth. The change in the rocking curve width is sufficiently small that we deduce that dislocations are not introduced into the SrTiO3 sheets. Observed lattice distortions are consistent with a low concentration of point defects.

  5. Current trends in protein crystallization.

    PubMed

    Gavira, José A

    2016-07-15

    Proteins belong to the most complex colloidal system in terms of their physicochemical properties, size and conformational-flexibility. This complexity contributes to their great sensitivity to any external change and dictate the uncertainty of crystallization. The need of 3D models to understand their functionality and interaction mechanisms with other neighbouring (macro)molecules has driven the tremendous effort put into the field of crystallography that has also permeated other fields trying to shed some light into reluctant-to-crystallize proteins. This review is aimed at revising protein crystallization from a regular-laboratory point of view. It is also devoted to highlight the latest developments and achievements to produce, identify and deliver high-quality protein crystals for XFEL, Micro-ED or neutron diffraction. The low likelihood of protein crystallization is rationalized by considering the intrinsic polypeptide nature (folded state, surface charge, etc) followed by a description of the standard crystallization methods (batch, vapour diffusion and counter-diffusion), including high throughput advances. Other methodologies aimed at determining protein features in solution (NMR, SAS, DLS) or to gather structural information from single particles such as Cryo-EM are also discussed. Finally, current approaches showing the convergence of different structural biology techniques and the cross-methodologies adaptation to tackle the most difficult problems, are presented. Current advances in biomacromolecules crystallization, from nano crystals for XFEL and Micro-ED to large crystals for neutron diffraction, are covered with special emphasis in methodologies applicable at laboratory scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Preparation and guest-uptake protocol for a porous complex useful for 'crystal-free' crystallography.

    PubMed

    Inokuma, Yasuhide; Yoshioka, Shota; Ariyoshi, Junko; Arai, Tatsuhiko; Fujita, Makoto

    2014-02-01

    We recently reported a new method for single-crystal X-ray diffraction (SCD) analysis that does not require the crystallization of the target compound. In this 'crystal-free' crystallography, a tiny crystal of a porous complex is soaked in the solution of the target guest. The guest molecules are absorbed and oriented in the crystal pores and can be analyzed by X-ray diffraction. We describe here a detailed synthetic protocol for the preparation of uniform single crystals of the porous host complex and for the subsequent guest uptake. The protocol describes our most versatile porous complex, which is prepared from commercially available ZnI2 and 2,4,6-tri(4-pyridyl)-1,3,5-triazine. The host complex has large pores with a cross-section of 8 × 5 Å(2). Single crystals of the complex are grown from layered solutions of the two components. The pores of the as-synthesized complex are filled with nitrobenzene, which is replaced with the inert solvent cyclohexane. This solvent exchange is essential for the rapid and effective inclusion of target compounds. The most crucial and delicate step is the selection of high-quality single crystals from the mixture of crystals of various shapes and sizes. We suggest using the facial indices of the single crystals as a criterion for crystal selection. Single-crystal samples for X-ray analysis can be prepared by immersing the selected crystals in a cyclohexane/dichloromethane solution of target compound. After a very slow evaporation of the solvent, typically over 2 d, the final crystal can be picked and directly subjected to SCD analysis. The protocol can be completed within ∼16 d.

  7. Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.

    PubMed

    Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D

    2012-12-01

    Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.

  8. Improving the diffraction of apoA-IV crystals through extreme dehydration.

    PubMed

    Deng, Xiaodi; Davidson, W Sean; Thompson, Thomas B

    2012-01-01

    Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64-335, is presented. ApoA-IV(64-335) crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction. © 2012 International Union of Crystallography. All rights reserved.

  9. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.

  10. Crystal growth and characterization of the CMR compound La 1.2(Sr,Ca) 1.8Mn 2O 7

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Haut, C.; Hennion, B.; Revcolevschi, A.

    2000-12-01

    High-quality centimeter-sized single crystals of La 1.2Sr 1.8- yCa yMn 2O 7 (0.0⩽ y⩽0.2) were successfully grown using a floating zone method associated with an image furnace. We present the growth conditions together with a characterization of the single crystals by means of optical and electron microscopy, EDX and ICP⧸AES analysis, DTA-TGA measurements and redox titration, X-ray powder diffraction, Laue X-ray back-reflection and neutron diffraction. We also stress the main aspects of the complex thermodynamical and kinetic behaviors of these compounds.

  11. Flux growth of high-quality CoFe 2O 4 single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Wang, W. H.; Ren, X.

    2006-04-01

    We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.

  12. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  13. Purification, crystallization and preliminary X-ray diffraction analysis of aspartate semialdehyde dehydrogenase (Rv3708c) from Mycobacterium tuberculosis

    PubMed Central

    Vyas, Rajan; Kumar, Vijay; Panjikar, Santosh; Karthikeyan, Subramanian; Kishan, K. V. Radha; Tewari, Rupinder; Weiss, Manfred S.

    2008-01-01

    Aspartate semialdehyde dehydrogenase from Mycobacterium tuberculosis (Asd, ASADH, Rv3708c), which is the second enzyme in the lysine/homoserine-biosynthetic pathways, has been expressed heterologously in Escherichia coli. The enzyme was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Preliminary diffraction data analysis suggested the presence of up to four monomers in the asymmetric unit of the orthorhombic crystal form A and of one or two monomers in the cubic crystal form B. PMID:18323599

  14. Analyzing shear band formation with high resolution X-ray diffraction

    DOE PAGES

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; ...

    2018-01-10

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of ‘signatures’ of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation.« less

  15. A large area high resolution imaging detector for fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lupone, Sylvain; Soulisse, Pierre; Roncin, Philippe

    2018-07-01

    We describe a high resolution imaging detector based on a single 80 mm micro-channel-plate (MCP) and a phosphor screen mounted on a UHV flange of only 100 mm inner diameter. It relies on standard components and we describe its performance with one or two MCPs. A resolution of 80 μm rms is observed on the beam profile. At low count rate, individual impact can be pinpointed with few μm accuracy but the resolution is probably limited by the MCP channel diameter. The detector has been used to record the diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD), a technique probing the electronic density of the topmost layer only. The detector was also used to record the scattering profile during azimuthal scan of the crystal to produce triangulation curves revealing the surface crystallographic directions of molecular layers. It should also be compatible with reflection high energy electron (RHEED) experiment when fragile surfaces require a low exposure to the electron beam. The discussions on the mode of operation specific to diffraction experiments apply also to commercial detectors.

  16. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE PAGES

    Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; ...

    2014-11-28

    X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  17. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.

    X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  18. Mg(1 + x)Ir(1 - x) (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction.

    PubMed

    Cerný, Radovan; Renaudin, Guillaume; Favre-Nicolin, Vincent; Hlukhyy, Viktor; Pöttgen, Rainer

    2004-06-01

    The new binary compound Mg(1 + x)Ir(1 - x) (x = 0-0.054) was prepared by melting the elements in the Mg:Ir ratio 2:3 in a sealed tantalum tube under an argon atmosphere in an induction furnace (single crystals) or by annealing cold-pressed pellets of the starting composition Mg:Ir 1:1 in an autoclave under an argon atmosphere (powder sample). The structure was independently solved from high-resolution synchrotron powder and single-crystal X-ray data: Pearson symbol oC304, space group Cmca, lattice parameters from synchrotron powder data a = 18.46948 (6), b = 16.17450 (5), c = 16.82131 (5) A. Mg(1 + x)Ir(1 - x) is a topologically close-packed phase, containing 13 Ir and 12 Mg atoms in the asymmetric unit, and has a narrow homogeneity range. Nearly all the atoms have Frank-Kasper-related coordination polyhedra, with the exception of two Ir atoms, and this compound contains the shortest Ir-Ir distances ever observed. The solution of a rather complex crystal structure from powder diffraction, which was fully confirmed by the single-crystal method, shows the power of powder diffraction in combination with the high-resolution data and the global optimization method.

  19. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  20. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE PAGES

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  1. Dynamic X-ray diffraction sampling for protein crystal positioning

    PubMed Central

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558

  2. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.

  3. Single-crystal films of a combination of materials (co-crystal) involving DAST and IR-125 for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.

    2006-03-01

    Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.

  4. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.

  5. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  6. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp.more » gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.« less

  7. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2009-11-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  8. SAD phasing with in-house cu Ka radiation using barium as anomalous scatterer.

    PubMed

    Dhanasekaran, V; Velmurugan, D

    2011-12-01

    Phasing of lysozyme crystals using co-crystallized barium ions was performed using single-wavelength anomalous diffraction (SAD) method using Cu Ka radiation with in-house source of data collection. As the ion binding sites vary with respect to the pH of the buffer during crystallization, the highly isomorphic forms of lysozyme crystals grown at acidic and alkaline pH were used for the study. Intrinsic sulphur anomalous signal was also utilized with anomalous signal from lower occupancy ions for phasing. The study showed that to solve the structure by SAD technique, 2.8-fold data redundancy was sufficient when barium was used as an anomalous marker in the in-house copper X-ray radiation source for data collection. Therefore, co-crystallization of proteins with barium containing salt can be a powerful tool for structure determination using lab source.

  9. Microwave-specific heating of crystalline species in nuclear waste glass

    DOE PAGES

    Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.

    2016-08-03

    Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time.more » The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.« less

  10. Growth and characterization of β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  11. On high-resolution reciprocal-space mapping with a triple-crystal diffractometer for high-energy X-rays.

    PubMed

    Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P

    1998-03-01

    High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

  12. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.

    2016-05-06

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field,more » UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.« less

  13. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV-vis-NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology-Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission-Department of Atomic Research-Consortium for Scientific Research (Grant No. CSR-KN/CSR-63/2014-2015/503), and the Kalpakkam and Indore, India.

  14. Ferroelectrics under the Synchrotron Light: A Review

    PubMed Central

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  15. TL and PL studies on cubic fluoroperovskite single crystal (KMgF{sub 3}: Eu{sup 2+}, Ce{sup 3+})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, D. Joseph, E-mail: josephd@ssn.edu.in; Ramasamy, P.; Madhusoodanan, U.

    2014-04-24

    The perovskite-like KMgF{sub 3} polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF{sub 3} and CeF{sub 3}) Co-doped KMgF{sub 3} have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF{sub 3} samples doped with Eu{sub 2+} and Ce{sub 3+} have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu{sub 2+} at 360 nm attributed to the f → f transition ({sup 6}P{sub 7/2}→{sup 8}S{submore » 7/2}) could only be observed due to the energy transfer from Ce{sub 3+} to Eu{sub 2+}.« less

  16. Crystallization of PTP Domains.

    PubMed

    Levy, Colin; Adams, James; Tabernero, Lydia

    2016-01-01

    Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed.

  17. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    PubMed Central

    Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth

    2014-01-01

    An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176

  18. Analysis of FIB-induced damage by electron channelling contrast imaging in the SEM.

    PubMed

    Gutierrez-Urrutia, Ivan

    2017-01-01

    We have investigated the Ga + ion-damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga + ion-damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  19. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    DOE PAGES

    Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...

    2018-01-01

    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less

  20. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton

    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less

  1. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James; Gindhart, Amy; Blanton, Thomas

    The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.

  2. Single-crystal equations of state of magnesiowüstite at high pressures

    DOE PAGES

    Finkelstein, Gregory J.; Jackson, Jennifer M.; Sturhahn, Wolfgang; ...

    2017-08-01

    Solid solutions of (Mg,Fe)O with high iron enrichment may be an important component of ultralow-velocity zones at Earth’s core-mantle boundary. However, to date there have been few high-precision studies on the elastic properties of these materials. In this study we present results on the compression of (Mg 0.22Fe 0.78)O magnesiowüstite in both neon and helium pressure media using single-crystal diffraction to ~55 GPa. In addition, our sample was characterized by time-domain synchrotron Mössbauer spectroscopy at ambient pressure using an extended time range that resulted in vastly improved energy resolution. The combination of these high-resolution techniques tightly constrains the presence ofmore » a defect-structure component at room pressure due to 4.7 mol% tetrahedrally-coordinated ferric iron, resulting in a renormalized composition of (Mg 0.215Fe 0.762⟂ 0.023)O. Both high-pressure diffraction datasets are well described by a 3rd-order Birch-Murnaghan equation of state. The best fit-parameters for a crystal with cubic structure in helium are K 0T = 148(3) GPa, K' 0T = 4.09(12), and V 0 = 78.87(6) Å 3. Increasing differential stress in the neon-containing sample chamber was correlated with increasing apparent distortion of the initially cubic unit cell, requiring a lower-symmetry hexagonal cell to fit the data above ~20 GPa. For fit equations of state, we determine the pressure-dependent correlation ellipses for the equation of state parameters and compare with previously published single-crystal diffraction data from (Mg,Fe)O crystals in a helium medium. We make two main observations from the datasets using a helium pressure medium: K 0T decreases as a function of increasing iron content from periclase to wüstite and K' 0T is consistent with an approximately constant value of 4.0 that is independent of iron content, at least up to (Mg,Fe)O containing ~78 mol% FeO. Finally, in combination with previously reported thermal parameters, we compute the density of Mw78 at core-mantle boundary conditions and discuss the implications.« less

  3. Single-crystal equations of state of magnesiowüstite at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Gregory J.; Jackson, Jennifer M.; Sturhahn, Wolfgang

    Solid solutions of (Mg,Fe)O with high iron enrichment may be an important component of ultralow-velocity zones at Earth’s core-mantle boundary. However, to date there have been few high-precision studies on the elastic properties of these materials. In this study we present results on the compression of (Mg 0.22Fe 0.78)O magnesiowüstite in both neon and helium pressure media using single-crystal diffraction to ~55 GPa. In addition, our sample was characterized by time-domain synchrotron Mössbauer spectroscopy at ambient pressure using an extended time range that resulted in vastly improved energy resolution. The combination of these high-resolution techniques tightly constrains the presence ofmore » a defect-structure component at room pressure due to 4.7 mol% tetrahedrally-coordinated ferric iron, resulting in a renormalized composition of (Mg 0.215Fe 0.762⟂ 0.023)O. Both high-pressure diffraction datasets are well described by a 3rd-order Birch-Murnaghan equation of state. The best fit-parameters for a crystal with cubic structure in helium are K 0T = 148(3) GPa, K' 0T = 4.09(12), and V 0 = 78.87(6) Å 3. Increasing differential stress in the neon-containing sample chamber was correlated with increasing apparent distortion of the initially cubic unit cell, requiring a lower-symmetry hexagonal cell to fit the data above ~20 GPa. For fit equations of state, we determine the pressure-dependent correlation ellipses for the equation of state parameters and compare with previously published single-crystal diffraction data from (Mg,Fe)O crystals in a helium medium. We make two main observations from the datasets using a helium pressure medium: K 0T decreases as a function of increasing iron content from periclase to wüstite and K' 0T is consistent with an approximately constant value of 4.0 that is independent of iron content, at least up to (Mg,Fe)O containing ~78 mol% FeO. Finally, in combination with previously reported thermal parameters, we compute the density of Mw78 at core-mantle boundary conditions and discuss the implications.« less

  4. Screening and structural elucidation of the zwitterionic cocrystal o-picolinic acid with p-nitro aniline

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.; Sangeetha, K.

    2017-04-01

    The cocrystal was screened by solvent drop grinding method and the crystals were grown by slow evaporation method at ambient conditions. The cocrystal formation of o-picolinic acid with p-nitro aniline was initially analysed by powder X-ray diffraction. Further the structural properties of the grown crystal were confirmed by the single X-ray diffraction which indicates that the cocrystal were connected by the strong N+sbnd H-⋯O hydrogen bond interaction. The cell parameters of the grown crystal were a = 14.2144(5) Å, b = 5.7558(2) Å, c = 16.0539(6) Å. The functional groups were identified using Fourier transform infrared and Raman spectral analysis. The excitation and emission state of the sample was analysed by the UV-Visible and Fluorescence studies. The red emission was observed from the Fluorescence studies. NMR studies revealed the chemical shift of the cocrystal. Thermal stability and its melting behaviour were studied by TGA and DSC analytical techniques. Electrical behaviour was studied using the dielectric studies. The intermolecular charge transfer within the molecule were analysed using HOMO- LUMO plots.

  5. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D.; Wu, M.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less

  6. Crystallization and preliminary X-ray crystallographic analysis of the heterodimeric crotoxin complex and the isolated subunits crotapotin and phospholipase A{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, K. F.; Murakami, M. T.; Cintra, A. C. O.

    2007-04-01

    Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained. Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained.more » The crotoxin complex crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 38.2, b = 68.7, c = 84.2 Å, and diffracted to 1.75 Å resolution. The crystal of the phospholipase A{sub 2} domain belongs to the hexagonal space group P6{sub 1}22 (or its enantiomorph P6{sub 5}22), with unit-cell parameters a = b = 38.7, c = 286.7 Å, and diffracted to 2.6 Å resolution. The crotapotin crystal diffracted to 2.3 Å resolution; however, the highly diffuse diffraction pattern did not permit unambiguous assignment of the unit-cell parameters.« less

  7. X-Ray Topography of Tetragonal Lysozyme Grown by the Temperature-Controlled Technique

    NASA Technical Reports Server (NTRS)

    Stojanoff, V.; Siddons, D. P.; Monaco, Lisa A.; Vekilov, Peter; Rosenberger, Franz

    1997-01-01

    Growth-induced defects in lysozyme crystals were observed by white-beam and monochromatic X-ray topography at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). The topographic methods were non-destructive to the extent that traditional diffraction data collection could be performed to high resolution after topography. It was found that changes in growth parameters, defect concentration as detected by X-ray topography, and the diffraction quality obtainable from the crystals were all strongly correlated. In addition, crystals with fewer defects showed lower mosaicity and higher diffraction resolution as expected.

  8. Growth and characterization of Methyl 2-amino-5-bromobenzoate crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Gopalakrishnan, R.

    2012-11-01

    Good quality single crystal of organic Methyl 2-amino-5-bromobenzoate (M2A5B) was grown using slow evaporation solution growth technique. The grown crystal was confirmed by single crystal X-ray diffraction. The functional groups and vibrational frequencies were identified using FT-IR and FT-Raman spectral analyses. The presence of hydrogen and carbon atoms in the grown sample was confirmed with proton and carbon NMR spectral studies. The optical energy band gap of the title compound is found to be 2.7 eV from the optical transmission spectra. The refractive indices nx, ny, and nz were found to be 1.569, 1.587 and 1.600, respectively using Brewster's angle method. The melting point of the material obtained with melting point apparatus is 74 °C. Thermal stability of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The mechanical behaviour of the grown crystal was analyzed with Vicker's microhardness tester. The particle size dependent second harmonic generation efficiency for M2A5B was evaluated by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching.

  9. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    NASA Astrophysics Data System (ADS)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  10. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of themore » observed device performance enhancements.« less

  11. Phase coexistence and domain configuration in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  12. Growth, crystalline perfection, spectral and optical characterization of a novel optical material: l-tryptophan p-nitrophenol trisolvate single crystal.

    PubMed

    Sivakumar, N; Srividya, J; Mohana, J; Anbalagan, G

    2015-03-15

    l-tryptophan p-nitrophenol trisolvate (LTPN), an organic nonlinear optical material was synthesized using ethanol-water mixed solvent and the crystals were grown by a slow solvent evaporation method. The crystal structure and morphology were studied by single crystal X-ray diffraction analysis. The crystalline perfection of the LTPN crystal was analyzed by high-resolution X-ray diffraction study. The molecular structure of the crystal was confirmed by observing the various characteristic functional groups of the material using vibrational spectroscopy. The cut-off wavelength, optical transmission, refractive index and band gap energy were determined using UV-visible data. The variation of refractive index with wavelength shows the normal behavior. The second harmonic generation of the crystal was confirmed and the efficiency was measured using Kurtz Perry powder method. Single and multiple shot methods were employed to measure surface laser damage of the crystal. The photoluminescence spectral study revealed that the emission may be associated with the radiative recombination of trapped electrons and holes. Microhardness measurements revealed that LTPN belongs to a soft material category. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    PubMed

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  14. Growth and characterization of Melaminium bis (trichloroacetate) dihydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Renganathan, N. G.; Marchewka, M. K.; Sivakumar, N.; Gayathri, K.; Krishnan, P.; Gunasekaran, S.; Anbalagan, G.

    2013-01-01

    Single crystals of melaminium bis (trichloroacetate) dihydrate have been grown successfully by slow evaporation solution growth technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in monoclinic system with non -centrosymmetric space group C2 with lattice parameters a = 17.70 Å, b = 8.44 Å, c = 6.09 Å, α = 90°, β = 100.24°, γ = 90° and V = 900 (Å)3. The UV-Vis transmittance spectrum shows that the crystal has a good optical transmittance in the entire visible region with lower cutoff wavelength of 351 nm. The vibrational frequencies of various functional groups present in the crystal have been derived from FI-IR, FT-Raman and Confocal Raman analyses. The chemical structure of the compound was established by 1H and 13C NMR spectrum. TGA-DTA analysis reveals that the materials have good thermal stability and the melting point of the crystal is found to be 195 °C. The dielectric response of the crystals was studied in the frequency range 50 Hz to 5 MHz at different temperatures and the results are discussed. Etching studies show the growth pattern of the crystals. The second harmonic generation efficiency was measured in comparison with KDP by employing powder Kurtz method.

  15. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less

  16. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  17. Itinerant Antiferromagnetism in FeMnP 0.8Si 0.2

    DOE PAGES

    Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; ...

    2015-09-25

    Compounds based on the Fe 2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP 0.8Si 0.2 with the Fe 2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. Themore » room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature« less

  18. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  19. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  20. Twin-variant reorientation strain in Ni-Mn-Ga single crystal during quasi-static mechanical compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan

    2011-01-01

    Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aromí, G.; Beavers, C. M.; Sánchez Costa, J.

    Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less

  2. Single-crystalline nanogap electrodes: enhancing the nanowire-breakdown process with a gaseous environment.

    PubMed

    Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2012-10-24

    A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.

  3. Fabrication of optical element from unidirectional grown imidazole-imidazolium picrate monohydrate (IIP) organic crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Murugakoothan, P.

    2014-12-01

    Nonlinear optical bulk single crystal of Imidazole-imidazolium picrate monohydrate (IIP) has been grown by Sankaranarayanan-Ramasamy (SR) method using acetonitrile as solvent. First time we report the bulk growth of IIP crystal by SR method. The transparent IIP single crystal of maximum diameter 21 mm and length 46 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, dielectric and laser damage threshold studies. The crystalline perfection of the grown crystal was analyzed using HRXRD. Cut off wavelength and optical transmission window of the crystal was assessed by UV-vis-NIR and the refractive index of the crystal was found. The mechanical property of the crystal was estimated by Vicker's hardness test. The dielectric property of the crystal was measured as a function of frequency. The laser damage threshold value was determined. The particle size dependent second harmonic generation efficiency for IIP was evaluated with standard reference material potassium dihydrogen phosphate (KDP) by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of IIP crystal was investigated by the SHG Maker fringes technique. The mechanism of growth is revealed by carrying out chemical etching using acetonitrile as etchant.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, J. R.

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existencemore » of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.« less

  5. High-temperature/high-pressure x-ray diffraction: Recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Johnson, S.W.; Zinn, A.S.

    1989-01-01

    We have developed two Merrill-Bassett diamond-anvil cells for specialized high-temperature uses. The first is constructed largely of rhenium to provide uniform, constant P and T on the order of 20 GPa at 1200 K for extended periods. The second is for single-crystal x-ray diffraction, but can be heated to 630 K at 20 GPa to grow single-crystal samples which cannot be produced at room temperature. With this cell, the crystal structure of /var epsilon/-O/sub 2/ was shown to be monoclinic with a = 3.649 A, b = 5.493 A, c = 7.701 A, and /Beta/ = 116.11/degree/ at 19.7 GPa.more » 15 refs.« less

  6. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal.

    PubMed

    Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P

    2017-09-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.

  7. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal

    PubMed Central

    Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.

    2017-01-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237

  8. Microtube-Czochralski technique (μT-CZ):. a novel way of seeding the melt to grow bulk single crystal

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, K.; Ramasamy, P.

    1998-09-01

    A novel microtube seeding has been proposed in the conventional Czochralski pulling technique to grow a bulk single crystal. The versatility of the technique has been shown by adopting this method for the growth of benzil. Benzil single crystals having hexagonal facets are grown by this technique called the microtube-Czochralski technique (μT-CZ). Due to capillary rise, a fine column of melt was crystallized inside the microtube, which leads to the formation of the single crystal nucleation and ends up with hexagonal morphology. The reproducibility for getting single crystal is about 80%. It is evident that this technique is more viable to grow a bulk single crystal from the melt without a pregrown-seed. Further, the proposed μT-CZ technique can also be extended to other newer materials with the proper choice of the microtube.

  9. Bulk growth of undoped and Nd3+ doped zinc thiourea chloride (ZTC) monocrystal: Exploring the remarkably enhanced structural, optical, electrical and mechanical performance of Nd3+ doped ZTC crystal for NLO device applications

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, Gajanan. G.

    2017-05-01

    In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption coefficient and refraction has been determined using the Z-scan transmittance data.

  10. Large-size TlBr single crystal growth and defect study

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun

    2018-04-01

    Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.

  11. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    NASA Astrophysics Data System (ADS)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  12. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  13. Analyzing shear band formation with high resolution X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  14. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    PubMed

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.

  15. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    PubMed Central

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  16. Crystallization and preliminary X-ray diffraction analysis of Leishmania major dihydroorotate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordeiro, Artur T.; Feliciano, Patricia R.; Nonato, M. Cristina, E-mail: cristy@fcfrp.usp.br

    2006-10-01

    Dihydroorotate dehydrogenase from L. major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitant agent. A complete data set from a native crystal has been collected to 2.0 Å resolution using an in-house rotating-anode generator. Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes that catalyze the oxidation of l-dihydroorotate to orotate, the fourth step in the de novo pyrimidine nucleotide synthesis pathway. In this study, DHODH from Leishmania major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitating agent. The crystals belong to space group P6{sub 1}, with unit-cell parameters a = 143.7, cmore » = 69.8 Å. X-ray diffraction data were collected to 2.0 Å resolution using an in-house rotating-anode generator. Analysis of the solvent content and the self-rotation function indicate the presence of two molecules in the asymmetric unit. The structure has been solved by the molecular-replacement technique.« less

  17. Surface Modification and Nanojunction Fabrication with Molecular Metal Wires

    DTIC Science & Technology

    2012-12-21

    single - crystal X-ray diffraction studies of 2 and 3. Both the single - crystal structural data of 2 and 3 and the spectroscopic/voltammetric data...structure, magnetic properties, and single -molecule conductance of two new trinuclear metal string complexes, [Ni3(dzp)4(NCS)2] (2) and [ Co3 (dzp)4(NCS...modifying the crystallization conditions. The [s- Co3 (dpa)4(Cl)2] contains a symmetrical tricobalt framework with identical Co–Co bond lengths (2.34 Å

  18. Structural characterization of framework-gas interactions in the metal-organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction.

    PubMed

    Gonzalez, Miguel I; Mason, Jarad A; Bloch, Eric D; Teat, Simon J; Gagnon, Kevin J; Morrison, Gregory Y; Queen, Wendy L; Long, Jeffrey R

    2017-06-01

    The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH 4 , N 2 , O 2 , Ar, and P 4 adsorption in Co 2 (dobdc) (dobdc 4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH 4 and Co-Ar interactions observed in Co 2 (dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH 4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co 2 (dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol -1 (for Ar). Moreover, the structures of Co 2 (dobdc)·3.8N 2 , Co 2 (dobdc)·5.9O 2 , and Co 2 (dobdc)·2.0Ar reveal the location of secondary (N 2 , O 2 , and Ar) and tertiary (O 2 ) binding sites in Co 2 (dobdc), while high-pressure CO 2 , CO, CH 4 , N 2 , and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

  19. Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids

    NASA Astrophysics Data System (ADS)

    Haque, Ashanul; Hsieh, Ming-Fa; Hassan, Syed Imran; Haque Faizi, Md. Serajul; Saha, Anannya; Dege, Necmi; Rather, Jahangir Ahmad; Khan, Muhammad S.

    2017-10-01

    A series of ferrocene-1H-1,2,3-triazole hybrids namely 1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (1), 1-(4,4‧-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-triazole (2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (3), 1-(4-bromophenyl)-4-ferrocenyl-1H-1,2,3-triazole (4) and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (5) were designed and synthesized by copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction. All the new hybrids were characterized by microanalyses, NMR (1H and 13C), UV-vis, IR, ESI-MS and electrochemical techniques. Crystal structure of the compound (3) was solved by single crystal X-ray diffraction method. The structural (single crystal) and spectroscopic (UV-Vis. and IR) properties of the compound 3 have been analyzed and compared by complementary quantum modeling. Hybrids 1-5 exhibited low toxicity and demonstrated neuroprotective effect.

  20. Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Avadhut, Yamini S.; Weber, Johannes; Schmedt auf der Günne, Jörn

    2017-09-01

    An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method.

  1. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.

    X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factorsmore » from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  2. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  3. Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300more » K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.« less

  4. Structures of Astromaterials Revealed by EBSD

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2018-01-01

    Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.

  5. A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes.

    PubMed

    Martín-Caballero, Jagoba; San José Wéry, Ana; Reinoso, Santiago; Artetxe, Beñat; San Felices, Leire; El Bakkali, Bouchra; Trautwein, Guido; Alcañiz-Monge, Juan; Vilas, José Luis; Gutiérrez-Zorrilla, Juan M

    2016-05-16

    The first decavanadate-based microporous hybrid, namely, [Cu(cyclam)][{Cu(cyclam)}2(V10O28)]·10H2O (1, cyclam = 1,4,8,11-tetraazacyclotetradecane) was prepared by reaction of (VO3)(-) anions and {Cu(cyclam)}(2+) complexes in NaCl (aq) at pH 4.6-4.7 and characterized by elemental analyses, thermogravimetry, and X-ray diffraction (powder, single-crystal) techniques. Compound 1 exhibits a POMOF-like supramolecular open-framework built of covalent decavanadate/metalorganic layers with square-like voids, the stacking of which is aided by interlamellar cementing complexes and generates water-filled channels with approximate cross sections of 10.4 × 8.8 Å(2). The framework is robust enough to remain virtually unaltered upon thermal evacuation of all water molecules of hydration, as demonstrated through single-crystal X-ray diffraction studies on the anhydrous phase 1a. This permanent microporosity renders interesting functionality to 1, such as selective adsorption of CO2 over N2 and remarkable activity as heterogeneous catalyst toward the H2O2-based oxidation of the highly-stable, tricyclic alkane adamantane.

  6. Crystal growth, perfection, linear and nonlinear optical, photoconductivity, dielectric, thermal and laser damage threshold properties of 4-methylimidazolium picrate: an interesting organic crystal for photonic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.

    2016-10-01

    The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.

  7. Streaking images that appear only in the plane of diffraction in undoped GaAs single crystals: Diffraction imaging (topography) by monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret

    1988-01-01

    Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.

  8. Synthesis and structure identification of 2-amino-4, 6- dimethyl pyrimidine with gallic acid and pimelic acid

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.

    2018-07-01

    Reaction of 2-amino-4, 6- dimethyl pyrimidine with carboxylic acid such as gallic acid and pimelic acid, yielded a salt and co-crystal, respectively. The new crystal forms were obtained from slow evaporation technique. The crystal structure and hydrogen bond interaction of the two crystals were determined by single X-ray diffraction analysis. Inter molecular interactions of the compounds were investigated using the 3D Hirshfeld surfaces and the associated 2D fingerprint plots. The functional groups were identified by the FTIR, FT-Raman spectral studies. The presence of carbon and hydrogen in the two samples were identified by the 1H and 13C NMR analysis. The excited energy was observed using UV-Visible spectral analysis. The fluorescence spectra revealed the emission state of the two samples. The thermal behaviour and stability of the two compounds were evaluated by the TGA-DSC analysis.

  9. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    PubMed

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  10. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb 2V 4+V 25+O 8

    NASA Astrophysics Data System (ADS)

    Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-10-01

    High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.

  11. Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.

    PubMed

    Yamanaka, Takamitsu

    2005-09-01

    The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.

  12. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  13. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and "turn on" fluorescent sensors for fluoride anion sensing employing hydrogen bonding.

    PubMed

    Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Characterization of crust formation on a parent body of achondrites and the moon by pyroxene crystallography and chemistry

    NASA Technical Reports Server (NTRS)

    Takeda, H.; Miyamoto, M.; Ishii, T.; Reid, A. M.

    1976-01-01

    Single crystal X-ray diffraction and electron microprobe techniques were used to study lunar crustal pyroxenes in a cataclastic norite, a pyroxene-rich clast, and anorthosite lunar samples, and also in meteorites including diogenites, eucrites, and the Yamoto (1) howardite. The crystallographic and chemical characteristics of pyroxenes in these materials are compared and are discussed in terms of the lower stability limit of pigeonite. A mechanical mixing model of howardite is proposed.

  15. Fast iodide-SAD phasing for high-throughput membrane protein structure determination

    PubMed Central

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A.; Gordeliy, Valentin; Popov, Alexander

    2017-01-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide–single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins—the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein–coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques. PMID:28508075

  16. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    PubMed

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  17. Evaluation of stability region for scandium-containing rare-earth garnet single crystals and their congruent-melting compositions

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Domoroshchina, E. N.; Kuz'micheva, G. M.; Rybakov, V. B.

    2017-06-01

    Single crystals of scandium-containing rare-earth garnets in system R-Sc-C-O (R3+=Y, Gd; C3+=Al, Ga) have been grown by the Czochralski technique. X-ray diffraction analysis has been used to refine crystal compositions. The fundamental difference between the melt compositions and compositions of grown crystals has been found (except for compositions of congruent-melting compounds, CMC). The specific features of garnet solid solution formation have been established and the ternary diagrams with real or hypothetical phases have been built. The dinamics of coordination polyhedra changes with the formation of substitutional solid solutions have been proposed based on the mathematical modeling and experimental data. Possible existence of CMC with garnet structure in different systems as well as limit content of Sc ions in dodecahedral and octahedral sites prior to their partial substitution of ions, located in other sites, have been evaluated. It was established that the redistribution of cations over crystallographic sites (antistructural point defects) due to system self-organization to maintain its stability may be accompanied by cation ordering and the symmetry change of individual polyhedrons and/or the whole crystal.

  18. Synthesis and time-resolved structural characterization of framework and mineral sulfides

    NASA Astrophysics Data System (ADS)

    Cahill, Christopher Langley

    A new class of open-framework organic/inorganic hybrid materials based on In-S chemistry has been discovered. The compounds therein exhibit unprecedented structural diversity compared to known porous sulfides, primarily due to variation in framework building units. Further, large increases in pore dimensions (vs. zeolites, for example) are observed as these materials consist of comer and edge linked clusters, e.g. In10S20, In9S17, In4S10 and In6S 15. Choice of organic structure directing agents (templates) and careful control of reaction conditions (temperature, pH) both in the In-S and Ge-S systems is shown not only to dictate which building unit will form, but also to direct the resulting framework topology. Several of the compounds described herein crystallize either as powders, or as crystals too small for standard in-house X-ray structural analysis. Diffraction experiments have thus required synchrotron based single crystal techniques for structure determination. Further, certain reaction mixture compositions result in multi-phase end products, the formation pathways of which have been studied with time resolved, in situ synchrotron powder diffraction. An extension of the applicability of the in situ techniques investigated the role of oxygen in hydrothermal systems. Oxidation state is proposed to dictate speciation in the Ni-Ge-S system and to promote phase transformations in the Fe-S mineral system.

  19. High-pressure floating-zone growth of perovskite nickelate LaNiO 3 single crystals

    DOE PAGES

    Zhang, Junjie; Zheng, Hong; Ren, Yang; ...

    2017-04-07

    We report the first single crystal growth of the correlated metal LaNiO 3 using a high-pressure optical-image floating zone furnace. The crystals were studied using single crystal/powder X-ray diffraction, resistivity, specific heat, and magnetic susceptibility. The availability of bulk LaNiO 3 crystals will (i) promote deep understanding in this correlated material, including the mechanism of enhanced paramagnetic susceptibility, and (ii) provide rich opportunities as a substrate for thin film growth such as important ferroelectric and/or multiferroic materials. As a result, this study demonstrates the power of high pO 2 single crystal growth of nickelate perovskites and correlated electron oxides moremore » generally.« less

  20. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria

    2007-01-18

    Single-phase perovskite SmCoO{sub 3} was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO{sub 3} films were investigated in air, O{sub 2} and CO{sub 2}, the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamicmore » tests revealed a better behavior of SmCoO{sub 3} in CO{sub 2} than O{sub 2}, due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved.« less

  1. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  2. CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations.

    PubMed

    Fritzsche, J; Grzywa, M; Denysenko, D; Bon, V; Senkovska, I; Kaskel, S; Volkmer, D

    2017-05-23

    The syntheses and crystal structures of the fluorinated linker 1,4-bis(3,5-bis(trifluoromethyl)-1H-pyrazole-4-yl)benzene (H 2 -tfpb; 1) and the novel metal-organic framework family M[CFA-4] (Coordination Framework Augsburg University-4), M[Cu 5 (tfpb) 3 ] (M = Cu(i), K, Cs, Ca(0.5)), are described. The ligand 1 is fully characterized by single crystal X-ray diffraction, photoluminescence-, NMR-, IR spectroscopy, and mass spectrometry. The copper(i)-containing MOF crystallizes in the hexagonal crystal system within the chiral space group P6 3 22 (no. 182) and the unit cell parameters are as follows: a = 23.630(5) Å, c = 41.390(5) Å, V = 20 015(6) Å 3 . M[CFA-4] features a porous 3-D structure constructed from pentanuclear copper(i) secondary building units {Cu(pz) 6 } - (pz = pyrazolate). Cu(I)[CFA-4] is fully characterized by synchrotron single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence and gas sorption measurements. Moreover, thermal stability and gas sorption properties of K[CFA-4] and Cu(I)[CFA-4] are compared.

  3. Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline

    PubMed Central

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.

    2013-01-01

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294

  4. Hydrogen bonds directed 2D → 3D interdigitated Cd(II) compound: Synthesis, crystal structure and dual-emission luminescent properties

    NASA Astrophysics Data System (ADS)

    Yu, Yuanyuan

    2017-06-01

    A new Cd(II) compound, namely [Cd2(btc)(phen)2Cl]n·n(H2O)·n(DMA) (1, H3btc = 1, 3, 5-benzenetricarboxylic acid, phen = 1,10-phenanthroline, DMA = N,N'-dimethylacetamide) has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. This compound crystallizes in monoclinic P21/n space group with a = 13.5729(7) Å, b = 20.1049(7) Å, c = 13.9450(6) Å, β = 104.671(4)°, Z = 4. Single-crystal X-ray diffraction analysis reveals that compound 1 features a 2D → 3D interdigitated framework directed by the intermolecular hydrogen bonds. In addition, the luminescent properties of compound 1 were also investigated in the solid state at room temperature.

  5. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    NASA Astrophysics Data System (ADS)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.

  6. Influence of tartaric acid on linear-nonlinear optical and electrical properties of KH2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Baig, M. I.; Anis, Mohd; Muley, G. G.

    2017-10-01

    KH2PO4 (KDOP) is widely demanded technological crystal for applications in laser driven photonic devices. Therefore, present article is focused to investigate the effect of tartaric acid (TA) on laser induced nonlinear optical properties of KDOP crystal. The optically transparent TA doped KDOP crystal of size 15 × 10 × 04 mm3 has been grown by slow solvent evaporation technique at 35 °C. The structural analysis of pure and TA doped KDOP crystal has been achieved by means of single crystal X-ray diffraction technique. The functional groups of TA doped KDOP crystal has been identified by means of Fourier transform infrared spectral analysis. The UV-visible studies have been performed to determine the optical transparency and evaluate the linear optical constants of pure and TA doped KDOP crystal. The Kurtz-Perry test has been employed to confirm the frequency doubling phenomenon of crystal and the SHG efficiency of TA doped KDOP crystal is found to be 5.68 times higher than that of standard KDP material. The Z-scan technique has been employed to explore the third order nonlinear optical (TONLO) refraction (n2), absorption (β) and susceptibility (χ3) of pure and TA doped KDOP crystal at 632.8 nm. The TA facilitated optical switching in TONLO response of KDOP crystal is found to be an interesting effect to examine. The laser damage threshold of TA doped KDOP crystal has been determined at 1064 nm using the Nd:YAG laser. The comparative electrical analysis on pure and TA doped KDOP crystal has been accomplished by means of dielectric and photoconductivity characterization studies.

  7. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  8. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  9. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  10. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  11. Investigation of TbMn2O5 by polarized neutron diffraction

    NASA Astrophysics Data System (ADS)

    Zobkalo, I. A.; Gavrilov, S. V.; Sazonov, A.; Hutanu, V.

    2018-05-01

    In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn2O5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn2O5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of ‘right’ and ‘left’ helix domains in all magnetically ordered phases of TbMn2O5, was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn2O5.

  12. Investigation of TbMn2O5 by polarized neutron diffraction.

    PubMed

    Zobkalo, I A; Gavrilov, S V; Sazonov, A; Hutanu, V

    2018-05-23

    In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn 2 O 5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn 2 O 5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of 'right' and 'left' helix domains in all magnetically ordered phases of TbMn 2 O 5 , was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn 2 O 5 .

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ~10 3–10 4-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering andmore » analysis of phenylalanine hydroxylase fromChromobacterium violaceumcPAH,Trichinella spiralisdeubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.« less

  14. Evidence for monoclinic distortion in the ground state phase of underdoped La 1.95Sr 0.05CuO 4: A single crystal neutron diffraction study

    DOE PAGES

    Singh, Anar; Schefer, Jurg; Sura, Ravi; ...

    2016-03-24

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  15. Evidence for monoclinic distortion in the ground state phase of underdoped La{sub 1.95}Sr{sub 0.05}CuO{sub 4}: A single crystal neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias

    2016-03-28

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  16. Magnetostriction and corrosion studies in single crystals of iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Jayaraman, Tanjore V.

    Iron-gallium alloys have an excellent combination of large low-field magnetostriction, good mechanical properties, low hysteresis, and relatively low cost. This dissertation focuses on the magneto striction and corrosion behaviors of single crystals of Fe-Ga alloys. In the first part, the variation of magnetostrictive coefficient: (3/2) lambda100, with composition and heat treatment conditions of Fe-Ga alloys, is examined. Single crystals with compositions Fe-15 at.% Ga, Fe-20 at.% Ga, and Fe-27.5 at.% Ga were obtained by (a) vertical Bridgman technique (DG) and (b) vertical Bridgman technique followed by long-term annealing (LTA) and quenching. Rapid quenching from a phase region improves the (3/2) lambda 100 value in these alloys. X-ray diffraction characterization showed for the first time the direct evidence of short-range ordering in these alloys. The second part reports the first study of alpha" ordering heat treatment on the elastic properties and magnetostriction of Fe-27.5 at.% Ga alloy single crystals. The elastic constants were measured using resonant ultrasound spectroscopy (RUS), and the elastic properties and magneto-elastic coupling constant were calculated. The (3/2) lambda100 and B1 values obtained for a phase were higher than alpha" phase. The third part examines the first study of corrosion behavior of as-cast FeGa and Fe-Ga-Al alloys in acidic, basic, and simulated seawater environments. Corrosion measurements were performed by Tafel scan and polarization resistance method and in general exhibited good corrosion resistance. The fourth part examines the first study of corrosion behavior of Fe-15 at.% Ga, Fe-20 at.% Ga, and Fe-27.5 at.% Ga DG and LTA alloy single crystals and the dependence of corrosion rates on the crystal orientations. The corrosion resistance was better in basic environments followed by simulated seawater and acidic environments. The fifth part examines the effect of magnetostriction on the corrosion behavior of [100]-oriented single crystal of Fe-20 at.% Ga alloy in acidic and simulated seawater solution, first study ever of this kind. Magnetostrictive strain introduced on the application of saturation magnetic field increased the corrosion rate of [100]-oriented Fe-20 at.% Ga alloy single crystal by 40% in 0.1M HCl and decreased the corrosion rate by 15% in 3.5 wt.% NaCl solution.

  17. The molecular and crystal structure of dextrans: a combined electron and X-ray diffraction study. II. A low temperature, hydrated polymorph.

    PubMed

    Guizard, C; Chanzy, H; Sarko, A

    1985-06-05

    The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R''(electron diffraction) = 0.258 and R(X-ray) = 0.127.

  18. A Novel Coordination Polymer Based on Trinuclear Cobalt Building Blocks Cluster: Synthesis, Crystal Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.

    2017-12-01

    The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.

  19. Neutron and X-ray investigations of the Jahn–Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.

    2017-01-31

    The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.

  20. Properties of pure single crystals of actinide compounds

    NASA Astrophysics Data System (ADS)

    Vogt, O.

    1989-07-01

    Actinide research started with substances of poor quality and a multitude of "unexplainable" results mostly found on powder samples of doubtful quality exerted some pressure on the crystal growers. As an example we may mention the measurements on UP. Type I antiferromagnetism was found below 123 K by neutron diffraction experiments on powdered samples. At 23 K another transition becomes apparent in susceptibility measurements. The change of the magnetic moments associated with this transition remained unexplained. It was only after the discovery of multi k structures in other actinide compounds that the need was seen to perform even inelastic neutron diffraction experiments on single crystals so that finally the true nature of the transition in UP could be revealed. NpAs is another illustrative example for the fact that sometimes it takes decades to get a clear understanding for things even so simple as macroscopic magnetic properties. The main reason for the need of single crystals is certainly the anisotropy of the magnetic moment encountered in all actinide compounds. Self-heating effects may prevent research on big crystals or might call for isotopic purity of certain samples.

  1. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids.

    PubMed

    Zipper, Lauren E; Aristide, Xavier; Bishop, Dylan P; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B; Santiago, Brianna M; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M; Soares, Alexei S

    2014-12-01

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63-82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  2. Synthesis, characterization, and photophysical properties of a thiophene-functionalized bis(pyrazolyl) pyridine (BPP) tricarbonyl rhenium(I) complex.

    PubMed

    Lytwak, Lauren A; Stanley, Julie M; Mejía, Michelle L; Holliday, Bradley J

    2010-09-07

    A bromo tricarbonyl rhenium(I) complex with a thiophene-functionalized bis(pyrazolyl) pyridine ligand (L), ReBr(L)(CO)(3) (1), has been synthesized and characterized by variable temperature and COSY 2-D (1)H NMR spectroscopy, single-crystal X-ray diffraction, and photophysical methods. Complex 1 is highly luminescent in both solution and solid-state, consistent with phosphorescence from an emissive (3)MLCT excited state with an additional contribution from a LC (3)(pi-->pi*) transition. The single-crystal X-ray diffraction structure of the title ligand is also reported.

  3. Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O -demethylase crystals by the microseeding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi

    2016-11-30

    A tetrahydrofolate-dependentO-demethylase, LigM, fromSphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtainedP3 121 orP3 221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding usingP3 121/P3 221 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space groupP2 12 12, with unit-cell parametersa= 102.0,b= 117.3,c= 128.1 Å. TheP2 12 12 crystals diffracted to better than 2.0 Å resolution after optimizing the cryoconditions. Phasing using the single anomalous diffractionmore » method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junjie; Zheng, Hong; Ren, Yang

    We report the first single crystal growth of the correlated metal LaNiO 3 using a high-pressure optical-image floating zone furnace. The crystals were studied using single crystal/powder X-ray diffraction, resistivity, specific heat, and magnetic susceptibility. The availability of bulk LaNiO 3 crystals will (i) promote deep understanding in this correlated material, including the mechanism of enhanced paramagnetic susceptibility, and (ii) provide rich opportunities as a substrate for thin film growth such as important ferroelectric and/or multiferroic materials. As a result, this study demonstrates the power of high pO 2 single crystal growth of nickelate perovskites and correlated electron oxides moremore » generally.« less

  5. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael

    2014-02-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.

  6. 3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain

    NASA Astrophysics Data System (ADS)

    Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.

    Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.

  7. Single-crystal diffraction instrument TriCS at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  8. Acemetacin cocrystal structures by powder X-ray diffraction.

    PubMed

    Bolla, Geetha; Chernyshev, Vladimir; Nangia, Ashwini

    2017-05-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R 3 2 (9) R 2 2 (8) R 3 2 (9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

  9. Acemetacin cocrystal structures by powder X-ray diffraction

    PubMed Central

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  10. Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): a potential NLO material.

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-07-01

    4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6×2×3 mm(3)) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and (1)H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  12. Atomic resolution Z-contrast imaging and energy loss spectroscopy of carbon nanotubes and bundles

    NASA Astrophysics Data System (ADS)

    Lupini, A. R.; Chisholm, M. F.; Puretzky, A. A.; Eres, G.; Melechko, A. V.; Schaaff, G.; Lowndes, D. H.; Geohegan, D. B.; Schittenhelm, H.; Pennycook, S. J.; Wang, Y.; Smalley, R. E.

    2002-03-01

    Single-wall carbon nanotubes and bundles were studied by a combination of techniques, including conventional imaging and diffraction, atomic resolution Z-contrast imaging in an aberration corrected STEM and electron energy loss spectroscopy (EELS). EELS is ideally suited for the analysis of carbon based structures because of the ability to distinguish between the different forms, specifically nanotubes, graphite, amorphous carbon and diamond. Numerous attempts were made to synthesize crystals of single walled carbon nanotubes, using both solution and vapor deposition of precursor structures directly onto TEM grids for in-situ annealing. The range of structures produced will be discussed.

  13. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.

    PubMed

    Kent, Stephen Bh

    2018-04-04

    A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Asymmetric band flipping for time-of-flight neutron diffraction data

    DOE PAGES

    Whitfield, Pamela S.; Coelho, Alan A.

    2016-08-24

    Charge flipping with powder diffraction data is known to produce a result more reliably with high-resolution data,i.e.visible reflections at smalldspacings. This data are readily accessible with the neutron time-of-flight technique but the assumption that negative scattering density is nonphysical is no longer valid where elements with negative scattering lengths are present. The concept of band flipping was introduced in the literature, where a negative threshold is used in addition to a positive threshold during the flipping. But, it was not tested with experimental data at the time. Finallly, band flipping has been implemented inTOPAStogether with the band modification of low-densitymore » elimination and tested with experimental powder and Laue single-crystal neutron data.« less

  15. Growth of a decagonal Al 70Ni 15Co 15 single quasicrystal by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Jeong, H. T.; Kim, S. H.; Kim, W. T.; Kim, D. H.; Inkson, B. J.

    2000-07-01

    Single decagonal quasicrystals of Al 70Ni 15Co 15 were grown by the Czochralski method at Ar atmosphere. The grown crystals were of single decagonal phase without any secondary phases due to the peritectic reaction and contained a large single quasicrystal of cm order size. The high quality and single quasicrystallinity of them were examined by the Laue transmission photography, single crystal X-ray diffraction, and high-resolution electron microscopy investigations.

  16. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications.

    PubMed

    Jagannathan, K; Umarani, P; Ratchagar, V; Ramesh, V; Kalainathan, S

    2016-01-15

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Crystallization and preliminary X-ray diffraction analysis of restriction endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Meehan, E.; Pusey, M. L.; Chen, L.

    1999-01-01

    Crystals of the restriction endonuclease EcoRII have been obtained by the vapor-diffusion technique in the presence of ammonium sulfate or polyethylene glycol. The best crystals were grown with ammonium sulfate as a precipitant. Crystals with dimensions of up to 0.6 x 0. 6 x 0.6 mm have been observed. The crystals diffract to about 4.0 A resolution at a cryo-temperature of 100 K using a rotating-anode X-ray source and a Rigaku R-AXIS IV imaging-plate detector. The space group has been determined to be either I23 or I2(1)3, with unit-cell parameters a = b = c = 160.3 A, alpha = beta = gamma = 90 degrees. The crystal asymmetric unit contains two protein molecules, and self-rotation function analysis shows a pseudo-twofold symmetry relating the two monomers. Attempts to improve the resolution of crystal diffraction and to search for heavy-atom derivatives are under way.

  18. Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer.

    PubMed

    Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A

    2016-02-01

    A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.

  19. In-plane x-ray diffraction for characterization of monolayer and few-layer transition metal dichalcogenide films

    NASA Astrophysics Data System (ADS)

    Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.

    2018-02-01

    There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low electron density materials.

  20. Bis (3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol) organic cocrystal: Synthesis and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.

    2016-10-01

    A 3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol (mhba-tnp) cocrystal was grown by the slow evaporation solution growth technique using ethanol as a solvent. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) study and crystallized with a centrosymmetric space group. Optical properties of the grown crystal have been studied by Ultraviolet-Visible (UV-Vis) absorption spectra in the range from 200 to 800nm and the band gap energy of the crystal was obtained as 2.8eV. Fourier transform infrared (FTIR) and micro Raman spectral analyses have been carried out to confirm the functional groups present in the title compound. Differential scanning calorimetry (DSC) and polarized light thermomicroscopy (PLTM) analyses were carried out to find the melting point. In addition, the optimized geometric parameters and the molecular orbitals were calculated using density functional theory (DFT) with the help of the Gaussian 03W software.

  1. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  2. Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2015-12-01

    Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F22+ centers kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).

  3. Experimental and theoretical study of topology and electronic correlations in PuB4

    NASA Astrophysics Data System (ADS)

    Choi, Hongchul; Zhu, Wei; Cary, S. K.; Winter, L. E.; Huang, Zhoushen; McDonald, R. D.; Mocko, V.; Scott, B. L.; Tobash, P. H.; Thompson, J. D.; Kozimor, S. A.; Bauer, E. D.; Zhu, Jian-Xin; Ronning, F.

    2018-05-01

    We synthesize single crystals of PuB4 using an Al-flux technique. Single-crystal diffraction data provide structural parameters for first-principles density functional theory (DFT) calculations. By computing the density of states, the Z2 topological invariant using the Wilson loop method, and the surface electronic structure from slab calculations, we find that PuB4 is a nonmagnetic strong topological insulator with a band gap of 254 meV. Our magnetic susceptibility, heat capacity, and resistivity measurements are consistent with this analysis, albeit with a smaller gap of 35 meV. DFT plus dynamical mean-field theory calculations show that electronic correlations reduce the size of the band gap, and provide better agreement with the value determined by resistivity. These results demonstrate that PuB4 is a promising actinide material to investigate the interplay of electronic correlations and nontrivial topology.

  4. Micropatterned photoalignment for wavefront controlled switchable optical devices

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus

    Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.

  5. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    PubMed

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  6. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  7. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  8. Crystal forms of the hydrogen oxalate salt of o-desmethylvenlafaxine.

    PubMed

    Dichiarante, Elena; Curzi, Marco; Giaffreda, Stefano L; Grepioni, Fabrizia; Maini, Lucia; Braga, Dario

    2015-06-01

    To prepare new crystalline forms of the antidepressant o-desmethylvenlafaxine salt as potential new commercial forms and evaluate their physicochemical properties, in particular the dissolution rate. A new hydrogen oxalate salt of o-desmethylvenlafaxine hydrogen oxalate (ODV-OX) was synthesized, and a polymorph screening was performed using different solvents and crystallization conditions. Crystalline forms were characterized by a combination of solid-state techniques: X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy and single crystal X-ray diffraction. The stability of all crystalline phases was tested under International Conference on Harmonisation (ICH) conditions (40°C and 75% Relative Humidity (RH)) for 1 week. Dissolution tests were performed on the hydrogen oxalate salt ODV-OX Form 1 and compared with dissolution test on the commercial form of the succinate salt of o-desmethylvenlafaxine. Five crystalline forms of ODV-OX were isolated, namely three hydrated forms (Form 1, Form 2, Form 3) and two anhydrous forms (Form 4 and Form 5). Comparative solubility tests on ODV-OX Form 1 and o-desmethylvenlafaxine succinate evidenced a significant increase in solubility for the hydrogen oxalate salt (142 g/l) with respect to the succinate salt (70 g/l). © 2015 Royal Pharmaceutical Society.

  9. Revealing the effect of edge contamination on vortex matter structure in a Nb single crystal with neutron diffraction techniques

    NASA Astrophysics Data System (ADS)

    Hanson, Helen; Wang, Xi; Luk, Michael; Shi, Jing; Ling, Xinsheng; Maranville, Brian; Majkrzak, Charles

    2011-03-01

    The vortex matter of type II superconductors provides a model system to study the effect of quenched random disorder on an elastic lattice, particularly in the framework of Bragg glass theory. Neutron scattering techniques are used to examine the structure of the vortex matter and to quantify the phase diagram. After measuring various thermal-magnetic histories, our data provided evidence for the edge contamination model in a Nb single crystal. Since surface oxidation is known to suppress the Bean-Livingston Surface barrier and the inhomogeneous distribution of surface impurities in Nb, we oxidize our sample surface and repeat our measurements. By comparing the data, we are able isolate the dynamic impact of the edge disorder from the static influence of bulk pinning. We discuss the various experimental obstacles in measuring the predicted Bragg glass state. We also report on Reverse Monte Carlo Refinement simulations modeling possible structures of our vortex matter. This research was supported by the U.S. DOE under grant DE- FG 02 - 07 ER46458.

  10. Structural and magnetic characterization of the one-dimensional S = 5/2 antiferromagnetic chain system SrMn(VO 4)(OH)

    DOE PAGES

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; ...

    2016-06-06

    The descloizite-type compound, SrMn(VO 4)(OH), was synthesized as large single crystals (1-2mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P2 12 12 1 (no. 19), Z = 4. The structure exhibits a one-dimensional feature, with [MnO 4] chains propagating along the a-axis which are interconnected by VO 4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant ofmore » J/k B = 9.97(3) K between nearest Mn neighbors and a canted antiferromagnetic behavior below T N = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P2 1 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. Lastly, the presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanctis, Daniele de; Rêgo, Ana T.; Marçal, David

    The sorbitol operon regulator from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 3.2 Å. The sorbitol operon regulator (SorC) regulates the metabolism of l-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 Å. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit.

  12. Lessons from high-throughput protein crystallization screening: 10 years of practical experience

    PubMed Central

    JR, Luft; EH, Snell; GT, DeTitta

    2011-01-01

    Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073

  13. Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal

    DOE PAGES

    Aromí, G.; Beavers, C. M.; Sánchez Costa, J.; ...

    2016-01-05

    Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less

  14. Controlled vapor crystal growth of N a4I r3O8 : A three-dimensional quantum spin liquid candidate

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.; Ren, Yang; Chen, Yu-Sheng; Dally, Rebecca; Wilson, Stephen D.; Islam, Zahirul; Mitchell, J. F.

    2018-04-01

    We report the successful bulk single-crystal growth of the hyperkagome lattice iridate N a4I r3O8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q =(1 /3 ,1 /3 ,1 /3 ) based on the cubic substructure with cell parameter a =8.986 (1 )Å . This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ions at the notionally disordered Na sites as a plausible origin for the observed superlattice.

  15. Controlled vapor crystal growth of N a 4 I r 3 O 8 : A three-dimensional quantum spin liquid candidate

    DOE PAGES

    Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.; ...

    2018-04-24

    In this work, we report the successful bulk single-crystal growth of the hyperkagome lattice iridate Na 4Ir 3O 8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q=(1/3,1/3,1/3) based on the cubic substructure with cell parameter a=8.986(1)Å. This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ionsmore » at the notionally disordered Na sites as a plausible origin for the observed superlattice.« less

  16. Controlled vapor crystal growth of N a 4 I r 3 O 8 : A three-dimensional quantum spin liquid candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.

    In this work, we report the successful bulk single-crystal growth of the hyperkagome lattice iridate Na 4Ir 3O 8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q=(1/3,1/3,1/3) based on the cubic substructure with cell parameter a=8.986(1)Å. This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ionsmore » at the notionally disordered Na sites as a plausible origin for the observed superlattice.« less

  17. Structural, thermal, laser damage, photoconductivity, NLO and mechanical properties of modified vertical Bridgman method grown AgGa0.5In0.5Se2 single crystal

    NASA Astrophysics Data System (ADS)

    Vijayakumar, P.; Ramasamy, P.

    2016-08-01

    AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.

  18. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography.

    PubMed

    Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B

    2017-01-01

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.

  19. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...

    2017-01-01

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less

  20. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less

Top