Sample records for single-event current transient

  1. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    NASA Technical Reports Server (NTRS)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  2. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE PAGES

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; ...

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  3. Fault-Tolerant Sequencer Using FPGA-Based Logic Designs for Space Applications

    DTIC Science & Technology

    2013-12-01

    Prototype Board SBU single bit upset SDK software development kit SDRAM synchronous dynamic random-access memory SEB single-event burnout ...current VHDL VHSIC hardware description language VHSIC very-high-speed integrated circuits VLSI very-large- scale integration VQFP very...transient pulse, called a single-event transient (SET), or even cause permanent damage to the device in the form of a burnout or gate rupture. The SEE

  4. The Effects of Low Dose-Rate Ionizing Radiation on the Shapes of Transients in the LM124 Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.

    2008-01-01

    Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.

  5. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  6. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  7. Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.

    2015-01-01

    NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.

  8. Current Radiation Issues for Programmable Elements and Devices

    NASA Technical Reports Server (NTRS)

    Katz, Richard; LaBel, K.; Reed, R.; Wang, J. J.; Cronquist, B.; McCollum, J.; Paolini, W.; Sin, B.; Koga, R.a; Crain, S.; hide

    1998-01-01

    The purpose of this presentation is to discuss the COTS performance, clock upset / single event transient, device configuration upset, antifuse hardening, heavy ion SEU, total dose, proton sensitivities, latchup, and additional information and data.

  9. SEE Transient Response of Crane Interpoint Single Output Point of Load DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Sanders, Anthony B.; Chen, Dakai; Kim, Hak S.; Phan, Anthony M.

    2011-01-01

    This study was undertaken to determine the single event effect and transient susceptibility of the Crane Interpoint Maximum Flexible Power (MFP) Single Output Point of Load DC/DC Converters for transient interruptions in the output signal and for destructive and non destructive events induced by exposing it to a heavy ion beam..

  10. Single Event Transients in Low Voltage Dropout (LVDO) Voltage Regulators

    NASA Technical Reports Server (NTRS)

    LaBel, K.; Karsh, J.; Pursley, S.; Kleyner, I.; Katz, R.; Poivey, C.; Kim, H.; Seidleck, C.

    2006-01-01

    This viewgraph presentation reviews the use of Low Voltage Dropout (LVDO) Voltage Regulators in environments where heavy ion induced Single Event Transients are a concern to the designers.Included in the presentation are results of tests of voltage regulators.

  11. Single-Event Transients in Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Miyahira, Tetsuo F.; Irom, F.; Laird, Jamie S.

    2006-01-01

    Single-event transients are investigated for two voltage regulator circuits that are widely used in space. A circuit-level model is developed that can be used to determine how transients are affected by different circuit application conditions. Internal protection circuits-which are affected by load as well as internal thermal effects-can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. Although conventional output transients can be reduced by adding load capacitance, that approach is ineffective for dropouts from protection circuitry.

  12. Transient-state kinetic approach to mechanisms of enzymatic catalysis.

    PubMed

    Fisher, Harvey F

    2005-03-01

    Transient-state kinetics by its inherent nature can potentially provide more directly observed detailed resolution of discrete events in the mechanistic time courses of enzyme-catalyzed reactions than its more widely used steady-state counterpart. The use of the transient-state approach, however, has been severely limited by the lack of any theoretically sound and applicable basis of interpreting the virtual cornucopia of time and signal-dependent phenomena that it provides. This Account describes the basic kinetic behavior of the transient state, critically examines some currently used analytic methods, discusses the application of a new and more soundly based "resolved component transient-state time-course method" to the L-glutamate-dehydrogenase reaction, and establishes new approaches for the analysis of both single- and multiple-step substituted transient-state kinetic isotope effects.

  13. Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite

    NASA Astrophysics Data System (ADS)

    Garipov, G. K.; Khrenov, B. A.; Klimov, P. A.; Klimenko, V. V.; Mareev, E. A.; Martines, O.; Mendoza, E.; Morozenko, V. S.; Panasyuk, M. I.; Park, I. H.; Ponce, E.; Rivera, L.; Salazar, H.; Tulupov, V. I.; Vedenkin, N. N.; Yashin, I. V.

    2013-01-01

    Light detectors sensitive to wavelength ranges 240-400 nm and beyond 610 nm (which we refer to, for simplicity, as the UV and Red bands) on board Universitetsky-Tatiana-2 satellite have detected transient flashes in the atmosphere of duration 1-128 ms. Measured ratio of the number of Red photons to the number of UV photons indicates that source of transient radiation is at high atmosphere altitude (>50 km). Distribution of events with various photon numbers Qa in the atmosphere found to be different for "luminous" events Qa = 1023 - 1026 (with exponent of differential distribution -2.2) and for "faint" events Qa = 1021 - 1023 (with exponent - 0.97). Luminous event parameters (atmosphere altitude, energy released to radiation, and temporal profiles) are similar to observed elsewhere parameters of transient luminous events (TLE) of elves, sprites, halo, and gigantic blue jets types. Global map of luminous events demonstrates concentration to equatorial zones (latitudes 30°N to 30°S) above continents. Faint events (with number of photons Qa = 1020 - 5ṡ 1021) are distributed more uniformly over latitudes and longitudes. Phenomenon of series of transients registered every minute along satellite orbit (from 3 to 16 transients in one series) was observed. Most TLE-type events belonged to series. Single transients are in average fainter than serial ones. Some transients belonging to series occurs far away of thunderstorm regions. Origin of faint single transients is not clear; several hypothetical models of their production are discussed.

  14. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  15. Discussions On Worst-Case Test Condition For Single Event Burnout

    NASA Astrophysics Data System (ADS)

    Liu, Sandra; Zafrani, Max; Sherman, Phillip

    2011-10-01

    This paper discusses the failure characteristics of single- event burnout (SEB) on power MOSFETs based on analyzing the quasi-stationary avalanche simulation curves. The analyses show the worst-case test condition for SEB would be using the ion that has the highest mass that would result in the highest transient current due to charge deposition and displacement damage. The analyses also show it is possible to build power MOSFETs that will not exhibit SEB even when tested with the heaviest ion, which have been verified by heavy ion test data on SEB sensitive and SEB immune devices.

  16. Single-Event Transient Testing of the Crane Aerospace and Electronics SMHF2812D Dual DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Casey, Megan

    2015-01-01

    The purpose of this testing was to characterize the Crane Aerospace & Electronics (Crane) Interpoint SMHF2812D for single-event transient (SET) susceptibility. These data shall be used for flight lot evaluation, as well as qualification by similarity of the SMHF family of converters, all of which use the same active components.

  17. On-Die Sensors for Transient Events

    NASA Astrophysics Data System (ADS)

    Suchak, Mihir Vimal

    Failures caused by transient electromagnetic events like Electrostatic Discharge (ESD) are a major concern for embedded systems. The component often failing is an integrated circuit (IC). Determining which IC is affected in a multi-device system is a challenging task. Debugging errors often requires sophisticated lab setups which require intentionally disturbing and probing various parts of the system which might not be easily accessible. Opening the system and adding probes may change its response to the transient event, which further compounds the problem. On-die transient event sensors were developed that require relatively little area on die, making them inexpensive, they consume negligible static current, and do not interfere with normal operation of the IC. These circuits can be used to determine the pin involved and the level of the event in the event of a transient event affecting the IC, thus allowing the user to debug system-level transient events without modifying the system. The circuit and detection scheme design has been completed and verified in simulations with Cadence Virtuoso environment. Simulations accounted for the impact of the ESD protection circuits, parasitics from the I/O pin, package and I/O ring, and included a model of an ESD gun to test the circuit's response to an ESD pulse as specified in IEC 61000-4-2. Multiple detection schemes are proposed. The final detection scheme consists of an event detector and a level sensor. The event detector latches on the presence of an event at a pad, to determine on which pin an event occurred. The level sensor generates current proportional to the level of the event. This current is converted to a voltage and digitized at the A/D converter to be read by the microprocessor. Detection scheme shows good performance in simulations when checked against process variations and different kind of events.

  18. Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori

    2013-04-01

    Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.

  19. Computer program for prediction of capture maneuver probability for an on-off reaction controlled upper stage

    NASA Technical Reports Server (NTRS)

    Knauber, R. N.

    1982-01-01

    A FORTRAN coded computer program which computes the capture transient of a launch vehicle upper stage at the ignition and/or separation event is presented. It is for a single degree-of-freedom on-off reaction jet attitude control system. The Monte Carlo method is used to determine the statistical value of key parameters at the outcome of the event. Aerodynamic and booster induced disturbances, vehicle and control system characteristics, and initial conditions are treated as random variables. By appropriate selection of input data pitch, yaw and roll axes can be analyzed. Transient response of a single deterministic case can be computed. The program is currently set up on a CDC CYBER 175 computer system but is compatible with ANSI FORTRAN computer language. This routine has been used over the past fifteen (15) years for the SCOUT Launch Vehicle and has been run on RECOMP III, IBM 7090, IBM 360/370, CDC6600 and CDC CYBER 175 computers with little modification.

  20. Single event induced transients in I/O devices - A characterization

    NASA Technical Reports Server (NTRS)

    Newberry, D. M.; Kaye, D. H.; Soli, G. A.

    1990-01-01

    The results of single-event upset (SEU) testing performed to evaluate the parametric transients, i.e., amplitude and duration, in several I/O devices, and the impact of these transients are discussed. The failure rate of these devices is dependent on the susceptibility of interconnected devices to the resulting transient change in the output of the I/O device. This failure rate, which is a function of the susceptibility of the interconnected device as well as the SEU response of the I/O device itself, may be significantly different from an upset rate calculated without taking these factors into account. The impact at the system level is discussed by way of an example.

  1. Measurement and Analysis of Multiple Output Transient Propagation in BJT Analog Circuits

    NASA Astrophysics Data System (ADS)

    Roche, Nicolas J.-H.; Khachatrian, A.; Warner, J. H.; Buchner, S. P.; McMorrow, D.; Clymer, D. A.

    2016-08-01

    The propagation of Analog Single Event Transients (ASETs) to multiple outputs of Bipolar Junction Transistor (BJTs) Integrated Circuits (ICs) is reported for the first time. The results demonstrate that ASETs can appear at several outputs of a BJT amplifier or comparator as a result of a single ion or single laser pulse strike at a single physical location on the chip of a large-scale integrated BJT analog circuit. This is independent of interconnect cross-talk or charge-sharing effects. Laser experiments, together with SPICE simulations and analysis of the ASET's propagation in the s-domain are used to explain how multiple-output transients (MOTs) are generated and propagate in the device. This study demonstrates that both the charge collection associated with an ASET and the ASET's shape, commonly used to characterize the propagation of SETs in devices and systems, are unable to explain quantitatively how MOTs propagate through an integrated analog circuit. The analysis methodology adopted here involves combining the Fourier transform of the propagating signal and the current-source transfer function in the s-domain. This approach reveals the mechanisms involved in the transient signal propagation from its point of generation to one or more outputs without the signal following a continuous interconnect path.

  2. On the Application of Inverse-Mode SiGe HBTs in RF Receivers for the Mitigation of Single-Event Transients

    NASA Astrophysics Data System (ADS)

    Song, Ickhyun; Cho, Moon-Kyu; Oakley, Michael A.; Ildefonso, Adrian; Ju, Inchan; Buchner, Stephen P.; McMorrow, Dale; Paki, Pauline; Cressler, John. D.

    2017-05-01

    Best practice in mitigation strategies for single-event transients (SETs) in radio-frequency (RF) receiver modules is investigated using a variety of integrated receivers utilizing inverse-mode silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The receivers were designed and implemented in a 130-nm SiGe BiCMOS technology platform. In general, RF switches, low-noise amplifiers (LNAs), and downconversion mixers utilizing inverse-mode SiGe HBTs exhibit less susceptibility to SETs than conventional RF designs, in terms of transient peaks and duration, at the cost of RF performance. Under normal RF operation, the SET-hardened switch is mainly effective in peak reduction, while the LNA and the mixer exhibit reductions in transient peaks as well as transient duration.

  3. FPGAs in Space Environment and Design Techniques

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of Field Programmable Gate Arrays (FPGA) in the space environment and design techniques. Details are given on the effects of the space radiation environment, total radiation dose, single event upset, single event latchup, single event transient, antifuse technology and gate rupture, proton upsets and sensitivity, and loss of functionality.

  4. Estimating Single-Event Logic Cross Sections in Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Harrington, R. C.; Kauppila, J. S.; Warren, K. M.; Chen, Y. P.; Maharrey, J. A.; Haeffner, T. D.; Loveless, T. D.; Bhuva, B. L.; Bounasser, M.; Lilja, K.; Massengill, L. W.

    2017-08-01

    Reliable estimation of logic single-event upset (SEU) cross section is becoming increasingly important for predicting the overall soft error rate. As technology scales and single-event transient (SET) pulse widths shrink to widths on the order of the setup-and-hold time of flip-flops, the probability of latching an SET as an SEU must be reevaluated. In this paper, previous assumptions about the relationship of SET pulsewidth to the probability of latching an SET are reconsidered and a model for transient latching probability has been developed for advanced technologies. A method using the improved transient latching probability and SET data is used to predict logic SEU cross section. The presented model has been used to estimate combinational logic SEU cross sections in 32-nm partially depleted silicon-on-insulator (SOI) technology given experimental heavy-ion SET data. Experimental SEU data show good agreement with the model presented in this paper.

  5. Comparison of Single-Event Transients Induced in an Operational Amplifier (LM124) by Pulsed Laser Light and a Broad Beam of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd

    2003-01-01

    A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.

  6. LIMITS ON THE EVENT RATES OF FAST RADIO TRANSIENTS FROM THE V-FASTR EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayth, Randall B.; Tingay, Steven J.; Deller, Adam T.

    2012-07-10

    We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus, far V-FASTR has accumulated over 1300 hr of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz-86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz).more » V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high-redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the 'fly's eye' survey at the Allen Telescope Array, but with less sky coverage. We also illustrate the likely performance of the Phase 1 SKA dish array for an incoherent fast transient search fashioned on V-FASTR.« less

  7. Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.

    2009-01-01

    This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.

  8. Single Event Effects (SEE) Testing of Embedded DSP Cores within Microsemi RTAX4000D Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Perez, Christopher E.; Berg, Melanie D.; Friendlich, Mark R.

    2011-01-01

    Motivation for this work is: (1) Accurately characterize digital signal processor (DSP) core single-event effect (SEE) behavior (2) Test DSP cores across a large frequency range and across various input conditions (3) Isolate SEE analysis to DSP cores alone (4) Interpret SEE analysis in terms of single-event upsets (SEUs) and single-event transients (SETs) (5) Provide flight missions with accurate estimate of DSP core error rates and error signatures.

  9. Transient current induced in thin film diamonds by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less

  10. Transient current induced in thin film diamonds by swift heavy ions

    DOE PAGES

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi; ...

    2017-04-05

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less

  11. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  12. Distributional Tests for Gravitational Waves from Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Szczepanczyk, Marek; LIGO Collaboration

    2017-01-01

    Core-Collapse Supernovae (CCSN) are spectacular and violent deaths of massive stars. CCSN are some of the most interesting candidates for producing gravitational-waves (GW) transients. Current published results focus on methodologies to detect single GW unmodelled transients. The advantages of these tests are that they do not require a background for which we have an analytical model. Examples of non-parametric tests that will be compared are Kolmogorov-Smirnov, Mann-Whitney, chi squared, and asymmetric chi squared. I will present methodological results using publicly released LIGO-S6 data recolored to the design sensitivity of Advanced LIGO and that will be time lagged between interferometers sites so that the resulting coincident events are not GW.

  13. VOEventNet: An Open Source of Transient Alerts for Astronomers.

    NASA Astrophysics Data System (ADS)

    Drake, Andrew J.; Williams, R.; Graham, M. J.; Mahabal, A.; Djorgovski, S. G.; White, R. R.; Vestrand, W. T.; Bloom, J.

    2007-12-01

    Event based astronomy is acquiring an increasingly important role in astronomy as large time-domain surveys such as Palomar Transient Factory (PTF), Pan-STARRs, SkyMapper and Allan Telescope Array (ATA) surveys come online. These surveys are expected to discover thousands of transients each year ranging from near earth asteroids to distant SNe. Although the primary instruments for of these surveys are in place, in order to fully utilize these event discovery streams, automated alerting and follow-up is a necessity. For the past two years the VOEventNet network has been globally distributing information about transient astronomical events using the VOEvent format, a Virtual Observatory standard. Events messages are openly distributed so that follow-up can utilize the most appropriate resources available in order to characterize the nature of the transients. Since its inception VOEventNet has broadcast more than 3500 SDSSSS Supernova candidates, 3300 GRB alert and follow-up notices from GCN, 700 OGLE microlensing event candidates, and 4300 newly discovered asteroid and optical transient candidates from the Palomar Quest survey. Additional transient event streams are expected this season including optical transients from the Catalina Sky Survey. VOEventNet astronomical transient events streams are available to all astronomers via traditional HTML tables, RSS news-feeds, real-time publication (via Jabber and TCP), and Google Sky mashups. VOEventNet currently carries out optical transient event follow-up with the Palomar 60 and 200in (Caltech), Faulkes Telescopes North and South (LCOGTN), RAPTOR (LANL), and PARITEL (UCB; CfA).

  14. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; hide

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  15. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos E.; Donoghue, John P.

    2017-01-01

    Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs. PMID:28100654

  16. Resources for Radiation Test Data

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha V.; Casey, Megan C.; Lauenstein, Jean-Marie; LaBel, Ken

    2016-01-01

    The performance of electronic devices in a space radiation environment is often limited by susceptibility to single-event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Interpreting the results of SEE, TID, and DD testing of complex devices is quite difficult given the rapidly changing nature of both technology and the related radiation issues. Radiation testing is performed to establish the sensitivities of candidate spacecraft electronics to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transients (SETs), TID, and DD effects. Knowing where to search for these test results is a valuable resource for the aerospace engineer or spacecraft design engineer. This poster is intended to be a resource tool for finding radiation test data.

  17. Modeling from Local to Subsystem Level Effects in Analog and Digital Circuits Due to Space Induced Single Event Transients

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    2011-01-01

    Single Event Transients in analog and digital electronics from space generated high energetic nuclear particles can disrupt either temporarily and sometimes permanently the functionality and performance of electronics in space vehicles. This work first provides some insights into the modeling of SET in electronic circuits that can be used in SPICE-like simulators. The work is then directed to present methodologies, one of which was developed by this author, for the assessment of SET at different levels of integration in electronics, from the circuit level to the subsystem level.

  18. Radiation tolerant combinational logic cell

    NASA Technical Reports Server (NTRS)

    Maki, Gary R. (Inventor); Whitaker, Sterling (Inventor); Gambles, Jody W. (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  19. Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William

    2006-01-01

    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.

  20. A Transient Transit Signature Associated with the Young Star RIK-210

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.

    We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is alwaysmore » shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.« less

  1. Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.

  2. Evaluation of human exposure to single electromagnetic pulses of arbitrary shape.

    PubMed

    Jelínek, Lukás; Pekárek, Ludĕk

    2006-03-01

    Transient current density J(t) induced in the body of a person exposed to a single magnetic pulse of arbitrary shape or to a magnetic jump is filtered by a convolution integral containing in its kernel the frequency and phase dependence of the basic limit value adopted in a way similar to that used for reference values in the International Commission on Non-lonising Radiation Protection statement. From the obtained time-dependent dimensionless impact function W(J)(t) can immediately be determined whether the exposure to the analysed single event complies with the basic limit. For very slowly varying field, the integral kernel is extended to include the softened ICNIRP basic limit for frequencies lower than 4 Hz.

  3. An automated single ion hit at JAERI heavy ion microbeam to observe individual radiation damage

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomihiro; Sakai, Takuro; Naitoh, Yutaka; Hamano, Tsuyoshi; Hirao, Toshio

    1999-10-01

    Microbeam scanning and a single ion hit technique have been combined to establish an automated beam positioning and single ion hit system at the JAERI Takasaki heavy ion microbeam system. Single ion irradiation on preset points of a sample in various patterns can be performed automatically in a short period. The reliability of the system was demonstrated using CR-39 nuclear track detectors. Single ion hit patterns were achieved with a positioning accuracy of 2 μm or less. In measurement of single event transient current using this system, the reduction of the pulse height by accumulation of radiation damages was observed by single ion injection to the same local areas. This technique showed a possibility to get some quantitative information about the lateral displacement of an individual radiation effect in silicon PIN photodiodes. This paper will give details of the irradiation system and present results from several experiments.

  4. A Few Examples of Spacecraft Anomalies Attributed to Transient Voltages and Currents Issues

    NASA Technical Reports Server (NTRS)

    Perez, Ray

    2006-01-01

    It is easy to address voltage and current transient related issues when the hardware in question or similar type of hardware is always available to you and when such issues are deterministic in nature. Unexpected or unforeseen transient related problems are not always a challenge but become a severe concern when a unique piece of the hardware, which developed the problem, is in space; as it is with all satellites. This paper addresses in a qualitative manner, a few examples of voltage and current events of transient origin which disabled space hardware.

  5. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons.

    PubMed

    Hight, Ariel E; Kalluri, Radha

    2016-08-01

    The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking. Copyright © 2016 the American Physiological Society.

  6. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  7. Multiple disturbances classifier for electric signals using adaptive structuring neural networks

    NASA Astrophysics Data System (ADS)

    Lu, Yen-Ling; Chuang, Cheng-Long; Fahn, Chin-Shyurng; Jiang, Joe-Air

    2008-07-01

    This work proposes a novel classifier to recognize multiple disturbances for electric signals of power systems. The proposed classifier consists of a series of pipeline-based processing components, including amplitude estimator, transient disturbance detector, transient impulsive detector, wavelet transform and a brand-new neural network for recognizing multiple disturbances in a power quality (PQ) event. Most of the previously proposed methods usually treated a PQ event as a single disturbance at a time. In practice, however, a PQ event often consists of various types of disturbances at the same time. Therefore, the performances of those methods might be limited in real power systems. This work considers the PQ event as a combination of several disturbances, including steady-state and transient disturbances, which is more analogous to the real status of a power system. Six types of commonly encountered power quality disturbances are considered for training and testing the proposed classifier. The proposed classifier has been tested on electric signals that contain single disturbance or several disturbances at a time. Experimental results indicate that the proposed PQ disturbance classification algorithm can achieve a high accuracy of more than 97% in various complex testing cases.

  8. Classifier for gravitational-wave inspiral signals in nonideal single-detector data

    NASA Astrophysics Data System (ADS)

    Kapadia, S. J.; Dent, T.; Dal Canton, T.

    2017-11-01

    We describe a multivariate classifier for candidate events in a templated search for gravitational-wave (GW) inspiral signals from neutron-star-black-hole (NS-BH) binaries, in data from ground-based detectors where sensitivity is limited by non-Gaussian noise transients. The standard signal-to-noise ratio (SNR) and chi-squared test for inspiral searches use only properties of a single matched filter at the time of an event; instead, we propose a classifier using features derived from a bank of inspiral templates around the time of each event, and also from a search using approximate sine-Gaussian templates. The classifier thus extracts additional information from strain data to discriminate inspiral signals from noise transients. We evaluate a random forest classifier on a set of single-detector events obtained from realistic simulated advanced LIGO data, using simulated NS-BH signals added to the data. The new classifier detects a factor of 1.5-2 more signals at low false positive rates as compared to the standard "reweighted SNR" statistic, and does not require the chi-squared test to be computed. Conversely, if only the SNR and chi-squared values of single-detector events are available, random forest classification performs nearly identically to the reweighted SNR.

  9. Tracking single mRNA molecules in live cells

    NASA Astrophysics Data System (ADS)

    Moon, Hyungseok C.; Lee, Byung Hun; Lim, Kiseong; Son, Jae Seok; Song, Minho S.; Park, Hye Yoon

    2016-06-01

    mRNAs inside cells interact with numerous RNA-binding proteins, microRNAs, and ribosomes that together compose a highly heterogeneous population of messenger ribonucleoprotein (mRNP) particles. Perhaps one of the best ways to investigate the complex regulation of mRNA is to observe individual molecules. Single molecule imaging allows the collection of quantitative and statistical data on subpopulations and transient states that are otherwise obscured by ensemble averaging. In addition, single particle tracking reveals the sequence of events that occur in the formation and remodeling of mRNPs in real time. Here, we review the current state-of-the-art techniques in tagging, delivery, and imaging to track single mRNAs in live cells. We also discuss how these techniques are applied to extract dynamic information on the transcription, transport, localization, and translation of mRNAs. These studies demonstrate how single molecule tracking is transforming the understanding of mRNA regulation in live cells.

  10. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  11. Single Event Transient Analysis of an SOI Operational Amplifier for Use in Low-Temperature Martian Exploration

    NASA Technical Reports Server (NTRS)

    Laird, Jamie S.; Scheik, Leif; Vizkelethy, Gyorgy; Mojarradi, Mohammad M; Chen, Yuan; Miyahira, Tetsuo; Blalock, Benjamin; Greenwell, Robert; Doyle, Barney

    2006-01-01

    The next generation of Martian rover#s to be launched by JPL are to examine polar regions where temperatures are extremely low and the absence of an earth-like atmosphere results in high levels of cosmic radiation at ground level. Cosmic rays lead to a plethora of radiation effects including Single Event Transients (SET) which can severely degrade microelectronic functionality. As such, a radiation-hardened, temperature compensated CMOS Single-On-Insulator (SOI) Operational Amplifier has been designed for JPL by the University of Tennessee and fabricated by Honeywell using the SOI V process. SOI technology has been shownto be far less sensitive to transient effects than both bulk and epilayer Si. Broad beam heavy-ion tests at the University of Texas A&M using Kr and Xebeams of energy 25MeV/amu were performed to ascertain the duration and severity of the SET for the op-amp configured for a low and high gain application. However, some ambiguity regarding the location of transient formation required the use of a focused MeV ion microbeam. A 36MeV O6(+) microbeam. the Sandia National Laboratory (SNL) was used to image and verify regions of particular concern. This is a viewgraph presentation

  12. High energy transients: The millisecond domain

    NASA Astrophysics Data System (ADS)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  13. A method for classification of transient events in EEG recordings: application to epilepsy diagnosis.

    PubMed

    Tzallas, A T; Karvelis, P S; Katsis, C D; Fotiadis, D I; Giannopoulos, S; Konitsiotis, S

    2006-01-01

    The aim of the paper is to analyze transient events in inter-ictal EEG recordings, and classify epileptic activity into focal or generalized epilepsy using an automated method. A two-stage approach is proposed. In the first stage the observed transient events of a single channel are classified into four categories: epileptic spike (ES), muscle activity (EMG), eye blinking activity (EOG), and sharp alpha activity (SAA). The process is based on an artificial neural network. Different artificial neural network architectures have been tried and the network having the lowest error has been selected using the hold out approach. In the second stage a knowledge-based system is used to produce diagnosis for focal or generalized epileptic activity. The classification of transient events reported high overall accuracy (84.48%), while the knowledge-based system for epilepsy diagnosis correctly classified nine out of ten cases. The proposed method is advantageous since it effectively detects and classifies the undesirable activity into appropriate categories and produces a final outcome related to the existence of epilepsy.

  14. Single event test methodology for integrated optoelectronics

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Cooley, James A.; Stassinopoulos, E. G.; Marshall, Paul; Crabtree, Christina

    1993-01-01

    A single event upset (SEU), defined as a transient or glitch on the output of a device, and its applicability to integrated optoelectronics are discussed in the context of spacecraft design and the need for more than a bit error rate viewpoint for testing and analysis. A methodology for testing integrated optoelectronic receivers and transmitters for SEUs is presented, focusing on the actual test requirements and system schemes needed for integrated optoelectronic devices. Two main causes of single event effects in the space environment, including protons and galactic cosmic rays, are considered along with ground test facilities for simulating the space environment.

  15. Effects of Temperature and Supply Voltage on SEU- and SET-Induced Errors in Bulk 40-nm Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.

    2017-08-01

    The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.

  16. Literacy shapes thought: the case of event representation in different cultures

    PubMed Central

    Dobel, Christian; Enriquez-Geppert, Stefanie; Zwitserlood, Pienie; Bölte, Jens

    2013-01-01

    There has been a lively debate whether conceptual representations of actions or scenes follow a left-to-right spatial transient when participants depict such events or scenes. It was even suggested that conceptualizing the agent on the left side represents a universal. We review the current literature with an emphasis on event representation and on cross-cultural studies. While there is quite some evidence for spatial bias for representations of events and scenes in diverse cultures, their extent and direction depend on task demands, one‘s native language, and importantly, on reading and writing direction. Whether transients arise only in subject-verb-object languages, due to their linear sentential position of event participants, is still an open issue. We investigated a group of illiterate speakers of Yucatec Maya, a language with a predominant verb-object-subject structure. They were compared to illiterate native speakers of Spanish. Neither group displayed a spatial transient. Given the current literature, we argue that learning to read and write has a strong impact on representations of actions and scenes. Thus, while it is still under debate whether language shapes thought, there is firm evidence that literacy does. PMID:24795665

  17. Single-Event Transient Response of Comparator Pre-Amplifiers in a Complementary SiGe Technology

    NASA Astrophysics Data System (ADS)

    Ildefonso, Adrian; Lourenco, Nelson E.; Fleetwood, Zachary E.; Wachter, Mason T.; Tzintzarov, George N.; Cardoso, Adilson S.; Roche, Nicolas J.-H.; Khachatrian, Ani; McMorrow, Dale; Buchner, Stephen P.; Warner, Jeffrey H.; Paki, Pauline; Kaynak, Mehmet; Tillack, Bernd; Cressler, John D.

    2017-01-01

    The single-event transient (SET) response of the pre-amplification stage of two latched comparators designed using either npn or pnp silicon-germanium heterojunction bipolar transistors (SiGe HBTs) is investigated via two-photon absorption (TPA) carrier injection and mixed-mode TCAD simulations. Experimental data and TCAD simulations showed an improved SET response for the pnp comparator circuit. 2-D raster scans revealed that the devices in the pnp circuit exhibit a reduction in sensitive area of up to 80% compared to their npn counterparts. In addition, by sweeping the input voltage, the sensitive operating region with respect to SETs was determined. By establishing a figure-of-merit, relating the transient peaks and input voltage polarities, the pnp device was determined to have a 21.4% improved response with respect to input voltage. This study has shown that using pnp devices is an effective way to mitigate SETs, and could enable further radiation-hardening-by-design techniques.

  18. Modeling Single-Event Transient Propagation in a SiGe BiCMOS Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Ildefonso, Adrian; Song, Ickhyun; Tzintzarov, George N.; Fleetwood, Zachary E.; Lourenco, Nelson E.; Wachter, Mason T.; Cressler, John D.

    2017-08-01

    The propagation of single-event transient (SET) signals in a silicon-germanium direct-conversion receiver carrying modulated data is explored. A theoretical analysis of transient propagation, verified by simulation, is presented. A new methodology to characterize and quantify the impact of SETs in communication systems carrying modulated data is proposed. The proposed methodology uses a pulsed radiation source to induce distortions in the signal constellation. The error vector magnitude due to SETs can then be calculated to quantify errors. Two different modulation schemes were simulated: QPSK and 16-QAM. The distortions in the constellation diagram agree with the presented circuit theory. Furthermore, the proposed methodology was applied to evaluate the improvements in the SET response due to a known radiation-hardening-by-design (RHBD) technique, where the common-base device of the low-noise amplifier was operated in inverse mode. The proposed methodology can be a valid technique to determine the most sensitive parts of a system carrying modulated data.

  19. System level latchup mitigation for single event and transient radiation effects on electronics

    DOEpatents

    Kimbrough, J.R.; Colella, N.J.

    1997-09-30

    A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.

  20. System level latchup mitigation for single event and transient radiation effects on electronics

    DOEpatents

    Kimbrough, Joseph Robert; Colella, Nicholas John

    1997-01-01

    A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

  1. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  2. Analysis of SET pulses propagation probabilities in sequential circuits

    NASA Astrophysics Data System (ADS)

    Cai, Shuo; Yu, Fei; Yang, Yiqun

    2018-05-01

    As the feature size of CMOS transistors scales down, single event transient (SET) has been an important consideration in designing logic circuits. Many researches have been done in analyzing the impact of SET. However, it is difficult to consider numerous factors. We present a new approach for analyzing the SET pulses propagation probabilities (SPPs). It considers all masking effects and uses SET pulses propagation probabilities matrices (SPPMs) to represent the SPPs in current cycle. Based on the matrix union operations, the SPPs in consecutive cycles can be calculated. Experimental results show that our approach is practicable and efficient.

  3. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    DOE PAGES

    Chen, K.; Chen, H.; Kierstead, J.; ...

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less

  4. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.

    PubMed

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-05-15

    Cytosolic [Ca(2+)] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca(2+) sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near -50 mV) or at -20 mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to 'lone embers' observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 microm. Other parameters depended on voltage. At -50 mV average duration was 111 ms and latency 185 ms. At -20 mV duration was 203 ms and latency 24 ms. Ca(2+) release current, calculated on an average of events, was nearly steady at 0.5-0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at -20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca(2+) release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells.

  5. Investigations of an Environmentally Induced Long Duration Hall Thruster Start Transient (PREPRINT)

    DTIC Science & Technology

    2006-02-06

    Hall thruster start transient is produced by exposure of the thruster to ambient laboratory atmosphere. This behavior was first observed during operation of a cluster of four 200 W BHT-200 Hall effect thrusters where large anode discharge fluctuations, visible as increased anode current and a diffuse plume structure, occurred in an apparently random manner. During operation of a single thruster, the start transient appears as a quickly rising and later smoothly decaying elevated anode current with a diffuse plume that persists for less than 500 seconds. The start transient

  6. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events† †Electronic supplementary information (ESI) available: Summary of previous studies; Ag NP characterization: TEM and DLS; event duration histogram; maximum current histogram. See DOI: 10.1039/c6sc04483b Click here for additional data file.

    PubMed Central

    Kang, Minkyung; Bullions, Erin

    2017-01-01

    Single nanoparticle (NP) electrochemical impacts is a rapidly expanding field of fundamental electrochemistry, with applications from electrocatalysis to electroanalysis. These studies, which involve monitoring the electrochemical (usually current–time, I–t) response when a NP from solution impacts with a collector electrode, have the scope to provide considerable information on the properties of individual NPs. Taking the widely studied oxidative dissolution of individual silver nanoparticles (Ag NPs) as an important example, we present measurements with unprecedented noise (< 5 pA) and time resolution (time constant 100 μs) that are highly revealing of Ag NP dissolution dynamics. Whereas Ag NPs of diameter, d = 10 nm are mostly dissolved in a single event (on the timescale of the measurements), a wide variety of complex processes operate for NPs of larger diameter (d ≥ 20 nm). Detailed quantitative analysis of the I–t features, consumed charge, event duration and impact frequency leads to a major conclusion: Ag NPs undergo sequential partial stripping (oxidative dissolution) events, where a fraction of a NP is electrochemically oxidized, followed by the NP drifting away and back to the tunnelling region before the next partial stripping event. As a consequence, analysis of the charge consumed by single events (so-called “impact coulometry”) cannot be used as a general method to determine the size of colloidal NPs. However, a proper analysis of the I–t responses provides highly valuable information on the transient physicochemical interactions between NPs and polarized surfaces. PMID:28553474

  7. An infrastructure for accurate characterization of single-event transients in digital circuits.

    PubMed

    Savulimedu Veeravalli, Varadan; Polzer, Thomas; Schmid, Ulrich; Steininger, Andreas; Hofbauer, Michael; Schweiger, Kurt; Dietrich, Horst; Schneider-Hornstein, Kerstin; Zimmermann, Horst; Voss, Kay-Obbe; Merk, Bruno; Hajek, Michael

    2013-11-01

    We present the architecture and a detailed pre-fabrication analysis of a digital measurement ASIC facilitating long-term irradiation experiments of basic asynchronous circuits, which also demonstrates the suitability of the general approach for obtaining accurate radiation failure models developed in our FATAL project. Our ASIC design combines radiation targets like Muller C-elements and elastic pipelines as well as standard combinational gates and flip-flops with an elaborate on-chip measurement infrastructure. Major architectural challenges result from the fact that the latter must operate reliably under the same radiation conditions the target circuits are exposed to, without wasting precious die area for a rad-hard design. A measurement architecture based on multiple non-rad-hard counters is used, which we show to be resilient against double faults, as well as many triple and even higher-multiplicity faults. The design evaluation is done by means of comprehensive fault injection experiments, which are based on detailed Spice models of the target circuits in conjunction with a standard double-exponential current injection model for single-event transients (SET). To be as accurate as possible, the parameters of this current model have been aligned with results obtained from 3D device simulation models, which have in turn been validated and calibrated using micro-beam radiation experiments at the GSI in Darmstadt, Germany. For the latter, target circuits instrumented with high-speed sense amplifiers have been used for analog SET recording. Together with a probabilistic analysis of the sustainable particle flow rates, based on a detailed area analysis and experimental cross-section data, we can conclude that the proposed architecture will indeed sustain significant target hit rates, without exceeding the resilience bound of the measurement infrastructure.

  8. An infrastructure for accurate characterization of single-event transients in digital circuits☆

    PubMed Central

    Savulimedu Veeravalli, Varadan; Polzer, Thomas; Schmid, Ulrich; Steininger, Andreas; Hofbauer, Michael; Schweiger, Kurt; Dietrich, Horst; Schneider-Hornstein, Kerstin; Zimmermann, Horst; Voss, Kay-Obbe; Merk, Bruno; Hajek, Michael

    2013-01-01

    We present the architecture and a detailed pre-fabrication analysis of a digital measurement ASIC facilitating long-term irradiation experiments of basic asynchronous circuits, which also demonstrates the suitability of the general approach for obtaining accurate radiation failure models developed in our FATAL project. Our ASIC design combines radiation targets like Muller C-elements and elastic pipelines as well as standard combinational gates and flip-flops with an elaborate on-chip measurement infrastructure. Major architectural challenges result from the fact that the latter must operate reliably under the same radiation conditions the target circuits are exposed to, without wasting precious die area for a rad-hard design. A measurement architecture based on multiple non-rad-hard counters is used, which we show to be resilient against double faults, as well as many triple and even higher-multiplicity faults. The design evaluation is done by means of comprehensive fault injection experiments, which are based on detailed Spice models of the target circuits in conjunction with a standard double-exponential current injection model for single-event transients (SET). To be as accurate as possible, the parameters of this current model have been aligned with results obtained from 3D device simulation models, which have in turn been validated and calibrated using micro-beam radiation experiments at the GSI in Darmstadt, Germany. For the latter, target circuits instrumented with high-speed sense amplifiers have been used for analog SET recording. Together with a probabilistic analysis of the sustainable particle flow rates, based on a detailed area analysis and experimental cross-section data, we can conclude that the proposed architecture will indeed sustain significant target hit rates, without exceeding the resilience bound of the measurement infrastructure. PMID:24748694

  9. Patients' and procedural characteristics of AV-block during slow pathway modulation for AVNRT-single center 10year experience.

    PubMed

    Wasmer, Kristina; Dechering, Dirk G; Köbe, Julia; Leitz, Patrick; Frommeyer, Gerrit; Lange, Phillip S; Kochhäuser, Simon; Reinke, Florian; Pott, Christian; Mönnig, Gerold; Breithardt, Günter; Eckardt, Lars

    2017-10-01

    Permanent AV-block is a recognized and feared complication of slow pathway modulation for AVNRT. We aimed to assess incidence of transient and permanent AV-block as well as consequences of transient AV-block in a large contemporary AVNRT ablation cohort. We searched our single center prospective ablation database for occurrence of transient and permanent AV-block during slow pathway modulation between January 2004 and October 2015. We analyzed patients' and procedural characteristics as well as outcome of patients in whom transient or permanent AV-block occurred. Of 9170 patients who underwent a catheter ablation at our institution between January 2004 and October 2015, 2101 patients (64% women, mean age 50±18years) underwent slow pathway modulation. In three patients, permanent AV-block occurred during RF application. Additional two patients had transient AV-block that recovered (after a few minutes and 25min), but recurred within two days of the procedure. All five patients underwent dual chamber pacemaker implantation (0.2%). Transient AV-block related to RF delivery occurred in 44 patients (2%). Transient mechanical AV-block occurred in additional 17 patients (0.8%). In 12 patients, ablation was continued despite transient AV-block. One of these patients developed permanent AV-block. Permanent AV-block following slow pathway modulation is a rare event, occurring in 0.2% of patients in a large contemporary single center cohort. Transient AV-block is more frequent (2%). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Software resilience and the effectiveness of software mitigation in microcontrollers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather; Baker, Zachary; Fairbanks, Tom

    Commercially available microprocessors could be useful to the space community for noncritical computations. There are many possible components that are smaller, lower-power, and less expensive than traditional radiation-hardened microprocessors. Many commercial microprocessors have issues with single-event effects (SEEs), such as single-event upsets (SEUs) and single-event transients (SETs), that can cause the microprocessor to calculate an incorrect result or crash. In this paper we present the Trikaya technique for masking SEUs and SETs through software mitigation techniques. Furthermore, test results show that this technique can be very effective at masking errors, making it possible to fly these microprocessors for a varietymore » of missions.« less

  11. Software resilience and the effectiveness of software mitigation in microcontrollers

    DOE PAGES

    Quinn, Heather; Baker, Zachary; Fairbanks, Tom; ...

    2015-12-01

    Commercially available microprocessors could be useful to the space community for noncritical computations. There are many possible components that are smaller, lower-power, and less expensive than traditional radiation-hardened microprocessors. Many commercial microprocessors have issues with single-event effects (SEEs), such as single-event upsets (SEUs) and single-event transients (SETs), that can cause the microprocessor to calculate an incorrect result or crash. In this paper we present the Trikaya technique for masking SEUs and SETs through software mitigation techniques. Furthermore, test results show that this technique can be very effective at masking errors, making it possible to fly these microprocessors for a varietymore » of missions.« less

  12. Single-Event Effects in High-Frequency Linear Amplifiers: Experiment and Analysis

    NASA Astrophysics Data System (ADS)

    Zeinolabedinzadeh, Saeed; Ying, Hanbin; Fleetwood, Zachary E.; Roche, Nicolas J.-H.; Khachatrian, Ani; McMorrow, Dale; Buchner, Stephen P.; Warner, Jeffrey H.; Paki-Amouzou, Pauline; Cressler, John D.

    2017-01-01

    The single-event transient (SET) response of two different silicon-germanium (SiGe) X-band (8-12 GHz) low noise amplifier (LNA) topologies is fully investigated in this paper. The two LNAs were designed and implemented in 130nm SiGe HBT BiCMOS process technology. Two-photon absorption (TPA) laser pulses were utilized to induce transients within various devices in these LNAs. Impulse response theory is identified as a useful tool for predicting the settling behavior of the LNAs subjected to heavy ion strikes. Comprehensive device and circuit level modeling and simulations were performed to accurately simulate the behavior of the circuits under ion strikes. The simulations agree well with TPA measurements. The simulation, modeling and analysis presented in this paper can be applied for any other circuit topologies for SET modeling and prediction.

  13. Classifying RRATs and FRBs

    NASA Astrophysics Data System (ADS)

    Keane, E. F.

    2016-06-01

    In this paper, we consider the fact that the simple criterion used to label fast radio transient events as either fast radio bursts (FRBs, thought to be extragalactic with as yet unknown progenitors) or rotating radio transients (RRATs, thought to be Galactic neutron stars) is uncertain. We identify single pulse events reported in the literature which have never been seen to repeat, and which have been labelled as RRATs, but are potentially mislabelled FRBs. We examine the probability that such `grey area' events are within the Milky Way. The uncertainty in the RRAT/FRB labelling criterion, as well as Galactic-latitude dependent reporting bias may be contributing to the observed latitude dependence of the FRB rate, in addition to effects such as Eddington bias due to scintillation.

  14. Revealing the cascade of slow transients behind a large slow slip event

    NASA Astrophysics Data System (ADS)

    Frank, W.; Rousset, B.; Lasserre, C.; Campillo, M.

    2017-12-01

    Capable of reaching similar magnitudes to large megathrust earthquakes (Mw > 7), slow slip events play a major role in accommodating tectonic motion on plate boundaries. These slip transients are the slow release of built-up tectonic stress that are geodetically imaged as a predominantly aseismic rupture, which is smooth in both time and space. We demonstrate here that large slow slip events are in fact a complex cascade of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the Mw 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement as recorded by GPS suggests a six month duration, motion in the direction of tectonic release only sporadically occurs over 55 days and its surface signature is attenuated by rapid relocking of the plate interface. These results demonstrate that our current conceptual model of slow and continuous rupture is an artifact of low-resolution geodetic observations of a superposition of small, clustered slip events. Our proposed description of slow slip as a cascade of slow transients implies that we systematically overestimate the duration T and underestimate the moment magnitude M of large slow slip events.

  15. A FRAMEWORK FOR INTERPRETING FAST RADIO TRANSIENTS SEARCH EXPERIMENTS: APPLICATION TO THE V-FASTR EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B.

    2013-04-10

    We define a framework for determining constraints on the detection rate of fast transient events from a population of underlying sources, with a view to incorporate beam shape, frequency effects, scattering effects, and detection efficiency into the metric. We then demonstrate a method for combining independent data sets into a single event rate constraint diagram, using a probabilistic approach to the limits on parameter space. We apply this new framework to present the latest results from the V-FASTR experiment, a commensal fast transients search using the Very Long Baseline Array (VLBA). In the 20 cm band, V-FASTR now has themore » ability to probe the regions of parameter space of importance for the observed Lorimer and Keane fast radio transient candidates by combining the information from observations with differing bandwidths, and properly accounting for the source dispersion measure, VLBA antenna beam shape, experiment time sampling, and stochastic nature of events. We then apply the framework to combine the results of the V-FASTR and Allen Telescope Array Fly's Eye experiments, demonstrating their complementarity. Expectations for fast transients experiments for the SKA Phase I dish array are then computed, and the impact of large differential bandwidths is discussed.« less

  16. Rapidly Evolving Transients in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursiainen, M.; et al.

    We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak inmore » $$\\lesssim 10$$ d and exponential decline in $$\\lesssim30$$ d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts ($0.05M_\\mathrm{g}>-22.25$$). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot ($$T\\approx10000-30000$$ K) and large ($$R\\approx 10^{14}-2\\cdot10^{15}$$ cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.« less

  17. Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia M.; Bulik, Tomasz; Gómez-Morán, Ada Nebot

    2018-06-01

    Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims: We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods: We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results: Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions: The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.

  18. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  19. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.

  20. V-FASTR: THE VLBA FAST RADIO TRANSIENTS EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayth, Randall B.; Tingay, Steven J.; Brisken, Walter F.

    2011-07-10

    Recent discoveries of dispersed, non-periodic impulsive radio signals with single-dish radio telescopes have sparked significant interest in exploring the relatively uncharted space of fast transient radio signals. Here we describe V-FASTR, an experiment to perform a blind search for fast transient radio signals using the Very Long Baseline Array (VLBA). The experiment runs entirely in a commensal mode, alongside normal VLBA observations and operations. It is made possible by the features and flexibility of the DiFX software correlator that is used to process VLBA data. Using the VLBA for this type of experiment offers significant advantages over single-dish experiments, includingmore » a larger field of view, the ability to easily distinguish local radio-frequency interference from real signals, and the possibility to localize detected events on the sky to milliarcsecond accuracy. We describe our software pipeline, which accepts short integration ({approx} ms) spectrometer data from each antenna in real time during correlation and performs an incoherent dedispersion separately for each antenna, over a range of trial dispersion measures. The dedispersed data are processed by a sophisticated detector and candidate events are recorded. At the end of the correlation, small snippets of the raw data at the time of the events are stored for further analysis. We present the results of our event detection pipeline from some test observations of the pulsars B0329+54 and B0531+21 (the Crab pulsar).« less

  1. A Compendium of Recent Optocoupler Radiation Test Data

    NASA Technical Reports Server (NTRS)

    Label, K. A.; Kniffin, S. D.; Reed, R. A.; Kim, H. S.; Wert, J. L.; Oberg, D. L.; Normand, E.; Johnston, A. H.; Lum, G. K.; Koga, R.; hide

    2000-01-01

    We present a compendium of optocoupler radiation test data including neutron, proton and heavy ion Displacement Damage (DD), Single Event Transients (SET) and Total Ionizing Dose (TID). Proton data includes ionizing and non-ionizing damage mechanisms.

  2. Extragalactic High-energy Transients: Event Rate Densities and Luminosity Functions

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Zhang, Bing; Li, Zhuo

    2015-10-01

    Several types of extragalactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with an associated relativistic jet. In this paper, we apply a unified method to systematically study the redshift-dependent event rate densities and the global luminosity functions (GLFs; ignoring redshift evolution) of these transients. We introduce some empirical formulae for the redshift-dependent event rate densities for different types of transients and derive the local specific event rate density, which also represents its GLF. Long GRBs (LGRBs) have a large enough sample to reveal features in the GLF, which is best charaterized as a triple power law (PL). All the other transients are consistent with having a single-power-law (SPL) LF. The total event rate density depends on the minimum luminosity, and we obtain the following values in units of Gpc-3 yr-1: {0.8}-0.1+0.1 for high-luminosity LGRBs above 1050 erg s-1 {164}-65+98 for low-luminosity LGRBs above 5 × 1046 erg s-1 {1.3}-0.3+0.4, {1.2}-0.3+0.4, and {3.3}-0.8+1.0 above 1050 erg s-1 for short GRBs with three different merger delay models (Gaussian, lognormal, and PL); {1.9}-1.2+2.4× {10}4 above 1044 erg s-1 for SBOs, {4.8}-2.1+3.2× {10}2 for normal TDEs above 1044 erg s-1 and {0.03}-0.02+0.04 above 1048 erg s-1 for TDE jets as discovered by Swift. Intriguingly, the GLFs of different kinds of transients, which cover over 12 orders of magnitude, are consistent with an SPL with an index of -1.6.

  3. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobelski, Adam R.; McKenzie, David E., E-mail: kobelski@solar.physics.montana.edu

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C)more » sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.« less

  4. Reliability Design for Neutron Induced Single-Event Burnout of IGBT

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Ishiko, Masayasu

    Single-event burnout (SEB) caused by cosmic ray neutrons leads to catastrophic failures in insulated gate bipolar transistors (IGBTs). It was found experimentally that the incident neutron induced SEB failure rate increases as a function of the applied collector voltage. Moreover, the failure rate increased sharply with an increase in the applied collector voltage when the voltage exceeded a certain threshold value (SEB cutoff voltage). In this paper, transient device simulation results indicate that impact ionization at the n-drift/n+ buffer boundary is a crucially important factor in the turning-on of the parasitic pnp transistor, and eventually latch-up of the parasitic thyristor causes SEB. In addition, the device parameter dependency of the SEB cutoff voltage was analytically derived from the latch-up condition of the parasitic thyristor. As a result, it was confirmed that reducing the current gain of the parasitic transistor, such as by increasing the n-drift region thickness d was effective in increasing the SEB cutoff voltage. Furthermore, `white' neutron-irradiation experiments demonstrated that suppressing the inherent parasitic thyristor action leads to an improvement of the SEB cutoff voltage. It was confirmed that current gain optimization of the parasitic transistor is a crucial factor for establishing highly reliable design against chance failures.

  5. SRAM Based Re-programmable FPGA for Space Applications

    NASA Technical Reports Server (NTRS)

    Wang, J. J.; Sun, J. S.; Cronquist, B. E.; McCollum, J. L.; Speers, T. M.; Plants, W. C.; Katz, R. B.

    1999-01-01

    An SRAM (static random access memory)-based reprogrammable FPGA (field programmable gate array) is investigated for space applications. A new commercial prototype, named the RS family, was used as an example for the investigation. The device is fabricated in a 0.25 micrometers CMOS technology. Its architecture is reviewed to provide a better understanding of the impact of single event upset (SEU) on the device during operation. The SEU effect of different memories available on the device is evaluated. Heavy ion test data and SPICE simulations are used integrally to extract the threshold LET (linear energy transfer). Together with the saturation cross-section measurement from the layout, a rate prediction is done on each memory type. The SEU in the configuration SRAM is identified as the dominant failure mode and is discussed in detail. The single event transient error in combinational logic is also investigated and simulated by SPICE. SEU mitigation by hardening the memories and employing EDAC (error detection and correction) at the device level are presented. For the configuration SRAM (CSRAM) cell, the trade-off between resistor de-coupling and redundancy hardening techniques are investigated with interesting results. Preliminary heavy ion test data show no sign of SEL (single event latch-up). With regard to ionizing radiation effects, the increase in static leakage current (static I(sub CC)) measured indicates a device tolerance of approximately 50krad(Si).

  6. Machine Learning-based Transient Brokers for Real-time Classification of the LSST Alert Stream

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika; ANTARES Collaboration

    2018-01-01

    The number of transient events discovered by wide-field time-domain surveys already far outstrips the combined followup resources of the astronomical community. This number will only increase as we progress towards the commissioning of the Large Synoptic Survey Telescope (LSST), breaking the community's current followup paradigm. Transient brokers - software to sift through, characterize, annotate and prioritize events for followup - will be a critical tool for managing alert streams in the LSST era. Developing the algorithms that underlie the brokers, and obtaining simulated LSST-like datasets prior to LSST commissioning, to train and test these algorithms are formidable, though not insurmountable challenges. The Arizona-NOAO Temporal Analysis and Response to Events System (ANTARES) is a joint project of the National Optical Astronomy Observatory and the Department of Computer Science at the University of Arizona. We have been developing completely automated methods to characterize and classify variable and transient events from their multiband optical photometry. We describe the hierarchical ensemble machine learning algorithm we are developing, and test its performance on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, as well as our progress towards incorporating these into a real-time event broker working on live alert streams from time-domain surveys.

  7. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    NASA Astrophysics Data System (ADS)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  8. Single Event Transients in Linear Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale

    2005-01-01

    On November 5, 2001, a processor reset occurred on board the Microwave Anisotropy Probe (MAP), a NASA mission to measure the anisotropy of the microwave radiation left over from the Big Bang. The reset caused the spacecraft to enter a safehold mode from which it took several days to recover. Were that to happen regularly, the entire mission would be compromised, so it was important to find the cause of the reset and, if possible, to mitigate it. NASA assembled a team of engineers that included experts in radiation effects to tackle the problem. The first clue was the observation that the processor reset occurred during a solar event characterized by large increases in the proton and heavy ion fluxes emitted by the sun. To the radiation effects engineers on the team, this strongly suggested that particle radiation might be the culprit, particularly when it was discovered that the reset circuit contained three voltage comparators (LM139). Previous testing revealed that large voltage transients, or glitches appeared at the output of the LM139 when it was exposed to a beam of heavy ions [NI96]. The function of the reset circuit was to monitor the supply voltage and to issue a reset command to the processor should the voltage fall below a reference of 2.5 V [PO02]. Eventually, the team of engineers concluded that ionizing particle radiation from the solar event produced a negative voltage transient on the output of one of the LM139s sufficiently large to reset the processor on MAP. Fortunately, as of the end of 2004, only two such resets have occurred. The reset on MAP was not the first malfunction on a spacecraft attributed to a transient. That occurred shortly after the launch of NASA s TOPEX/Poseidon satellite in 1992. It was suspected, and later confirmed, that an anomaly in the Earth Sensor was caused by a transient in an operational amplifier (OP-15) [KO93]. Over the next few years, problems on TDRS, CASSINI, [PR02] SOHO [HA99,HA01] and TERRA were also attributed to transients. In some cases, such events produced resets by falsely triggering circuits designed to protect against over- voltage or over-current. On at least three occasions, transients caused satellites to switch into "safe mode" in which most of the systems on board the satellites were powered down for an extended period. By the time the satellites were reconfigured and returned to full operational state, much scientific data had been lost. Fortunately, no permanent damage occurred in any of the systems and they were all successfully re-activated.

  9. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).

    PubMed

    Mayaud, C; Wagner, T; Benischke, R; Birk, S

    2014-04-16

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems.

  10. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    PubMed Central

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-01-01

    Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems. PMID:24748687

  11. Image analysis of single event transient effects on charge coupled devices irradiated by protons

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Xue, Yuanyuan; Liu, Jing; He, Baoping; Yao, Zhibin; Ma, Wuying

    2016-10-01

    The experiments of single event transient (SET) effects on charge coupled devices (CCDs) irradiated by protons are presented. The radiation experiments have been carried out at the accelerator protons with the energy of 200 MeV and 60 MeV.The incident angles of the protons are at 30°and 90° to the plane of the CCDs to obtain the images induced by the perpendicularity and incline incident angles. The experimental results show that the typical characteristics of the SET effects on a CCD induced by protons are the generation of a large number of dark signal spikes (hot pixels) which are randomly distributed in the "pepper" images. The characteristics of SET effects are investigated by observing the same imaging area at different time during proton radiation to verify the transient effects. The experiment results also show that the number of dark signal spikes increases with increasing integration time during proton radiation. The CCDs were tested at on-line and off-line to distinguish the radiation damage induced by the SET effects or DD effects. The mechanisms of the dark signal spike generation induced by the SET effects and the DD effects are demonstrated respectively.

  12. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    NASA Astrophysics Data System (ADS)

    Bagchi, Manjari; Nieves, Angela Cortes; McLaughlin, Maura

    2012-10-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64-m radio telescope, including 'rotating radio transients', the 'Lorimer burst' and 'perytons'. Rotating radio transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the rotating radio transients and Lorimer burst, but unlike these events appear in all 13 beams of the Parkes multibeam receiver and are probably a form of peculiar radio frequency interference. In order to constrain these and other radio source populations further, we searched the archival Parkes Multibeam Pulsar Survey data for events similar to any of these. We did not find any new rotating radio transients or bursts like the Lorimer burst. We did, however, discover four peryton-like events. Similar to the perytons, these four bursts are highly dispersed, detected in all 13 beams of the Parkes multibeam receiver, and have pulse widths between 20 and 30 ms. Unlike perytons, these bursts are not associated with atmospheric events like rain or lightning. These facts may indicate that lightning was not responsible for the peryton phenomenon. Moreover, the lack of highly dispersed celestial signals is the evidence that the Lorimer burst is unlikely to belong to a cosmological source population.

  13. Xilinx Virtex-5QV (V5QV) Independent SEU Data

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2014-01-01

    This is an independent study to determine the single event destructive and transient susceptibility of the Xilinx Virtex-5QV (SIRF) device. A framework for evaluating complex digital systems targeted for harsh radiation environments such as space is presented.

  14. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle

    PubMed Central

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-01-01

    Cytosolic [Ca2+] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca2+ sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near −50 mV) or at −20mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to ‘lone embers’ observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 μm. Other parameters depended on voltage. At −50 mV average duration was 111 ms and latency 185 ms. At −20 mV duration was 203 ms and latency 24 ms. Ca2+ release current, calculated on an average of events, was nearly steady at 0.5–0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at −20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca2+ release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells. PMID:14990680

  15. Tidal Disruption Events: From iPTF to ZTF

    NASA Astrophysics Data System (ADS)

    Hung, Tiara; Gezari, Suvi; Cenko, Bradley; Kulkarni, Shri; Blagorodnova, Nadia; Yan, Lin

    2018-01-01

    The biggest challenge to finding tidal disruption events (TDEs) in optical transient sky surveys is to get rid of the numerous interlopers such as AGN and Type Ia supernovae that are at least 100 times more common. We will describe our selection process that led to the prompt discoveries of two TDEs (iPTF16axa and iPTF16fnl) in a 4-month long experiment to study nuclear transients in the intermediate Palomar Transient Factory (iPTF) together with UV and X-ray imaging follow-up from our Swift Cycle 12 Key Project. Subsequent multi-wavelength follow-up observations were triggered in order to study these rare events. We found that most of the optically-bright TDEs share similar peak luminosities, light curves, and temperature evolution except iPTF16fnl, which is the nearest, faintest, and fastest optical TDE ever found. Based on our detection rate in iPTF, we expect to discover ~30 TDEs in the first year of the Zwicky Transient Factory (ZTF), doubling the current TDE sample aggregated over ~7 years of wide-field optical surveys.

  16. Can tokamaks PFC survive a single event of any plasma instabilities?

    NASA Astrophysics Data System (ADS)

    Hassanein, A.; Sizyuk, V.; Miloshevsky, G.; Sizyuk, T.

    2013-07-01

    Plasma instability events such as disruptions, edge-localized modes (ELMs), runaway electrons (REs), and vertical displacement events (VDEs) are continued to be serious events and most limiting factors for successful tokamak reactor concept. The plasma-facing components (PFCs), e.g., wall, divertor, and limited surfaces of a tokamak as well as coolant structure materials are subjected to intense particle and heat loads and must maintain a clean and stable surface environment among them and the core/edge plasma. Typical ITER transient events parameters are used for assessing the damage from these four different instability events. HEIGHTS simulation showed that a single event of a disruption, giant ELM, VDE, or RE can cause significant surface erosion (melting and vaporization) damage to PFC, nearby components, and/or structural materials (VDE, RE) melting and possible burnout of coolant tubes that could result in shut down of reactor for extended repair time.

  17. Hardware Demonstration: Frequency Spectra of Transients

    NASA Technical Reports Server (NTRS)

    McCloskey, John; Dimov, Jen

    2017-01-01

    Radiated emissions measurements as specified by MIL-STD-461 are performed in the frequency domain, which is best suited to continuous wave (CW) types of signals. However, many platforms implement signals that are single event pulses or transients. Such signals can potentially generate momentary radiated emissions that can cause interference in the system, but they may be missed with traditional measurement techniques. This demonstration provides measurement and analysis techniques that effectively evaluate the potential emissions from such signals in order to evaluate their potential impacts to system performance.

  18. Single Event Effect microchip testing at the Texas A&M University Cyclotron Institute

    NASA Astrophysics Data System (ADS)

    Clark, Henry; Yennello, Sherry; Texas A&M University-Cyclotron Institute Team

    2015-10-01

    A Single Event Effect (SEE) is caused by a single, energetic particle that deposits a sufficient amount of charge in a device as it transverses it and upsets its normal operation. Soft errors are non-destructive and normally appear as transient pulses in logic or support circuitry, or as bit flips in memory cells or registers. Hard errors usually result in a high operating current, above device specifications, and must be cleared by a power reset. Burnout errors are so destructive that the device becomes operationally dead. Spacecraft designers must be concerned with the causes of SEE's from protons and heavy ions since commercial devices are typically chosen reduce the parameters of power, weight, volume and cost but have increased functionality, which in turn are typically vulnerable to SEE. As a result all mission-critical devices must be tested. The TAMU K500 superconducting cyclotron has provided beams for space radiation testing since 1994. Starting at just 100 hours/year at inception, the demand has grown to 3000 hours/year. In recent years, most beam time has been for US defense system testing. Nearly 15% has been provided for foreign agencies from Europe and Asia. An overview of the testing facility and future plans will be presented.

  19. Isolated transient vertigo: posterior circulation ischemia or benign origin?

    PubMed

    Blasberg, Tobias F; Wolf, Lea; Henke, Christian; Lorenz, Matthias W

    2017-06-14

    Isolated transient vertigo can be the only symptom of posterior circulation ischemia. Thus, it is important to differentiate isolated vertigo of a cerebrovascular origin from that of more benign origins, as patients with cerebral ischemia have a much higher risk for future stroke than do those with 'peripheral' vertigo. The current study aims to identify risk factors for cerebrovascular origin of isolated transient vertigo, and for future cerebrovascular events. From the files of 339 outpatients with isolated transient vertigo we extracted history, clinical and technical findings, diagnosis, and follow-up information on subsequent stroke or transient ischemic attack (TIA). Risk factors were analyzed using multivariate regression models (logistic or Cox) and reconfirmed in univariate analyses. On first presentation, 48 (14.2%) patients received the diagnosis 'probable or definite cerebrovascular vertigo'. During follow-up, 41 patients suffered stroke or TIA (event rate 7.9 per 100 person years, 95% confidence interval (CI) 5.5-10.4), 26 in the posterior circulation (event rate 4.8 per 100 person years, 95% CI 3.0-6.7). The diagnosis was not associated with follow-up cerebrovascular events. In multivariate models testing multiple potential determinants, only the presentation mode was consistently associated with the diagnosis and stroke risk: patients who presented because of vertigo (rather than reporting vertigo when they presented for other reasons) had a significantly higher risk for future stroke or TIA (p = 0.028, event rate 13.4 vs. 5.4 per 100 person years) and for future posterior circulation stroke or TIA (p = 0.044, event rate 7.8 vs. 3.5 per 100 person years). We here report for the first time follow-up stroke rates in patients with transient isolated vertigo. In such patients, the identification of those with cerebrovascular origin remains difficult, and presentation mode was found to be the only consistent risk factor. Confirmation in an independent prospective sample is needed.

  20. Heavy ion induced Single Event Phenomena (SEP) data for semiconductor devices from engineering testing

    NASA Technical Reports Server (NTRS)

    Nichols, Donald K.; Huebner, Mark A.; Price, William E.; Smith, L. S.; Coss, James R.

    1988-01-01

    The accumulation of JPL data on Single Event Phenomena (SEP), from 1979 to August 1986, is presented in full report format. It is expected that every two years a supplement report will be issued for the follow-on period. This data for 135 devices expands on the abbreviated test data presented as part of Refs. (1) and (3) by including figures of Single Event Upset (SEU) cross sections as a function of beam Linear Energy Transfer (LET) when available. It also includes some of the data complied in the JPL computer in RADATA and the SPACERAD data bank. This volume encompasses bipolar and MOS (CMOS and MHNOS) device data as two broad categories for both upsets (bit-flips) and latchup. It also includes comments on less well known phenomena, such as transient upsets and permanent damage modes.

  1. Single and double acquisition strategies for compensation of artifacts from eddy current and transient oscillation in balanced steady-state free precession.

    PubMed

    Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong

    2017-07-01

    To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Apparatus for and method of eliminating single event upsets in combinational logic

    NASA Technical Reports Server (NTRS)

    Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor); Cameron, Kelly B. (Inventor)

    2001-01-01

    An apparatus for and method of eliminating single event upsets (or SEU) in combinational logic are used to prevent error propagation as a result of cosmic particle strikes to the combinational logic. The apparatus preferably includes a combinational logic block electrically coupled to a delay element, a latch and an output buffer. In operation, a signal from the combinational logic is electrically coupled to a first input of the latch. In addition, the signal is routed through the delay element to produce a delayed signal. The delayed signal is routed to a second input of the latch. The latch used in the apparatus for preventing SEU preferably includes latch outputs and a feature that the latch outputs will not change state unless both latch inputs are correct. For example, the latch outputs may not change state unless both latch inputs have the same logical state. When a cosmic particle strikes the combinational logic, a transient disturbance with a predetermined length may appear in the signal. However, a function of the delay element is to preferably provide a time delay greater than the length of the transient disturbance. Therefore, the transient disturbance will not reach both latch inputs simultaneously. As a result, the latch outputs will not permanently change state in error due to the transient disturbance. In addition, the output buffer preferably combines the latch outputs in such a way that the correct state is preserved at all times. Thus, combinational logic with protection from SEU is provided.

  3. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    NASA Technical Reports Server (NTRS)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  4. Dual Interlocked Logic for Single-Event Transient Mitigation

    DTIC Science & Technology

    2017-03-01

    SPICE simulation and fault-injection analysis. Exemplar SPICE simulations have been performed in a 32nm partially- depleted silicon-on-insulator...in this work. The model has been validated at the 32nm SOI technology node with extensive heavy-ion data [7]. For the SPICE simulations, three

  5. Single Event Transients in Voltage Regulators for FPGA Power Supply Applications

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard

    2006-01-01

    As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.

  6. Data Assimilation with the Extended Cmam: Nudging to Re-Analyses of the Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Beagley, S. R.; Shepherd, M. G.; Semeniuk, K.; Mclandress, C. W.; Scinocca, J.; McConnell, J. C.

    2012-12-01

    The extended CMAM is currently being run in a forecast mode allowing the use of the model to simulate specific events. The current analysis period covers 1990-2010. The model is forced using ERA-Interim re-analyses via a nudging technique for the troposphere/stratosphere in combination with the GCM evolution in the lower atmosphere. Thus a transient forced model state is created in the lower atmosphere. The upper atmosphere is allowed to evolve in response to the observed conditions occurring in the lower atmosphere and in response to other transient forcing's such as SSTs, solar flux, and CO2 and CFC boundary changes. This methodology allows specific events and observations to be more successfully compared with the model. The model results compared to TOMS and ACE observations show a good agreement.

  7. Characterization and Simulation of Gunfire with Wavelets

    DOE PAGES

    Smallwood, David O.

    1999-01-01

    Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of thesemore » records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.« less

  8. High-speed digital imaging of cytosolic Ca2+ and contraction in single cardiomyocytes.

    PubMed

    O'Rourke, B; Reibel, D K; Thomas, A P

    1990-07-01

    A charge-coupled device (CCD) camera, with the capacity for simultaneous spatially resolved photon counting and rapid frame transfer, was utilized for high-speed digital image collection from an inverted epifluorescence microscope. The unique properties of the CCD detector were applied to an analysis of cell shortening and the Ca2+ transient from fluorescence images of fura-2-loaded [corrected] cardiomyocytes. On electrical stimulation of the cell, a series of sequential subimages was collected and used to create images of Ca2+ within the cell during contraction. The high photosensitivity of the camera, combined with a detector-based frame storage technique, permitted collection of fluorescence images 10 ms apart. This rate of image collection was sufficient to resolve the rapid events of contraction, e.g., the upstroke of the Ca2+ transient (less than 40 ms) and the time to peak shortening (less than 80 ms). The technique was used to examine the effects of beta-adrenoceptor activation, fura-2 load, and stimulus frequency on cytosolic Ca2+ transients and contractions of single cardiomyocytes. beta-Adrenoceptor stimulation resulted in pronounced increases in peak Ca2+, maximal rates of rise and decay of Ca2+, extent of shortening, and maximal velocities of shortening and relaxation. Raising the intracellular load of fura-2 had little effect on the rising phase of Ca2+ or the extent of shortening but extended the duration of the Ca2+ transient and contraction. In related experiments utilizing differential-interference contrast microscopy, the same technique was applied to visualize sarcomere dynamics in contracting cells. This newly developed technique is a versatile tool for analyzing the Ca2+ transient and mechanical events in studies of excitation-contraction coupling in cardiomyocytes.

  9. Calcium channels in solitary retinal ganglion cells from post-natal rat.

    PubMed Central

    Karschin, A; Lipton, S A

    1989-01-01

    1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega-Conotoxin fraction GVIA (omega-CgTX VIA), a peptide from the venom of the snail Conus geographus, produces a readily reversible blockade of all components of the calcium current in these central mammalian neurones. This finding is in contrast to that of other preparations in which this toxin is responsible for an ephemeral block of T-current but a long-lasting block of other components of calcium current. 5. In summary, at least two components of calcium current with discrete underlying unitary events are present in post-natal retinal ganglion cells from rat. One component closely resembles the T or transient current observed in other cell types.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2559971

  10. How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?

    NASA Astrophysics Data System (ADS)

    Scolnic, D.; Kessler, R.; Brout, D.; Cowperthwaite, P. S.; Soares-Santos, M.; Annis, J.; Herner, K.; Chen, H.-Y.; Sako, M.; Doctor, Z.; Butler, R. E.; Palmese, A.; Diehl, H. T.; Frieman, J.; Holz, D. E.; Berger, E.; Chornock, R.; Villar, V. A.; Nicholl, M.; Biswas, R.; Hounsell, R.; Foley, R. J.; Metzger, J.; Rest, A.; García-Bellido, J.; Möller, A.; Nugent, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Tucker, D. L.; Walker, A. R.; DES Collaboration

    2018-01-01

    The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of {10}3 {{Gpc}}-3 {{yr}}-1, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z=0.8 for WFIRST, z=0.25 for LSST, and z=0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.

  11. How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scolnic, D.; Kessler, R.; Brout, D.

    The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies ofmore » $${10}^{3}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less

  12. How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?

    DOE PAGES

    Scolnic, D.; Kessler, R.; Brout, D.; ...

    2017-12-22

    The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies ofmore » $${10}^{3}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less

  13. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    PubMed

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.

  14. Semi-Supervised Novelty Detection with Adaptive Eigenbases, and Application to Radio Transients

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Majid, Walid A.; Reed, Colorado J.; Wagstaff, Kiri L.

    2011-01-01

    We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses adaptive eigenbases to combine 1) prior knowledge about uninteresting signals with 2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply the method to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies.

  15. Identifying large scale structures at 1 AU using fluctuations and wavelets

    NASA Astrophysics Data System (ADS)

    Niembro, T.; Lara, A.

    2016-12-01

    The solar wind (SW) is inhomogeneous and it is dominated for two types of flows: one quasi-stationary and one related to large scale transients (such as coronal mass ejections and co-rotating interaction regions). The SW inhomogeneities can be study as fluctuations characterized by a wide range of length and time scales. We are interested in the study of the characteristic fluctuations caused by large scale transient events. To do so, we define the vector space F with the normalized moving monthly/annual deviations as the orthogonal basis. Then, we compute the norm in this space of the solar wind parameters (velocity, magnetic field, density and temperature) fluctuations using WIND data from August 1992 to August 2015. This norm gives important information about the presence of a large structure disturbance in the solar wind and by applying a wavelet transform to this norm, we are able to determine, without subjectivity, the duration of the compression regions of these large transient structures and, even more, to identify if the structure corresponds to a single or complex (or merged) event. With this method we have automatically detected most of the events identified and published by other authors.

  16. Using a PFET To Commutate an SCR

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Ripple, W. E.

    1984-01-01

    Accidental turn-on prevented. PFET diverts load current around SCR to prevent false SCR triggering from current and voltage switching transients. New circuit used in all types of single phase and polyphase inverters and in buck-boost-, and flyback regulators.

  17. Multi-instrument Observations of Transient Luminous Events Associated with a Small-scale Winter Thunderstorm

    NASA Astrophysics Data System (ADS)

    Kolmasova, I.; Santolik, O.; Spurny, P.; Borovicka, J.; Mlynarczyk, J.; Popek, M.; Lan, R.; Uhlir, L.; Diendorfer, G.; Slosiar, R.

    2017-12-01

    We present observations of transient luminous events (TLEs) produced by a small-scale winter thunderstorm which occurred on 2 April 2017 in the southwest of Czechia. Elves, sprites and associated positive lightning strokes have been simultaneously recorded by different observational techniques. Optical data include video recordings of TLEs from Nydek (Czechia) and data recorded by high time-resolution photometers at several stations of the Czech fireball network which measured the all-sky brightness originating from lightning return strokes. Electromagnetic data sets include 3-component VLF measurements conducted in Rustrel (France), 2-component ELF measurements recorded at the Hylaty station (Poland) and signal intensity variations of a VLF transmitter (DHO38, Rhauderfehn, Germany) recorded in Bojnice (Slovakia). Optical and electromagnetic data are completed by positions and peak currents of all strokes recorded during the observed thunderstorm by the EUCLID lightning detection network. We focus our analysis on positive lightning discharges with high peak currents and we compare properties of those which produced TLE with properties of discharges for which TLE was not detected. The current moment waveforms and charge moment changes associated with the TLE events are reconstructed from the ELF electromagnetic signals. Obtained current moment waveforms show excellent agreement with high time-resolution optical data.

  18. Erosion of tungsten armor after multiple intense transient events in ITER

    NASA Astrophysics Data System (ADS)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Pestchanyi, S. E.

    2005-03-01

    Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high-heat loads with energy deposition W > 1 MJ/m 2 and τ > 0.1 ms. For ITER divertor armour the results of a fluid dynamics simulation of the melt motion erosion after repetitive stochastically varying plasma heat loads of consecutive disruptions interspaced by ELMs are presented. The heat loads for particular single transient events are numerically simulated using the two-dimensional MHD code FOREV-2D. The whole melt motion is calculated by the fluid dynamics code MEMOS-1.5D. In addition for the ITER dome melt motion erosion of tungsten armour caused by the lateral radiation impact from the plasma shield at the disruption and ELM heat loads is estimated.

  19. The Neural Bases of Event Monitoring across Domains: a Simultaneous ERP-fMRI Study

    PubMed Central

    Tarantino, Vincenza; Mazzonetto, Ilaria; Formica, Silvia; Causin, Francesco; Vallesi, Antonino

    2017-01-01

    The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained attentional control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, this transient component relies on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts. PMID:28785212

  20. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  1. An optimized fluorescent probe for visualizing glutamate neurotransmission.

    PubMed

    Marvin, Jonathan S; Borghuis, Bart G; Tian, Lin; Cichon, Joseph; Harnett, Mark T; Akerboom, Jasper; Gordus, Andrew; Renninger, Sabine L; Chen, Tsai-Wen; Bargmann, Cornelia I; Orger, Michael B; Schreiter, Eric R; Demb, Jonathan B; Gan, Wen-Biao; Hires, S Andrew; Looger, Loren L

    2013-02-01

    We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

  2. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  3. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  4. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  5. Translocation of single-stranded DNA through single-walled carbon nanotubes.

    PubMed

    Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin

    2010-01-01

    We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.

  6. Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K.; Oreilly, W.; Srnka, L. J.

    1977-01-01

    The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.

  7. Detecting aseismic strain transients from seismicity data

    USGS Publications Warehouse

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  8. Enabling Near Real-Time Remote Search for Fast Transient Events with Lossy Data Compression

    NASA Astrophysics Data System (ADS)

    Vohl, Dany; Pritchard, Tyler; Andreoni, Igor; Cooke, Jeffrey; Meade, Bernard

    2017-09-01

    We present a systematic evaluation of JPEG2000 (ISO/IEC 15444) as a transport data format to enable rapid remote searches for fast transient events as part of the Deeper Wider Faster programme. Deeper Wider Faster programme uses 20 telescopes from radio to gamma rays to perform simultaneous and rapid-response follow-up searches for fast transient events on millisecond-to-hours timescales. Deeper Wider Faster programme search demands have a set of constraints that is becoming common amongst large collaborations. Here, we focus on the rapid optical data component of Deeper Wider Faster programme led by the Dark Energy Camera at Cerro Tololo Inter-American Observatory. Each Dark Energy Camera image has 70 total coupled-charged devices saved as a 1.2 gigabyte FITS file. Near real-time data processing and fast transient candidate identifications-in minutes for rapid follow-up triggers on other telescopes-requires computational power exceeding what is currently available on-site at Cerro Tololo Inter-American Observatory. In this context, data files need to be transmitted rapidly to a foreign location for supercomputing post-processing, source finding, visualisation and analysis. This step in the search process poses a major bottleneck, and reducing the data size helps accommodate faster data transmission. To maximise our gain in transfer time and still achieve our science goals, we opt for lossy data compression-keeping in mind that raw data is archived and can be evaluated at a later time. We evaluate how lossy JPEG2000 compression affects the process of finding transients, and find only a negligible effect for compression ratios up to 25:1. We also find a linear relation between compression ratio and the mean estimated data transmission speed-up factor. Adding highly customised compression and decompression steps to the science pipeline considerably reduces the transmission time-validating its introduction to the Deeper Wider Faster programme science pipeline and enabling science that was otherwise too difficult with current technology.

  9. Charge collection and SEU mechanisms

    NASA Astrophysics Data System (ADS)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.

  10. Evidence for Diverse Optical Emission from Gamma-Ray Burst Sources

    NASA Astrophysics Data System (ADS)

    Pedersen, H.; Jaunsen, A. O.; Grav, T.; Østensen, R.; Andersen, M. I.; Wold, M.; Kristen, H.; Broeils, A.; Näslund, M.; Fransson, C.; Lacy, M.; Castro-Tirado, A. J.; Gorosabel, J.; Rodríguez Espinosa, J. M.; Pérez, A. M.; Wolf, C.; Fockenbrock, R.; Hjorth, J.; Muhli, P.; Hakala, P.; Piro, L.; Feroci, M.; Costa, E.; Nicastro, L.; Palazzi, E.; Frontera, F.; Monaldi, L.; Heise, J.

    1998-03-01

    Optical Transients from gamma-ray burst sources, in addition to offering a distance determination, convey important information about the physics of the emission mechanism, and perhaps also about the underlying energy source. As the gamma-ray phenomenon is extremely diverse, with timescales spanning several orders of magnitude, some diversity in optical counterpart signatures appears plausible. We have studied the optical transient that accompanied the gamma-ray burst of 1997 May 8, GRB 970508. Observations conducted at the 2.5 m Nordic Optical Telescope (NOT) and the 2.2 m telescope at the German-Spanish Calar Alto observatory (CAHA) cover the time interval starting 3 hr 5 minutes to 96 days after the high-energy event. This brackets all other published observations, including radio. When analyzed in conjunction with optical data from other observatories, evidence emerges for a composite light curve. The first interval, from 3 to 8 hr after the event, was characterized by a constant or slowly declining brightness. At a later moment, the brightness started increasing rapidly, and reached a maximum approximately 40 hr after the GRB. From that moment, the GRB brightness decayed approximately as a power law of index -1.21. The last observation, after 96 days, mR = 24.28 +/- 0.10, is brighter than the extrapolated power law, and hints that a constant component, mR = 25.50 +/- 0.40, is present. The optical transient is unresolved (FWHM 0.83") at the faintest magnitude level. The brightness of the optical transient, its duration, and the general shape of the light curve set this source apart from the single other optical transient known, that of the 1997 February 28 event.

  11. Heavy Ion and Proton Tests for Subsystem Upset.

    DTIC Science & Technology

    1988-03-21

    R. Kennerud, P. Measel , and K. Wahlin, "Transient And Total Dose Radiation Properties Of The CMOS/SOS EPIC Chip Set", IEEE Trans. on Nucl. Sci., Vol...NS-30, No. 6, Dec. 1983 .(3) T. L. Criswell, P. R. Measel , and K. L. Wahlin, "Single Event Upset P Testing With Relativistic Heavy Ions", IEEE Trans

  12. Transient crustal movement in the northern Izu-Bonin arc starting in 2004: A large slow slip event or a slow back-arc rifting event?

    NASA Astrophysics Data System (ADS)

    Arisa, Deasy; Heki, Kosuke

    2016-07-01

    The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. Horizontal velocities of continuous Global Navigation Satellite System stations on the Izu Islands move eastward by up to 1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. Here, we report that such eastward movements transiently accelerated in the middle of 2004 resulting in 3 cm extra movements in 3 years. We compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. By comparing crustal movements in different regions, the first possibility can be shown unlikely. It is difficult to rule out the second possibility, but current evidence support the third possibility, i.e. a large slow slip event with moment magnitude of 7.5 may have occurred there.

  13. Identifying Microlensing Events in Large, Non-Uniformly Sampled Surveys: The Case of the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Agueros, M. A.; Fournier, A.; Street, R.; Ofek, E.; Levitan, D. B.; PTF Collaboration

    2013-01-01

    Many current photometric, time-domain surveys are driven by specific goals such as searches for supernovae or transiting exoplanets, or studies of stellar variability. These goals in turn set the cadence with which individual fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to extremely non-uniform sampling over the survey's nearly 20,000 sq. deg. footprint. While the typical 7.26 sq. deg. PTF field has been imaged 20 times in R-band, ~2300 sq. deg. have been observed more than 100 times. We use the existing PTF data 6.4x107 light curves) to study the trade-off that occurs when searching for microlensing events when one has access to a large survey footprint with irregular sampling. To examine the probability that microlensing events can be recovered in these data, we also test previous statistics used on uniformly sampled data to identify variables and transients. We find that one such statistic, the von Neumann ratio, performs best for identifying simulated microlensing events. We develop a selection method using this statistic and apply it to data from all PTF fields with >100 observations to uncover a number of interesting candidate events. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large datasets, both of which will be useful to future wide-field, time-domain surveys such as the LSST.

  14. Tiny Hiccups To Titanic Explosions: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2006-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  15. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2007-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  16. SkyDiscovery: Humans and Machines Working Together

    NASA Astrophysics Data System (ADS)

    Donalek, Ciro; Fang, K.; Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Williams, R.

    2011-01-01

    Synoptic sky surveys are now discovering tens to hundreds of transient events every clear night, and that data rate is expected to increase dramatically as we move towards the LSST. A key problem is classification of transients, which determines their scientific interest and possible follow-up. Some of the relevant information is contextual, and easily recognizable by humans looking at images, but it is very hard to encode in the data pipelines. Crowdsourcing (aka Citizen Science) provides one possible way to gather such information. SkyDiscovery.org is a website that allows experts and citizen science enthusiasts to work together and share information in a collaborative scientific discovery environment. Currently there are two projects running on the website. In the Event Classification project users help finding candidate transients through a series of questions related to the images shown. Event classification depends very much form the contextual information and humans are remarkably effective at recognizing noise in incomplete heterogeneous data and figuring out which contextual information is important. In the SNHunt project users are requested to look for new objects appearing on images of galaxies taken by the Catalina Real-time Transient Survey, in order to find all the supernovae occurring in nearby bright galaxies. Images are served alongside with other tools that can help the discovery. A multi level approach allows the complexity of the interface to be tailored to the expertise level of the user. An entry level user can just review images and validate events as being real, while a more advanced user would be able to interact with the data associated to an event. The data gathered will not be only analyzed and used directly for some specific science project, but also to train well-defined algorithms to be used in automating such data analysis in the future.

  17. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients

    NASA Astrophysics Data System (ADS)

    Jazebi, Saeed

    This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and switching transient studies.

  18. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    PubMed

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  19. An Investigation of the Ability to Recover from Transients Following Failures for Single-Pilot Rotorcraft

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Schroeder, Jeffery A.

    1988-01-01

    A moving-base simulation was conducted to investigate a pilot's ability to recover from transients following single-axis hard-over failures of the flight-control system. The investigation was performed in conjunction with a host simulation that examined the influence of control modes on a single pilot's ability to perform various mission elements under high-workload conditions. The NASA Ames large-amplitude-motion Vertical Motion Simulator (VMS) was utilized, and the experimental variables were the failure axis, the severity of the failure, and the airspeed at which the failure occurred. Other factors, such as pilot workload and terrain and obstacle proximity at the time of failure, were kept as constant as possible within the framework of the host simulation task scenarios. No explicit failure warnings were presented to the pilot. Data from the experiment are shown, and pilot ratings are compared with the proposed handling-qualities requirements for military rotorcraft. Results indicate that the current proposed failure transient requirements may need revision.

  20. Time-dependent quantum transport: An efficient method based on Liouville-von-Neumann equation for single-electron density matrix

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-01

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  1. Dynamic Processes in Be Star Atmospheres.. 6; Simultaneous X-Ray, Ultraviolet, and Optical Variations in lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.; Murakami, T.; Ezuka, H.; Anandarao, B. G.; Chakraborty, A.; Corcoran, M. F.; Hirata, R.

    1995-01-01

    This report describes a joint X ray/ultraviolet/ground based study of the abnormal Be star lambda Eri which has previously shown evidence of X ray flaring from Rosat observations in 1991. The 1991 flare event caught the astronomical hot star community by surprise because x ray flares have not been observed from other single B-type stars, before or since. Both optical (H-alpha) and UV/Voyager observations provide evidence for transient heating events near the surface of lambda Eri.

  2. An SEU immune logic family

    NASA Technical Reports Server (NTRS)

    Canaris, J.

    1991-01-01

    A new logic family, which is immune to single event upsets, is described. Members of the logic family are capable of recovery, regardless of the shape of the upsetting event. Glitch propagation from an upset node is also blocked. Logic diagrams for an Inverter, Nor, Nand, and Complex Gates are provided. The logic family can be implemented in a standard, commercial CMOS process with no additional masks. DC, transient, static power, upset recovery and layout characteristics of the new family, based on a commercial 1 micron CMOS N-Well process, are described.

  3. Single Event Burnout in DC-DC Converters for the LHC Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudio H. Rivetta et al.

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  4. Mitochondrial flashes: From indicator characterization to in vivo imaging.

    PubMed

    Wang, Wang; Zhang, Huiliang; Cheng, Heping

    2016-10-15

    Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  6. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis.

    PubMed Central

    Baylor, D A; Nunn, B J; Schnapf, J L

    1984-01-01

    Visual transduction in rods of the cynomolgus monkey, Macaca fascicularis, was studied by recording membrane current from single outer segments projecting from small pieces of retina. Light flashes evoked transient outward-going photocurrents with saturating amplitudes of up to 34 pA. A flash causing twenty to fifty photoisomerizations gave a response of half the saturating amplitude. The response-stimulus relation was of the form 1-e-x where x is flash strength. The response to a dim flash usually had a time to peak of 150-250 ms and resembled the impulse response of a series of six low-pass filters. From the average spectral sensitivity of ten rods the rhodopsin was estimated to have a peak absorption near 491 nm. The spectral sensitivity of the rods was in good agreement with the average human scotopic visibility curve determined by Crawford (1949), when the human curve was corrected for lens absorption and self-screening of rhodopsin. Fluctuations in the photocurrent evoked by dim lights were consistent with a quantal event about 0.7 pA in peak amplitude. A steady light causing about 100 photoisomerizations s-1 reduced the flash sensitivity to half the dark-adapted value. At higher background levels the rod rapidly saturated. These results support the idea that dim background light desensitizes human scotopic vision by a mechanism central to the rod outer segments while scotopic saturation may occur within the outer segments. Recovery of the photocurrent after bright flashes was marked by quantized step-like events. The events had the properties expected if bleached rhodopsin in the disks occasionally caused an abrupt blockage of the dark current over about one-twentieth of the length of the outer segment. It is suggested that superposition of these events after bleaching may contribute to the threshold elevation measured psychophysically. The current in darkness showed random fluctuations which disappeared in bright light. The continuous component of the noise had a variance of about 0.03 pA2 and a power spectrum that fell to half near 3 Hz. A second component, consisting of discrete events resembling single-photon responses, was estimated to occur at a rate of 0.006 s-1. It is suggested that the continuous component of the noise may be removed from scotopic vision by a thresholding operation near the rod output. PMID:6512705

  7. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis.

    PubMed

    Baylor, D A; Nunn, B J; Schnapf, J L

    1984-12-01

    Visual transduction in rods of the cynomolgus monkey, Macaca fascicularis, was studied by recording membrane current from single outer segments projecting from small pieces of retina. Light flashes evoked transient outward-going photocurrents with saturating amplitudes of up to 34 pA. A flash causing twenty to fifty photoisomerizations gave a response of half the saturating amplitude. The response-stimulus relation was of the form 1-e-x where x is flash strength. The response to a dim flash usually had a time to peak of 150-250 ms and resembled the impulse response of a series of six low-pass filters. From the average spectral sensitivity of ten rods the rhodopsin was estimated to have a peak absorption near 491 nm. The spectral sensitivity of the rods was in good agreement with the average human scotopic visibility curve determined by Crawford (1949), when the human curve was corrected for lens absorption and self-screening of rhodopsin. Fluctuations in the photocurrent evoked by dim lights were consistent with a quantal event about 0.7 pA in peak amplitude. A steady light causing about 100 photoisomerizations s-1 reduced the flash sensitivity to half the dark-adapted value. At higher background levels the rod rapidly saturated. These results support the idea that dim background light desensitizes human scotopic vision by a mechanism central to the rod outer segments while scotopic saturation may occur within the outer segments. Recovery of the photocurrent after bright flashes was marked by quantized step-like events. The events had the properties expected if bleached rhodopsin in the disks occasionally caused an abrupt blockage of the dark current over about one-twentieth of the length of the outer segment. It is suggested that superposition of these events after bleaching may contribute to the threshold elevation measured psychophysically. The current in darkness showed random fluctuations which disappeared in bright light. The continuous component of the noise had a variance of about 0.03 pA2 and a power spectrum that fell to half near 3 Hz. A second component, consisting of discrete events resembling single-photon responses, was estimated to occur at a rate of 0.006 s-1. It is suggested that the continuous component of the noise may be removed from scotopic vision by a thresholding operation near the rod output.

  8. Invariant protection of high-voltage electric motors of technological complexes at industrial enterprises at partial single-phase ground faults

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Pelenev, D. N.

    2018-03-01

    Development results of invariant protection of high-voltage motors at incomplete single-phase ground faults are observed in the article. It is established that current protections have low action selectivity because of an inadmissible decrease in entrance signals during the shirt circuit occurrence in the place of transient resistance. The structural functional scheme and an algorithm of protective actions where correction of automatic zero sequence currents signals of the protected accessions implemented according to the level of incompleteness of ground faults are developed. It is revealed that automatic correction of zero sequence currents allows one to provide the invariance of sensitivity factor for protection under the variation conditions of a transient resistance in the place of damage. Application of invariant protection allows one to minimize damages in 6-10 kV electrical installations of industrial enterprises for a cause of infringement of consumers’ power supply and their system breakdown due to timely localization of emergency of ground faults modes.

  9. Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes

    NASA Astrophysics Data System (ADS)

    Mahmood, Irfan; Iqbal, Muhammad Farooq; Shahzad, Muhammad Imran; Qaiser, Saddam

    2017-02-01

    The earthquake precursors' anomalies at diverse elevation ranges over the seismogenic region and prior to the seismic events are perceived using Satellite Remote Sensing (SRS) techniques and reanalysis datasets. In the current research, seismic precursors are obtained by analyzing anomalies in Outgoing Longwave Radiation (OLR), Air Temperature (AT), and Relative Humidity (RH) before the two strong Mw>7 earthquakes in Pakistan occurred on 8th October 2005 in Azad Jammu Kashmir with Mw 7.6, and 24th September 2013 in Awaran, Balochistan with Mw 7.7. Multi-parameter data were computed based on multi-year background data for anomalies computation. Results indicate significant transient variations in observed parameters before the main event. Detailed analysis suggests presence of pre-seismic activities one to three weeks prior to the main earthquake event that vanishes after the event. These anomalies are due to increase in temperature after release of gases and physical and chemical interactions on earth surface before the earthquake. The parameter variations behavior for both Kashmir and Awaran earthquake events are similar to other earthquakes in different regions of the world. This study suggests that energy release is not concentrated to a single fault but instead is released along the fault zone. The influence of earthquake events on lightning were also investigated and it was concluded that there is a significant atmospheric lightning activity after the earthquake suggesting a strong possibility for an earthquake induced thunderstorm. This study is valuable for identifying earthquake precursors especially in earthquake prone areas.

  10. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  11. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics

    NASA Astrophysics Data System (ADS)

    Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.

    2017-12-01

    We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.

  12. Start Up Application Concerns with Field Programmable Gate Arrays (FPGAs)

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.

    1999-01-01

    This note is being published to improve the visibility of this subject, as we continue to see problems surface in designs, as well as to add additional information to the previously published note for design engineers. The original application note focused on designing systems with no single point failures using Actel Field Programmable Gate Arrays (FPGAs) for critical applications. Included in that note were the basic principles of operation of the Actel FPGA and a discussion of potential single-point failures. The note also discussed the issue of startup transients for that class of device. It is unfortunate that we continue to see some design problems using these devices. This note will focus on the startup properties of certain electronic components, in general, and current Actel FPGAs, in particular. Devices that are "power-on friendly" are currently being developed by Actel, as a variant of the new SX series of FPGAs. In the ideal world, electronic components would behave much differently than they do in the real world, The chain, of course, starts with the power supply. Ideally, the voltage will immediately rise to a stable V(sub cc) level, of course, it does not. Aside from practical design considerations, inrush current limits of certain capacitors must be observed and the power supply's output may be intentionally slew rate limited to prevent a large current spike on the system power bus. In any event, power supply rise time may range from less than I msec to 100 msec or more.

  13. Transient Response in a Dendritic Neuron Model for Current Injected at One Branch

    PubMed Central

    Rinzel, John; Rall, Wilfrid

    1974-01-01

    Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185

  14. DETECTORS AND EXPERIMENTAL METHODS: Equivalent properties of single event burnout induced by different sources

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong

    2009-05-01

    The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.

  15. Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).

  16. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  17. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel.

    PubMed

    Faley, Shannon; Seale, Kevin; Hughey, Jacob; Schaffer, David K; VanCompernolle, Scott; McKinney, Brett; Baudenbacher, Franz; Unutmaz, Derya; Wikswo, John P

    2008-10-01

    Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell-APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, non-adherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 micromx18 micromx10 microm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real time contact- and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in T(N) cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and intercellular signaling events between one or more cell populations.

  18. Revealing transient strain in geodetic data with Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Hines, T. T.; Hetland, E. A.

    2018-03-01

    Transient strain derived from global navigation satellite system (GNSS) data can be used to detect and understand geophysical processes such as slow slip events and post-seismic deformation. Here we propose using Gaussian process regression (GPR) as a tool for estimating transient strain from GNSS data. GPR is a non-parametric, Bayesian method for interpolating scattered data. In our approach, we assume a stochastic prior model for transient displacements. The prior describes how much we expect transient displacements to covary spatially and temporally. A posterior estimate of transient strain is obtained by differentiating the posterior transient displacements, which are formed by conditioning the prior with the GNSS data. As a demonstration, we use GPR to detect transient strain resulting from slow slip events in the Pacific Northwest. Maximum likelihood methods are used to constrain a prior model for transient displacements in this region. The temporal covariance of our prior model is described by a compact Wendland covariance function, which significantly reduces the computational burden that can be associated with GPR. Our results reveal the spatial and temporal evolution of strain from slow slip events. We verify that the transient strain estimated with GPR is in fact geophysical signal by comparing it to the seismic tremor that is associated with Pacific Northwest slow slip events.

  19. Temporal and Rate Coding for Discrete Event Sequences in the Hippocampus.

    PubMed

    Terada, Satoshi; Sakurai, Yoshio; Nakahara, Hiroyuki; Fujisawa, Shigeyoshi

    2017-06-21

    Although the hippocampus is critical to episodic memory, neuronal representations supporting this role, especially relating to nonspatial information, remain elusive. Here, we investigated rate and temporal coding of hippocampal CA1 neurons in rats performing a cue-combination task that requires the integration of sequentially provided sound and odor cues. The majority of CA1 neurons displayed sensory cue-, combination-, or choice-specific (simply, "event"-specific) elevated discharge activities, which were sustained throughout the event period. These event cells underwent transient theta phase precession at event onset, followed by sustained phase locking to the early theta phases. As a result of this unique single neuron behavior, the theta sequences of CA1 cell assemblies of the event sequences had discrete representations. These results help to update the conceptual framework for space encoding toward a more general model of episodic event representations in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Twelve- to 14-Month-Old Infants Can Predict Single-Event Probability with Large Set Sizes

    ERIC Educational Resources Information Center

    Denison, Stephanie; Xu, Fei

    2010-01-01

    Previous research has revealed that infants can reason correctly about single-event probabilities with small but not large set sizes (Bonatti, 2008; Teglas "et al.", 2007). The current study asks whether infants can make predictions regarding single-event probability with large set sizes using a novel procedure. Infants completed two trials: A…

  1. Single Event Effects and Total Dose Testing of the Intersil ISL 70003SEH Integrated Point of Load Converter

    NASA Astrophysics Data System (ADS)

    van Vonno, N. W.; White, J. D.; Pearce, L. G.; Thomson, E. J.; Gill, J. S.; Mansilla, O. E.

    2014-08-01

    Single-event transient (SET) phenomena in power management applications has evolved into a key issue, particularly in point of load (POL) buck regulators, as the loads driven by these devices are sensitive to even short-term overvoltage conditions. We preface this paper by a discussion of earlier destructive and nondestructive SEE testing of Intersil integrated point of load regulators, with emphasis on SET phenomena and some of the lessons learned in this work. We then report recent results of SET and destructive SEE testing of the ISL70003SEH POL converter, together with a brief discussion of the part's electrical and radiation hardness specifications. We conclude with a brief overview of low and high dose rate total dose testing of the part.

  2. Single event effects on the APV25 front-end chip

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bauer, T.; Pernicka, M.

    2003-03-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider at CERN will include a Silicon Strip Tracker covering a sensitive area of 206 m2. About ten million channels will be read out by APV25 front-end chips, fabricated in the 0.25 μm deep submicron process. Although permanent damage is not expected within CMS radiation levels, transient Single Event Upsets are inevitable. Moreover, localized ionization can also produce fake signals in the analog circuitry. Eight APV25 chips were exposed to a high-intensity pion beam at the Paul Scherrer Institute (Villigen/CH) to study the radiation induced effects in detail. The results, which are compatible to similar measurements performed with heavy ions, are used to predict the chip error rate at CMS.

  3. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  4. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  5. Understanding extreme quasar optical variability with CRTS - I. Major AGN flares

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric

    2017-10-01

    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.

  6. Inner Structure of CME Shock Fronts Revealed by the Electromotive Force and Turbulent Transport Coefficients in Helios-2 Observations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Hofer, Bernhard; Narita, Yasuhito

    2018-03-01

    Electromotive force is an essential quantity in dynamo theory. During a coronal mass ejection (CME), magnetic helicity gets decoupled from the Sun and advected into the heliosphere with the solar wind. Eventually, a heliospheric magnetic transient event might pass by a spacecraft, such as the Helios space observatories. Our aim is to investigate the electromotive force, the kinetic helicity effect (α term), the turbulent diffusion (β term), and the cross-helicity effect (γ term) in the inner heliosphere below 1 au. We set up a one-dimensional model of the solar wind velocity and magnetic field for a hypothetic interplanetary CME. Because turbulent structures within the solar wind evolve much slower than this structure needs to pass by the spacecraft, we use a reduced curl operator to compute the current density and vorticity. We test our CME shock-front model against an observed magnetic transient that passes by the Helios-2 spacecraft. At the peak of the fluctuations in this event we find strongly enhanced α, β, and γ terms, as well as a strong peak in the total electromotive force. Our method allows us to automatically identify magnetic transient events from any in situ spacecraft observations that contain magnetic field and plasma velocity data of the solar wind.

  7. Atomic layer deposition modified track-etched conical nanochannels for protein sensing.

    PubMed

    Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming

    2015-08-18

    Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport.

  8. Total Dose Effects on Single Event Transients in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2008-01-01

    Single Event Transients (SETs) originating in linear bipolar integrated circuits are known to undermine the reliability of electronic systems operating in the radiation environment of space. Ionizing particle radiation produces a variety of SETs in linear bipolar circuits. The extent to which these SETs threaten system reliability depends on both their shapes (amplitude and width) and their threshold energies. In general, SETs with large amplitudes and widths are the most likely to propagate from a bipolar circuit's output through a subsystem. The danger these SET pose is that, if they become latched in a follow-on circuit, they could cause an erroneous system response. Long-term exposure of linear bipolar circuits to particle radiation produces total ionizing dose (TID) and/or displacement damage dose (DDD) effects that are characterized by a gradual degradation in some of the circuit's electrical parameters. For example, an operational amplifier's gain-bandwidth product is reduced by exposure to ionizing radiation, and it is this reduction that contributes to the distortion of the SET shapes. In this paper, we compare SETs produced in a pristine LM124 operational amplifier with those produced in one exposed to ionizing radiation for three different operating configurations - voltage follower (VF), inverter with gain (IWG), and non-inverter with gain (NIWG). Each configuration produces a unique set of transient shapes that change following exposure to ionizing radiation. An important finding is that the changes depend on operating configuration; some SETs decrease in amplitude, some remain relatively unchanged, some become narrower and some become broader.

  9. Multiple-Beam Detection of Fast Transient Radio Sources

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.

    2011-01-01

    A method has been designed for using multiple independent stations to discriminate fast transient radio sources from local anomalies, such as antenna noise or radio frequency interference (RFI). This can improve the sensitivity of incoherent detection for geographically separated stations such as the very long baseline array (VLBA), the future square kilometer array (SKA), or any other coincident observations by multiple separated receivers. The transients are short, broadband pulses of radio energy, often just a few milliseconds long, emitted by a variety of exotic astronomical phenomena. They generally represent rare, high-energy events making them of great scientific value. For RFI-robust adaptive detection of transients, using multiple stations, a family of algorithms has been developed. The technique exploits the fact that the separated stations constitute statistically independent samples of the target. This can be used to adaptively ignore RFI events for superior sensitivity. If the antenna signals are independent and identically distributed (IID), then RFI events are simply outlier data points that can be removed through robust estimation such as a trimmed or Winsorized estimator. The alternative "trimmed" estimator is considered, which excises the strongest n signals from the list of short-beamed intensities. Because local RFI is independent at each antenna, this interference is unlikely to occur at many antennas on the same step. Trimming the strongest signals provides robustness to RFI that can theoretically outperform even the detection performance of the same number of antennas at a single site. This algorithm requires sorting the signals at each time step and dispersion measure, an operation that is computationally tractable for existing array sizes. An alternative uses the various stations to form an ensemble estimate of the conditional density function (CDF) evaluated at each time step. Both methods outperform standard detection strategies on a test sequence of VLBA data, and both are efficient enough for deployment in real-time, online transient detection applications.

  10. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    NASA Technical Reports Server (NTRS)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  11. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  12. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition

    PubMed Central

    Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V

    2014-01-01

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition. DOI: http://dx.doi.org/10.7554/eLife.02008.001 PMID:24843014

  13. Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua

    2017-07-01

    We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.

  14. Steady-State Visual Evoked Potentials Can Be Explained by Temporal Superposition of Transient Event-Related Responses

    PubMed Central

    Capilla, Almudena; Pazo-Alvarez, Paula; Darriba, Alvaro; Campo, Pablo; Gross, Joachim

    2011-01-01

    Background One common criterion for classifying electrophysiological brain responses is based on the distinction between transient (i.e. event-related potentials, ERPs) and steady-state responses (SSRs). The generation of SSRs is usually attributed to the entrainment of a neural rhythm driven by the stimulus train. However, a more parsimonious account suggests that SSRs might result from the linear addition of the transient responses elicited by each stimulus. This study aimed to investigate this possibility. Methodology/Principal Findings We recorded brain potentials elicited by a checkerboard stimulus reversing at different rates. We modeled SSRs by sequentially shifting and linearly adding rate-specific ERPs. Our results show a strong resemblance between recorded and synthetic SSRs, supporting the superposition hypothesis. Furthermore, we did not find evidence of entrainment of a neural oscillation at the stimulation frequency. Conclusions/Significance This study provides evidence that visual SSRs can be explained as a superposition of transient ERPs. These findings have critical implications in our current understanding of brain oscillations. Contrary to the idea that neural networks can be tuned to a wide range of frequencies, our findings rather suggest that the oscillatory response of a given neural network is constrained within its natural frequency range. PMID:21267081

  15. The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source

    NASA Astrophysics Data System (ADS)

    Siebert, M. R.; Foley, R. J.; Drout, M. R.; Kilpatrick, C. D.; Shappee, B. J.; Coulter, D. A.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Contreras, C.; Morrell, N.; Rojas-Bravo, C.; Simon, J. D.

    2017-10-01

    We discovered Swope Supernova Survey 2017a (SSS17a) in the LIGO/Virgo Collaboration (LVC) localization volume of GW170817, the first detected binary neutron star (BNS) merger, only 10.9 hr after the trigger. No object was present at the location of SSS17a only a few days earlier, providing a qualitative spatial and temporal association with GW170817. Here, we quantify this association, finding that SSS17a is almost certainly the counterpart of GW170817, with the chance of a coincidence being ≤9× {10}-6 (90% confidence). We arrive at this conclusion by comparing the optical properties of SSS17a to other known astrophysical transients, finding that SSS17a fades and cools faster than any other observed transient. For instance, SSS17a fades >5 mag in g within 7 days of our first data point, while all other known transients of similar luminosity fade by <1 mag during the same time period. Its spectra are also unique, being mostly featureless, even as it cools. The rarity of “SSS17a-like” transients combined with the relatively small LVC localization volume and recent non-detection imply the extremely unlikely chance coincidence. We find that the volumetric rate of SSS17a-like transients is ≤1.6× {10}4 Gpc-3 yr-1 and the Milky Way rate is ≤slant 0.19 per century. A transient survey designed to discover similar events should be high cadence and observe in red filters. The LVC will likely detect substantially more BNS mergers than current optical surveys will independently discover SSS17a-like transients, however a 1 day cadence survey with the Large Synoptic Survey Telescope (LSST) could discover an order of magnitude more events.

  16. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion.

    PubMed

    Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R

    2006-03-15

    Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.

  17. Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels

    PubMed Central

    Malysz, John; Afeli, Serge A. Y.; Provence, Aaron

    2013-01-01

    Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429

  18. Serial Liver Stiffness Measurements and Monitoring of Liver-Transplanted Patients in a Real-Life Clinical Practice

    PubMed Central

    Rinaldi, Luca; Valente, Giovanna; Piai, Guido

    2016-01-01

    Background Liver transplanted patients need close surveillance for early signs of graft disease. Objectives Transient elastography can safely be repeated over time, offering serial liver stiffness measurement values. Serial stiffness measurements were compared to single baseline stiffness measurements in predicting the appearance of liver-related clinical events and guiding subsequent clinical decisions. Methods One hundred and sixty liver transplanted patients were observed for three years in our real-life practice. Results Liver stiffness measurements were stable in 75% of patients, decreased in 4% of patients, and increased in 21% of patients. The pattern of increased stiffness measurements was associated with both HCV-RNA positive status and the presence of an active biliary complication of liver transplantation and was more predictive of a clinically significant event resulting from any disease of the transplanted liver when compared to a stable pattern or to a single liver stiffness measurement. The procedures that were consequently performed were often diagnostic for unexpected situations, both in HCV-RNA positive and HCV-RNA negative patients. Conclusions The pattern of longitudinally increased liver stiffness measurements efficiently supported clinical decisions for individualized management strategies. Repeated transient elastography in real-life clinical practice appears to have a practical role in monitoring liver transplanted patients. PMID:28123442

  19. Search for Transient Gravitational Waves in Coincidence with Short-Duration Radio Transients During 2007-2013

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; hide

    2016-01-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  20. A system for the automated data-acquisition of fast transient signals in excitable membranes.

    PubMed

    Bustamante, J O

    1988-01-01

    This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.

  1. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

  2. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    NASA Astrophysics Data System (ADS)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; Nugent, Peter

    2018-05-01

    We present a measurement of the volumetric rate of “calcium-rich” optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: {1.21}-0.39+1.13 × {10}-5 events yr‑1 Mpc‑3. This is equivalent to 33%–94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ∼0.05 {M}ȯ . We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.

  3. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.

    PubMed

    Wood-Bouwens, Christina M; Ji, Hanlee P

    2018-01-01

    Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.

  4. Measurement of DNA translocation dynamics in a solid-state nanopore at 100-ns temporal resolution

    PubMed Central

    Shekar, Siddharth; Niedzwiecki, David J.; Chien, Chen-Chi; Ong, Peijie; Fleischer, Daniel A.; Lin, Jianxun; Rosenstein, Jacob K.; Drndic, Marija; Shepard, Kenneth L.

    2017-01-01

    Despite the potential for nanopores to be a platform for high-bandwidth study of single-molecule systems, ionic current measurements through nanopores have been limited in their temporal resolution by noise arising from poorly optimized measurement electronics and large parasitic capacitances in the nanopore membranes. Here, we present a complementary metal-oxide-semiconductor (CMOS) nanopore (CNP) amplifier capable of low noise recordings at an unprecedented 10 MHz bandwidth. When integrated with state-of-the-art solid-state nanopores in silicon nitride membranes, we achieve an SNR of greater than 10 for ssDNA translocations at a measurement bandwidth of 5 MHz, which represents the fastest ion current recordings through nanopores reported to date. We observe transient features in ssDNA translocation events that are as short as 200 ns, which are hidden even at bandwidths as high as 1 MHz. These features offer further insights into the translocation kinetics of molecules entering and exiting the pore. This platform highlights the advantages of high-bandwidth translocation measurements made possible by integrating nanopores and custom-designed electronics. PMID:27332998

  5. On-line Machine Learning and Event Detection in Petascale Data Streams

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Wagstaff, K. L.

    2012-01-01

    Traditional statistical data mining involves off-line analysis in which all data are available and equally accessible. However, petascale datasets have challenged this premise since it is often impossible to store, let alone analyze, the relevant observations. This has led the machine learning community to investigate adaptive processing chains where data mining is a continuous process. Here pattern recognition permits triage and followup decisions at multiple stages of a processing pipeline. Such techniques can also benefit new astronomical instruments such as the Large Synoptic Survey Telescope (LSST) and Square Kilometre Array (SKA) that will generate petascale data volumes. We summarize some machine learning perspectives on real time data mining, with representative cases of astronomical applications and event detection in high volume datastreams. The first is a "supervised classification" approach currently used for transient event detection at the Very Long Baseline Array (VLBA). It injects known signals of interest - faint single-pulse anomalies - and tunes system parameters to recover these events. This permits meaningful event detection for diverse instrument configurations and observing conditions whose noise cannot be well-characterized in advance. Second, "semi-supervised novelty detection" finds novel events based on statistical deviations from previous patterns. It detects outlier signals of interest while considering known examples of false alarm interference. Applied to data from the Parkes pulsar survey, the approach identifies anomalous "peryton" phenomena that do not match previous event models. Finally, we consider online light curve classification that can trigger adaptive followup measurements of candidate events. Classifier performance analyses suggest optimal survey strategies, and permit principled followup decisions from incomplete data. These examples trace a broad range of algorithm possibilities available for online astronomical data mining. This talk describes research performed at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012, All Rights Reserved. U.S. Government support acknowledged.

  6. Strong terahertz radiation from relativistic laser interaction with solid density plasmas

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2012-06-01

    We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.

  7. Nightside High Latitude Magnetic Impulse Events

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Connors, M. G.; Braun, D.; Posch, J. L.; Kaur, M.; Guillon, S.; Hartinger, M.; Kim, H.; Behlke, R.; Reiter, K.; Jackel, B. J.; Russell, C. T.

    2017-12-01

    High latitude Magnetic Impulse Events (MIEs), isolated pulses with periods 5-10 min, were first noted in ground-based magnetometer data near local noon, and are now understood to be signatures of transient pressure increases in the solar wind (sudden impulses - SIs) and/or in the ion foreshock (traveling convection vortex events - TCVs). However, solitary pulses with considerably larger amplitude (ΔB up to 1500 nT) have often been observed in the night sector at these same latitudes. These events are not directly associated with transient external pressure increases, and are often large enough to produce significant ground induced currents. Although many night sector MIEs occur in association with substorm signatures, others appear to be very isolated. We present here a survey of intense MIE events identified in magnetometer data from the AUTUMNX and MACCS arrays in eastern Arctic Canada at all local times between July 1, 2014 and June 30, 2017. We also show maps of horizontal and vertical perturbations and maximum dB/dt values, as well as sample magnetograms, for several example events using data from these and other arrays in Arctic Canada, as well as in West Greenland and Antarctica, the latter to show the conjugate nature of these events. A basic relation to GIC data in the Hydro-Québec electrical transmission network in eastern Canada has been determined and will be discussed.

  8. A Systematic Mid-Infrared Survey of A Sample of Tidal Disruption Events Discovered by ZTF

    NASA Astrophysics Data System (ADS)

    Yan, Lin; Van, Sjoert; Kulkarni, Shri; Kasliwal, Mansi; Gezari, Suvi; Cenko, Brad; Blagorodnova, Nadia; Hung, Tiara

    2017-12-01

    Zwicky Transient Facility (ZTF) saw its first light (press release on Nov 14, 2017) and is currently in the commissioning phase. The science operation is scheduled to start on Feb 1, 2018. Based on the data from Palomar Transient Factory (PTF), ZTF is expected to discover 30 new tidal disruption events (TDE) in the centers of galaxies containing supermassive blackholes. TDEs are rare transient events, and have only been discovered in recent years by large area transient surveys. Observations of optically discovered TDEs appear to show common characteristics, including blackbody temperatures of a few 10,000K, derived bolometric peak luminosities of several 10^43 - 10^44 erg/s, and photospheric radius of 10^15 - 10^16 cm. These properties are in conflict with the classic TDE model predictions, which suggest an order of magnitude higher temperature and peak luminosity. One proposed explanation is the possible existence of a reprocessing gas layer which absorbs X-ray, UV/optical photons and produces a cooler spectral energy distribution (SED). So far, there are only two published mid-IR light curves of TDEs, each with two epochal data. To solve this mystery, we require higher cadence Spitzer observations of a sample of uniformly selected TDEs. Next year is the only opportunity to obtain the critical observations because Spitzer is expected to operate only to March 2019. We request 24.1 hours of Spitzer time to observe 7 ZTF TDEs. This will produce a unique legacy dataset for many future studies of physics of TDEs.

  9. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    PubMed Central

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  10. What Reliability Engineers Should Know about Space Radiation Effects

    NASA Technical Reports Server (NTRS)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the current of a nearby Thermal Electric Cooler (turning the TEC into a heater). The elevated temperature caused the PIN diode to anneal and the device to recover. It was by lot qualification testing that NEAR knew the diode would recover when annealed. This paper will look at these effects on a variety of devices in a variety of applications. Single Event Effects (SEE): (1) In contrast to TID and displacement damage, Single Event Effects (SEE) resemble random failures. SEE modes can range from changes in device logic (single-event upset, or SEU). temporary disturbances (single-event transient) to catastrophic effects such as the destructive SEE modes, single-event latchup (SEL). single-event gate rupture (SEGR) and single-event burnout (SEB) (2) The consequences of nondestructive SEE modes such as SEU and SET depend critically on their application--and may range from trivial nuisance errors to catastrophic loss of mission. It is critical not just to ensure that potentially susceptible devices are well characterized for their susceptibility, but also to work with design engineers to understand the implications of each error mode. -For destructive SEE, the predominant risk mitigation strategy is to avoid susceptible parts, or if that is not possible. to avoid conditions under which the part may be susceptible. Destructive SEE mechanisms are often not well understood, and testing is slow and expensive, making rate prediction very challenging. (3) Because the consequences of radiation failure and degradation modes depend so critically on the application as well as the component technology, it is essential that radiation, component. design and system engineers work togetherpreferably starting early in the program to ensure critical applications are addressed in time to optimize the probability of mission success.

  11. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  12. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    PubMed Central

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  13. Application of the finite element groundwater model FEWA to the engineered test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, P.M.; Davis, E.C.

    1985-09-01

    A finite element model for water transport through porous media (FEWA) has been applied to the unconfined aquifer at the Oak Ridge National Laboratory Solid Waste Storage Area 6 Engineered Test Facility (ETF). The model was developed in 1983 as part of the Shallow Land Burial Technology - Humid Task (ONL-WL14) and was previously verified using several general hydrologic problems for which an analytic solution exists. Model application and calibration, as described in this report, consisted of modeling the ETF water table for three specialized cases: a one-dimensional steady-state simulation, a one-dimensional transient simulation, and a two-dimensional transient simulation. Inmore » the one-dimensional steady-state simulation, the FEWA output accurately predicted the water table during a long period in which there were no man-induced or natural perturbations to the system. The input parameters of most importance for this case were hydraulic conductivity and aquifer bottom elevation. In the two transient cases, the FEWA output has matched observed water table responses to a single rainfall event occurring in February 1983, yielding a calibrated finite element model that is useful for further study of additional precipitation events as well as contaminant transport at the experimental site.« less

  14. Response of hyporheic zones to transient forcing

    NASA Astrophysics Data System (ADS)

    Singh, T.; Wu, L.; Gomez-Velez, J. D.; Krause, S.; Hannah, D. M.; Lewandowski, J.; Nuetzmann, G.

    2017-12-01

    Exchange of water, solutes, and energy between river channels and hyporheic zones (HZs) modulates biogeochemical cycling, regulates stream temperature and impacts ecological structure and function. Numerical modelling of HZ processes is required as field observations are challenging for transient flow. To gain a deeper mechanistic understanding of the effects of transient discharge on hyporheic exchange, we performed a systematic analysis using numerical experiments. In this case, we vary (i) the characteristics of time-varying flood events; (ii) river bedform geometry; (iii) river hydraulic geometry; and (iv) the magnitude and direction of groundwater fluxes (neutral, gaining and losing conditions). We conceptualize the stream bed as a two-dimensional system. Whereby the flow is driven by a dynamically changing head distribution at the water-sediment interface and is modulated by steady groundwater flow. Our model estimates both net values for a single bedform and spatial distributions of (i) the flow field; (ii) mean residence times; and (iii) the concentration of a conservative tracer. A detailed sensitivity analysis was performed by changing channel slope, flood characteristics, groundwater upwelling/downwelling fluxes and biogeochemical time-scales in different bedforms such as ripples, dunes and alternating bars. Results show that change of parameters can have a substantial impact on exchange fluxes which can lead to the expansion, contraction, emergence and/or dissipation of HZs . Our results also reveal that groundwater fluxes have different impacts on HZs during flood events, depending on the channel slope and bedform topography. It is found that topographies with smaller aspect ratios and shallower slopes are more affected by groundwater upwelling/downwelling fluxes during flood events. The analysis of biogeochemical transformations shows that discharge events can potentially affects the efficiencies of nitrate removal. Taking into consideration multiple morphological characteristics along with hydrological controls are important to improve model conceptualizations at the reach and watershed scale.

  15. On transient events in the upper atmosphere generated away of thunderstorm regions

    NASA Astrophysics Data System (ADS)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their origin may be related to electromagnetic pulses (EMP) or waves (whistler, EMW) generated by lightning. The EMP-EMW is transmitted in the ionosphere- ground channel to large distances R with low absorption. The part of EMP-EMW "visible" in the detector aperture diminishes with distance as R-1 due to observation geometry. The EMP-EMW triggers the electric discharge in the upper atmosphere (lower ionosphere, ~70 km). Estimates of resulting transients luminosity and their correlation with geomagnetic field are in progress.

  16. Transient thermoelectric supercooling: Isosceles current pulses from a response surface perspective and the performance effects of pulse cooling a heat generating mass

    NASA Astrophysics Data System (ADS)

    Piggott, Alfred J., III

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  17. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    NASA Astrophysics Data System (ADS)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth coordinates and the number of photons generated in the far-from-thunderstorm atmospheric events has been analyzed and the discussion of these events origin is in progress.

  18. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE PAGES

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; ...

    2018-05-04

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  19. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  20. Single Event Effect Testing of the Analog Devices ADV212

    NASA Technical Reports Server (NTRS)

    Wilcox, Ted; Campola, Michael; Kadari, Madhu; Nadendla, Seshagiri R.

    2017-01-01

    The Analog Devices ADV212 was initially tested for single event effects (SEE) at the Texas AM University Cyclotron Facility (TAMU) in July of 2013. Testing revealed a sensitivity to device hang-ups classified as single event functional interrupts (SEFI), soft data errors classified as single event upsets (SEU), and, of particular concern, single event latch-ups (SEL). All error types occurred so frequently as to make accurate measurements of the exposure time, and thus total particle fluence, challenging. To mitigate some of the risk posed by single event latch-ups, circuitry was added to the electrical design to detect a high current event and automatically recycle power and reboot the device. An additional heavy-ion test was scheduled to validate the operation of the recovery circuitry and the continuing functionality of the ADV212 after a substantial number of latch-up events. As a secondary goal, more precise data would be gathered by an improved test method, described in this test report.

  1. A case study of magnetotail current sheet disruption and diversion

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.; Mcentire, R. W.; Zanetti, L. J.

    1988-01-01

    On June 1, 1985 the AMPTE/CCE spacecraft (at a geocentric distance of about 8.8 earth radii at the midnight neutral sheet region) observed a dispersionless energetic particle injection and an increase in magnetic field magnitude, which are features commonly attributed to disruption of the near-earth cross-tail current sheet during substorm expansion onsets. An analysis based on high time-resolution measurements from the magnetometer and the energetic particle detector indicates that the current sheet disruption region exhibited localized (less than 1 earth radius) and transient (less than 1 min) particle intensity enhancements, accompanied by complex magnetic field changes with occasional development of a southward magnetic field component. Similar features are seen in other current disruption/diversion events observed by the CCE. The present analysis suggests that the current disruption region is quite turbulent, similar to laboratory experiments on current sheet disruption, with signatures unlike those expected from an X-type neutral line configuration. No clear indication of periodicity in any magnetic field parameter is discernible for this current disruption event.

  2. Automatic Single Event Effects Sensitivity Analysis of a 13-Bit Successive Approximation ADC

    NASA Astrophysics Data System (ADS)

    Márquez, F.; Muñoz, F.; Palomo, F. R.; Sanz, L.; López-Morillo, E.; Aguirre, M. A.; Jiménez, A.

    2015-08-01

    This paper presents Analog Fault Tolerant University of Seville Debugging System (AFTU), a tool to evaluate the Single-Event Effect (SEE) sensitivity of analog/mixed signal microelectronic circuits at transistor level. As analog cells can behave in an unpredictable way when critical areas interact with the particle hitting, there is a need for designers to have a software tool that allows an automatic and exhaustive analysis of Single-Event Effects influence. AFTU takes the test-bench SPECTRE design, emulates radiation conditions and automatically evaluates vulnerabilities using user-defined heuristics. To illustrate the utility of the tool, the SEE sensitivity of a 13-bits Successive Approximation Analog-to-Digital Converter (ADC) has been analysed. This circuit was selected not only because it was designed for space applications, but also due to the fact that a manual SEE sensitivity analysis would be too time-consuming. After a user-defined test campaign, it was detected that some voltage transients were propagated to a node where a parasitic diode was activated, affecting the offset cancelation, and therefore the whole resolution of the ADC. A simple modification of the scheme solved the problem, as it was verified with another automatic SEE sensitivity analysis.

  3. Smartphone electrographic monitoring for atrial fibrillation in acute ischemic stroke and transient ischemic attack.

    PubMed

    Tu, Hans T; Chen, Ziyuan; Swift, Corey; Churilov, Leonid; Guo, Ruibing; Liu, Xinfeng; Jannes, Jim; Mok, Vincent; Freedman, Ben; Davis, Stephen M; Yan, Bernard

    2017-10-01

    Rationale Paroxysmal atrial fibrillation is a common and preventable cause of devastating strokes. However, currently available monitoring methods, including Holter monitoring, cardiac telemetry and event loop recorders, have drawbacks that restrict their application in the general stroke population. AliveCor™ heart monitor, a novel device that embeds miniaturized electrocardiography (ECG) in a smartphone case coupled with an application to record and diagnose the ECG, has recently been shown to provide an accurate and sensitive single lead ECG diagnosis of atrial fibrillation. This device could be used by nurses to record a 30-s ECG instead of manual pulse taking and automatically provide a diagnosis of atrial fibrillation. Aims To compare the proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring with current standard practice. Sample size 296 Patients. Design Consecutive ischemic stroke and transient ischemic attack patients presenting to participating stroke units without known atrial fibrillation will undergo intermittent AliveCor™ ECG monitoring administered by nursing staff at the same frequency as the vital observations of pulse and blood pressure until discharge, in addition to the standard testing paradigm of each participating stroke unit to detect paroxysmal atrial fibrillation. Study outcome Proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring compared to 12-lead ECG, 24-h Holter monitoring and cardiac telemetry. Discussion Use of AliveCor™ heart monitor as part of routine stroke unit nursing observation has the potential to be an inexpensive non-invasive method to increase paroxysmal atrial fibrillation detection, leading to improvement in stroke secondary prevention.

  4. Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Mészáros, P.

    2017-07-01

    The current status of observations and theoretical models of gamma-ray bursts and some other related transients, including ultra-long bursts and tidal disruption events, is reviewed. We consider the impact of multi-wavelength data on the formulation and development of theoretical models for the prompt and afterglow emission including the standard fireball model utilizing internal shocks and external shocks, photospheric emission, the role of the magnetic field and hadronic processes. In addition, we discuss some of the prospects for non-photonic multi-messenger detection and for future instrumentation, and comment on some of the outstanding issues in the field.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Cao, Yi

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer /IRAC. We present the discovery and follow-up observations of one of our most luminous ( M {sub [4.5]} = −17.1 ± 0.4 mag, Vega) and reddest ([3.6] − [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 ( D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s{sup −1}), double-peaked emission line of Hemore » i at 1.083 μ m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A {sub V} = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]–[4.5] color has not been previously observed for any SN IIb. Another luminous ( M {sub 4.5} = −16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A{sub V} ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.« less

  6. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.

    PubMed

    Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J

    2013-01-16

    Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Min; Yu, Yun; Hu, Keke

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less

  8. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Williams, Paul

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less

  9. Modeling transient luminous events produced by cloud to ground lightning and narrow bipolar pulses: detailed spectra and chemical impact

    NASA Astrophysics Data System (ADS)

    Perez-Invernon, F. J.; Luque, A.; Gordillo-Vazquez, F. J.

    2017-12-01

    The electromagnetic field generated by lightning discharges can produce Transient Luminous Events (TLEs) in the lower ionosphere, as previously investigated by many authors. Some recent studies suggest that narrow bipolar pulses (NBP), an impulsive and not well-established type of atmospheric electrical discharge, could also produce TLEs. The characterization and observation of such TLEs could be a source of information about the physics underlying NBP. In this work, we develop two different electrodynamical models to study the impact of lightning-driven electromagnetic fields in the lower ionosphere. The first model calculates the quasi-electrostatic field produced by a single cloud to ground lightning in the terrestrial atmosphere and its influence in the electron transport. This scheme allows us to study halos, a relatively frequent type of TLE. The second model solves the Maxwell equations for the electromagnetic field produced by a lightning discharge coupled with the Langevin's equation for the induced currents in the ionosphere. This model is useful to investigate elves, a fast TLE produced by lightning or by NBP. In addition, both models are coupled with a detailed chemistry of the electronically and vibrationally excited states of molecular nitrogen, allowing us to calculate synthetic spectra of both halos and elves. The models also include a detailed set of kinetic reactions to calculate the temporal evolution of other species. Our results suggest an important enhancement of some molecular species produced by halos, as NOx , N2 O and other metastable species. The quantification of their production could be useful to understand the role of thunderstorms in the climate of our planet. In the case of TLEs produced by NBP, our model confirms the appearance of double elves and allows us to compute their spectral characteristics.

  10. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  11. CHI Research on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lay, W.-S.; Raman, R.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Ebrahimi, F.; Ono, M.; Jardin, S. C.; Taylor, G.

    2017-10-01

    At present about 20% of the total plasma current required for sustained operation has been generated by transient CHI. The present understanding suggests that it may be possible to generate all of the needed current in a ST / tokamak using transient CHI. In such a scenario, one could transition directly from a CHI produced plasma to a non-inductively sustained plasma, without the difficult intermediate step that involves non-inductive current ramp-up. STs based on this new configuration would take advantage of evolving developments in high-temperature superconductor technology to develop a simpler design ST that relies primarily on CHI for plasma current generation. Motivated by the very good results from NSTX and HIT-II, we are examining the potential application of transient CHI for reactor configurations through these studies. (1) Study of the maximum levels of start-up currents that could be generated on NSTX-U, (2) application of a single biased electrode configuration on QUEST to protect the insulator from neutron damage in a CHI reactor installation, and (3) QUEST-like, but a double biased electrode configuration for PEGASUS and NSTX-U. Results from these on-going studies will be described. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.

  12. Coronary heart disease risk in patients with stroke or transient ischemic attack and no known coronary heart disease: findings from the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial.

    PubMed

    Amarenco, Pierre; Goldstein, Larry B; Sillesen, Henrik; Benavente, Oscar; Zweifler, Richard M; Callahan, Alfred; Hennerici, Michael G; Zivin, Justin A; Welch, K Michael A

    2010-03-01

    Noncoronary forms of atherosclerosis (including transient ischemic attacks or stroke of carotid origin or >50% stenosis of the carotid artery) are associated with a 10-year vascular risk of >20% and are considered as a coronary heart disease (CHD) -risk equivalent from the standpoint of lipid management. The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial included patients with stroke or transient ischemic attack and no known CHD regardless of the presence of carotid atherosclerosis. We evaluated the risk of developing clinically recognized CHD in SPARCL patients. A total of 4731 patients (mean age, 63 years) was randomized to 80 mg/day atorvastatin placebo. The rates of major coronary event, any CHD event, and any revascularization procedure were evaluated. After 4.9 years of follow-up, the risks of a major coronary event and of any CHD end point in the placebo group were 5.1% and 8.6%, respectively. The rate of outcome of stroke decreased over time, whereas the major coronary event rate was stable. Relative to those having a large vessel-related stroke at baseline, those having a transient ischemic attack, hemorrhagic stroke, small vessel stroke, or a stroke of unknown cause had similar absolute rates for a first major coronary event and for any CHD event; transient ischemic attack, small vessel, and unknown cause groups had lower absolute revascularization procedure rates. Major coronary event, any CHD event, and any revascularization procedure rates were similarly reduced in all baseline stroke subtypes in the atorvastatin arm compared with placebo with no heterogeneity between groups. CHD risk can be substantially reduced by atorvastatin therapy in patients with recent stroke or transient ischemic attack regardless of stroke subtype.

  13. Does a Syrinx Matter for Return to Play in Contact Sports? A Case Report and Evidence-Based Review of Return-to-Play Criteria After Transient Quadriplegia.

    PubMed

    Milles, Jeffrey L; Gallizzi, Michael A; Sherman, Seth L; Smith, Patrick A; Choma, Theodore J

    2014-09-01

    Transient quadriplegia is a rare injury that can change the course of an athlete's career if misdiagnosed or managed inappropriately. The clinician should be well versed in the return-to-play criteria for this type of injury. Unfortunately, when an unknown preexisting syrinx is present in the athlete, there is less guidance on their ability to return to play. This case report and review of the current literature illustrates a National Collegiate Athletic Association (NCAA) Division I football player who suffered a transient quadriplegic event during a kickoff return that subsequently was found to have an incidental cervical syrinx on magnetic resonance imaging. The player was able to have a full neurologic recovery, but ultimately he was withheld from football.

  14. Does a Syrinx Matter for Return to Play in Contact Sports? A Case Report and Evidence-Based Review of Return-to-Play Criteria After Transient Quadriplegia

    PubMed Central

    Milles, Jeffrey L.; Gallizzi, Michael A.; Sherman, Seth L.; Smith, Patrick A.; Choma, Theodore J.

    2014-01-01

    Transient quadriplegia is a rare injury that can change the course of an athlete’s career if misdiagnosed or managed inappropriately. The clinician should be well versed in the return-to-play criteria for this type of injury. Unfortunately, when an unknown preexisting syrinx is present in the athlete, there is less guidance on their ability to return to play. This case report and review of the current literature illustrates a National Collegiate Athletic Association (NCAA) Division I football player who suffered a transient quadriplegic event during a kickoff return that subsequently was found to have an incidental cervical syrinx on magnetic resonance imaging. The player was able to have a full neurologic recovery, but ultimately he was withheld from football. PMID:25177422

  15. Multibeam Gpu Transient Pipeline for the Medicina BEST-2 Array

    NASA Astrophysics Data System (ADS)

    Magro, A.; Hickish, J.; Adami, K. Z.

    2013-09-01

    Radio transient discovery using next generation radio telescopes will pose several digital signal processing and data transfer challenges, requiring specialized high-performance backends. Several accelerator technologies are being considered as prototyping platforms, including Graphics Processing Units (GPUs). In this paper we present a real-time pipeline prototype capable of processing multiple beams concurrently, performing Radio Frequency Interference (RFI) rejection through thresholding, correcting for the delay in signal arrival times across the frequency band using brute-force dedispersion, event detection and clustering, and finally candidate filtering, with the capability of persisting data buffers containing interesting signals to disk. This setup was deployed at the BEST-2 SKA pathfinder in Medicina, Italy, where several benchmarks and test observations of astrophysical transients were conducted. These tests show that on the deployed hardware eight 20 MHz beams can be processed simultaneously for 640 Dispersion Measure (DM) values. Furthermore, the clustering and candidate filtering algorithms employed prove to be good candidates for online event detection techniques. The number of beams which can be processed increases proportionally to the number of servers deployed and number of GPUs, making it a viable architecture for current and future radio telescopes.

  16. Local Membrane Deformations Activate Ca2+-Dependent K+ and Anionic Currents in Intact Human Red Blood Cells

    PubMed Central

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L.; Thomas, Serge L. Y.

    2010-01-01

    Background The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. Methodology/Principal Findings The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K+ and Cl− currents were strictly dependent on the presence of Ca2+. The Ca2+-dependent currents were transient, with typical decay half-times of about 5–10 min, suggesting the spontaneous inactivation of a stretch-activated Ca2+ permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca2+ permeability pathway leading to increased [Ca2+]i, secondary activation of Ca2+-sensitive K+ channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. Conclusions/Significance The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca2+-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca2+ content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia. PMID:20195477

  17. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    PubMed

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L; Thomas, Serge L Y

    2010-02-26

    The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+) and Cl(-) currents were strictly dependent on the presence of Ca(2+). The Ca(2+)-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+) permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca(2+) permeability pathway leading to increased [Ca(2+)](i), secondary activation of Ca(2+)-sensitive K(+) channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.

  18. Peculiar transient events in the Schumann resonance band and their possible explanation

    NASA Astrophysics Data System (ADS)

    Ondrásková, Adriena; Bór, József; S[Breve]Evcík, Sebastián; Kostecký, Pavel; Rosenberg, Ladislav

    2008-04-01

    Superimposed on the continuous Schumann resonance (SR) background in the extremely low frequency (ELF) band, transient signals (e.g. bursts) can be observed, which originate from intense lightning discharges occurring at different locations on the globe. From the many transients that were observed at the Astronomical and Geophysical Observatory (AGO) of Comenius University near Modra, western Slovakia, in the vertical electric field component mainly during May and June of 2006, a peculiar group of events could be recognized. According to the waveform analysis, these peculiar events in most cases consist of two overlapping transients with a characteristic time difference of 0.13-0.15 s between the onsets. On the other hand, the spectrum of these peculiar transients showed discernible SR peaks for higher modes as well (n>7). The same events could be found in the records of the Széchenyi István Geophysical Observatory of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences near Nagycenk, Hungary (NCK). The natural origin of the peculiar events was verified from the NCK data and the source location was determined from the second transient. The results suggest that the two consecutive transients originated in the same thunderstorm. Furthermore, the phase spectrum analysis indicates that the sources have coherently excited the Earth-ionosphere cavity. These findings seem to support the idea that electromagnetic waves orbiting the Earth might trigger lightning discharges. The possibility that electromagnetic waves may trigger discharges was first considered by Nikola Tesla.

  19. Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Nitz, Alexander H.

    2018-02-01

    ‘Blip glitches’ are a type of short duration transient noise in LIGO data. The cause for the majority of these is currently unknown. Short duration transient noise creates challenges for searches of the highest mass binary black hole systems, as standard methods of applying signal consistency, which look for consistency in the accumulated signal-to-noise of the candidate event, are unable to distinguish many blip glitches from short duration gravitational-wave signals due to similarities in their time and frequency evolution. We demonstrate a straightforward method, employed during Advanced LIGO’s second observing run, including the period of joint observation with the Virgo observatory, to separate the majority of this transient noise from potential gravitational-wave sources. This yields a  ∼20% improvement in the detection rate of high mass binary black hole mergers (> 60 Mȯ ) for the PyCBC analysis.

  20. Mechanisms of Saturn's Near-Noon Transient Aurora: In Situ Evidence From Cassini Measurements

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Radioti, A.; Rae, I. J.; Liu, J.; Grodent, D.; Ray, L. C.; Badman, S. V.; Coates, A. J.; Gérard, J.-C.; Waite, J. H.; Yates, J. N.; Shi, Q. Q.; Wei, Y.; Bonfond, B.; Dougherty, M. K.; Roussos, E.; Sergis, N.; Palmaerts, B.

    2017-11-01

    Although auroral emissions at giant planets have been observed for decades, the physical mechanisms of aurorae at giant planets remain unclear. One key reason is the lack of simultaneous measurements in the magnetosphere while remote sensing of the aurora. We report a dynamic auroral event identified with the Cassini Ultraviolet Imaging Spectrograph (UVIS) at Saturn on 13 July 2008 with coordinated measurements of the magnetic field and plasma in the magnetosphere. The auroral intensification was transient, only lasting for ˜30 min. The magnetic field and plasma are perturbed during the auroral intensification period. We suggest that this intensification was caused by wave mode conversion generated field-aligned currents, and we propose two potential mechanisms for the generation of this plasma wave and the transient auroral intensification. A survey of the Cassini UVIS database reveals that this type of transient auroral intensification is very common (10/11 time sequences, and ˜10% of the total images).

  1. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  2. On the transient dynamics of piezoelectric-based, state-switched systems

    NASA Astrophysics Data System (ADS)

    Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.

    2018-01-01

    This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.

  3. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology

    PubMed Central

    Gong, Guohua; Wang, Xianhua; Wei-LaPierre, Lan; Cheng, Heping; Dirksen, Robert

    2016-01-01

    Abstract Significance: Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of “mitochondrial flash” activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. Recent Advances: The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. Critical Issues: We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. Future Directions: Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534–549. PMID:27245241

  4. Annual Conference on Nuclear and Space Radiation Effects, 19th, Las Vegas, NV, July 20-22, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Long, D. M.

    1982-01-01

    The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.

  5. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials

    PubMed Central

    Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.

    2015-01-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966

  6. THEMIS Observations of Unusual Bow Shock Motion, Attending a Transient Magnetospheric Event

    NASA Technical Reports Server (NTRS)

    Korotova, Galina; Sibeck, David; Omidi, N.; Angelopoulos, V.

    2013-01-01

    We present a multipoint case study of solar wind and magnetospheric observations during a transient magnetospheric compression at 2319 UT on October 15, 2008. We use high-time resolution magnetic field and plasma data from the THEMIS and GOES-11/12 spacecraft to show that this transient event corresponded to an abrupt rotation in the IMF orientation, a change in the location of the foreshock, and transient outward bow shock motion. We employ results from a global hybrid code model to reconcile the observations indicating transient inward magnetopause motion with the outward bow shock motion.

  7. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  8. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    NASA Astrophysics Data System (ADS)

    Lim, Sungkeun

    Gordon Moore famously predicted the exponential increase in transistor integration and computing power that has been witnessed in recent decades [1]. In the near future, it is expected that more than one billion transistors will be integrated per chip, and advanced microprocessors will require clock speeds in excess of several GHz. The increasing number of transistors and high clock speeds will necessitate the consumption of more power. By 2014, it is expected that the maximum power consumption of the microprocessor will reach approximately 150W, and the maximum load current will be around 150A. Today's trend in power and thermal management is to reduce supply voltage as low as possible to reduce delivered power. It is anticipated that the Intel cores will operate on 0.8V of supply voltage by 2014 [2]. A significant challenge in Voltage Regulator Module (VRM) development for next generation microprocessors is to regulate the supply voltage within a certain tolerance band during high slew rate load transitions, since the required supply voltage tolerance band will be much narrower than the current requirement. If VR output impedance is maintained at a constant value from DC to high frequency, large output voltage spikes can be avoided during load cur- rent transients. Based on this, the Adaptive Voltage Position (AVP) concept was developed to achieve constant VR output impedance to improve transient response performance [3]. However, the VR output impedance can not be made constant over the entire frequency range with AVP design, because the AVP design makes the VR output impedance constant only at low frequencies. To make the output impedance constant at high frequencies, many bulk capacitors and ceramic capacitors are required. The tight supply voltage tolerance for the next generation of microprocessors during high slew rate load transitions requires fast transient response power supplies. A VRM can not follow the high slew rate load current transients, because of the slow inductor current slew rate which is determined by the input voltage, output voltage, and the inductance. The remaining inductor current in the power delivery path will charge the output capacitors and develop a voltage across the ESR. As a result, large output voltage spikes occur during load current transients. Due to their limited control bandwidth, traditional VRs can not sufficiently respond rapidly to certain load transients. As a result, a large output voltage spike can occur during load transients, hence requiring a large amount of bulk capacitance to decouple the VR from the load [2]. If the remaining inductor current is removed from the power stage or the inductor current slew rate is changed, the output voltage spikes can be clamped, allowing the output capacitance to be reduced. A new design methodology for a Transient Performance Improvement Circuit(TPIC) based on controlling the output impedance of a regulator is presented. The TPIC works in parallel with a voltage regulator (VR)'s ceramic capacitors to achieve faster voltage regulation without the need for a large bulk capacitance, and can serve as a replacement for bulk capacitors. The specific function of the TPIC is to mimic the behavior of the bulk capacitance in a traditional VRM by sinking and sourcing large currents during transients, allowing the VR to respond quickly to current transients without the need for a large bulk capacitance. This will allow fast transient response without the need for a large bulk capacitor. The main challenge in applying the TPIC is creating a design which will not interfere with VR operation. A TPIC for a 4 Switch Buck-Boost (4SBB) converter is presented which functions by con- trolling the inductor current slew rate during load current transients. By increasing the inductor current slew rate, the remaining inductor current can be removed from the 4SBB power delivery path and the output voltage spike can be clamped. A second TPIC is presented which is designed to improve the performance of an LDO regulator during output current transients. A TPIC for a LDO regulator is proposed to reduce the over voltage spike settling time. During a load current step down transient, the only current discharging path is a light load current. However, it takes a long time to discharge the current charged in the output capacitors with the light load current. The proposed TPIC will make an additional current discharging path to reduce the long settling time. By reducing the settling time, the load current transient frequency of the LDO regulator can be increased. A Ripple Cancellation Circuit (RCC) is proposed to reduce the output voltage ripple. The RCC has a very similar concept with the TPIC which is sinking or injecting additional current to the power stage to compensate the inductor ripple current. The proposed TPICs and RCC have been implemented with a 0.6m CMOS process. A single-phase VR, a 4SBB converter, and a LDO regulator have been utilized with the proposed TPIC to evaluate its performance. The theoretical analysis will be confirmed by Cadence simulation results and experimental results.

  9. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition.

    PubMed

    Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V

    2014-04-24

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.DOI: http://dx.doi.org/10.7554/eLife.02008.001. Copyright © 2014, Richardson et al.

  10. Application of a Focused, Pulsed X-Ray Beam to the Investigation of Single-Event Transients in Al 0.3Ga 0.7N/GaN HEMTs

    DOE PAGES

    Khachatrian, Ani; Roche, Nicolas J. -H.; Buchner, Stephen P.; ...

    2016-12-19

    A focused, pulsed x-ray beam was used to compare SET characteristics in pristine and proton-irradiated Al 0.3Ga 0.7N/GaN HEMTs. Measured SET amplitudes and trailing-edge decay times were analyzed as was the collected charge, obtained by integrating the SET pulses over time. SETs generated in proton-irradiated HEMTs differed significantly from those in pristine HEMTs with regard to the decay times and collected charge. The decay times have previously been shown to be attributed to charge trapping by defect states that are caused either by imperfect material growth conditions or by protoninduced displacement damage. The longer decay times observed for proton-irradiated HEMTsmore » are attributed to the presence of additional deep traps created when protons lose energy as they collide with the nuclei of constituent atoms. Comparison of electrical parameters measured before and immediately following exposure to the focused x-ray beam showed little change, confirming the absence of significant charge buildup in passivation layers by the x-rays themselves. In conclusion, a major advantage of the pulsed x-ray technique is that the region under the metal gate can be probed for single-event transients from the top side, an approach incompatible with pulsed-laser SEE testing that involves the use of visible light.« less

  11. How accounting for transient catchment hydrology in the design of river engineering works ?

    NASA Astrophysics Data System (ADS)

    Rosso, R.; Bocchiola, D.; Rulli, M. C.

    2009-04-01

    Current engineering practice of hydrologic design is based on hazard estimates that are carried out under the steady state conjecture, i.e. stationarity. This occurs for both assessing averages and second order statistics, and predicting low frequency quantiles. Conversely, routing of hydrologic input variables via known boundary conditions of the systems, i.e. the hydrological basin, can produce non stationary behavior of derived variates, i.e. those required for design. Abrupt changes in the drainage basin can lead to unexpected and profound changes in the magnitude of design events, sometimes providing design loads higher than those expected for a stationary system. Modified connectivity between the constantly developing human mobility network, the drainage system, and the dendritic river topology may result in tremendously modified signature of the climate on hydrologic response. Anthropic footprint on soil use may lead to hugely increased hydrological feedback and floods therein. Transient effects of forest fires in arid or semiarid areas decrease vegetation dampening on runoff production and soil stability, with a dramatic fallout when heavy storms occur within the post event recovery time window. Sudden pulses of fine and coarse sediment occurring in the forest fire's wake, and in connection with rapid mass movements, such as landslides or avalanches in alpine areas, may decrease the effectiveness of engineering works even for unchanged hydrologic loads. New paradigms are necessary to provide enhanced design strategies of river engineering works. These should entail the heavily non linear effects of pulse events with transient effect in time on hydro-morphological dynamics of rivers and increased risk therein, particularly for those works aimed to bear extreme loads, i.e. coping with very high return periods. Major instances deal with dams, power plants, and all those schemes that are very sensitive because of potential consequences of hydrologic catastrophes. Here, examples are given of structures, works and events with transient effect in time affecting the expected hydrological risk, and some strategies sketched to deal with such issues henceforward.

  12. Experimental demonstration of a semi-brittle origin for crustal strain transients

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  13. Evaluation of the fibromyalgia impact questionnaire at baseline as a predictor for time to pain improvement in two clinical trials of pregabalin.

    PubMed

    Bushmakin, A G; Cappelleri, J C; Chandran, A B; Zlateva, G

    2013-01-01

    The Fibromyalgia Impact Questionnaire (FIQ) is a patient-reported outcome that evaluates the impact of fibromyalgia (FM) on daily life. This study evaluated the relationships between the functional status of FM patients, measured with the FIQ at baseline, and median time to a clinically relevant pain reduction. Data were derived from two randomised, placebo-controlled trials that evaluated pregabalin 300, 450 and 600 mg/day for the treatment of FM. The Kaplan-Meier (nonparametric) method was applied to estimate median times to 'transient' and 'stable' events. The transient event was defined as a ≥ 27.9% improvement on an 11-point daily pain diary scale (0 = no pain, 10 = worst possible pain), and the stable event was defined as the mean of the daily improvements ≥ 27.9% relative to baseline over the subsequent study duration starting on the day of the transient event. A parametric model using time-to-event analysis was developed for evaluating the relationship between baseline FIQ score and the median time to these events. Median time was longer among patients treated with placebo relative to pregabalin for the transient events (11-12 days vs. 5-7 days) and stable events (86 days vs. 13-29 days). A significant association was observed between baseline FIQ scores and median time to transient and stable events (p < 0.001). Median times to events were similar between the studies. For transient pain reduction events, median times ranged from 3.0 to 4.5 days for baseline FIQ scores of 10, and 9.1-9.6 days for FIQ scores of 100; for stable pain reduction events, the median time ranged from 11.0 to 13.0 days and from 27.0 to 28.5 days for baseline FIQ scores of 10 and 100 respectively. Time to a clinically relevant reduction in pain was significantly associated with FM severity at baseline as measured by the FIQ. Such an analysis can inform patient and physician expectations in clinical practice. © 2012 Blackwell Publishing Ltd.

  14. DEdicated MONitor of EXotransits and Transients (DEMONEXT): a low-cost robotic and automated telescope for followup of exoplanetary transits and other transient events

    NASA Astrophysics Data System (ADS)

    Villanueva, S.; Eastman, J. D.; Gaudi, B. S.; Pogge, R. W.; Stassun, K. G.; Trueblood, M.; Trueblood, P.

    2016-07-01

    We present the design and development of the DEdicatedMONitor of EXotransits and Transients (DEMONEXT), an automated and robotic 20 inch telescope jointly funded by The Ohio State University and Vanderbilt University. The telescope is a PlaneWave CDK20 f/6.8 Corrected Dall-Kirkham Astrograph telescope on a Mathis Instruments MI-750/1000 Fork Mount located atWiner Observatory in Sonoita, AZ. DEMONEXT has a Hedrick electronic focuser, Finger Lakes Instrumentation (FLI) CFW-3-10 filter wheel, and a 2048 x 2048 pixel FLI Proline CCD3041 camera with a pixel scale of 0.90 arc-seconds per pixel and a 30.7× 30.7 arc-minute field-of-view. The telescope's automation, controls, and scheduling are implemented in Python, including a facility to add new targets in real time for rapid follow-up of time-critical targets. DEMONEXT will be used for the confirmation and detailed investigation of newly discovered planet candidates from the Kilodegree Extremely Little Telescope (KELT) survey, exploration of the atmospheres of Hot Jupiters via transmission spectroscopy and thermal emission measurements, and monitoring of select eclipsing binary star systems as benchmarks for models of stellar evolution. DEMONEXT will enable rapid confirmation imaging of supernovae, flare stars, tidal disruption events, and other transients discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN). DEMONEXT will also provide follow-up observations of single-transit planets identified by the Transiting Exoplanet Survey Satellite (TESS) mission, and to validate long-period eclipsing systems discovered by Gaia.

  15. Diurnal variations of ELF transients and background noise in the Schumann resonance band

    NASA Astrophysics Data System (ADS)

    Greenberg, Eran; Price, Colin

    2007-02-01

    Schumann resonances (SR) are resonant electromagnetic waves in the Earth-ionosphere cavity, induced primarily by lightning discharges, with a fundamental frequency of about 8 Hz and higher-order modes separated by approximately 6 Hz. The SR are made up of the background signal resulting from global lightning activity and extremely low frequency (ELF) transients resulting from particularly intense lightning discharges somewhere on the planet. Since transients within the Earth-ionosphere cavity due to lightning propagate globally in the ELF range, we can monitor and study global ELF transients from a single station. Data from our Negev Desert (Israel) ELF site are collected using two horizontal magnetic induction coils and a vertical electric field ball antenna, monitored in the 5-40 Hz range with a sampling frequency of 250 Hz. In this paper we present statistics related to the probability distribution of ELF transients and background noise in the time domain and its temporal variations during the day. Our results show that the ELF signal in the time domain follows the normal distribution very well. The σ parameter exhibits three peaks at 0800, 1400, and 2000 UT, which are related to the three main global lightning activity centers in Asia, Africa, and America, respectively. Furthermore, the occurrence of intense ELF events obeys the Poisson distribution, with such intense events occurring every ~10 s, depending on the time of the day. We found that the diurnal changes of the σ parameter are several percent of the mean, while for the number of intense events per minute, the diurnal changes are tens of percent about the mean. We also present the diurnal changes of the SR intensities in the frequency domain as observed at our station. To better understand the diurnal variability of the observations, we simulated the measured ELF background noise using space observations as input, as detected by the Optical Transient Detector (OTD). The most active center which is reflected from both ELF measurements and OTD observations is in Africa. However, the second most active center on the basis of ELF measurements appears to be Asia, while OTD observations show that the American center is more active than the Asian center. These differences are discussed. This paper contributes to our understanding of the origin of the SR by comparing different lightning data sets: background electromagnetic radiation and optical emission observed from space.

  16. SIERRA - A 3-D device simulator for reliability modeling

    NASA Astrophysics Data System (ADS)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  17. Development of an algorithm for automatic detection and rating of squeak and rattle events

    NASA Astrophysics Data System (ADS)

    Chandrika, Unnikrishnan Kuttan; Kim, Jay H.

    2010-10-01

    A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.

  18. High-altitude electrical discharges associated with thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  19. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  20. Multiresolution wavelet analysis for efficient analysis, compression and remote display of long-term physiological signals.

    PubMed

    Khuan, L Y; Bister, M; Blanchfield, P; Salleh, Y M; Ali, R A; Chan, T H

    2006-06-01

    Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.

  1. Adverse Events in the Long-Term Follow-Up of Patients Treated With Samarium Sm 153 Lexidronam for Osseous Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paravati, Anthony J., E-mail: Anthony.J.Paravati@dartmouth.edu; Russo, Andrea L.; Aitken, Candice

    Purpose: To investigate adverse events after samarium Sm 153 lexidronam and the effect of pre- and post-samarium Sm 153 lexidronam external beam radiation therapy (EBRT) and/or chemotherapy on myelosuppression in patients who received samarium Sm 153 lexidronam for osseous metastases. Methods and Materials: We performed a single-institution retrospective review of 139 patients treated with samarium Sm 153 lexidronam between November 1997 and February 2008. New-onset adverse events after samarium Sm 153 lexidronam were reported. The effect of samarium Sm 153 lexidronam on platelet and peripheral white blood cell counts and the duration of myelosuppression after samarium Sm 153 lexidronam plusmore » EBRT and/or chemotherapy were calculated. Differences in the prevalence of adverse events among patients with varying treatment histories were evaluated with the Pearson chi-square test. Results: Hematologic follow-up was available for 103 patients. Chemotherapy and/or EBRT had no effect on the magnitude or duration of myelosuppression. The most common nonhematologic adverse events were acute lower extremity edema (n = 27) and acute and transient neuropathy (n = 29). Patients treated with chemotherapy after samarium Sm 153 lexidronam had a higher prevalence of lower extremity edema (9 of 18 [50%]) than those who were not treated with chemotherapy after samarium Sm 153 lexidronam (18 of 85 [21.2%]) (p = 0.01, chi-square test). No adverse events were correlated with EBRT. Conclusions: Our observation of new-onset, acute and transient edema and neuropathy after samarium Sm 153 lexidronam and of a relationship between edema and post-samarium Sm 153 lexidronam chemotherapy suggests the need for re-examination of patients in past series or for a prospective investigation with nonhematologic adverse events as a primary endpoint.« less

  2. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  3. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  4. Analyzing Single-Event Gate Ruptures In Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.

    1993-01-01

    Susceptibilities of power metal-oxide/semiconductor field-effect transistors (MOSFET's) to single-event gate ruptures analyzed by exposing devices to beams of energetic bromine ions while applying appropriate bias voltages to source, gate, and drain terminals and measuring current flowing into or out of each terminal.

  5. Instrumentation and methodology for simultaneous excitation/detection of ions in an FTICR mass spectrometer

    PubMed

    Schmidt; Fiorentino; Arkin; Laude

    2000-08-01

    A method for direct and continuous detection of ion motion during different perturbation events of the fourier transform ion cyclotron resonance (FTICR) experiment is demonstrated. The modifications necessary to convert an ordinary FTICR cell into one capable of performing simultaneous excitation/detection (SED) using a capacitive network are outlined. With these modifications, a 200-fold reduction in the detection of the coupled excitation signal is achieved. This allows the unique ability not only to observe the response to the perturbation but to observe the perturbation event itself. SED is used successfully to monitor the ion cyclotron transient during single-frequency excitation, remeasurement and exciter-excite experiments.

  6. First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew J.; Smith, David M.; Glesener, Lindsay; Hannah, Iain G.; Grefenstette, Brian W.; Caspi, Amir; Krucker, Säm; Hudson, Hugh S.; Madsen, Kristin K.; White, Stephen M.; Kuhar, Matej; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-11-01

    We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due to its pioneering use of focusing optics. NuSTAR first observed quiet-Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet-Sun transient brightenings on timescales of 100 s and set upper limits on emission in two energy bands. We set 2.5-4 keV limits on brightenings with timescales of 100 s, expressed as the temperature T and emission measure EM of a thermal plasma. We also set 10-20 keV limits on brightenings with timescales of 30, 60, and 100 s, expressed as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet-Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the NuSTAR sensitivity by over two orders of magnitude due to higher instrument livetime and reduced solar background.

  7. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  8. Integrated nanopore sensing platform with sub-microsecond temporal resolution

    PubMed Central

    Rosenstein, Jacob K; Wanunu, Meni; Merchant, Christopher A; Drndic, Marija; Shepard, Kenneth L

    2012-01-01

    Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. PMID:22426489

  9. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, C. W. (Editor)

    1985-01-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  10. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Jones, C. W.

    1985-12-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  11. THEMIS Observations of a Transient Event at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Korotova, G. I.; Sibeck, D. G.; Weatherwax, A.; Angelopoulos, V.; Styazhkin, V.

    2011-01-01

    This study focuses on Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations of a long \\duration transient event in the vicinity of the dayside magnetopause at approx.15:34 UT on 18 July 2008 that was characterized by features typical of a magnetospheric flux transfer event (FTE): a bipolar negative-positive 5-7 nT signature in the Bn component, a positive monopolar variation in the Bl and Bm components, a approx.5-7 nT enhancement in the total magnetic field strength, and a transient density and flow enhancement. The interplanetary magnetic field (IMF) was mostly radial and disturbed during the intervals studied; that is, it was favorable for the repeated formation, disappearance and reformation of the foreshock just upstream from the subsolar bow shock. We show that varying IMF directions and solar wind pressures created significant effects that caused the compressions of the magnetosphere and the bow shock and magnetopause motions and triggered the transient event. Global signatures of magnetic impulse events (MIEs) in ground magnetograms during the period suggest a widespread pressure pulse instead of a localized FTE as the cause of the event in the magnetosphere. The directions of propagation and the flow patterns associated with the event also suggest an interpretation in terms of pressure pulses.

  12. Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle.

    PubMed

    Zhou, Min; Yu, Yun; Hu, Keke; Xin, Huolin L; Mirkin, Michael V

    2017-03-07

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrO x NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. High-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.

  13. Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Campbell, Kelly M.; Constantinou, Pamela E.; Braam, Janet; Olson, John S.; Ware, Russell E.; Sullivan, David J.; Lapotko, Dmitri O.

    2014-01-01

    Successful diagnosis, screening, and elimination of malaria critically depend on rapid and sensitive detection of this dangerous infection, preferably transdermally and without sophisticated reagents or blood drawing. Such diagnostic methods are not currently available. Here we show that the high optical absorbance and nanosize of endogenous heme nanoparticles called “hemozoin,” a unique component of all blood-stage malaria parasites, generates a transient vapor nanobubble around hemozoin in response to a short and safe near-infrared picosecond laser pulse. The acoustic signals of these malaria-specific nanobubbles provided transdermal noninvasive and rapid detection of a malaria infection as low as 0.00034% in animals without using any reagents or drawing blood. These on-demand transient events have no analogs among current malaria markers and probes, can detect and screen malaria in seconds, and can be realized as a compact, easy-to-use, inexpensive, and safe field technology. PMID:24379385

  14. Collisions of Ir oxide nanoparticles with carbon nanopipettes: Experiments with one nanoparticle

    DOE PAGES

    Zhou, Min; Yu, Yun; Hu, Keke; ...

    2017-02-03

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less

  15. Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Campbell, Kelly M; Constantinou, Pamela E; Braam, Janet; Olson, John S; Ware, Russell E; Sullivan, David J; Lapotko, Dmitri O

    2014-01-21

    Successful diagnosis, screening, and elimination of malaria critically depend on rapid and sensitive detection of this dangerous infection, preferably transdermally and without sophisticated reagents or blood drawing. Such diagnostic methods are not currently available. Here we show that the high optical absorbance and nanosize of endogenous heme nanoparticles called "hemozoin," a unique component of all blood-stage malaria parasites, generates a transient vapor nanobubble around hemozoin in response to a short and safe near-infrared picosecond laser pulse. The acoustic signals of these malaria-specific nanobubbles provided transdermal noninvasive and rapid detection of a malaria infection as low as 0.00034% in animals without using any reagents or drawing blood. These on-demand transient events have no analogs among current malaria markers and probes, can detect and screen malaria in seconds, and can be realized as a compact, easy-to-use, inexpensive, and safe field technology.

  16. Application of linker technique to trap transiently interacting protein complexes for structural studies

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.

    2016-01-01

    Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443

  17. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  18. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells.

    PubMed

    Sauret-Güeto, Susanna; Calder, Grant; Harberd, Nicholas P

    2012-02-01

    The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. Examining within- and across-day relationships between transient and chronic stress and parent food-related parenting practices in a racially/ethnically diverse and immigrant population : Stress types and food-related parenting practices.

    PubMed

    Berge, Jerica M; Tate, Allan; Trofholz, Amanda; Fertig, Angela; Crow, Scott; Neumark-Sztainer, Dianne; Miner, Michael

    2018-01-16

    Although prior research suggests that stress may play a role in parent's use of food-related parenting practices, it is unclear whether certain types of stress (e.g., transient, chronic) result in different food-related parenting practices. Identifying whether and how transient (i.e., momentary; parent/child conflict) and chronic (i.e., long-term; unemployment >6 months) sources of stress are related to parent food-related parenting practices is important with regard to childhood obesity. This is particularly important within racially/ethnically diverse parents who may be more likely to experience both types of stress and who have higher levels of obesity and related health problems. The current study examined the association between transient and chronic stressors and food-related parenting practices in a racially/ethnically diverse and immigrant sample. The current study is a cross-sectional, mixed-methods study using ecological momentary assessment (EMA). Parents (mean age = 35; 95% mothers) of children ages 5-7 years old (n = 61) from six racial/ethnic groups (African American, American Indian, Hispanic, Hmong, Somali, White) participated in this ten-day in-home observation with families. Transient stressors, specifically interpersonal conflicts, had significant within-day effects on engaging in more unhealthful food-related parenting practices the same evening with across-day effects weakening by day three. In contrast, financial transient stressors had stronger across-day effects. Chronic stressors, including stressful life events were not consistently associated with more unhealthful food-related parenting practices. Transient sources of stress were significantly associated with food-related parenting practices in racially/ethnically diverse and immigrant households. Chronic stressors were not consistently associated with food-related parenting practices. Future research and interventions may want to assess for transient sources of stress in parents and target these momentary factors in order to promote healthful food-related parenting practices.

  20. Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development

    PubMed Central

    Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul

    2017-01-01

    Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448

  1. Transient galactic cosmic ray modulation during solar cycle 24: A comparative study of two prominent Forbush decrease events

    NASA Astrophysics Data System (ADS)

    Lingling, Zhao; Huai, Zhang; Hongqing, He

    2016-04-01

    Forbush decrease (FD) events are of great interest for transient galactic cosmic ray modulation study. In this study, we perform statistical analysis of two prominent Forbush events during cycle 24, occurred on 8 March 2012 (Event 1) and 22 June 2015 (Event 2), respectively, utilizing the measurements from the worldwide neutron monitor (NM) network. Despite of their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Event 2 over the studied energy range. Additionally, while the evolution of the energy spectra during the two FD event exhibit similar variation pattern, the spectrum of Event 2 is very harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated ICME structure of IP/Sheath/MC sequence with large radial extend and limited longitudinal extent (narrow and thick), probably merged from multiple shocks and transient flows. Conversely, Event 2 is accompanied by a relatively simple interplanetary disturbance of IP/Sheath/Ejecta sequence with small radial extend and wide longitudinal departure (wide and thin), possibly evolved from an over expanded CME. Such comparative study may help to clarify the occurrence mechanisms of Forbush events related to different types solar wind structures and provide valuable insight into the transient GCR modulation, especially during the unusual solar cycle 24.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, X. Y.; Liu, S. Q.; Su, J. T.

    We report a subarcsecond penumbral transient brightening event with the high-spatial resolution observations from the 1.6 m New Solar Telescope (NST), Interface Region Imaging Spectrograph ( IRIS ), and the Solar Dynamics Observatory . The transient brightening, whose thermal energy is in the range of nanoflares, has signatures in the chromosphere, the transient region, and the corona. NST's H α channel reveals the fine structure of the event with a width as narrow as 101 km (0.″14), which is much smaller than the width from the previous observation. The transient brightening lasts for about 3 minutes. It is associated withmore » a redshift of about 17 km s{sup −1}, found in the Si iv 1402.77 Å line and exhibits an inward motion to the umbra with a speed of 87 km s{sup −1}. The small-scale energy released from the event has a multi-temperature component. Spectral analysis of the brightening region from IRIS shows that not only the transition region lines such as Si iv 1402.77 Å and C ii 1334.53 Å, but also the chromospheric Mg ii k 2796.35 Å line are significantly enhanced and broadened. In addition, the event can be found in all the extreme-ultraviolet passbands of the Atmospheric Imaging Assembly and the derived differential emission measure profile increases between 4 and 15 MK (or 6.6 ≤ log T ≤ 7.2) in the transient brightening phase. It is possible that the penumbral transient brightening event is caused by magnetic reconnection.« less

  3. Transient Hypothyroidism after Radioiodine for Graves’ Disease: Challenges in Interpreting Thyroid Function Tests

    PubMed Central

    Sheehan, Michael T.; Doi, Suhail A.R.

    2016-01-01

    Graves’ disease is the most common cause of hyperthyroidism and is often managed with radioactive iodine (RAI) therapy. With current dosing schemes, the vast majority of patients develop permanent post-RAI hypothyroidism and are placed on life-long levothyroxine therapy. This hypothyroidism typically occurs within the first 3 to 6 months after RAI therapy is administered. Indeed, patients are typically told to expect life-long thyroid hormone replacement therapy to be required within this timeframe and many providers expect this post-RAI hypothyroidism to be complete and permanent. There is, however, a small subset of patients in whom a transient post-RAI hypothyroidism develops which, initially, presents exactly as the typical permanent hypothyroidism. In some cases the transient hypothyroidism leads to a period of euthyroidism of variable duration eventually progressing to permanent hypothyroidism. In others, persistent hyperthyroidism requires a second dose of RAI. Failure to appreciate and recognize the possibility of transient post-RAI hypothyroidism can delay optimal and appropriate treatment of the patient. We herein describe five cases of transient post-RAI hypothyroidism which highlight this unusual sequence of events. Increased awareness of this possible outcome after RAI for Graves’ disease will help in the timely management of patients. PMID:26864507

  4. The SED Machine: A Robotic Spectrograph for Fast Transient Classification

    NASA Astrophysics Data System (ADS)

    Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Kulkarni, Shrinivas R.; Fremling, Christoffer; Ben-Ami, Sagi; Dekany, Richard G.; Fucik, Jason R.; Konidaris, Nick; Nash, Reston; Ngeow, Chow-Choong; Ofek, Eran O.; O’ Sullivan, Donal; Quimby, Robert; Ritter, Andreas; Vyhmeister, Karl E.

    2018-03-01

    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come online. Presently, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing “follow-up drought”. Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R ∼ 100) integral field unit (IFU) spectrograph with “Rainbow Camera” (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized for spectral classification.

  5. An Unusual Transient in the Extremely Metal-Poor Galaxy SDSS J094332.35+332657.6 (Leoncino Dwarf)

    NASA Astrophysics Data System (ADS)

    Filho, Mercedes E.; Sánchez Almeida, J.

    2018-05-01

    We have serendipitously discovered that Leoncino Dwarf, an ultra-faint, low-metallicity record-holder dwarf galaxy, may have hosted a transient source, and possibly exhibited a change in morphology, a shift in the center of brightness, and peak variability of the main (host) source in images taken approximately 40 yr apart; it is highly likely that these phenomena are related. Scenarios involving a Solar System object, a stellar cluster, dust enshrouding, and accretion variability have been considered, and discarded, as the origin of the transient. Although a combination of time-varying strong and weak lensing effects, induced by an intermediate mass black hole (104 - 5 × 105 M⊙) moving within the Milky Way halo (0.1 - 4 kpc), can conceivably explain all of the observed variable galaxy properties, it is statistically highly unlikely according to current theoretical predictions, and, therefore, also discarded. A cataclysmic event such as a supernova/hypernova could have occurred, as long as the event was observed towards the later/late-stage descent of the light curve, but this scenario fails to explain the absence of a post-explosion source and/or host HII region in recent optical images. An episode related to the giant eruption of a luminous blue variable star, a stellar merger or a nova, observed at, or near, peak magnitude may explain the transient source and possibly the change in morphology/center of brightness, but can not justify the main source peak variability, unless stellar variability is evoked.

  6. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  7. Inelastic Single Pion Signal Study in T2K νe Appearance using Modified Decay Electron Cut

    NASA Astrophysics Data System (ADS)

    Iwamoto, Konosuke; T2K Collaboration

    2015-04-01

    The T2K long-baseline neutrino experiment uses sophisticated selection criteria to identify the neutrino oscillation signals among the events reconstructed in the Super-Kamiokande (SK) detector for νe and νμ appearance and disappearance analyses. In current analyses, charged-current quasi-elastic (CCQE) events are used as the signal reaction in the SK detector because the energy can be precisely reconstructed. This talk presents an approach to increase the statistics of the oscillation analysis by including non-CCQE events with one Michel electron and reconstruct them as the inelastic single pion productions. The increase in statistics, backgrounds to this new process and energy reconstruction implications will be presented with this increased event sample.

  8. Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron.

    PubMed

    Purali, Nuhan

    2017-09-01

    In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.

  9. The Rapidly Moving Telescope: an Instrument for the Precise Study of Optical Transients

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Vonrosenvinge, T. T.; Cline, T. L.; Kaipa, R.

    1983-01-01

    The development of a small telescope with a very rapid pointing capability is described whose purpose is to search for and study fast optical transients that may be associated with gamma-ray bursts and other phenomena. The primary motivation for this search is the discovery of the existence of a transient optical event from the known location of a gamma-ray bursts. The telescope has the capability of rapidly acquiring any target in the night sky within 0.7 second and locating the object's position with + or - 1 arcsec accuracy. The initial detection of the event is accomplished by the MIT explosive transient camera or ETC. This provides rough pointing coordinates to the RMT on the average within approximately 1 second after the detection of the event.

  10. Numerical 3D flow simulation of attached cavitation structures at ultrasonic horn tips and statistical evaluation of flow aggressiveness via load collectives

    NASA Astrophysics Data System (ADS)

    Mottyll, S.; Skoda, R.

    2015-12-01

    A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.

  11. Evaluating average and atypical response in radiation effects simulations

    NASA Astrophysics Data System (ADS)

    Weller, R. A.; Sternberg, A. L.; Massengill, L. W.; Schrimpf, R. D.; Fleetwood, D. M.

    2003-12-01

    We examine the limits of performing single-event simulations using pre-averaged radiation events. Geant4 simulations show the necessity, for future devices, to supplement current methods with ensemble averaging of device-level responses to physically realistic radiation events. Initial Monte Carlo simulations have generated a significant number of extremal events in local energy deposition. These simulations strongly suggest that proton strikes of sufficient energy, even those that initiate purely electronic interactions, can initiate device response capable in principle of producing single event upset or microdose damage in highly scaled devices.

  12. The Statistic Results of the ISUAL Lightning Survey

    NASA Astrophysics Data System (ADS)

    Chuang, Chia-Wen; Bing-Chih Chen, Alfred; Liu, Tie-Yue; Lin, Shin-Fa; Su, Han-Tzong; Hsu, Rue-Ron

    2017-04-01

    The ISUAL (Imager for Sprites and Upper Atmospheric Lightning) onboard FORMOSAT-2 is the first science payload dedicated to the study of the lightning-induced transient luminous events (TLEs). Transient events, including TLEs and lightning, were recorded by the intensified imager, spectrophotometer (SP), and array photometer (AP) simultaneously while their light variation observed by SP exceeds a programmed threshold. Therefore, ISUAL surveys not only TLEs but also lightning globally with a good spatial, temporal and spectral resolution. In the past 12 years (2004-2016), approximately 300,000 transient events were registered, and only 42,000 are classified as TLEs. Since the main mission objective is to explore the distribution and characteristics of TLEs, the remaining transient events, mainly lightning, can act as a long-term global lightning survey. These huge amount of events cannot be processed manually as TLEs do, therefore, a data pipeline is developed to scan lightning patterns and to derive their geolocation with an efficient algorithm. The 12-year statistic results including occurrence rate, global distribution, seasonal variation, and the comparison with the LIS/OTD survey are presented in this report.

  13. Systematic detection of seismic events at Mount St. Helens with an ultra-dense array

    NASA Astrophysics Data System (ADS)

    Meng, X.; Hartog, J. R.; Schmandt, B.; Hotovec-Ellis, A. J.; Hansen, S. M.; Vidale, J. E.; Vanderplas, J.

    2016-12-01

    During the summer of 2014, an ultra-dense array of 900 geophones was deployed around the crater of Mount St. Helens and continuously operated for 15 days. This dataset provides us an unprecedented opportunity to systematically detect seismic events around an active volcano and study their underlying mechanisms. We use a waveform-based matched filter technique to detect seismic events from this dataset. Due to the large volume of continuous data ( 1 TB), we performed the detection on the GPU cluster Stampede (https://www.tacc.utexas.edu/systems/stampede). We build a suite of template events from three catalogs: 1) the standard Pacific Northwest Seismic Network (PNSN) catalog (45 events); 2) the catalog from Hansen&Schmandt (2015) obtained with a reverse-time imaging method (212 events); and 3) the catalog identified with a matched filter technique using the PNSN permanent stations (190 events). By searching for template matches in the ultra-dense array, we find 2237 events. We then calibrate precise relative magnitudes for template and detected events, using a principal component fit to measure waveform amplitude ratios. The magnitude of completeness and b-value of the detected catalog is -0.5 and 1.1, respectively. Our detected catalog shows several intensive swarms, which are likely driven by fluid pressure transients in conduits or slip transients on faults underneath the volcano. We are currently relocating the detected catalog with HypoDD and measuring the seismic velocity changes at Mount St. Helens using the coda wave interferometry of detected repeating earthquakes. The accurate temporal-spatial migration pattern of seismicity and seismic property changes should shed light on the physical processes beneath Mount St. Helens.

  14. Upset due to a single particle caused propagated transients in a bulk CMOS microprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavy, J.F.; Hoffmann, L.F.; Shoran, R.W.

    1991-12-01

    This paper reports on data pattern advances observed in preset, single event upset (SEU) hardened clocked flip-flops, during static Cf-252 exposures on a bulk CMOS microprocessor, that were attributable to particle caused anomalous clock signals, or propagated transients. SPICE simulations established that particle strikes in the output nodes of a clock control logic flip-flop could produce transients of sufficient amplitude and duration to be accepted as legitimate pulses by clock buffers fed by the flip-flop's output nodes. The buffers would then output false clock pulses, thereby advancing the state of the present flip-flops. Masking the clock logic on one ofmore » the test chips made the flip-flop data advance cease, confirming the clock logic as the source of the SEU. By introducing N{sub 2} gas, at reduced pressures, into the SEU test chamber to attenuate Cf-252 particle LET's, a 24-26 MeV-cm{sup 2}/mg LET threshold was deduced. Subsequent tests, at the 88-inch cyclotron at Berkeley, established an LET threshold of 30 MeV-cm{sup 2}/mg (283 MeV Cu at 0{degrees}) for the generation of false clocks. Cyclotron SEU tests are considered definitive, while Cf-252 data usually is not. However, in this instance Cf-252 tests proved analytically useful, providing SEU characterization data that was both timely and inexpensive.« less

  15. The High Energy Telescope on EXIST: Hunting High Red-shift GRBs and Other Exotic Transients

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Grindlay, J.; Allen, B.; Skinner, G. K.; Finger, M. H.; Jernigan, J. G.; EXIST Team

    2009-01-01

    The current baseline design of the High Energy Telescope (HET) on EXIST will localize high red-shift Gamma-Ray Bursts (GRBs) and other exotic transients fast (<10 sec) and accurately (<17") in order to allow the rapid (<1-2 min) follow-up onboard optical/IR imaging and spectroscopy. HET employs coded-aperture imaging with 5.5m2 CZT detector and a large hybrid tungsten mask (See also Skinner et al. in this meeting). The wide energy band coverage (5-600 keV) is optimal for capturing these transients and highly obscured AGNs. The continuous scan with the wide field of view ( 45 deg radius at 25% coding fraction) increases the chance of capturing rare elusive events such as soft Gamma-ray repeaters and tidal disruption events of stars by dormant supermassive black holes. Sweeping nearly the entire sky every two orbits (3 hour) will also establish a finely-sampled long-term history of the X-ray variability of many X-ray sources, opening up a new time domain of the variability study. In light of the new EXIST design concept, we review the observing strategy to maximize the science return and report the latest development of the CZT detectors for HET.

  16. Sustained and transient attention in the continuous performance task.

    PubMed

    Smid, H G O M; de Witte, M R; Homminga, I; van den Bosch, R J

    2006-08-01

    One of the most frequently applied methods to study abnormal cognition is the Continuous Performance Task (CPT). It is unclear, however, which cognitive functions are engaged in normal CPT performance. The aims of the present study were to identify the neurocognitive functions engaged in the main variants of the CPT and to determine to what extent these variants differentially engage these functions. We hypothesized that the main CPT versions (CPT-X, CPT-AX, CPT-Identical Pairs) can be distinguished by whether they demand sustained or transient attention and sustained or transient response preparation. Transient attention to objects like letters or digits, that is, the need to switch attention to different objects from trial to trial, impairs target detection accuracy relative to sustained attention to a single object. Transient response preparation, that is, the possibility to switch response preparation on and off from trial to trial, improves response speed relative to having to sustain response preparation across all trials. Comparison of task performance and Event-Related brain Potentials (ERPs) of healthy participants obtained in the main CPT variants confirmed these hypotheses. Behavioral and ERP measures indicated worse target detection in the CPT-AX than in the CPT-X, consistent with a higher demand on transient attention in that task. In contrast, behavioral and ERP measures indicated higher response speed in the CPT-AX than in the CPT-X, associated with more response preparation in advance of the targets. This supports the idea of increased transient response preparation in the CPT-AX. We conclude that CPTs differ along at least two task variables that each influences a different cognitive function.

  17. Perturbed atrial calcium handling in an ovine model of heart failure: Potential roles for reductions in the L-type calcium current

    PubMed Central

    Clarke, Jessica D.; Caldwell, Jessica L.; Horn, Margaux A.; Bode, Elizabeth F.; Richards, Mark A.; Hall, Mark C.S.; Graham, Helen K.; Briston, Sarah J.; Greensmith, David J.; Eisner, David A.; Dibb, Katharine M.; Trafford, Andrew W.

    2015-01-01

    Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells. PMID:25463272

  18. The Monitoring Of Thunderstorm In Sao Paulo's Urban Areas, Brazil

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Pereira, A.; Beneti, C.; Jusevicius, M.; Kawano, M.; Bianchi, R.; Bellodi, M.

    2005-12-01

    A monitoring of thunderstorm in urban areas occurred in the vicinity of Sao Bernardo do Campo, Sao Paulo from November 2004 to March 2005. Eight thunderstorms were monitored by local electric field, video camera, Brazilian Lightning Location Network (RINDAT) and weather radar. The most of these thunderstorms were associated with the local convection and cold front. Some of these events presented floods in the vicinity of Sao Bernardo and in the Metropolitan Area of Sao Paulo (MASP) being associated with local sea breeze circulation and the heat island effect. The convectives cells exceeding 100km x 100 km of area, actives between 2 and 3 hours. The local electric field identified the electrification stage of thunderstorms, high transients of lightning and total lightning rate of above 10 flashes per minute. About 29.5 thousands of cloud-to-ground lightning flashes were analyzed . From the total set of CG flashes analyzed, about 94 percent were negative strokes and presented average peak current of above 25kA, common for this region. Some lightning images were obtained by video camera and compared with transients of lightning and lightning detection network data. The most of these transients of lightning presented continuing current duration between 100ms and 200ms. A CG lightning occurred on 25th February was visually observed 3.5km from FEI campus, Sao Bernardo do Campo. This lightning presented negative polarity and estimed peak current of above 30kA. A spider was visually observed over FEI Campus at 17th March. No transients of lightning and recording by lightning location network were found.

  19. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  20. Localization of transient gravitational wave sources: beyond triangulation

    NASA Astrophysics Data System (ADS)

    Fairhurst, Stephen

    2018-05-01

    Rapid, accurate localization of gravitational wave transient events has proved critical to successful electromagnetic followup. In previous papers we have shown that localization estimates can be obtained through triangulation based on timing information at the detector sites. In practice, detailed parameter estimation routines use additional information and provide better localization than is possible based on timing information alone. In this paper, we extend the timing based localization approximation to incorporate consistency of observed signals with two gravitational wave polarizations, and an astrophysically motivated distribution of sources. Both of these provide significant improvements to source localization, allowing many sources to be restricted to a single sky region, with an area 40% smaller than predicted by timing information alone. Furthermore, we show that the vast majority of sources will be reconstructed to be circularly polarized or, equivalently, indistinguishable from face-on.

  1. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro.

    PubMed Central

    Thayer, S A; Miller, R J

    1990-01-01

    1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering component which was responsible for the more efficient removal of [Ca2+]i observed when large Ca2+ loads were applied to the cell. 7. When cells were superfused with 50 mM-K+, [Ca2+]i transients recorded from the cell soma returned to control levels very slowly. Pharmacological studies indicated that mitochondria were cycling Ca2+ during this sustained elevation in [Ca2+]i. In contrast, [Ca2+]i transients recorded from cell processes returned to basal levels relatively rapidly. 8. Extracellular Na(+)-dependent Ca2+ efflux did not significantly contribute to buffering [Ca2+]i transients in dorsal root ganglion neurone cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2213592

  2. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats

    PubMed Central

    Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E

    2008-01-01

    Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (IA) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca2+ levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in IA current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished IA availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K+ channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca2+ imaging demonstrated enhanced action potential-evoked intracellular Ca2+ transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished IA availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension. PMID:18238809

  3. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  4. Memory for Public Events in Mild Cognitive Impairment and Alzheimer's Disease: The Importance of Rehearsal.

    PubMed

    Langlois, Roxane; Joubert, Sven; Benoit, Sophie; Dostie, Valérie; Rouleau, Isabelle

    2016-01-01

    Ribot's law refers to the better preservation of remote memories compared with recent ones that presumably characterizes retrograde amnesia. Even if Ribot-type temporal gradient has been extensively studied in retrograde amnesia, particularly in Alzheimer's disease (AD), this pattern has not been consistently found. One explanation for these results may be that rehearsal frequency rather than remoteness accounts for the better preservation of these memories. Thus, the aim of present study was to address this question by studying retrograde semantic memory in subjects with amnestic mild cognitive impairment (aMCI) (n = 20), mild AD (n = 20) and in healthy older controls (HC; n = 19). In order to evaluate the impact of repetition as well as the impact of remoteness, we used a test assessing memory for enduring and transient public events that occurred in the recent and remote past. Results show no clear temporal gradient across time periods (1960-1975; 1976-1990; 1991-2005; 2006-2011), but a better performance was observed in all three groups for enduring compared with transient events. Moreover, although deficits were globally found in both patients groups compared with HC, more specific analyses revealed that aMCI patients were only impaired on transient events while AD patients were impaired on both transient and enduring events. Exploratory analyses also revealed a tendency suggesting preservation of remote transient events in aMCI. These findings are discussed with regards to memory consolidation models.

  5. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons.

    PubMed

    Zillmer, Rüdiger; Brunel, Nicolas; Hansel, David

    2009-03-01

    We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast rise and decay. Depending on the parameters, the network displays transients which are short or exponentially long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the number of connections per neuron is large ( approximately 1000) , this attractor is a cluster state with a short period. In contrast, if the number of connections per neuron is small ( approximately 100) , the attractor has complex dynamics and very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous or displays population oscillations. In the first case, the average firing rates and the variability of the single-neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N) . We further show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed. We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.

  6. Rapid Polymer Transport in a Single Nanometer-Scale Pore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    1998-03-01

    Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.

  7. The prognostic impact of worsening renal function in Japanese patients undergoing percutaneous coronary intervention with acute coronary syndrome.

    PubMed

    Murata, Nobuhiro; Kaneko, Hidehiro; Yajima, Junji; Oikawa, Yuji; Oshima, Toru; Tanaka, Shingo; Kano, Hiroto; Matsuno, Shunsuke; Suzuki, Shinya; Kato, Yuko; Otsuka, Takayuki; Uejima, Tokuhisa; Nagashima, Kazuyuki; Kirigaya, Hajime; Sagara, Koichi; Sawada, Hitoshi; Aizawa, Tadanori; Yamashita, Takeshi

    2015-10-01

    The prognostic impact of worsening renal function (WRF) in acute coronary syndrome (ACS) patients is not fully understood in Japanese clinical practice, and clinical implication of persistent versus transient WRF in ACS patients is also unclear. With a single hospital-based cohort in the Shinken database 2004-2012 (n=19,994), we followed 604 ACS patients who underwent percutaneous coronary intervention (PCI). WRF was defined as an increase in creatinine during hospitalization of ≥0.3mg/dl above admission value. Persistent WRF was defined as an increase in creatinine during hospitalization of ≥0.3mg/dl above admission value and maintained until discharge, whereas transient WRF was defined as that WRF resolved at hospital discharge. WRF occurred in 78 patients (13%), persistent WRF 35 patients (6%) and transient WRF 43 patients (7%). WRF patients were older and had a higher prevalence of chronic kidney disease, history of myocardial infarction (MI), and ST elevation MI. WRF was associated with elevated inflammatory markers and reduced left ventricular (LV) ejection fraction in acute, chronic phase. Incidence of all-cause death and major adverse cardiac events (MACE: all-cause death, MI, and target lesion revascularization) was significantly higher in patients with WRF. Moreover, in the WRF group, incidences of all-cause death and MACE were higher in patients with persistent WRF than those with transient WRF. A multivariate analysis showed that as well as older age, female gender, and intubation, WRF was an independent determinant of the all-cause death in ACS patients who underwent PCI. In conclusion, WRF might have a prognostic impact among Japanese ACS patients who underwent PCI in association with enhanced inflammatory response and LV remodeling. Persistent WRF might portend increased events, while transient WRF might have association with favorable outcomes compared with persistent WRF. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. The Evryscopes: monitoring the entire sky for exciting events

    NASA Astrophysics Data System (ADS)

    Law, Nicholas; Corbett, Hank; Howard, Ward S.; Fors, Octavi; Ratzloff, Jeff; Barlow, Brad; Hermes, JJ

    2018-01-01

    The Evryscope is a new type of array telescope which monitors the entire accessible sky in each exposure. The system, with 700 MPix covering an 8000-square-degree field of view, is building many-year-length, high-cadence light curves for every accessible object brighter than ∼16th magnitude. Every night, we add 600 million object detections to our databases, including exoplanet transits, microlensing events, nearby extragalactic transients, and a wide range of other short timescale events. I will present our science plans, the status of our current Evryscope systems (operational in Chile and soon California), the big-data analysis required to explore the petabyte-scale dataset we are collecting over the next few years, and the first results from the telescopes.

  9. Prospective study of single-stage repair of contaminated hernias using a biologic porcine tissue matrix: the RICH Study.

    PubMed

    Itani, Kamal M F; Rosen, Michael; Vargo, Daniel; Awad, Samir S; Denoto, George; Butler, Charles E

    2012-09-01

    In the presence of contamination, the repair of a ventral incisional hernia (VIH) is challenging. The presence of comorbidities poses an additional risk for postoperative wound events and hernia recurrence. To date, very few studies describe the outcomes of VIH repair in this high-risk population. A prospective, multicenter, single-arm, the Repair of Infected or Contaminated Hernias study was performed to study the clinical outcomes of open VIH repair of contaminated abdominal defects with a non-cross-linked, porcine, acellular dermal matrix, Strattice. Of 85 patients who consented to participate, 80 underwent open VIH repair with Strattice. Hernia defects were 'clean-contaminated' (n = 39), 'contaminated' (n = 39), or 'dirty' (n = 2), and the defects were classified as grade 3 (n = 60) or grade 4 (n = 20). The midline was restored, and primary closure was achieved in 64 patients; the defect was bridged in 16 patients. At 24 months, 53 patients (66%) experienced 95 wound events. There were 28 unique, infection-related events in 24 patients. Twenty-two patients experienced seromas, all but 5 of which were transient and required no intervention. No unanticipated adverse events occurred, and no tissue matrix required complete excision. There were 22 hernia (28%) recurrences by month 24. There was no correlation between infection-related events and hernia recurrence. The use of the intact, non-cross-linked, porcine, acellular dermal matrix, Strattice, in the repair of contaminated VIH in high-risk patients allowed for successful, single-stage reconstruction in >70% of patients followed for 24 months after repair. Published by Mosby, Inc.

  10. Reclosing operation characteristics of the flux-coupling type SFCL in a single-line-to ground fault

    NASA Astrophysics Data System (ADS)

    Jung, B. I.; Cho, Y. S.; Choi, H. S.; Ha, K. H.; Choi, S. G.; Chul, D. C.; Sung, T. H.

    2011-11-01

    The recloser that is used in distribution systems is a relay system that behaves sequentially to protect power systems from transient and continuous faults. This reclosing operation of the recloser can improve the reliability and stability of the power supply. For cooperation with this recloser, the superconducting fault current limiter (SFCL) must properly perform the reclosing operation. This paper analyzed the reclosing operation characteristics of the three-phase flux-coupling type SFCL in the event of a ground fault. The fault current limiting characteristics according to the changing number of turns of the primary and secondary coils were examined. As the number of turns of the first coil increased, the first maximum fault current decreased. Furthermore, the voltage of the quenched superconducting element also decreased. This means that the power burden of the superconducting element decreases based on the increasing number of turns of the primary coil. The fault current limiting characteristic of the SFCL according to the reclosing time limited the fault current within a 0.5 cycles (8 ms), which is shorter than the closing time of the recloser. In other words, the superconducting element returned to the superconducting state before the second fault and normally performed the fault current limiting operation. If the SFCL did not recover before the recloser reclosing time, the normal current that was flowing in the transmission line after the recovery of the SFCL from the fault would have been limited and would have caused losses. Therefore, the fast recovery time of a SFCL is critical to its cooperation with the protection system.

  11. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

    NASA Astrophysics Data System (ADS)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Johansson, Joel; Contreras, Carlos; Castellón, Sergio; Bond, Howard E.; Monson, Andrew J.; Masci, Frank J.; Cody, Ann Marie; Andrews, Jennifer E.; Bally, John; Cao, Yi; Fox, Ori D.; Gburek, Timothy; Gehrz, Robert D.; Green, Wayne; Helou, George; Hsiao, Eric; Morrell, Nidia; Phillips, Mark; Prince, Thomas A.; Simcoe, Robert A.; Smith, Nathan; Tinyanont, Samaporn; Williams, Robert

    2017-03-01

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous (M [4.5] = -17.1 ± 0.4 mag, Vega) and reddest ([3.6] - [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 (D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s-1), double-peaked emission line of He I at 1.083 μm, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]-[4.5] color has not been previously observed for any SN IIb. Another luminous (M 4.5 = -16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A V ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.

  12. High infrasonic goniometry applied to the detection of a helicopter in a high activity environment

    NASA Astrophysics Data System (ADS)

    Chritin, Vincent; Van Lancker, Eric; Wellig, Peter; Ott, Beat

    2016-10-01

    A current concern of armasuisse is the feasibility of a fixed or mobile acoustic surveillance and recognition network of sensors allowing to permanently monitor the noise immissions of a wide range of aerial activities such as civil or military aviation, and other possible acoustic events such as transient events, subsonic or sonic booms or other. This objective requires an ability to detect, localize and recognize a wide range of potential acoustic events of interest, among others possibly parasitic acoustic events (natural and industrial events on the ground for example), and possibly high background noise (for example close to urban or high activity areas). This article presents a general discussion and conclusion about this problem, based on 20 years of experience totalizing a dozen of research programs or internal researches by IAV, with an illustration through one central specific experimental case-study carried out within the framework of an armasuisse research program.

  13. Non-independent quantum bumps in Limulus ventral nerve photoreceptors--a new insight in the light transduction mechanism.

    PubMed

    Nagy, K

    1992-09-14

    Single photon-induced transient currents, called quantum bumps were stimulated by short flashes in dark-adapted ventral nerve photoreceptors of Limulus. Flash intensities were set to activate 3 or more bumps. In most cases, current bumps were activated with a constant rate. The frequency of bump occurrence was between 9 and 17 Hz. Results show that consecutive bumps are not independent and that some of them are not activated by a photon. The periodic bump activation indicates a molecular mechanism which quantifies the transmitter release not only by a light quantum, but also by a late phase of the transduction cascade. A model is proposed, in which Ca2+ ions released from intracellular stores transiently block the further Ca2+ release by inositol trisphosphate in an all-or-none manner.

  14. Filgrastim mobilization and collection of allogeneic blood progenitor cells from adult family donors: first interim report of a prospective German multicenter study.

    PubMed

    Beelen, D W; Ottinger, H; Kolbe, K; Pönisch, W; Sayer, H G; Knauf, W; Stockschläder, M; Scheid, C; Schaefer, U W

    2002-12-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) mobilized peripheral blood progenitor cells (PBPCs) from healthy individuals are a rapidly emerging alternative source to bone marrow for allogeneic transplantation. Although widely applied in the meantime, only limited information on feasibility and safety of mobilization and collection of PBPCs is currently available from prospective multicenter studies specifically designed to investigate this donation modality. This ongoing multicenter study on the performance as well as the short- and long-term safety profile of rhG-CSF-induced mobilization and collection of PBPCs was initiated in October 1999. The study is designed to recruit a total of 300 healthy family donors who will be followed regularly for a period of 5 years after donation. The first interim report presented here summarizes results obtained after enrollment of 150 donors from nine German institutions. The study protocol allowed the individual choice between two dose regimens of rh-CSF (10 micro g/kg per day vs 2x8 micro g/kg per day of donor body weight). The primary endpoint was defined as a yield of > or =5x10(6) CD34(+) cells/kg of recipient body weight in a single leukapheresis product. This endpoint was attained by 50% of donors receiving the lower rhG-CSF dose regimen and by 75% of donors with the higher dose regimen ( p<0.0009). A total of 478 acute adverse events attributable to the mobilization procedure were recorded and manifested predominantly as transient bone pain and headaches (80%). No persistent hematologic or nonhematologic adverse events have occurred in this study so far. Thus, the current experience in a prospective multicenter study supports previous single-center and retrospective registry reports in that the collection of PBPCs after rhG-CSF mobilization is feasible and associated with frequent, but generally mild and acceptable side effects.

  15. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1983-01-01

    Two main results are presented. The first deals with a simple method that determines the minority-carrier lifetime and the effective surface recombination velocity of the quasi-neutral base of silicon solar cells. The method requires the observation of only a single transient, and is amenable to automation for in-process monitoring in manufacturing. This method, which is called short-circuit current decay, avoids distortion in the observed transient and consequent inacccuracies that arise from the presence of mobile holes and electrons stored in the p/n junction spacecharge region at the initial instant of the transient. The second main result consists in a formulation of the relevant boundary-value problems that resembles that used in linear two-port network theory. This formulation enables comparisons to be made among various contending methods for measuring material parameters of p/n junction devices, and enables the option of putting the description in the time domain of the transient studies in the form of an infinite series, although closed-form solutions are also possible.

  16. Comparison of the Calculations Results of Heat Exchange Between a Single-Family Building and the Ground Obtained with the Quasi-Stationary and 3-D Transient Models. Part 2: Intermittent and Reduced Heating Mode

    NASA Astrophysics Data System (ADS)

    Staszczuk, Anna

    2017-03-01

    The paper provides comparative results of calculations of heat exchange between ground and typical residential buildings using simplified (quasi-stationary) and more accurate (transient, three-dimensional) methods. Such characteristics as building's geometry, basement hollow and construction of ground touching assemblies were considered including intermittent and reduced heating mode. The calculations with simplified methods were conducted in accordance with currently valid norm: PN-EN ISO 13370:2008. Thermal performance of buildings. Heat transfer via the ground. Calculation methods. Comparative estimates concerning transient, 3-D, heat flow were performed with computer software WUFI®plus. The differences of heat exchange obtained using more exact and simplified methods have been specified as a result of the analysis.

  17. Follow-up of high energy neutrinos detected by the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Mathieu, Aurore

    2016-04-01

    The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER) and the Swift-XRT telescope, which are triggered when an "interesting" neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  18. Experimental and simulation studies of neutron-induced single-event burnout in SiC power diodes

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori; Tadano, Hiroshi

    2014-01-01

    Neutron-induced single-event burnouts (SEBs) of silicon carbide (SiC) power diodes have been investigated by white neutron irradiation experiments and transient device simulations. It was confirmed that a rapid increase in lattice temperature leads to formation of crown-shaped aluminum and cracks inside the device owing to expansion stress when the maximum lattice temperature reaches the sublimation temperature. SEB device simulation indicated that the peak lattice temperature is located in the vicinity of the n-/n+ interface and anode contact, and that the positions correspond to a hammock-like electric field distribution caused by the space charge effect. Moreover, the locations of the simulated peak lattice temperature agree closely with the positions of the observed destruction traces. Furthermore, it was theoretically demonstrated that the period of temperature increase of a SiC power device is two orders of magnitude less than that of a Si power device, using a thermal diffusion equation.

  19. Shortcomings in ground testing, environment simulations, and performance predictions for space applications

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.

    1992-01-01

    This paper addresses the issues involved in radiation testing of devices and subsystems to obtain the data that are required to predict the performance and survivability of satellite systems for extended missions in space. The problems associated with space environmental simulations, or the lack thereof, in experiments intended to produce information to describe the degradation and behavior of parts and systems are discussed. Several types of radiation effects in semiconductor components are presented, as for example: ionization dose effects, heavy ion and proton induced Single Event Upsets (SEUs), and Single Event Transient Upsets (SETUs). Examples and illustrations of data relating to these ground testing issues are provided. The primary objective of this presentation is to alert the reader to the shortcomings, pitfalls, variabilities, and uncertainties in acquiring information to logically design electronic subsystems for use in satellites or space stations with long mission lifetimes, and to point out the weaknesses and deficiencies in the methods and procedures by which that information is obtained.

  20. Novel regulatory mechanism in human urinary bladder: central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.

    2016-01-01

    Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488

  1. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  2. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  3. Current Single Event Effects and Radiation Damage Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Kniffin, Scott D.; Poivey, Christian; Buchner, Stephen P.; Bings, John P.; Titus, Jeff L.

    2002-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects, total ionizing dose and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  4. Multiple Mechanisms of Transient Heating Events in the Protoplanetary Disk: Evidence from Precursors of Chondrules and Igneous Ca,Al-Rich Inclusions

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Nagashima, K.; Libourel, G.; Miller, K. E.

    2017-02-01

    Here we review the mineralogy, petrography, O-isotope compositions, and trace element abundances of precursors of chondrules and igneous CAIs which provide important constraints on the mechanisms of transient heating events in the protoplanetary disk.

  5. Transient sodium current at subthreshold voltages: activation by EPSP waveforms

    PubMed Central

    Carter, Brett C.; Giessel, Andrew J.; Sabatini, Bernardo L.; Bean, Bruce P.

    2012-01-01

    Summary Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also “persistent” sodium current, a non-inactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37 °C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo. PMID:22998875

  6. Characteristics of lightning flashes generating sprites above thunderstorms

    NASA Astrophysics Data System (ADS)

    Soula, S.; Van Der Velde, O. A.; Montanya, J.; Fullekrug, M.; Mlynarczyk, J.

    2016-12-01

    Sprites are Transient Luminous Events (TLEs) consisting of streamer discharges, in response to a strong transient electrostatic field that exceeds the threshold for dielectric breakdown in the mesosphere. A large panel of sprite observations have been made with several low-light video cameras located in southern France, especially at Pic du Midi (2877 m) in the Pyrénées mountain range. The optical detection of these luminous events allow to determine some of their characteristics as the timing, the duration, the location, the size, the shape, the luminosity. Other parameters describing the storm and the lightning activity provided by different instruments are associated to the sprite observations to a better understanding of their conditions of production and their characteristic settings: (i) the sprites are essentially produced above the stratiform region of the Mesoscale Convective Systems during positive cloud-to-ground lightning flashes that produce large Charge Moment Change (CMC) and with a delay of as much shorter than the current is large. (ii) The long time delayed sprites are associated with continuing current and large CMC. (iii) The sprite elements can be shifted from the stroke location when their delay is long. (iv) Very luminous sprites can produce large current signatures visible in ELF radiation a few milliseconds (< 5 ms) after the positive strokes that generate them, but sometimes imbedded in that of the stroke pulse. (v) Several cases of "dancing sprites" show the successive light emissions reflect the timing and the location of the strokes of the lightning flashes that generate them.

  7. A transient dopamine signal encodes subjective value and causally influences demand in an economic context

    PubMed Central

    Schelp, Scott A.; Pultorak, Katherine J.; Rakowski, Dylan R.; Gomez, Devan M.; Krzystyniak, Gregory; Das, Raibatak; Oleson, Erik B.

    2017-01-01

    The mesolimbic dopamine system is strongly implicated in motivational processes. Currently accepted theories suggest that transient mesolimbic dopamine release events energize reward seeking and encode reward value. During the pursuit of reward, critical associations are formed between the reward and cues that predict its availability. Conditioned by these experiences, dopamine neurons begin to fire upon the earliest presentation of a cue, and again at the receipt of reward. The resulting dopamine concentration scales proportionally to the value of the reward. In this study, we used a behavioral economics approach to quantify how transient dopamine release events scale with price and causally alter price sensitivity. We presented sucrose to rats across a range of prices and modeled the resulting demand curves to estimate price sensitivity. Using fast-scan cyclic voltammetry, we determined that the concentration of accumbal dopamine time-locked to cue presentation decreased with price. These data confirm and extend the notion that dopamine release events originating in the ventral tegmental area encode subjective value. Using optogenetics to augment dopamine concentration, we found that enhancing dopamine release at cue made demand more sensitive to price and decreased dopamine concentration at reward delivery. From these observations, we infer that value is decreased because of a negative reward prediction error (i.e., the animal receives less than expected). Conversely, enhancing dopamine at reward made demand less sensitive to price. We attribute this finding to a positive reward prediction error, whereby the animal perceives they received a better value than anticipated. PMID:29109253

  8. Watering the Tree of Science: Science Education, Local Knowledge, and Agency in Zambia's PSA Program

    NASA Astrophysics Data System (ADS)

    Lample, Emily

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  9. Recent advances in chemical synthesis methodology of inorganic materials and theoretical computations of metal nanoparticles/carbon interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Andrew G.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  10. Network performance analysis and management for cyber-physical systems and their applications

    NASA Astrophysics Data System (ADS)

    Emfinger, William A.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  11. Soft error aware physical synthesis

    NASA Astrophysics Data System (ADS)

    Assis, Thiago Rocha de

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  12. A Drastic Change in Background Luminance or Motion Degrades the Preview Benefit.

    PubMed

    Osugi, Takayuki; Murakami, Ikuya

    2017-01-01

    When some distractors (old items) precede some others (new items) in an inefficient visual search task, the search is restricted to new items, and yields a phenomenon termed the preview benefit. It has recently been demonstrated that, in this preview search task, the onset of repetitive changes in the background disrupts the preview benefit, whereas a single transient change in the background does not. In the present study, we explored this effect with dynamic background changes occurring in the context of realistic scenes, to examine the robustness and usefulness of visual marking. We examined whether preview benefit in a preview search task survived through task-irrelevant changes in the scene, namely a luminance change and the initiation of coherent motion, both occurring in the background. Luminance change of the background disrupted preview benefit if it was synchronized with the onset of the search display. Furthermore, although the presence of coherent background motion per se did not affect preview benefit, its synchronized initiation with the onset of the search display did disrupt preview benefit if the motion speed was sufficiently high. These results suggest that visual marking can be destroyed by a transient event in the scene if that event is sufficiently drastic.

  13. On flares, substorms, and the theory of impulsive flux transfer events

    NASA Technical Reports Server (NTRS)

    Bratenahl, A.; Baum, P. J.

    1976-01-01

    Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of 'neutral sheet' theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE.

  14. ARECIBO PULSAR SURVEY USING ALFA: PROBING RADIO PULSAR INTERMITTENCY AND TRANSIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneva, J. S.; Cordes, J. M.; McLaughlin, M. A.

    We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4 and 4.7 s. One of the new discoveries has a duty cycle of 0.01%, smaller than that of any other radio pulsar. We discuss the impact of selection effects on the detectability and classification of intermittent sources, and compare the efficiencies of periodicity and single-pulse (SP) searches for various pulsar classes. For some cases wemore » find that the apparent intermittency is likely to be caused by off-axis detection or a short time window that selects only a few bright pulses and favors detection with our SP algorithm. In other cases, the intermittency appears to be intrinsic to the source. No transients were found with DMs large enough to require that they originate from sources outside our Galaxy. Accounting for the on-axis gain of the ALFA system, as well as the low gain but large solid-angle coverage of far-out sidelobes, we use the results of the survey so far to place limits on the amplitudes and event rates of transients of arbitrary origin.« less

  15. Fermi GBM Observations of LIGO Gravitational-Wave Event Gw150914

    NASA Technical Reports Server (NTRS)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Zhang, B.-B.; Camp, J.; Christensen, N.; Hui, C. M.; Jenke, P.; hide

    2016-01-01

    With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9(sigma)). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(sup +1.5, sub -1.0) x 10(exp 49) erg/s. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs.

  16. Preliminary report on the CTS transient event counter performance through the 1976 spring eclipse season

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Levell, R. R.; Klinect, V. W.

    1976-01-01

    The transient event counter (TEC), senses and counts transients having a voltage rise of greater than five volts in three separate wire harnesses: the attitude control harness, the solar array instrumentation harness and the solar array power harness. The operational characteristics of TEC are defined and the preliminary results obtained through the first 90 days of operation including the spring 1976 eclipse season are presented. The results show that the Communications Technology Satellite was charged to the point where discharges occurred. The discharge induced transients did not cause any anomalous events in spacecraft operation. The data indicate that discharges can occur at any time during the day without preference to any local time quadrant. The number of discharges occurring in the one second sample interval are greater than anticipated. The compilation and review of the data is continuing.

  17. Characterization of the Martian magnetic topology response to extreme solar transient events with MGS data

    NASA Astrophysics Data System (ADS)

    Xu, S.; Curry, S.; Mitchell, D. L.; Luhmann, J. G.; Lillis, R. J.; Dong, C.

    2017-12-01

    Characterizing how the solar cycle affects the physics of the Mars-solar wind interaction can improve our understanding of Mars' atmospheric evolution and the plasma environment at Mars. In particular, solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) significantly change the solar-wind interaction, including the magnetic topology and ion acceleration. However, both the Mars Express and Mars Atmosphere Volatile EvolutioN (MAVEN) missions have encountered relatively few extreme solar transient events due to the recent low solar activity (2004-2017). In contrast, Mars Global Surveyor (MGS) was operating during a relatively active solar maximum (1999-2003). Based on new results from MAVEN, this study reanalyzes MGS data to better understand how the Martian plasma environment responds to extreme solar events. In particular, we aim to investigate how the magnetic topology during these extreme events differs from the topology during quiet times. We conduct orbit comparisons of the magnetic topology inferred from MGS electron pitch angle distributions during quiet periods and extreme events to determine how the open and closed field patterns respond to extreme events.

  18. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults

    PubMed Central

    Toms, Laurence; McQuay, Henry J; Derry, Sheena; Moore, R Andrew

    2014-01-01

    Background This is an updated version of the original Cochrane review published in Issue 1, 2004 - this original review had been split from a previous title on ‘Single dose paracetamol (acetaminophen) with and without codeine for postoperative pain’. The last version of this review concluded that paracetamol is an effective analgesic for postoperative pain, but additional trials have since been published. This review sought to evaluate the efficacy and safety of paracetamol using current data, and to compare the findings with other analgesics evaluated in the same way. Objectives To assess the efficacy of single dose oral paracetamol for the treatment of acute postoperative pain. Search methods We searched The Cochrane Library, MEDLINE, EMBASE, the Oxford Pain Relief Database and reference lists of articles to update an existing version of the review in July 2008. Selection criteria Randomised, double-blind, placebo-controlled clinical trials of paracetamol for acute postoperative pain in adults. Data collection and analysis Two review authors independently assessed trial quality and extracted data. Area under the “pain relief versus time” curve was used to derive the proportion of participants with paracetamol or placebo experiencing at least 50% pain relief over four to six hours, using validated equations. Number-needed-to-treat-to-benefit (NNT) was calculated, with 95% confidence intervals (CI). The proportion of participants using rescue analgesia over a specified time period, and time to use, were sought as measures of duration of analgesia. Information on adverse events and withdrawals was also collected. Main results Fifty-one studies, with 5762 participants, were included: 3277 participants were treated with a single oral dose of paracetamol and 2425 with placebo. About half of participants treated with paracetamol at standard doses achieved at least 50% pain relief over four to six hours, compared with about 20% treated with placebo. NNTs for at least 50% pain relief over four to six hours following a single dose of paracetamol were as follows: 500 mg NNT 3.5 (2.7 to 4.8); 600 to 650 mg NNT 4.6 (3.9 to 5.5); 975 to 1000 mg NNT 3.6 (3.4 to 4.0). There was no dose response. Sensitivity analysis showed no significant effect of trial size or quality on this outcome. About half of participants needed additional analgesia over four to six hours, compared with about 70% with placebo. Five people would need to be treated with 1000 mg paracetamol, the most commonly used dose, to prevent one needing rescue medication over four to six hours, who would have needed it with placebo. Adverse event reporting was inconsistent and often incomplete. Reported adverse events were mainly mild and transient, and occurred at similar rates with 1000 mg paracetamol and placebo. No serious adverse events were reported. Withdrawals due to adverse events were uncommon and occurred in both paracetamol and placebo treatment arms. Authors’ conclusions A single dose of paracetamol provides effective analgesia for about half of patients with acute postoperative pain, for a period of about four hours, and is associated with few, mainly mild, adverse events. PMID:18843665

  19. Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future

    NASA Astrophysics Data System (ADS)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Barnes, Keith

    2016-07-01

    Many branches of science require infrared detectors sensitive to individual photons. Applications range from low background astronomy to high speed imaging. Leonardo in Southampton, UK, has been developing HgCdTe avalanche photodiode (APD) sensors for astronomy in collaboration with European Southern Observatory (ESO) since 2008 and more recently the University of Hawaii. The devices utilise Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates and in combination with a mesa device structure achieve very low dark current and near-ideal MTF. MOVPE provides the ability to grow complex HgCdTe heterostructures and these have proved crucial to suppress breakdown currents and allow high avalanche gain in low background situations. A custom device called Saphira (320x256/24μm) has been developed for wavefront sensors, interferometry and transient event imaging. This device has achieved read noise as low as 0.26 electrons rms and single photon imaging with avalanche gain up to x450. It is used in the ESO Gravity program for adaptive optics and fringe tracking and has been successfully trialled on the 3m NASA IRTF, 8.2m Subaru and 60 inch Mt Palomar for lucky imaging and wavefront sensing. In future the technology offers much shorter observation times for read-noise limited instruments, particularly spectroscopy. The paper will describe the MOVPE APD technology and current performance status.

  20. Critical Current Statistics of a Graphene-Based Josephson Junction Infrared Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Graphene is a promising material for single photon detection due to its broadband absorption and exceptionally low specific heat. We present a photon detector using a graphene sheet as the weak link in a Josephson junction (JJ) to form a threshold detector for single infrared photons. Calculations show that such a device could experience temperature changes of a few hundred percent leading to sub-Hz dark count rates and internal efficiencies approaching unity. We have fabricated the graphene-based JJ (gJJ) detector and measure switching events that are consistent with single photon detection under illumination by an attenuated laser. We study the physical mechanism for these events through the critical current behavior of the gJJ as a function of incident photon flux.

  1. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  2. Transient Hypothyroidism after Radioiodine for Graves' Disease: Challenges in Interpreting Thyroid Function Tests.

    PubMed

    Sheehan, Michael T; Doi, Suhail A R

    2016-03-01

    Graves' disease is the most common cause of hyperthyroidism and is often managed with radioactive iodine (RAI) therapy. With current dosing schemes, the vast majority of patients develop permanent post-RAI hypothyroidism and are placed on life-long levothyroxine therapy. This hypothyroidism typically occurs within the first 3 to 6 months after RAI therapy is administered. Indeed, patients are typically told to expect life-long thyroid hormone replacement therapy to be required within this timeframe and many providers expect this post-RAI hypothyroidism to be complete and permanent. There is, however, a small subset of patients in whom a transient post-RAI hypothyroidism develops which, initially, presents exactly as the typical permanent hypothyroidism. In some cases the transient hypothyroidism leads to a period of euthyroidism of variable duration eventually progressing to permanent hypothyroidism. In others, persistent hyperthyroidism requires a second dose of RAI. Failure to appreciate and recognize the possibility of transient post-RAI hypothyroidism can delay optimal and appropriate treatment of the patient. We herein describe five cases of transient post-RAI hypothyroidism which highlight this unusual sequence of events. Increased awareness of this possible outcome after RAI for Graves' disease will help in the timely management of patients. © 2016 Marshfield Clinic.

  3. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Induced Seismicity in Greeley, CO: The Effects of Pore Pressure on Seismic Wave Character

    NASA Astrophysics Data System (ADS)

    Bogolub, K. R.; Holmes, R.; Sheehan, A. F.; Brown, M. R. M.

    2017-12-01

    Since 2013, a series of injection-induced earthquakes has occurred near Greeley, Colorado including a Mw 3.2 event in June 2014. With induced seismicity on the rise, it is important to understand injection-induced earthquakes to improve mitigation efforts. In this research, we analyzed seismograms from a local seismic network to see if there are any notable differences in seismic waveform as a result of changes in pore pressure from wastewater injection. Catalogued earthquake events from January-June 2017 that were clearly visible on 4 or more stations in the network were used as template events in a subspace detector. Since the template events were constructed using seismograms from a single event, the subspace detector operated similarly to a matched filter and detections had very similar waveforms to the template event. Having these detections ultimately helped us identify similar earthquakes, which gave us better located events for comparison. These detections were then examined and located using a 1D local velocity model. While many of these detections were already catalogued events, we also identified >20 new events by using this detector. Any two events that were matched by the detector, collocated within the error ellipses of both events and at least a month apart temporally were classified as "event pairs". One challenge of this method is that most of the collocated earthquakes occurred in a very narrow time window, which indicates that the events have a tendency to cluster both spatially and temporally. However, we were able to examine an event pair that fit our spatial proximity criteria, and were several months apart (March 3, 2017 and May 8, 2017). We present an examination of propagation velocity and frequency content for these two events specifically to assess if transient changes in pore pressure had any observable influence on these characteristics. Our preliminary results indicate a slight difference in lag time between P wave and S wave arrivals (slightly greater in lag time for March event) and frequency content (slightly higher dominant frequencies for March event). However, more work needs to be done to refine our earthquake locations so we can determine if these observations are caused by a transient change in velocity structure, a difference in location of the two events, or some other mechanism.

  5. Neutrino detection of transient sources with optical follow-up observations

    NASA Astrophysics Data System (ADS)

    Dornic, D.; Ageron, M.; Al Samarai, I.; Basa, S.; Bertin, V.; Brunner, J.; Busto, J.; Escoffier, S.; Schussler, F.; Vallage, B.; Vecchi, M.

    2010-12-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources,such as gamma-ray bursts,core-collapse supernovae,flares of active galactic nuclei. To enhance the sensitivity to these sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. For this purpose the ANTARES Collaboration has implemented a fast on-line muon track reconstruction with a good angular resolution. These characteristics allow to trigger a network of optical telescopes in order to identify the nature of the neutrino sources. An optical follow-up of special events, such as neutrino doublets, coincident in time and direction, or single neutrinos with a very high energy, would not only give access to the nature of their sources but also improve the sensitivity for neutrino detection. The alert system is operational since early 2009, and as of September 2010, 22 alerts have been sent to the TAROT and ROTSE telescopes.

  6. Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching

    PubMed Central

    Nakatani, Hironori; van Leeuwen, Cees

    2013-01-01

    Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG). When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept. PMID:23745106

  7. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the agreement period. This includes technical support for a multi-instrument aircraft campaign, Leonid MAC.

  8. Changes in left ventricular repolarization and ion channel currents following a transient rate increase superimposed on bradycardia in anesthetized dogs.

    PubMed

    Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P

    2000-06-01

    We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).

  9. Modeling single event induced crosstalk in nanometer technologies

    NASA Astrophysics Data System (ADS)

    Boorla, Vijay K.

    Radiation effects become more important in combinational logic circuits with newer technologies. When a high energetic particle strikes at the sensitive region within the combinational logic circuit a voltage pulse called Single Event Transient is created. Recently, researchers reported Single Event Crosstalk because of increasing coupling effects. In this work, the closed form expression for SE crosstalk noise is formulated for the first time. For all calculations, 4-pi model is used in this work. The crosstalk model uses a reduced transfer function between aggressor coupling node and victim node to reduce information loss. Aggressor coupling node waveform is obtained and then applied to transfer function between the coupling node and the victim output to obtain victim noise voltage. This work includes both effect of passive aggressor loading on victim and victim loading on aggressor by considering resistive shielding effect. Noise peak expressions derived in this work show very good results in comparison to HSPICE results. Results show that average error for noise peak is 3.794% while allowing for very fast analysis. Once the SE crosstalk noise is calculated, one can hire mitigation techniques such as driver sizing. A standard DTMOS technique along with sizing is proposed in this work to mitigate SE crosstalk. This combined approach can saves in some areas compared to driver sizing alone. Key Words: Crosstalk Noise, Closed Form Modeling, Standard DTMOS

  10. One-Year Outcomes After Minor Stroke or High-Risk Transient Ischemic Attack: Korean Multicenter Stroke Registry Analysis.

    PubMed

    Park, Hong-Kyun; Kim, Beom Joon; Han, Moon-Ku; Park, Jong-Moo; Kang, Kyusik; Lee, Soo Joo; Kim, Jae Guk; Cha, Jae-Kwan; Kim, Dae-Hyun; Nah, Hyun-Wook; Park, Tai Hwan; Park, Sang-Soon; Lee, Kyung Bok; Lee, Jun; Hong, Keun-Sik; Cho, Yong-Jin; Lee, Byung-Chul; Yu, Kyung-Ho; Oh, Mi-Sun; Kim, Joon-Tae; Choi, Kang-Ho; Kim, Dong-Eog; Ryu, Wi-Sun; Choi, Jay Chol; Johansson, Saga; Lee, Su Jin; Lee, Won Hee; Lee, Ji Sung; Lee, Juneyoung; Bae, Hee-Joon

    2017-11-01

    Patients with minor ischemic stroke or transient ischemic attack are at high risk of recurrent stroke and vascular events, which are potentially disabling or fatal. This study aimed to evaluate contemporary subsequent vascular event risk after minor ischemic stroke or transient ischemic attack in Korea. Patients with minor ischemic stroke or high-risk transient ischemic attack admitted within 7 days of symptom onset were identified from a Korean multicenter stroke registry database. We estimated 3-month and 1-year event rates of the primary outcome (composite of stroke recurrence, myocardial infarction, or all-cause death), stroke recurrence, a major vascular event (composite of stroke recurrence, myocardial infarction, or vascular death), and all-cause death and explored differences in clinical characteristics and event rates according to antithrombotic strategies at discharge. Of 9506 patients enrolled in this study, 93.8% underwent angiographic assessment and 72.7% underwent cardiac evaluations; 25.1% had symptomatic stenosis or occlusion of intracranial arteries. At discharge, 95.2% of patients received antithrombotics (antiplatelet polytherapy, 37.1%; anticoagulation, 15.3%) and 86.2% received statins. The 3-month cumulative event rate was 5.9% for the primary outcome, 4.3% for stroke recurrence, 4.6% for a major vascular event, and 2.0% for all-cause death. Corresponding values at 1 year were 9.3%, 6.1%, 6.7%, and 4.1%, respectively. Patients receiving nonaspirin antithrombotic strategies or no antithrombotic agent had higher baseline risk profiles and at least 1.5× higher event rates for clinical event outcomes than those with aspirin monotherapy. Contemporary secondary stroke prevention strategies based on thorough diagnostic evaluation may contribute to the low subsequent vascular event rates observed in real-world clinical practice in Korea. © 2017 American Heart Association, Inc.

  11. Substorms At Jupiter: Galileo Observations of Transient Reconnection in The Near Tail

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Khurana, K. K.; Kivelson, M. G.; Huddleston, D. E.

    2000-01-01

    The magnetic flux content of the Jovian magnetosphere is set by the internal dynamo, but those magnetic field lines are constantly being loaded by heavy ions at the orbit of lo and dragged inexorably outward by the centrifugal force. Vasyliunas has proposed a steady state reconnecting magnetospheric model that sheds plasma islands of zero net magnetic flux and returns nearly empty flux tubes to the inner magnetosphere. The Galileo observations indicate that beyond 40 Rj the current sheet begins to tear and beyond 50 Rj on the nightside explosively reconnects as the tearing site reaches the low density lobe region above and below the current sheet. Small events occur irregularly but on average about every 4 hours and large events about once a day. The magnetic flux reconnected in such events amounts up to about 70,000 Webers/sec and is sufficient to return the outwardly convected magnetic flux to the inner magnetosphere. Since this process releases plasmoids into the jovian tail, as do terrestrial substorms; since this process involves explosive reconnection across the current sheet on the nightside of the planet, as do terrestrial substorms; and since the process is a key in closing the circulation pattern of the magnetic and plasma flux, as it is in terrestrial substorms; we refer to these events as jovian substorms.

  12. Sexual motivation and anxiety-like behaviors of male rats after exposure to a trauma followed by situational reminders.

    PubMed

    Hawley, Wayne; Grissom, Elin; Keskitalo, Lisa; Hastings, Tyler; Dohanich, Gary

    2011-02-01

    Experiencing a traumatic event can produce long-lasting impairments in affective and social behaviors. In humans, psychopathologies associated with exposure to a single traumatic event often are associated with varying degrees of sexual dysfunction. Similarly, in rats, exposure to a trauma results in long-lasting changes in social behaviors. The current investigation examined if the sexual and affective behaviors of male rats were impacted by exposure to a discrete traumatic event that was followed days later by reminders of the event. The initial trauma combined exposure to a foot shock and predator odor, followed 3 and 7 days later by reminders of the trauma in the absence of either stressor. A day after the final reminder, traumatized rats exhibited decreased sexual motivation indicated by prolonged mount and intromission latencies, although ejaculation latencies and post-ejaculatory intervals remained unchanged. Traumatized rats also exhibited marked increases in anxiety-like behavior in a novel environment as evidenced by longer latencies to begin feeding, decreased movement and ambulation, and fewer entries into the center of an open field. Taken together, the results of the current study suggest that exposure to a single traumatic event, followed by reminders of the event, affected the motivation of male rats to interact with a receptive female and increased their anxiety-like behaviors. Moreover, because posttraumatic stress disorder can arise from exposure to a single traumatic event and is associated with recurrent and intrusive thoughts related to the trauma, the current findings have implications for our understanding of this disorder. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Multiple Component Event-Related Potential (mcERP) Estimation

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.

  14. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  15. Current thinking: return to play and transient quadriplegia.

    PubMed

    Cantu, Robert V; Cantu, Robert C

    2005-02-01

    Athletes that participate in contact and collision sports assume risk of serious injury each time they take the field. For those athletes that have sustained an episode of transient quadriplegia, the decision of whether to return to competition can be a difficult one. Some athletes, realizing how close they may have come to permanent injury, may decide that further participation is not in their best interest. Others may be somewhat undecided, and some may want to return at all costs. As the treating physician, the goal is to identify those athletes who after a single episode of transient quadriplegia are at increased risk for further injury and consequently should discontinue participation in contact sports. Factors that may contribute to that determination include mechanism of injury, prior history of neurologic symptoms or injury, and anatomic features that may predispose to further injury such as disc herniation, fracture, or cervical stenosis.

  16. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Hoffman, William; Sen, Sonat

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtainmore » stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically decrease run times.« less

  17. Solar energetic particle events in different types of solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, S. W.; Vourlidas, A., E-mail: stephen.kahler@kirtland.af.mil

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV protonmore » background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.« less

  18. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.

    PubMed Central

    Neher, E; Steinbach, J H

    1978-01-01

    1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437

  19. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  20. Transient astronomy with the Gaia satellite.

    PubMed

    Hodgkin, Simon T; Wyrzykowski, Łukasz; Blagorodnova, Nadejda; Koposov, Sergey

    2013-06-13

    Gaia is a cornerstone European Space Agency astrometry space mission and a successor to the Hipparcos mission. Gaia will observe the whole sky for 5 years, providing a serendipitous opportunity for the discovery of large numbers of transient and anomalous events, e.g. supernovae, novae and microlensing events, gamma-ray burst afterglows, fallback supernovae, as well as theoretical or unexpected phenomena. In this paper, we discuss our preparations to use Gaia to search for transients at optical wavelengths, and briefly describe the early detection, classification and prompt publication of anomalous sources.

  1. Interplanetary magnetic field orientation for transient events in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Newell, P. T.

    1995-01-01

    It is generally believed that flux transfer events (FTEs) in the outer dayside magneosphere, usually identified by transient (approximately 1 min) bipolar magneitc field perturbations in the direction normal to the nominal magnetopause, occur when the magnetosheath magetic field has a southward component. We compare the results of three methods for determining the magnetosheath magnetic field orientationat the times of previously identified UKS/IRM events: (1) the average magnetosheath magnetic field orientation in the 30-min period adjacent to the nearest magnetopause crossing, (2) the magnetosheath magnetic field orientation observed just outside the magnetopause, and (3) the lagged interplanetary magnetic field (IMF) orientation at the time of the transient events. Whereas the results of method 2 indicate that the events tend to occur for a southward magnetosheath magnetic field, the results of methods 1 and 3 show no such tnedency. The fact that the three methods yield significantly diffeent results emphasizes the need for caution in future studies.

  2. The evolving interaction of low-frequency earthquakes during transient slip.

    PubMed

    Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel

    2016-04-01

    Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.

  3. Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction

    DTIC Science & Technology

    2014-06-01

    20 4.4 Transient Effects During the Jet Event and Time-Accuracy of...35 Figure 27. Transient effects of jet maneuver event for the no initial angular...rate case. ................36 Figure 28. Effect of time step on the coupled solution for the initial low roll rate case: (a) roll rate, (b) roll angle

  4. Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    PubMed Central

    Watanabe, Kentaro; Nagata, Takahiro; Oh, Seungjun; Wakayama, Yutaka; Sekiguchi, Takashi; Volk, János; Nakamura, Yoshiaki

    2016-01-01

    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1–100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics. PMID:26881966

  5. Single-Event Effects in Silicon Carbide Power Devices

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  6. Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

    NASA Astrophysics Data System (ADS)

    Polito, V.; Testa, P.; Allred, J.; De Pontieu, B.; Carlsson, M.; Pereira, T. M. D.; Gošić, Milan; Reale, Fabio

    2018-04-01

    We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff ({E}{{C}}) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s‑1) in the IRIS Si IV lines, which thermal conduction cannot reproduce. The {E}{{C}} threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and {E}{{C}}. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si IV intensity enhancements and flows are observed only for initially low-density loops (<109 cm‑3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg II chromospheric lines can help further constrain the properties of the heating mechanisms.

  7. Microbeam mapping of single event latchups and single event upsets in CMOS SRAMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barak, J.; Adler, E.; Fischer, B.E.

    1998-06-01

    The first simultaneous microbeam mapping of single event upset (SEU) and latchup (SEL) in the CMOS RAM HM65162 is presented. The authors found that the shapes of the sensitive areas depend on V{sub DD}, on the ions being used and on the site on the chip being hit by the ion. In particular, they found SEL sensitive sites close to the main power supply lines between the memory-bit-arrays by detecting the accompanying current surge. All these SELs were also accompanied by bit-flips elsewhere in the memory (which they call indirect SEUs in contrast to the well known SEUs induced inmore » the hit memory cell only). When identical SEL sensitive sites were hit farther away from the supply lines only indirect SEL sensitive sites could be detected. They interpret these events as latent latchups in contrast to the classical ones detected by their induced current surge. These latent SELs were probably decoupled from the main supply lines by the high resistivity of the local supply lines.« less

  8. TRANSIENT GALACTIC COSMIC-RAY MODULATION DURING SOLAR CYCLE 24: A COMPARATIVE STUDY OF TWO PROMINENT FORBUSH DECREASE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.-L.; Zhang, H., E-mail: zhaolingling@ucas.edu.cn

    Forbush decrease (FD) events are of great interest for transient galactic cosmic-ray (GCR) modulation study. In this study, we perform comparative analysis of two prominent Forbush events during cycle 24, occurring on 2012 March 8 (Event 1) and 2015 June 22 (Event 2), utilizing the measurements from the worldwide neutron monitor (NM) network. Despite their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Eventmore » 2 over the studied energy range. Additionally, while the evolutions of the energy spectra during the two FD events exhibit similar variation patterns, the spectrum of Event 2 is significantly harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated interplanetary coronal mass ejection (ICME) disturbance with large radial extent, probably formed by the merging of multiple shocks and transient flows, and which delivered a glancing blow to Earth. Conversely, Event 2 is accompanied by a relatively simple halo ICME with small radial extent that hit Earth more head-on.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less

  10. Central action of dendrotoxin: selective reduction of a transient K conductance in hippocampus and binding to localized acceptors.

    PubMed

    Halliwell, J V; Othman, I B; Pelchen-Matthews, A; Dolly, J O

    1986-01-01

    Dendrotoxin, a small single-chain protein from the venom of Dendroaspis angusticeps, is highly toxic following intracerebroventricular injection into rats. Voltage-clamp analysis of CA1 neurons in hippocampal slices, treated with tetrodotoxin, revealed that nanomolar concentrations of dendrotoxin reduce selectively a transient, voltage-dependent K conductance. Epileptiform activity known to be induced by dendrotoxin can be attributed to such an action. Membrane currents not affected directly by the toxin include (i) Ca-activated K conductance; (ii) noninactivating voltage-dependent K conductance; (iii) inactivating and noninactivating Ca conductances; (iv) persistent inward (anomalous) rectifier current. Persistence of the effects of the toxin when Cd was included to suppress spontaneous transmitter release indicates a direct action on the neuronal membrane. Using biologically active, 125I-labeled dendrotoxin, protein acceptor sites of high affinity were detected on cerebrocortical synaptosomal membranes and sections of rat brain. In hippocampus, toxin binding was shown autoradiographically to reside in synapse-rich and white matter regions, with lower levels in cell body layers. This acceptor is implicated in the action of toxin because its affinities for dendrotoxin congeners are proportional to their central neurotoxicities and potencies in reducing the transient, voltage-dependent K conductance.

  11. Characterization of an electrothermal plasma source for fusion transient simulations

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  12. Two peculiar fast transients in a strongly lensed host galaxy

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.

    2018-04-01

    A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.

  13. The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex.

    PubMed

    Szymanski, Francois D; Rabinowitz, Neil C; Magri, Cesare; Panzeri, Stefano; Schnupp, Jan W H

    2011-11-02

    Recent studies have shown that the phase of low-frequency local field potentials (LFPs) in sensory cortices carries a significant amount of information about complex naturalistic stimuli, yet the laminar circuit mechanisms and the aspects of stimulus dynamics responsible for generating this phase information remain essentially unknown. Here we investigated these issues by means of an information theoretic analysis of LFPs and current source densities (CSDs) recorded with laminar multi-electrode arrays in the primary auditory area of anesthetized rats during complex acoustic stimulation (music and broadband 1/f stimuli). We found that most LFP phase information originated from discrete "CSD events" consisting of granular-superficial layer dipoles of short duration and large amplitude, which we hypothesize to be triggered by transient thalamocortical activation. These CSD events occurred at rates of 2-4 Hz during both stimulation with complex sounds and silence. During stimulation with complex sounds, these events reliably reset the LFP phases at specific times during the stimulation history. These facts suggest that the informativeness of LFP phase in rat auditory cortex is the result of transient, large-amplitude events, of the "evoked" or "driving" type, reflecting strong depolarization in thalamo-recipient layers of cortex. Finally, the CSD events were characterized by a small number of discrete types of infragranular activation. The extent to which infragranular regions were activated was stimulus dependent. These patterns of infragranular activations may reflect a categorical evaluation of stimulus episodes by the local circuit to determine whether to pass on stimulus information through the output layers.

  14. New objects do not capture attention without a sensory transient.

    PubMed

    Hollingworth, Andrew; Simons, Daniel J; Franconeri, Steven L

    2010-07-01

    Attention capture occurs when a stimulus event involuntarily recruits attention. The abrupt appearance of a new object is perhaps the most well-studied attention-capturing event, yet there is debate over the root cause of this capture. Does a new object capture attention because it involves the creation of a new object representation or because its appearance creates a characteristic luminance transient? The present study sought to resolve this question by introducing a new object into a search display, either with or without a unique luminance transient. Contrary to the results of a recent study (Davoli, Suszko, & Abrams, 2007), when the new object's transient was masked by a brief interstimulus interval introduced between the placeholder and search arrays, a new object did not capture attention. Moreover, when a new object's transient was masked, participants could not locate a new object efficiently even when that was their explicit goal. Together, these data suggest that luminance transient signals are necessary for attention capture by new objects.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru

    The radial force balance in a tokamak during fast transient events with a duration much shorter than the resistive time of the vacuum vessel wall is analyzed. The aim of the work is to analytically estimate the resulting integral radial force on the wall. In contrast to the preceding study [Plasma Phys. Rep. 41, 952 (2015)], where a similar problem was considered for thermal quench, simultaneous changes in the profiles and values of the pressure and plasma current are allowed here. Thereby, the current quench and various methods of disruption mitigation used in the existing tokamaks and considered for futuremore » applications are also covered. General formulas for the force at an arbitrary sequence or combination of events are derived, and estimates for the standard tokamak model are made. The earlier results and conclusions are confirmed, and it is shown that, in the disruption mitigation scenarios accepted for ITER, the radial forces can be as high as in uncontrolled disruptions.« less

  16. Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew

    2018-01-01

    Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.

  17. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study.

    PubMed

    Benussi, Alberto; Koch, Giacomo; Cotelli, Maria; Padovani, Alessandro; Borroni, Barbara

    2015-10-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebellar circuits using transcranial direct current stimulation. The present study investigated whether a single session of cerebellar anodal transcranial direct current stimulation could improve symptoms in patients with ataxia. Nineteen patients with ataxia underwent a clinical and functional evaluation pre- and post-double-blind, randomized, sham, or anodal transcranial direct current stimulation. There was a significant interaction between treatment and time on the Scale for the Assessment and Rating of Ataxia, on the International Cooperative Ataxia Rating Scale, on the 9-Hole Peg Test, and on the 8-Meter Walking Time (P < 0.001). At the end of the sessions, all performance scores were significantly different in the sham trial, compared to the intervention trial. A single session of anodal cerebellar transcranial direct current stimulation can transiently improve symptoms in patients with ataxia and might represent a promising tool for future rehabilitative approaches. © 2015 International Parkinson and Movement Disorder Society.

  18. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients.

    PubMed

    LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E

    2003-03-01

    The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.

  19. Transient Optical Sky survey

    NASA Astrophysics Data System (ADS)

    Hadjiyska, Elena Ivanova

    2009-06-01

    Optical transients have been studied in isolated cases, but never mapped into a comprehensive data base in the past. These events vary in duration and signature, yet they are united under the umbrella of time varying observables and represent a significant portion of the dynamical processes in the universe. The Transient Optical Sky Survey (TOSS) System is a dedicated, ground-based system of small optical telescopes, observing nightly at fixed Declination while gathering 90 sec exposures and thus creating a repeated partial map of the sky. Presented here is a brief overview of some of the signatures of transient events and a description of the TOSS system along with the data acquired during the 2008-2009 observing campaign, potentially producing over 100,000 light curves.

  20. A school-based cross-sectional survey of adverse events following co-administration of albendazole and praziquantel for preventive chemotherapy against urogenital schistosomiasis and soil-transmitted helminthiasis in Kwale County, Kenya.

    PubMed

    Njenga, Sammy M; Ng'ang'a, Paul M; Mwanje, Mariam T; Bendera, Fatuma S; Bockarie, Moses J

    2014-01-01

    Soil-transmitted helminths and schistosomiasis are mostly prevalent in developing countries due to poor sanitation and lack of adequate clean water. School-age children tend to be the target of chemotherapy-based control programmes because they carry the heaviest worm and egg burdens. The present study examines adverse events (AEs) experienced following co-administration of albendazole and praziquantel to school-age children in a rural area in Kwale County, Kenya. Children were treated with single doses of albendazole and praziquantel tablets and then interviewed using a questionnaire for post treatment AEs. Overall, 752 children, 47.6% boys, participated in the study. Their median (interquartile range) age was 12.0 (10.0-14.0) years. A total of 190 (25.3%) children reportedly experienced at least one AE. In total, 239 cases of AEs were reported with the most frequent being abdominal pains (46.3%), dizziness (33.2%) and nausea (21.1%). Majority of the reported AEs (80.8%) resolved themselves while 12.1% and 6.3% were countered by, respectively, self-medication and visiting a nearby health facility. More girls (60.5%) than boys (39.5%) reported AEs (P = 0.027). The AEs were mild and transient, and were no worse than those expected following monotherapy. The current study adds to the evidence base that dual administration of albendazole and praziquantel in school-based mass drug administration is safe with only mild adverse events noted.

  1. Combining Gravitational Wave Events with their Electromagnetic Counterparts: A Realistic Joint False-Alarm Rate

    NASA Astrophysics Data System (ADS)

    Ackley, Kendall; Eikenberry, Stephen; Klimenko, Sergey; LIGO Team

    2017-01-01

    We present a false-alarm rate for a joint detection of gravitational wave (GW) events and associated electromagnetic (EM) counterparts for Advanced LIGO and Virgo (LV) observations during the first years of operation. Using simulated GW events and their recostructed probability skymaps, we tile over the error regions using sets of archival wide-field telescope survey images and recover the number of astrophysical transients to be expected during LV-EM followup. With the known GW event injection coordinates we inject artificial electromagnetic (EM) sources at that site based on theoretical and observational models on a one-to-one basis. We calculate the EM false-alarm probability using an unsupervised machine learning algorithm based on shapelet analysis which has shown to be a strong discriminator between astrophysical transients and image artifacts while reducing the set of transients to be manually vetted by five orders of magnitude. We also show the performance of our method in context with other machine-learned transient classification and reduction algorithms, showing comparability without the need for a large set of training data opening the possibility for next-generation telescopes to take advantage of this pipeline for LV-EM followup missions.

  2. Submicrosecond Power-Switching Test Circuit

    NASA Technical Reports Server (NTRS)

    Folk, Eric N.

    2006-01-01

    A circuit that changes an electrical load in a switching time shorter than 0.3 microsecond has been devised. This circuit can be used in testing the regulation characteristics of power-supply circuits . especially switching power-converter circuits that are supposed to be able to provide acceptably high degrees of regulation in response to rapid load transients. The combination of this power-switching circuit and a known passive constant load could be an attractive alternative to a typical commercially available load-bank circuit that can be made to operate in nominal constant-voltage, constant-current, and constant-resistance modes. The switching provided by a typical commercial load-bank circuit in the constant-resistance mode is not fast enough for testing of regulation in response to load transients. Moreover, some test engineers do not trust the test results obtained when using commercial load-bank circuits because the dynamic responses of those circuits are, variously, partly unknown and/or excessively complex. In contrast, the combination of this circuit and a passive constant load offers both rapid switching and known (or at least better known) load dynamics. The power-switching circuit (see figure) includes a signal-input section, a wide-hysteresis Schmitt trigger that prevents false triggering in the event of switch-contact bounce, a dual-bipolar-transistor power stage that drives the gate of a metal oxide semiconductor field-effect transistor (MOSFET), and the MOSFET, which is the output device that performs the switching of the load. The MOSFET in the specific version of the circuit shown in the figure is rated to stand off a potential of 100 V in the "off" state and to pass a current of 20 A in the "on" state. The switching time of this circuit (the characteristic time of rise or fall of the potential at the drain of the MOSFET) is .300 ns. The circuit can accept any of three control inputs . which one depending on the test that one seeks to perform: a repetitive waveform from a signal generator, momentary closure of a push-button switch, or closure or opening of a manually operated on/off switch. In the case of a signal generator, one can adjust the frequency and duty cycle as needed to obtain the desired AC power-supply response, which one could display on an oscilloscope. Momentary switch closure could be useful for obtaining (and, if desired, displaying on an oscilloscope set to trigger on an event) the response of a power supply to a single load transient. The on/off switch can be used to switch between load states in which static-load regulation measurements are performed.

  3. Quantifying short-lived events in multistate ionic current measurements.

    PubMed

    Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute

    2014-02-25

    We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.

  4. X-ray Transients in the Advanced LIGO/Virgo Horizon

    NASA Technical Reports Server (NTRS)

    Kanner, Jonah; Baker, John G.; Blackburn, Lindy L.; Camp, Jordan B.; Mooley, Kunal; Mushotzky, Richard F.; Ptak, Andrew Francis

    2013-01-01

    Advanced LIGO and Advanced Virgo will be all-sky monitors for merging compact objects within a few hundred megaparsecs. Finding the electromagnetic counterparts to these events will require an understanding of the transient sky at low redshift (z < 0.1). We performed a systematic search for extragalactic, low redshift, transient events in the XMM-Newton Slew Survey. In a flux limited sample, we found that highly variable objects comprised 10% of the sample, and that of these, 10% were spatially coincident with cataloged optical galaxies. This led to 4 × 10(exp -4) transients per square degree above a flux threshold of 3×10(exp -12) erg/sq cm/s (0.2-2 keV) which might be confused with LIGO/Virgo counterparts. This represents the first extragalactic measurement of the soft X-ray transient rate within the Advanced LIGO/Virgo horizon. Our search revealed six objects that were spatially coincident with previously cataloged galaxies, lacked evidence for optical active galactic nuclei, displayed high luminosities approx. 10(exp 43) erg/s, and varied in flux by more than a factor of 10 when compared with the ROSAT All-Sky Survey. At least four of these displayed properties consistent with previously observed tidal disruption events.

  5. Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Komossa, S.; Zhang, C.; Feng, H.; Ling, Z.-X.; Zhao, D. H.; Zhang, S.-N.; Osborne, J. P.; O'Brien, P.; Willingale, R.; Lapington, J.

    2016-02-01

    Stars are tidally disrupted and accreted when they approach massive black holes (MBHs) closely, producing a flare of electromagnetic radiation. The majority of the (approximately two dozen) tidal disruption events (TDEs) identified so far have been discovered by their luminous, transient X-ray emission. Once TDEs are detected in much larger numbers, in future dedicated transient surveys, a wealth of new applications will become possible. Here, we present the proposed Einstein Probe mission, which is a dedicated time-domain soft X-ray all-sky monitor aiming at detecting X-ray transients including TDEs in large numbers. The mission consists of a wide-field micro-pore Lobster-eye imager (60° × 60°), and is designed to carry out an all-sky transient survey at energies of 0.5-4 keV. It will also carry a more sensitive telescope for X-ray follow-ups, and will be capable of issuing public transient alerts rapidly. Einstein Probe is expected to revolutionise the field of TDE research by detecting several tens to hundreds of events per year from the early phase of flares, many with long-term, well sampled lightcurves.

  6. The Brain's Cutting-Room Floor: Segmentation of Narrative Cinema

    PubMed Central

    Zacks, Jeffrey M.; Speer, Nicole K.; Swallow, Khena M.; Maley, Corey J.

    2010-01-01

    Observers segment ongoing activity into meaningful events. Segmentation is a core component of perception that helps determine memory and guide planning. The current study tested the hypotheses that event segmentation is an automatic component of the perception of extended naturalistic activity, and that the identification of event boundaries in such activities results in part from processing changes in the perceived situation. Observers may identify boundaries between events as a result of processing changes in the observed situation. To test this hypothesis and study this potential mechanism, we measured brain activity while participants viewed an extended narrative film. Large transient responses were observed when the activity was segmented, and these responses were mediated by changes in the observed activity, including characters and their interactions, interactions with objects, spatial location, goals, and causes. These results support accounts that propose event segmentation is automatic and depends on processing meaningful changes in the perceived situation; they are the first to show such effects for extended naturalistic human activity. PMID:20953234

  7. Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Lavier, L. L.; Wallace, L.

    2016-12-01

    Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.

  8. Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment.

    PubMed

    Goiffon, V; Girard, S; Chabane, A; Paillet, P; Magnan, P; Cervantes, P; Martin-Gonthier, P; Baggio, J; Estribeau, M; Bourgade, J-L; Darbon, S; Rousseau, A; Glebov, V Yu; Pien, G; Sangster, T C

    2012-08-27

    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.

  9. Verification of 2A peptide cleavage.

    PubMed

    Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A

    2012-02-01

    The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. The easiest and most effective way to assess 2A cleavage is to perform transient transfection of 293T cells (human embryonic kidney cells) followed by western blot analysis, as described in this protocol. 293T cells are easy to grow and can be efficiently transfected with a variety of vectors. Cleavage can be assessed by detection with antibodies against the target proteins or anti-2A serum.

  10. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  11. The GMRT High Resolution Southern Sky Survey for Pulsars and Transients. I. Survey Description and Initial Discoveries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.

    2016-02-01

    We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (I.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.

  12. Estimating Transient Water Storage from Hurricane Harvey Using GPS Observations of Vertical Land Motion

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Materna, K.; Burgmann, R.; Fu, Y.; Bekaert, D. P.; Moore, A. W.; Adhikari, S.

    2017-12-01

    The Global Positioning System (GPS) measures elastic ground motions due to variations in terrestrial water mass. Such measurements have been used to successfully study variations of hydrological loading over monthly-to-yearly timescales; e.g., seasonal changes in water storage in California (Argus et al., 2014), 3-year drought of Western US (Borsa et al., 2014) and monthly water storage change in the Pacific Northwest (Fu et al., 2015). However, inferring water storage variations from single loading events over daily-to-weekly timescales presents a major challenge, due to the relatively higher level of noise and systematic errors, such as common mode errors (CME). This makes geodetic investigations of transient hydrologic events, such as major hurricanes, particularly difficult. By using daily vertical GPS timeseries we resolve the spatial and temporal evolution of water loading from Hurricane Harvey across the Gulf coast by applying multiple network correction methods, which helps to isolate the hydrological loading signal. Using 340 GPS stations distributed across the southern US, we mitigate for the effects of spatially correlated CME by firstly removing vertical contributions from atmospheric and non-ocean tidal loading, and secondly correcting the residual positions for changes in translation, rotation and scaling using a Helmert transformation. Our results show a maximum subsidence of 1.8 cm occurring around Houston, and a clear migration of land subsidence from Corpus Christi to western Louisiana over a 7-day period, consistent with the movement of Harvey itself. We also present preliminary results using the Network Inversion Filter (Bekaert et al., 2016), in which we use a Kalman filter approach to describe the time-varying water mass in a stochastic sense. Although our results are preliminary, we find removal of systematic sources of noise can help reveal hydrological loading signals due to extreme, transient events, that would typically go missed by other spatially and temporally coarser methods (e.g., GRACE), providing valuable constraints on large and sudden changes to the hydrosphere.

  13. Characterization of individual polynucleotide molecules using a membrane channel

    NASA Technical Reports Server (NTRS)

    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W.

    1996-01-01

    We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.

  14. Evolution of convection vortices associated with sudden impulses observed by SuperDARN

    NASA Astrophysics Data System (ADS)

    Hori, T.; Shinbori, A.; Nishitani, N.; Fujita, S.

    2014-12-01

    Spatial evolution of transient ionospheric convection induced by sudden impulses (SIs) recorded by ground magnetometers is studied statistically by using SuperDARN (SD) data. An advantage of using SD data instead of ground magnetic fields is that ionospheric flows measured by the radars are not virtually biased by the spatially-varying ionospheric conductance or the magnetospheric currents. First we surveyed the Sym-H index for Jan., 2007 to Dec., 2012 to identify SI events with a peak amplitude |dSym-H| greater than 10 nT. Next we searched all SD data over the northern hemisphere during the SI events for ionospheric backscatters which give us the light-of-sight velocity of horizontal ionospheric flows. For each SI event, the collected ionospheric flow data were sorted into the four periods: the pre-SI period, the pre-Main Impulse (MI), middle-MI, and post-MI periods. In the present study, we examine the differences in flow velocity between the pre-SI period and the three MI periods to clarify how ionospheric flows change in association with SIs. As a result, the ionospheric flow shifts eastward on the dusk side and westward on the dawn side at the higher latitudes during positive SIs (SI+), while it shows a roughly westward/eastward shift on the dusk/dawn side, respectively, during negative SIs (SI-). These polarities of flow shifts are basically consistent with the higher latitude portions of the DP current for the MI phase as shown by Araki [1994] and Araki and Nagano [1988]. In terms of temporal evolution, the SI-induced transient flows remain slightly longer for SI- than for SI+. These findings suggest that the compression and expansion of the magnetosphere affect in different manners the magnetosphere-ionosphere coupled convection system.

  15. Neural differentiation of caudal cell mass (secondary neurulation) in chick embryos: Hamburger and Hamilton Stages 16-45.

    PubMed

    Yang, Hee-Jin; Wang, Kyu-Chang; Chi, Je G; Lee, Myung-Sook; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu

    2003-04-14

    In an attempt to understand the events in the secondary neurulation in embryonic stage, we investigated morphological changes in the tail bud of normal developing chick embryos. Hamburger and Hamilton stage 16-45 embryos were harvested and processed for light microscopic studies. The secondary neural tube is formed by aggregation of the caudal cell mass. Cells are arranged into a cord-like mass (medullary cord), which is continuous with the primary neural tube. Multiple small cavities develop in the medullary cord, and these cavities coalesce into one single lumen. The process of coalescence is completed by stage 35, and the whole neural tube is transformed into one tube with a single continuous lumen. At this stage, the terminal portion of the neural tube is bulged dorsally. Thereafter, the caudal portion of the neural tube regresses, and the proximal portion develops into normal spinal cord. Transient occlusion of the central canal was observed at stage 40 in one sample. The sequence of events elucidated in this study can be used as base-line data for experiments concerning congenital malformations involving secondary neurulation.

  16. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  17. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2008-04-01

    We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.

  18. A Survey of Coronal Dimmings and EIT Wave Transients

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.

    2003-01-01

    We present the results of a comprehensive catalog of EIT wave transients and coronal dimmings. We will compiled a set of more than 170 events, and we present strong evidence for the association of the co-development of coronal dimmings and EIT waves. Both limb and disk events are included in this study. We also include the speeds, locations, and associated flare timing in this study.

  19. Status Of The Swift Burst Alert Telescope Hard X-ray Transient Monitor

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J.; Fenimore, E.; Gehrels, N.; Markwardt, C. B.; Palmer, D.; Sakamoto, T.; Skinner, G. K.; Stamatikos, M.; Tueller, J.

    2010-01-01

    The Swift Burst Alert Telescope hard X-ray transient monitor has been operating since October 1, 2006. More than 700 sources are tracked on a daily basis and light curves are produced and made available to the public on two time scales: a single Swift pointing (approximately 20 minutes) and the weighted average for each day. Of the monitored sources, approximately 33 are detected daily and another 100 have had one or more outburst during the Swift mission. The monitor is also sensitive to the detection of previously undiscovered sources and we have reported the discovery of four galactic sources and one source in the Large Magellanic Cloud. Follow-up target of opportunity observations with Swift and the Rossi X-Ray Timing Explorer have revealed that three of these new sources are pulsars and two are black hole candidates. In addition, the monitor has led to the announcement of significant outbursts from 24 different galactic and extra-galactic sources, many of which have had follow-up Swift XRT, UVOT and ground based multi-wavelength observations. The transient monitor web pages currently receive an average of 21 visits per day. We will report on the most important results from the transient monitor and also on detection and exposure statistics and outline recent and planned improvements to the monitor. The transient monitor web page is http://swift.gsfc.nasa.gov/docs/swift/results/transients/.

  20. Blind tests of methods for InSight Mars mission: Open scientific challenge

    NASA Astrophysics Data System (ADS)

    Clinton, John; Ceylan, Savas; Giardini, Domenico; Khan, Amir; van Driel, Martin; Böse, Maren; Euchner, Fabian; Garcia, Raphael F.; Drilleau, Mélanie; Lognonné, Philippe; Panning, Mark; Banerdt, Bruce

    2017-04-01

    The Marsquake Service (MQS) will be the ground segment service within the InSight mission to Mars, which will deploy a single seismic station on Elysium Planitia in November 2018. The main tasks of the MQS are the identification and characterisation of seismicity, and managing the Martian seismic event catalogue. In advance of the mission, we have developed a series of single station event location methods that rely on a priori 1D and 3D structural models. In coordination with the Mars Structural Service, we expect to use iterative inversion techniques to revise these structural models and event locations. In order to seek methodological advancements and test our current approaches, we have designed a blind test case using Martian synthetics combined with realistic noise models for the Martian surface. We invite all scientific parties that are interested in single station approaches and in exploring the Martian time-series to participate and contribute to our blind test. We anticipate the test will can improve currently developed location and structural inversion techniques, and also allow us explore new single station techniques for moment tensor and magnitude determination. The waveforms for our test case are computed employing AxiSEM and Instaseis for a randomly selected 1D background model and event catalogue that is statistically consistent with our current expectation of Martian seismicity. Realistic seismic surface noise is superimposed to generate a continuous time-series spanning 6 months. The event catalog includes impacts as well as Martian quakes. The temporal distribution of the seismicity in the timeseries, as well as the true structural model, are not be known to any participating parties including MQS till the end of competition. We provide our internal tools such as event location codes, suite of background models, seismic phase travel times, in order to support researchers who are willing to use/improve our current methods. Following the deadline of our blind test in late 2017, we plan to combine all outcomes in an article with all participants as co-authors.

  1. Nonlinear surge motions of a ship in bi-chromatic following waves

    NASA Astrophysics Data System (ADS)

    Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis

    2018-03-01

    Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with a perturbed pendulum with bias.

  2. Quasi-2D Unsteady Flow Procedure for Real Fluids

    DTIC Science & Technology

    2006-05-17

    Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the Churchill correlation7 was used to determine single...methods is discussed to aid in selection for specific applications. Results for the transient flows of gaseous nitrogen and water in a simple pipe ...gaseous nitrogen and water in a simple pipe network are presented to demonstrate the capability of the current techniques and the unsteady flow

  3. Aspirin Versus Aspirin Plus Clopidogrel as Antithrombotic Treatment Following Transcatheter Aortic Valve Replacement With a Balloon-Expandable Valve: The ARTE (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation) Randomized Clinical Trial.

    PubMed

    Rodés-Cabau, Josep; Masson, Jean-Bernard; Welsh, Robert C; Garcia Del Blanco, Bruno; Pelletier, Marc; Webb, John G; Al-Qoofi, Faisal; Généreux, Philippe; Maluenda, Gabriel; Thoenes, Martin; Paradis, Jean-Michel; Chamandi, Chekrallah; Serra, Vicenç; Dumont, Eric; Côté, Mélanie

    2017-07-10

    The aim of this study was to compare aspirin plus clopidogrel with aspirin alone as antithrombotic treatment following transcatheter aortic valve replacement (TAVR) for the prevention of ischemic events, bleeding events, and death. Few data exist on the optimal antithrombotic therapy following TAVR. This was a randomized controlled trial comparing aspirin (80 to 100 mg/day) plus clopidogrel (75 mg/day) (dual antiplatelet therapy [DAPT]) versus aspirin alone (single-antiplatelet therapy [SAPT]) in patients undergoing TAVR with a balloon-expandable valve. The primary endpoint was the occurrence of death, myocardial infarction (MI), stroke or transient ischemic attack, or major or life-threatening bleeding (according to Valve Academic Research Consortium 2 definitions) within the 3 months following the procedure. The trial was prematurely stopped after the inclusion of 74% of the planned study population. A total of 222 patients were included, 111 allocated to DAPT and 111 to SAPT. The composite of death, MI, stroke or transient ischemic attack, or major or life-threatening bleeding tended to occur more frequently in the DAPT group (15.3% vs. 7.2%, p = 0.065). There were no differences between groups in the occurrence of death (DAPT, 6.3%; SAPT, 3.6%; p = 0.37), MI (DAPT, 3.6%; SAT, 0.9%; p = 0.18), or stroke or transient ischemic attack (DAPT, 2.7%; SAPT, 0.9%; p = 0.31) at 3 months. DAPT was associated with a higher rate of major or life-threatening bleeding events (10.8% vs. 3.6% in the SAPT group, p = 0.038). There were no differences between groups in valve hemodynamic status post-TAVR. This small trial showed that SAPT (vs. DAPT) tended to reduce the occurrence of major adverse events following TAVR. SAPT reduced the risk for major or life-threatening events while not increasing the risk for MI or stroke. Larger studies are needed to confirm these results. (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation: The ARTE Trial [ARTE], NCT01559298; Aspirin Versus Aspirin+Clopidogrel as Antithrombotic Treatment Following TAVI [ARTE], NCT02640794). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes

    NASA Astrophysics Data System (ADS)

    Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing

    2018-04-01

    Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

  5. Stellar Death in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Holoien, Thomas Warren-Son

    The night sky is replete with transient and variable events that help shape our universe. The violent, explosive deaths of stars represent some of the most energetic of these events, as a single star is able to outshine billions during its final moments. Aside from imparting significant energy into their host environments, stellar deaths are also responsible for seeding heavy elements into the universe, regulating star formation in their host galaxies, and affecting the evolution of supermassive black holes at the centers of their host galaxies. The large amount of energy output during these events allows them to be seen from billions of lightyears away, making them useful observational probes of physical processes important to many fields of astronomy. In this dissertation I present a series of observational studies of two classes of transients associated with the deaths of stars in the nearby universe: tidal disruption events (TDEs) and supernovae (SNe). Discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN), the objects I discuss were all bright and nearby, and were subject to extensive follow-up observational campaigns. In the first three studies, I present observational data and theoretical models of ASASSN-14ae, ASASSN-14li, and ASASSN-15oi, three TDEs discovered by ASAS-SN and three of the most well-studied TDEs ever discovered. Next I present the discovery of ASASSN-13co, an SN that does not conform to the traditional model of Type II SNe. Finally, I discuss the full sample of bright SNe discovered from 2014 May 1 through 2016 December 31, which is significantly less biased than previous nearby SN samples due to the ASAS-SN survey approach, and perform statistical analyses on this population that will be used for future studies of nearby SNe and their hosts.

  6. Field-aligned currents associated with multiple arc systems

    NASA Astrophysics Data System (ADS)

    Wu, J.; Knudsen, D. J.; Gillies, D. M.; Donovan, E.; Burchill, J. K.

    2016-12-01

    It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail; this information can be used as a test of models for quasi-static arc formation. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 12 events for type 1 and 17 events for type 2, we find that (1) Type 1 events are mainly located between 22-23MLT. Type 2 events are mainly located around midnight. (2) The typical size of upward and downward FAC in type 2 events are comparable, while upward FAC in type 1 events are larger than downward FAC. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) There is no significant difference between the characteristic widths of multiple arcs and single arcs.

  7. Rapid optical follow-up observations of SGR events with ROTSE-I

    NASA Astrophysics Data System (ADS)

    Balsano, R.; Akerlof, C.; Barthelmy, S.; Bloch, J.; Butterworth, P.; Casperson, D.; Cline, T.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Priedhorsky, W.; Seldomridge, N.; Szymanski, J.; Wren, J.

    2000-09-01

    The primary mission of the Robotic Optical Transient Search Experiment (ROTSE) is to search for contemporaneous optical emission from GRBs. Among the triggers ROTSE receives via the GRB Coordinates Network (GCN), there are a number from Soft-Gamma Repeater (SGR) events. Since beginning operations in March 1998, ROTSE-I has triggered on 16 observable SGR events. Ten of these events had useful data, eight events from SGR 1900+14 and two events from SGR 1806-20. The error regions for these SGRs are a small fraction of the ROTSE 16°×16° field of view and have been searched for new or variable objects. Limits on optical transient counterparts are in the range mROTSE~12.5-15.5 during the period 10 seconds to 1 hour after the observed SGR events. .

  8. Is the long-term prognosis of transient ischemic attack or minor ischemic stroke affected by the occurrence of nonfocal symptoms?

    PubMed

    Compter, Annette; van der Worp, H Bart; van Gijn, Jan; Kappelle, L Jaap; Koudstaal, Peter J; Algra, Ale

    2014-05-01

    In patients with a transient ischemic attack or ischemic stroke, nonfocal neurological symptoms, such as confusion and nonrotatory dizziness, may be associated with a higher risk of vascular events. We assessed the relationship between nonfocal symptoms and the long-term risk of vascular events or death in patients with a transient ischemic attack or minor ischemic stroke. We related initial symptoms with outcome events in 2409 patients with a transient ischemic attack (n=723) or minor ischemic stroke (n=1686), included in the Life Long After Cerebral ischemia cohort. All patients underwent a standardized interview on the occurrence of focal and nonfocal neurological symptoms during the qualifying event. The primary outcome was the composite of any stroke, myocardial infarction, or vascular death. Secondary outcomes were all-cause death, vascular death, cardiac death, myocardial infarction, and stroke. Hazard ratios were calculated with Cox regression. Focal symptoms were accompanied by nonfocal symptoms in 739 (31%) patients. During a mean follow-up of 10.1 years, the primary outcome occurred in 1313 (55%) patients. There was no difference in the risk of the primary outcome between patients with both focal and nonfocal symptoms and patients with focal symptoms alone (adjusted hazard ratio, 0.97; 95% confidence interval, 0.86-1.09; P=0.60). The risk of each of the secondary outcomes was also similar in both groups. About one third of the patients with a transient ischemic attack or minor ischemic stroke has both focal and nonfocal neurological symptoms. Nonfocal symptoms are not associated with an increased long-term risk of vascular events or death. This trial was not registered because enrollment began before July 1, 2005.

  9. Transient Events in Archival Very Large Array Observations of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Chatterjee, Shami; Wharton, Robert; Cordes, James; Lazio, T. Joseph W.; Kaplan, David L.; Bower, Geoffrey C.; Croft, Steve

    2016-12-01

    The Galactic center has some of the highest stellar densities in the Galaxy and a range of interstellar scattering properties, which may aid in the detection of new radio-selected transient events. Here, we describe a search for radio transients in the Galactic center, using over 200 hr of archival data from the Very Large Array at 5 and 8.4 GHz. Every observation of Sgr A* from 1985 to 2005 has been searched using an automated processing and detection pipeline sensitive to transients with timescales between 30 s and 5 minutes with a typical detection threshold of ˜100 mJy. Eight possible candidates pass tests to filter false-positives from radio-frequency interference, calibration errors, and imaging artifacts. Two events are identified as promising candidates based on the smoothness of their light curves. Despite the high quality of their light curves, these detections remain suspect due to evidence of incomplete subtraction of the complex structure in the Galactic center, and apparent contingency of one detection on reduction routines. Events of this intensity (˜100 mJy) and duration (˜100 s) are not obviously associated with known astrophysical sources, and no counterparts are found in data at other wavelengths. We consider potential sources, including Galactic center pulsars, dwarf stars, sources like GCRT J1745-3009, and bursts from X-ray binaries. None can fully explain the observed transients, suggesting either a new astrophysical source or a subtle imaging artifact. More sensitive multiwavelength studies are necessary to characterize these events, which, if real, occur with a rate of {14}-12+32 {{hr}}-1 {\\deg }-2 in the Galactic center.

  10. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putrik, A. B., E-mail: putrik@triniti.ru; Klimov, N. S.; Gasparyan, Yu. M., E-mail: yura@plasma.mephi.ru

    2015-12-15

    Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m{sup 2} with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition ratemore » made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 10{sup 19} at/(cm{sup 2} s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.« less

  11. Patent Foramen Ovale: Association between the Degree of Shunt by Contrast Transesophageal Echocardiography and the Risk of Future Ischemic Neurologic Events

    NASA Technical Reports Server (NTRS)

    Stone, David A.; Godard, Joel; Godard, Joel; Corretti, mary C.; Kittner, Steven J.; Sample, Cindy; Price, Thomas R.; Plotnick, Gary D.

    1996-01-01

    This study investigated whether there is an association between the degree of interatrial shunting across a patent foramen ovale, as determined by saline contrast transesophageal echocardiography, and the risk of subsequent systemic embolic events, including stroke. Thirty-four patients found to have patent foramen ovale during transesophageal echocardiography were divided into two groups on the basis of the maximum number of microbubbles in the left heart in any single frame after intravenous saline contrast injection: group 1 (n = 16) with a "large" degree of shunt (220 microbubbles) and group 2 (n = 18) with a "small" degree of shunt (23 but <20 microbubbles). Patients were followed up over a mean period of 21 months for subsequent systemic embolic events, including transient ischemic attack and stroke. Five (31%) of the patients with large shunts had subsequent ischemic neurologic events, whereas none of the patients with small shunts had embolic events (p= 0.03). These events occurred in spite of antiplatelet or anticoagulant therapy. We conclude that patients with a large degree of shunt across a patent foramen ovale, as determined by contrast transesophageal echocardiography, are at a significantly higher risk for subsequent adverse neurologic events compared with patients with a small degree of shunt.

  12. Tidal Disruption Events in Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Gezari, Suvi

    2018-01-01

    The Pan-STARRS1 (PS1) Medium Deep Survey made an important contribution to the study of tidal disruption events (TDEs) by discovering TDEs on the rise to peak and enabling prompt spectroscopic follow-up observations. The two PS1 TDEs, PS1-10jh and PS1-11af, were the first TDEs to have detailed light curves and transient broad line features in their spectra, both of which could be used to constrain the physical parameters of the events. I will describe how cotemporal NUV observations from the GALEX Time Domain Survey were critical in the identification of these relatively rare events as bonifide TDEs among the PS1 transient alert stream. I will also show how we can use the PS1+GALEX data set as a training set to prepare for culling TDEs from the deluge of transients to be produced by the next generation of optical time domain surveys, in order that they may be used as effective probes of supermassive black hole demographics and accretion physics.

  13. Revealing the cluster of slow transients behind a large slow slip event.

    PubMed

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  14. Experimental Investigation of Bearing Slip in a Wind Turbine Gearbox During a Transient Grid Loss Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helsen, Jan; Guo, Yi; Keller, Jonathan

    This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used tomore » characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.« less

  15. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  16. Rapid All-Sky Transient Discovery and Analysis with Evryscope

    NASA Astrophysics Data System (ADS)

    Corbett, Henry T.; Law, Nicholas; Fors, Octavi; Ratzloff, Jeff; Goeke, Erin; Howard, Ward S.

    2018-01-01

    The Evryscope is an array of 24 small telescopes on a common mount, capable of observing the entire visible sky down to g' ~ 16 with a two-minute cadence. Each exposure covers 8000 square degrees over 691 MPix and requires minimal readout time, providing 97% continuous coverage of the night sky. The system's large field of view and rapid cadence enable exploration of a previously inaccessible parameter space of bright and fast transients, including nearby microlensing events, supernovae, and kilonovae GW counterparts. The first instrument, located at CTIO in Chile, was deployed in mid-2015 and is currently in production creating multi-year light curves with percent-level precision. A second identical system is on track for deployment at Mount Laguna Observatory in California in early 2018. Once operational, the two sites will provide simultaneous two-color photometry over a 4000 square degree overlapping region accessible to both instruments, operating as a combined discovery and follow-up network for transient phenomena on all nearby stars and many nearby galaxies. I will present recent science results from the Evryscope and an overview of our data reduction pipeline.

  17. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.

  18. Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Lee, C. H.

    The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To supportmore » this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.« less

  19. Hunting Elusive SPRITEs with Spitzer

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events were designated eSPecially Red Intermediate-luminosity Transient Events, or SPRITEs.SPRITEs are unusual infrared transients that lie in the luminosity gap between novae and supernovae, and they have no optical counterparts. They all occur in star-forming galaxies.Search for the CauseWhats the physical origin of these phenomena? The authors explore a number of possible sources, including obscured supernovae, stellar mergers with dusty winds, collapse of extreme stars, or even weak shocks in failed supernovae.Spitzer image of M83, one of the closest barred spiral galaxies in the sky. SPIRITS 14ajc was discovered in one of M83s spiral arms. [NASA/JPL-Caltech]In one case, SPIRITS 14ajc, the SPRITEs spectrum shows signs of excited molecular hydrogen lines, which are indicative of a shock. Based on the data, Kasliwal and collaborators propose that the shock might have been driven into a molecular cloud after it was triggered by the decay of a system of massive stars that either passed closely or collided and merged.The other SPRITEs may all have different origins, however, and in general the infrared photometric data isnt sufficient to identify which model fits each transient. Future technology, like spectroscopy with the James Webb Space Telescope, may help us to better understand the origins of these elusive transients, though. And future surveying with projects like SPIRITS will help us to discover more SPRITE-like events, expanding our understanding of the dynamic infrared sky.CitationMansi M. Kasliwal et al 2017 ApJ 839 88. doi:10.3847/1538-4357/aa6978

  20. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-07-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  1. Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Camp, Jordan B.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  2. Swift Follow-Up Observations of Candidate Gravitational-Wave Transient Events

    NASA Technical Reports Server (NTRS)

    Evans, P. A.; Fridriksson, J. K.; Gehrels, N.; Homan, J.; Osborne, J. P.; Siegel, M.; Beardmore, A.; Handbauer, P.; Gelbord, J.; Kennea, J. A.; hide

    2012-01-01

    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.

  3. Swift Follow-up Observations of Candidate Gravitational-wave Transient Events

    NASA Astrophysics Data System (ADS)

    Evans, P. A.; Fridriksson, J. K.; Gehrels, N.; Homan, J.; Osborne, J. P.; Siegel, M.; Beardmore, A.; Handbauer, P.; Gelbord, J.; Kennea, J. A.; Smith, M.; Zhu, Q.; LIGO Scientific Collaboration; Virgo Collaboration; Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McDaniel, P.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-12-01

    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.

  4. Outer heliospheric radio emissions. II - Foreshock source models

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  5. Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika D.; Wang, Zhe; Lochner, Michelle; Matheson, Thomas; Saha, Abhijit; Yang, Shuo; Zhao, Zhenge; Kececioglu, John; Scheidegger, Carlos; Snodgrass, Richard T.; Axelrod, Tim; Jenness, Tim; Maier, Robert S.; Ridgway, Stephen T.; Seaman, Robert L.; Evans, Eric Michael; Singh, Navdeep; Taylor, Clark; Toeniskoetter, Jackson; Welch, Eric; Zhu, Songzhe; The ANTARES Collaboration

    2018-05-01

    The unprecedented volume and rate of transient events that will be discovered by the Large Synoptic Survey Telescope (LSST) demand that the astronomical community update its follow-up paradigm. Alert-brokers—automated software system to sift through, characterize, annotate, and prioritize events for follow-up—will be critical tools for managing alert streams in the LSST era. The Arizona-NOAO Temporal Analysis and Response to Events System (ANTARES) is one such broker. In this work, we develop a machine learning pipeline to characterize and classify variable and transient sources only using the available multiband optical photometry. We describe three illustrative stages of the pipeline, serving the three goals of early, intermediate, and retrospective classification of alerts. The first takes the form of variable versus transient categorization, the second a multiclass typing of the combined variable and transient data set, and the third a purity-driven subtyping of a transient class. Although several similar algorithms have proven themselves in simulations, we validate their performance on real observations for the first time. We quantitatively evaluate our pipeline on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, and demonstrate very competitive classification performance. We describe our progress toward adapting the pipeline developed in this work into a real-time broker working on live alert streams from time-domain surveys.

  6. Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration

    PubMed Central

    Drumm, Bernard T.; Hennig, Grant W.; Battersby, Matthew J.; Sung, Tae Sik

    2017-01-01

    Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl− channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves. PMID:28592421

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorham, P. W.; Allison, P.; DuVernois, M.

    The Antarctic Impulsive Transient Antenna (ANITA) completed its second Long Duration Balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultrahigh energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in payload sensitivity, efficiency, and flight trajectory. Analysis of in-flight calibration pulses from surface and subsurface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97{+-}0.42 events. Wemore » set the strongest limit to date for 10{sup 18}-10{sup 21} eV cosmic neutrinos, excluding several current cosmogenic neutrino models.« less

  8. Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance

    USGS Publications Warehouse

    Bralower, Timothy J.; Self-Trail, Jean

    2016-01-01

    The Paleocene-Eocene Thermal Maximum (PETM) is characterized by a transient group of nannoplankton, belonging to the genus Discoaster. Our investigation of expanded shelf sections provides unprecedented detail of the morphology and phylogeny of the transient Discoasterduring the PETM and their relationship with environmental change. We observe a much larger range of morphological variation than previously documented suggesting that the taxa belonged to a plexus of highly gradational morphotypes rather than individual species. We propose that the plexus represents malformed ecophenotypes of a single species that migrated to a deep photic zone refuge during the height of PETM warming and eutrophication. Anomalously, high rates of organic matter remineralization characterized these depths during the event and led to lower saturation levels, which caused malformation. The proposed mechanism explains the co-occurrence of malformed Discoaster with pristine species that grew in the upper photic zone; moreover, it illuminates why malformation is a rare phenomenon in the paleontological record.

  9. Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance

    NASA Astrophysics Data System (ADS)

    Bralower, Timothy J.; Self-Trail, Jean M.

    2016-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) is characterized by a transient group of nannoplankton, belonging to the genus Discoaster. Our investigation of expanded shelf sections provides unprecedented detail of the morphology and phylogeny of the transient Discoaster during the PETM and their relationship with environmental change. We observe a much larger range of morphological variation than previously documented suggesting that the taxa belonged to a plexus of highly gradational morphotypes rather than individual species. We propose that the plexus represents malformed ecophenotypes of a single species that migrated to a deep photic zone refuge during the height of PETM warming and eutrophication. Anomalously, high rates of organic matter remineralization characterized these depths during the event and led to lower saturation levels, which caused malformation. The proposed mechanism explains the co-occurrence of malformed Discoaster with pristine species that grew in the upper photic zone; moreover, it illuminates why malformation is a rare phenomenon in the paleontological record.

  10. Dynamic Response during PEM Fuel Cell Loading-up

    PubMed Central

    Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng

    2009-01-01

    A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.

  11. Thermally stimulated currents in molecularly doped polymers

    NASA Astrophysics Data System (ADS)

    Stasiak, James W.; Storch, Teresa J.

    1997-10-01

    Thermally stimulated currents (TSC) were measured in molecularly doped polymers consisting of the hole transport molecule p-diethylaminobenzaldehyde diphenyihydrazone (DEH) and the polymer binder bisphenol A polycarbonate (PC) at two different doping concentrations. The TSC spectrum, which consisted of a single, well resolved peak, was found to be dependent on the applied electric field, the heating rate and the dopant concentration. The peak maxima were located between 170K and 250K. The spectra were analyzed within the theoretical framework of Zielinski and Samoc which provided a procedure to extract the hopping activation energy for each concentration. The principle observations of this study are: (1) the TSC peak is unambiguously associated with charge transport, (2) the magnitude of the activation energies were found to be larger than values obtained from isothermal transient photocurrent measurements and (3) the activation energies obtained from analysis of the TSC spectra were found to be dependent on the doping concentration. This last observation is inconsistent with previous isothermal transient photocurrent measurements of doped polymer systems containing DEH.

  12. Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid.

    PubMed

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole; Tan, Qihua; Petersen, Thomas K; Kruse, Torben A; Thomassen, Mads

    2010-09-01

    The pathogenesis of irritant contact dermatitis (ICD) is poorly understood, and genes participating in the epidermal response to chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays (representing 47,000 transcripts) revealed essentially different pathway responses (1/2)hours after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen-activated signaling cascades including extracellular signal-regulated kinase and growth factor receptor signaling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed, whereas we identified 23 suggested common biomarkers for ICD. In conclusion, we bring new insights into two hitherto less well-elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative mild exposures, respectively.

  13. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE PAGES

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...

    2018-01-21

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  14. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  15. Partition-free theory of time-dependent current correlations in nanojunctions in response to an arbitrary time-dependent bias

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; MacKinnon, Angus; Kantorovich, Lev

    2017-04-01

    Working within the nonequilibrium Green's function formalism, a formula for the two-time current correlation function is derived for the case of transport through a nanojunction in response to an arbitrary time-dependent bias. The one-particle Hamiltonian and the wide-band limit approximation are assumed, enabling us to extract all necessary Green's functions and self-energies for the system, extending the analytic work presented previously [Ridley et al., Phys. Rev. B 91, 125433 (2015), 10.1103/PhysRevB.91.125433]. We show that our expression for the two-time correlation function generalizes the Büttiker theory of shot and thermal noise on the current through a nanojunction to the time-dependent bias case including the transient regime following the switch-on. Transient terms in the correlation function arise from an initial state that does not assume (as is usually done) that the system is initially uncoupled, i.e., our approach is partition free. We show that when the bias loses its time dependence, the long-time limit of the current correlation function depends on the time difference only, as in this case an ideal steady state is reached. This enables derivation of known results for the single-frequency power spectrum and for the zero-frequency limit of this power spectrum. In addition, we present a technique which facilitates fast calculations of the transient quantum noise, valid for arbitrary temperature, time, and voltage scales. We apply this formalism to a molecular wire system for both dc and ac biases, and find a signature of the traversal time for electrons crossing the wire in the time-dependent cross-lead current correlations.

  16. A VLA (Very Large Array) Search for 5 GHz Radio Transients and Variables at Low Galactic Latitudes

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Frail, D. A.; Breslauer, B.; Kulkarni, S. R.; Chandra, P.; Gal-Yam, A.; Kasliwal, M. M.; Gehrels, N.

    2012-01-01

    We present the results of a 5GHz survey with the Very Large Array (VLA) and the expanded VLA, designed to search for short-lived (approx < 1 day) transients and to characterize the variability of radio sources at milli-Jansky levels. A total sky area of 2.66 sq. deg, spread over 141 fields at low Galactic latitudes (b approx equals 6 - 8 deg) was observed 16 times with a cadence that was chosen to sample timescales of days, months and years. Most of the data were reduced, analyzed and searched for transients in near real time. Interesting candidates were followed up using visible light telescopes (typical delays of 1 - 2 hr) and the X-Ray Telescope on board the Swift satellite. The final processing of the data revealed a single possible transient with a flux density of f(sub v) approx equals 2.4mJy. This implies a transients sky surface density of kappa(f(sub v) > 1.8mJy) = 0.039(exp +0.13,+0.18) (sub .0.032,.0.038) / sq. deg (1, 2 sigma confidence errors). This areal density is consistent with the sky surface density of transients from the Bower et al. survey extrapolated to 1.8mJy. Our observed transient areal density is consistent with a Neutron Stars (NSs) origin for these events. Furthermore, we use the data to measure the sources variability on days to years time scales, and we present the variability structure function of 5GHz sources. The mean structure function shows a fast increase on approximately 1 day time scale, followed by a slower increase on time scales of up to 10 days. On time scales between 10 - 60 days the structure function is roughly constant. We find that approx > 30% of the unresolved sources brighter than 1.8mJy are variable at the > 4-sigma confidence level, presumably due mainly to refractive scintillation.

  17. Rationale and Study Design for a Single-Arm Phase IIa Study Investigating Feasibility of Preventing Ischemic Cerebrovascular Events in High-Risk Patients with Acute Non-disabling Ischemic Cerebrovascular Events Using Remote Ischemic Conditioning

    PubMed Central

    Liu, Shi-Meng; Zhao, Wen-Le; Song, Hai-Qing; Meng, Ran; Li, Si-Jie; Ren, Chang-Hong; Ovbiagele, Bruce; Ji, Xun-Ming; Feng, Wu-Wei

    2018-01-01

    Background: Acute minor ischemic stroke (AMIS) or transient ischemic attack (TIA) is a common cerebrovascular event with a considerable high recurrence. Prior research demonstrated the effectiveness of regular long-term remote ischemic conditioning (RIC) in secondary stroke prevention in patients with intracranial stenosis. We hypothesized that RIC can serve as an effective adjunctive therapy to pharmacotherapy in preventing ischemic events in patients with AMIS/TIA. This study aimed to investigate the feasibility, safety, and preliminary efficacy of daily RIC in inhibiting cerebrovascular/cardiovascular events after AMIS/TIA. Methods: This is a single-arm, open-label, multicenter Phase IIa futility study with a sample size of 165. Patients with AMIS/TIA receive RIC as an additional therapy to secondary stroke prevention regimen. RIC consists of five cycles of 5-min inflation (200 mmHg) and 5-min deflation of cuffs on bilateral upper limbs twice a day for 90 days. The antiplatelet strategy is based on individual physician's best practice: aspirin alone, clopidogrel alone, or combination of aspirin and clopidogrel. We will assess the recurrence rate of ischemic stroke/TIA within 3 months as the primary outcomes. Conclusions: The data gathered from the study will be used to determine whether a further large-scale, multicenter randomized controlled Phase II trial is warranted in patients with AMIS/TIA. Trial Registration: ClinicalTrials.gov, NCT03004820; https://www.clinicaltrials.gov/ct2/show/NCT03004820. PMID:29363651

  18. The 1989 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Tolbert, A. K.

    1992-01-01

    This document contains information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1989 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Flat Crystal Spectrometer, (4) Bent Crystal Spectrometer, (5) Ultraviolet Spectrometer Polarimeter, and (6) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Satellite (GOES) X-ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  19. The 1988 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Tolbert, A. K.

    1992-01-01

    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1988 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x ray burst spectrometer; (3) flat crystal spectrometers; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronagraph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts, or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observation. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  20. The 1984 - 1987 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Nelson, J. J.; Tolbert, A. K.

    1992-01-01

    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1984-1987 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x-ray burst spectrometer; (3) flat crystal spectrometer; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronograph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  1. An all sky study of fast X-ray transients. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Connors, Alanna

    1988-01-01

    In the HEAO 1 A-2 survey of fast X-ray transients, a search of 2 to 20 keV scanning data was made for brief increases in flux, greater than 4 millicrabs, on timescales approximately 1 to 10 to the 4th s above a 12-hour average. The search was divided into two regions, and all-sky survey of the Galaxy, and a survey of the Magellanic Clouds. In the latter, 37 events were found and identified with 4 of the 5 brighest sources in the LMC, plus 2 as flares from a foreground star. Np X-ray bursts, no gamma-ray bursts, and no events from the SMC were found. In the all-sky survey, after excluding well-known variable sources, out of the equivalent of approximately 104 days of data, 15 events were found which falling into 2 broad categories: flares from coronal sources, roughly isotropically distributed, with optically thin thermal spectra; and harder fast transients apparently distributed near the Galactic plane. The first were identified as flares from ubiquitous active cool dwarf stars. It was hypothesized that the second may have been from distant Be-neutron star binaries. However, at least two of the harder, more luminous events remained unidentified. Future research should examine the nature of these rare events, and how they may fit into a hierarchy of hard fast transients from gamma-ray bursts to outbursts from pulsar systems.

  2. Understanding Charge Collection Mechanisms in InGaAs FinFETs Using High-Speed Pulsed-Laser Transient Testing With Tunable Wavelength

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús

    2017-08-01

    A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.

  3. Numerical model of spray combustion in a single cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria

    2017-11-01

    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  4. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    DOEpatents

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  5. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  6. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  7. An Open-label, Single-dose, Pharmacokinetic Study of Factor VIII Activity After Administration of Moroctocog Alfa (AF-CC) in Male Chinese Patients With Hemophilia A.

    PubMed

    Liu, Hongzhong; Wu, Runhui; Hu, Pei; Sun, Feifei; Xu, Lihong; Liang, Yali; Nepal, Sunil; Qu, Peng Roger; Huard, Francois; Korth-Bradley, Joan M

    2017-07-01

    Hemophilia A represents up to 80% of all hemophilia cases in China. In patients with this condition, bleeding can be prevented and controlled by administering clotting factor VIII (FVIII). Since their initial availability, recombinant FVIII products have undergone several iterations to enhance their safety. Moroctocog alfa albumin-free cell culture (AF-CC) is among the third generation of recombinant FVIII products and received regulatory approval in China in August 2012. The present study characterizes the single-dose pharmacokinetic parameters of FVIII activity (FVIII:C) after administration of moroctocog alfa (AF-CC) in male Chinese patients with hemophilia A. This multicenter, open-label, single-dose study enrolled 13 male Chinese patients diagnosed with severe hemophilia A (FVIII:C <1%) and a history of at least 150 exposure-days to any FVIII-containing product. Eligible patients received a single dose of moroctocog alfa (AF-CC) 50 IU/kg IV within 10 minutes. Blood samples were collected within 2 hours before administration and through 72 hours after dosing. Pharmacokinetic parameters were assessed based on FVIII:C and were analyzed by age groups: ages 6 to <12 years (n = 3) and ≥12 years (n = 10). The mean plasma concentration-time profile for FVIII:C activity was consistently lower in patients aged 6 to <12 years compared with those aged ≥12 years. Geometric AUC 0-∞ and C max were approximately 57% and 28% lower in the younger patients relative to the older patients, respectively. A total of 4 adverse events occurred in 4 patients. Low-titer, transient FVIII inhibitors were observed in 2 patients and were considered serious adverse events. Neither case resulted in clinical manifestations nor required treatment. This is the first report of the pharmacokinetic parameters of FVIII:C after moroctocog alfa (AF-CC) in an all-Chinese population of males with hemophilia A. The pharmacokinetic profile in older patients was similar to that previously reported with recombinant FVIII products in studies with a predominantly white population; younger patients had reduced exposure to FVIII:C. The single doses of moroctocog alfa (AF-CC) were well tolerated; 2 cases of transient, low-titer FVIII inhibitor development were observed. ClinicalTrials.gov identifier: NCT02461992. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  8. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  9. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine.

    PubMed

    Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2016-06-15

    Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine

    PubMed Central

    Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.

    2016-01-01

    Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was determined that firing was stochastic in nature. Ca2+ transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca2+ transients, suggesting that ICC‐DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca2+ transients were minimally affected after 12 min in Ca2+ free solution, indicating these events do not depend immediately upon Ca2+ influx. However, inhibitors of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels blocked ICC Ca2+ transients. These data suggest an interdependence between RyR and InsP3R in the generation of Ca2+ transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high‐resolution recording of the subcellular Ca2+ dynamics that control the behaviour of ICC‐DMP in situ. PMID:26824875

  11. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less

  12. Polar UVI observations of dayside auroral transient events

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Yagodkina, O. I.; Sibeck, D. G.; Liou, K.; Meng, C.-I.

    2001-12-01

    We analyze Polar Ultraviolet Imager (UVI) observations of auroral transient events (ATEs) in the dayside Northern Hemisphere. During 5 winter months in 1996 and 1997, we found 31 prenoon ATEs but only 13 afternoon events. Prenoon and afternoon event characteristics differ. Prenoon ATEs generally appear as bright spots of auroral luminosity in the area from 0800 to 1000 magnetic local time (MLT) and 74.5° and 76.5° corrected geomagnetic latitude (CGL). Bright aurorae then quickly expand westward and poleward, accompanied by high-latitude magnetic impulsive events (MIE) and traveling convection vortices (TCV). Afternoon ATEs usually appear as a sudden intensification of aurorae in the area from 1400 to 1600 MLT and 75.5° to 78.5° CGL. Within 15-20 min the bright band of luminosity extends eastward to reach 2000-2100 MLT at 70°-72° CGL. Although midlatitude and low-latitude ground magnetograms in the evening sector record increases in the horizontal component of the magnetic field, no corresponding features occur at stations in the morning sector. Afternoon ATEs correspond to abrupt changes in the interplanetary magnetic field (IMF) orientation, but not to significant variations of the solar wind dynamic pressure, indicating that the auroral transient events occur as part of the magnetospheric response to abrupt changes in the foreshock geometry.

  13. Simulated fault injection - A methodology to evaluate fault tolerant microprocessor architectures

    NASA Technical Reports Server (NTRS)

    Choi, Gwan S.; Iyer, Ravishankar K.; Carreno, Victor A.

    1990-01-01

    A simulation-based fault-injection method for validating fault-tolerant microprocessor architectures is described. The approach uses mixed-mode simulation (electrical/logic analysis), and injects transient errors in run-time to assess the resulting fault impact. As an example, a fault-tolerant architecture which models the digital aspects of a dual-channel real-time jet-engine controller is used. The level of effectiveness of the dual configuration with respect to single and multiple transients is measured. The results indicate 100 percent coverage of single transients. Approximately 12 percent of the multiple transients affect both channels; none result in controller failure since two additional levels of redundancy exist.

  14. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  15. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  16. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  17. HIRAX: a probe of dark energy and radio transients

    NASA Astrophysics Data System (ADS)

    Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.

    2016-08-01

    The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.

  18. Chromospheric Heating due to Cancellation of Quiet Sun Internetwork Fields

    NASA Astrophysics Data System (ADS)

    Gošić, M.; de la Cruz Rodríguez, J.; De Pontieu, B.; Bellot Rubio, L. R.; Carlsson, M.; Esteban Pozuelo, S.; Ortiz, A.; Polito, V.

    2018-04-01

    The heating of the solar chromosphere remains one of the most important questions in solar physics. Our current understanding is that small-scale internetwork (IN) magnetic fields play an important role as a heating agent. Indeed, cancellations of IN magnetic elements in the photosphere can produce transient brightenings in the chromosphere and transition region. These bright structures might be the signature of energy release and plasma heating, probably driven by the magnetic reconnection of IN field lines. Although single events are not expected to release large amounts of energy, their global contribution to the chromosphere may be significant due to their ubiquitous presence in quiet Sun regions. In this paper, we study cancellations of IN elements and analyze their impact on the energetics and dynamics of the quiet Sun atmosphere. We use high-resolution, multiwavelength, coordinated observations obtained with the Interface Region Imaging Spectrograph and the Swedish 1 m Solar Telescope (SST) to identify cancellations of IN magnetic flux patches and follow their evolution. We find that, on average, these events live for ∼3 minutes in the photosphere and ∼12 minutes in the chromosphere and/or transition region. Employing multi-line inversions of the Mg II h and k lines, we show that cancellations produce clear signatures of heating in the upper atmospheric layers. However, at the resolution and sensitivity accessible to the SST, their number density still seems to be one order of magnitude too low to explain the global chromospheric heating.

  19. Ranking of sabotage/tampering avoidance technology alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.

    1986-01-01

    Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effectivemore » alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets.« less

  20. Characteristics of dayside auroral displays in relation to magnetospheric processes

    NASA Astrophysics Data System (ADS)

    Minow, Joseph I.

    1997-09-01

    The use of dayside aurorae as a ground based monitor of magnetopause activity is explored in this thesis. The origin of diffuse (OI) 630.0 nm emissions in the midday auroral oval is considered first. Analysis of low altitude satellite records of precipitating charged particles within the cusp show an unstructured electron component that will produce a 0.5-1 kR 630.0 nm emission throughout the cusp. Distribution of the electrons is controlled by the requirement of charge neutrality in the cusp, predicting a diffuse 630.0 nm background even if the magnetosheath plasma is introduced into the magnetosphere in discrete merging events. Cusp electron fluxes also contain a structured component characterized by enhancements in the electron energy and energy flux over background values in narrow regions a few 10's of kilometers in width. These structured features are identified as the source of the transient midday arcs. An auroral model is developed to study the morphology of (OI) 630.0 nm auroral emissions produced by the transient arcs. The model demonstrates that a diffuse 630.0 nm background emission is produced by transient arcs due to the long lifetime of the O(1D) state. Two sources of diffuse 630.0 nm background emissions exist in the cusp which may originate in discrete merging events. The conclusion is that persistent 630.0 nm emissions cannot be interpreted as prima facie evidence for continuous particle transport from the magnetosheath across the magnetopause boundary and into the polar cusp. The second subject that is considered is the analysis of temporal and spatial variations of the diffuse 557.7 nm pulsating aurora in relation to the 630.0 nm dominated transient aurora. Temporal variations at the poleward boundary of the diffuse 557.7 nm aurora correlate with the formation of the 630.0 nm transient aurorae suggesting that the two events are related. The character of the auroral variations is consistent with the behavior of particle populations reported during satellite observations of flux transfer events near the dayside magnetopause. An interpretation of the events in terms of impulsive magnetic reconnection yields a new observation that relates the poleward moving transient auroral arcs in the midday sector to the flux transfer events.

  1. Single neutral pion production by charged-current $$\\bar{\

    DOE PAGES

    Le, T.; Paomino, J. L.; Aliaga, L.; ...

    2015-10-07

    We studied single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. Furthermore, the differential cross sections for π 0 momentum and production angle, for events with a single observed π 0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π 0 kinematics for this process.

  2. Single neutral pion production by charged-current $$\\bar{\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, T.; Paomino, J. L.; Aliaga, L.

    We studied single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. Furthermore, the differential cross sections for π 0 momentum and production angle, for events with a single observed π 0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π 0 kinematics for this process.

  3. Mathematical Modeling of Loop Heat Pipes with Multiple Capillary Pumps and Multiple Condensers. Part 1; Stead State Stimulations

    NASA Technical Reports Server (NTRS)

    Hoang, Triem T.; OConnell, Tamara; Ku, Jentung

    2004-01-01

    Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.

  4. Exploring transient X-ray sky with Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  5. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice.

    PubMed

    Sherman, Maxwell A; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A; Hämäläinen, Matti S; Moore, Christopher I; Jones, Stephanie R

    2016-08-16

    Human neocortical 15-29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting <150 ms with a stereotypical waveform. Computational modeling uniquely designed to infer the electrical currents underlying these signals showed that beta events could emerge from the integration of nearly synchronous bursts of excitatory synaptic drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function.

  6. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcavi, Iair; Howell, D. Andrew; Wolf, William M.

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formallymore » classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.« less

  8. Rapidly Rising Transients in the Supernova - Superluminous Supernova Gap

    NASA Technical Reports Server (NTRS)

    Arcavi, Iair; Wolf, William M.; Howell, D. Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A.; Svirski, Gilad; Cenko, S. Bradley

    2016-01-01

    We present observations of four rapidly rising (t(sub rise) approximately equals 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M(sub peak) approximately equals -20) - one discovered and followed by the PalomarTransient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad H alpha emission, but an unusual absorption feature, which can be interpreted as either high velocity H alpha (though deeper than in previously known cases) or Si II (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a Type 1.5 SN scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  9. Nicotine is a potent blocker of the cardiac A-type K(+) channels. Effects on cloned Kv4.3 channels and native transient outward current.

    PubMed

    Wang, H; Shi, H; Zhang, L; Pourrier, M; Yang, B; Nattel, S; Wang, Z

    2000-09-05

    Nicotine is a main constituent of cigarette smoke and smokeless tobacco, known to increase the risk of sudden cardiac death. This study aimed at establishing ionic mechanisms underlying potential electrophysiological effects of nicotine. Effects of nicotine on Kv4.3 and Kv4.2 channels expressed in Xenopus oocytes were studied at the whole-cell and single-channel levels. The effects of nicotine on the transient outward K(+) current (I:(to)) were studied by use of whole-cell patch-clamp techniques in canine ventricular myocytes. Nicotine potently inhibited Kv4 current. The concentration for half-maximal inhibition (IC(50)) was 40+/-4 nmol/L, and the current was abolished by 100 micromol/L nicotine. The IC(50) for block of native I:(to) was 270+/-43 nmol/L. The steady-state activation properties of Kv4.3 and I:(to) were unaltered by nicotine, whereas positive shifts of the inactivation curves were observed. Of the total inhibition of Kv4.3 and I:(to) by nicotine, 40% was due to tonic block and 60% was attributable to use-dependent block. Activation, inactivation, and reactivation kinetics were not significantly changed by nicotine. Nicotine reduced single-channel conductance, open probability, and open time but increased the closed time of Kv4.3. The effects of nicotine were not altered by antagonists to various neurotransmitter receptors, indicating direct effects on I:(to) channels. Nicotine is a potent inhibitor of cardiac A-type K(+) channels, with blockade probably due to block of closed and open channels. This action may contribute to the ability of nicotine to affect cardiac electrophysiology and induce arrhythmias.

  10. Can we observe neutrino flares in coincidence with explosive transients?

    NASA Astrophysics Data System (ADS)

    Guépin, C.; Kotera, K.

    2017-12-01

    The new generation of powerful instruments is reaching sensitivities and temporal resolutions that will allow multi-messenger astronomy of explosive transient phenomena, with high-energy neutrinos as a central figure. We derive general criteria for the detectability of neutrinos from powerful transient sources for given instrument sensitivities. In practice, we provide the minimum photon flux necessary for neutrino detection based on two main observables: the bolometric luminosity and the time variability of the emission. This limit can be compared to the observations in specified wavelengths in order to target the most promising sources for follow-ups. Our criteria can also help distinguishing false associations of neutrino events with a flaring source. We find that relativistic transient sources such as high- and low-luminosity gamma-ray bursts (GRBs), blazar flares, tidal disruption events, and magnetar flares could be observed with IceCube, as they have a good chance to occur within a detectable distance. Of the nonrelativistic transient sources, only luminous supernovae appear as promising candidates. We caution that our criterion should not be directly applied to low-luminosity GRBs and type Ibc supernovae, as these objects could have hosted a choked GRB, leading to neutrino emission without a relevant counterpart radiation. We treat the concrete example of PKS 1424-418 major outburst and the possible association with an IceCube event IC 35.

  11. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    NASA Astrophysics Data System (ADS)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  12. ASTROS: A multidisciplinary automated structural design tool

    NASA Technical Reports Server (NTRS)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  13. On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic

    Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model librarymore » in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.« less

  14. The 1980 solar maximum mission event listing

    NASA Technical Reports Server (NTRS)

    Speich, D. M.; Nelson, J. J.; Licata, J. P.; Tolbert, A. K.

    1991-01-01

    Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included.

  15. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can causemore » collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.« less

  16. Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Dolenc, D.

    2004-12-01

    Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.

  17. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    NASA Astrophysics Data System (ADS)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  18. Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation

    PubMed Central

    Wang, Cuicui; Shen, Jie; Yukata, Kiminori; Inzana, Jason A.; O'Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2014-01-01

    Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development. We previously demonstrated that permanent loss of gamma-secretase activity and Notch signaling accelerates bone and cartilage formation from MSC progenitors during skeletal development, leading to pathologic acquisition of bone and depletion of bone marrow derived MSCs. Here, we investigated whether transient and systemic gamma-secretase and Notch inhibition is capable of accelerating and enhancing fracture repair by promoting controlled MSC differentiation near the fracture site. Our radiographic, microCT, histological, cell and molecular analyses reveal that single and intermittent gamma-secretase inhibitor (GSI) treatments significantly enhance cartilage and bone callus formation via the promotion of MSC differentiation, resulting in only a moderate reduction of local MSCs. Biomechanical testing further demonstrates that GSI treated fractures exhibit superior strength earlier in the healing process, with single dose GSI treated fractures exhibiting bone strength approaching that of un-fractured tibiae. These data further establish that transient inhibition of gamma-secretase activity and Notch signaling temporarily increases osteoclastogenesis and accelerates bone remodeling, which coupled with the effects on MSCs likely explains the accelerated and enhanced fracture repair. Therefore, we propose that the Notch pathway serves as an important therapeutic target during skeletal fracture repair. PMID:25527421

  19. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    NASA Astrophysics Data System (ADS)

    Xiaobo, Wu; Qing, Liu; Menglian, Zhao; Mingyang, Chen

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA.

  20. Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters.

    PubMed

    Breckwoldt, Michael O; Armoundas, Antonis A; Aon, Miguel A; Bendszus, Martin; O'Rourke, Brian; Schwarzländer, Markus; Dick, Tobias P; Kurz, Felix T

    2016-03-22

    Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 μm(2)). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.

  1. Dynamical Networks Characterization of Space Weather Events

    NASA Astrophysics Data System (ADS)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).

  2. Gigantic jets between a thundercloud and the ionosphere.

    PubMed

    Su, H T; Hsu, R R; Chen, A B; Wang, Y C; Hsiao, W S; Lai, W C; Lee, L C; Sato, M; Fukunishi, H

    2003-06-26

    Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.

  3. Antiplatelet Regimen for Patients With Breakthrough Strokes While on Aspirin: A Systematic Review and Meta-Analysis.

    PubMed

    Lee, Meng; Saver, Jeffrey L; Hong, Keun-Sik; Rao, Neal M; Wu, Yi-Ling; Ovbiagele, Bruce

    2017-09-01

    Optimal antiplatelet therapy after an ischemic stroke or transient ischemic attack while on aspirin is uncertain. We, therefore, conducted a systematic review and meta-analysis. We searched PubMed (1966 to August 2016) and bibliographies of relevant published original studies to identify randomized trials and cohort studies reporting patients who were on aspirin at the time of an index ischemic stroke or transient ischemic attack and reported hazard ratio for major adverse cardiovascular events or recurrent stroke associated with a switch to or addition of another antiplatelet agent versus maintaining aspirin monotherapy. Estimates were combined using a random effects model. Five studies with 8723 patients with ischemic stroke or transient ischemic attack were identified. Clopidogrel was used in 4 cohorts, and ticagrelor was used in 1 cohort. Pooling results showed that addition of or a switch to another antiplatelet agent, versus aspirin monotherapy, was associated with reduced risks of major adverse cardiovascular events (hazard ratio, 0.68; 95% confidence interval, 0.54-0.85) and recurrent stroke (hazard ratio, 0.70; 95% confidence interval, 0.54-0.92). Each of the strategies of addition of and switching another antiplatelet agent showed benefit versus continued aspirin monotherapy, and studies with regimen initiation in the first days after index event showed more homogenous evidence of benefit. Among patients who experience an ischemic stroke or transient ischemic attack while on aspirin monotherapy, the addition of or a switch to another antiplatelet agent, especially in the first days after index event, is associated with fewer future vascular events, including stroke. © 2017 American Heart Association, Inc.

  4. Estimated intensity of the EMP from lightning discharges necessary for elves initiation based on balloon experiment

    NASA Astrophysics Data System (ADS)

    Kondo, S.; Yoshida, A.; Takahashi, Y.; Chikada, S.; Adachi, T.; Sakanoi, T.

    2007-12-01

    Transient optical phenomena in the mesosphere and lower ionosphere called transient luminous events (TLEs) have been investigated extensively since the first discovery in 1989. In the lower ionosphere, elves are generated by the electromagnetic pulses (EMPs) radiated from the intense lightning current. On the ground-based observation, cameras can not always identify the occurrence of elves because elves emission is sometimes reduced significantly by the atmosphere and blocked by clouds. Therefore, it has been difficult to determine the threshold of intensity of EMPs necessary for initiation of elves. We simultaneously carried out optical and sferics measurements for TLEs and lightning discharges using a high altitude balloon launched at Sanriku Balloon Center on the night of August 25 / 26 in 2006. We fixed four CCD cameras on the gondola, each of which had horizontal FOV of ~100 degree. They cover 360 degree in horizontal direction and imaged the TLEs without atmospheric extinction nor blocking by clouds. The frame rate is 30 fps. We installed three dipole antennas at the gondola, which received the vertical and horizontal electric fields radiated from lightning discharges. The frequency range of the VLF receiver is 1-25 kHz. We also make use of VLF sferics data obtained by ground-based antennas located at Tohoku University in Sendai. We picked up six elves from the image data set obtained by the CCD cameras, and examined the maximum amplitudes of the vertical electric field for 22 lightning discharge events including the six elves events observed both at the balloon and at Sendai. It is found that the maximum amplitudes of the vertical electric field in the five elves events are much larger than those in the other lightning events. We estimate the intensity of the radiated electric field necessary for elves. About one elves event, we don't see intense vertical electric field in the balloon data.

  5. The Adherence eValuation After Ischemic Stroke Longitudinal (AVAIL) registry: design, rationale, and baseline patient characteristics.

    PubMed

    Bushnell, Cheryl; Zimmer, Louise; Schwamm, Lee; Goldstein, Larry B; Clapp-Channing, Nancy; Harding, Tina; Drew, Laura; Zhao, Xin; Peterson, Eric

    2009-03-01

    Approximately one third of the 780,000 people in the United States who have a stroke each year have recurrent events. Although efficacious secondary prevention measures are available, levels of adherence to these strategies in patients who have had stroke are largely unknown. Understanding medication-taking behavior in this population is an important step to optimizing the appropriate use of proven secondary preventive therapies and reducing the risk of recurrent stroke. The Adherence eValuation After Ischemic Stroke Longitudinal (AVAIL) registry is a prospective study of adherence to stroke prevention medications from hospital discharge to 1 year in patients admitted with stroke or transient ischemic attack. The primary outcomes are medication usage as determined by patient interviews after 3 and 12 months. Potential patient-, provider-, and system-level barriers to persistence of medication use are also collected. Secondary outcomes include the rates of recurrent stroke or transient ischemic attack, vascular events, and rehospitalization and functional status as measured by the modified Rankin score. The AVAIL enrolled about 2,900 subjects from 106 hospitals from July 2006 through July 2008. The 12-month follow-up will be completed in August 2009. The AVAIL registry will document the current state of adherence and persistence to stroke prevention medications among a nationwide sample of patients. These data will be used to design interventions to improve the quality of care post acute hospitalization and reduce the risks of future stroke and cardiovascular events.

  6. Automated transient identification in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, D. A.

    2015-08-20

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less

  7. Automated transient identification in the Dark Energy Survey

    DOE PAGES

    Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; ...

    2015-09-01

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less

  8. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  9. Production experience with the ATLAS Event Service

    NASA Astrophysics Data System (ADS)

    Benjamin, D.; Calafiura, P.; Childers, T.; De, K.; Guan, W.; Maeno, T.; Nilsson, P.; Tsulaia, V.; Van Gemmeren, P.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The ATLAS Event Service (AES) has been designed and implemented for efficient running of ATLAS production workflows on a variety of computing platforms, ranging from conventional Grid sites to opportunistic, often short-lived resources, such as spot market commercial clouds, supercomputers and volunteer computing. The Event Service architecture allows real time delivery of fine grained workloads to running payload applications which process dispatched events or event ranges and immediately stream the outputs to highly scalable Object Stores. Thanks to its agile and flexible architecture the AES is currently being used by grid sites for assigning low priority workloads to otherwise idle computing resources; similarly harvesting HPC resources in an efficient back-fill mode; and massively scaling out to the 50-100k concurrent core level on the Amazon spot market to efficiently utilize those transient resources for peak production needs. Platform ports in development include ATLAS@Home (BOINC) and the Google Compute Engine, and a growing number of HPC platforms. After briefly reviewing the concept and the architecture of the Event Service, we will report the status and experience gained in AES commissioning and production operations on supercomputers, and our plans for extending ES application beyond Geant4 simulation to other workflows, such as reconstruction and data analysis.

  10. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells.

    PubMed

    Mayer, Bryan T; Krantz, Elizabeth M; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T; Gantt, Soren

    2017-06-15

    Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine. IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We studied CMV acquisition in infants and found that infections are usually brief and self-limited and are successfully established relatively rarely. Thus, although most people eventually acquire CMV infection, it usually requires numerous exposures. Our analyses indicate that this is because the virus is surprisingly inefficient, barely replicating well enough to spread to neighboring cells in the mouth. Greater knowledge of why CMV infection usually fails may provide insight into how to prevent it from succeeding. Copyright © 2017 American Society for Microbiology.

  11. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells

    PubMed Central

    Mayer, Bryan T.; Krantz, Elizabeth M.; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T.

    2017-01-01

    ABSTRACT Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine. IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We studied CMV acquisition in infants and found that infections are usually brief and self-limited and are successfully established relatively rarely. Thus, although most people eventually acquire CMV infection, it usually requires numerous exposures. Our analyses indicate that this is because the virus is surprisingly inefficient, barely replicating well enough to spread to neighboring cells in the mouth. Greater knowledge of why CMV infection usually fails may provide insight into how to prevent it from succeeding. PMID:28381570

  12. Simulating spontaneous aseismic and seismic slip events on evolving faults

    NASA Astrophysics Data System (ADS)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare the slip spectrum in our simulations to conventional RSF simulations (Liu and Rice, JGR, 2007). We further demonstrate the capability of simulating the evolution of a fault zone and simultaneous occurrence of slip transients. From small random initial distributions of the state variable in an otherwise homogeneous medium, deformation localizes and forms curved zones of reduced states. These spontaneously formed fault zones host slip transients, which in turn contribute to the growth of the fault zone.

  13. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  14. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2.

    PubMed

    Grubb, Søren; Aistrup, Gary L; Koivumäki, Jussi T; Speerschneider, Tobias; Gottlieb, Lisa A; Mutsaers, Nancy A M; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B

    2015-08-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with both Kv4 to conduct the fast-recovering transient outward K(+) current (Ito,f) and with CaV1.2 to mediate the inward L-type Ca(2+) current (ICa,L). Anesthetized KChIP2(-/-) mice have normal cardiac contraction despite the lower ICa,L, and we hypothesized that the delayed repolarization could contribute to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ₂ protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby augmenting Ca(2+)-induced Ca(2+) release. Ca(2+) transients in disaggregated KChIP2(-/-) cardiomyocytes are indeed comparable to wild-type transients, corroborating the preserved contractile function and suggesting that the compensatory mechanism lies in the Ca(2+)-induced Ca(2+) release event. We next functionally probed dyad structure, ryanodine receptor Ca(2+) sensitivity, and sarcoplasmic reticulum Ca(2+) load and found that increased temporal synchronicity of the Ca(2+) release in KChIP2(-/-) cardiomyocytes may reflect improved dyad structure aiding the compensatory mechanisms in preserving cardiac contractile force. Thus the bimodal effect of KChIP2 on Ito,f and ICa,L constitutes an important regulatory effect of KChIP2 on cardiac contractility, and we conclude that delayed repolarization and improved dyad structure function together to preserve cardiac contraction in KChIP2(-/-) mice. Copyright © 2015 the American Physiological Society.

  15. Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation.

    PubMed

    Zeiger, Stephanie L H; McKenzie, Jennifer R; Stankowski, Jeannette N; Martin, Jacob A; Cliffel, David E; McLaughlin, BethAnn

    2010-11-01

    Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron-enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced a 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron-enriched multi-day model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Direct comparison of transient radiation belt topology and dynamics in 1991 based on measurements onboard Mir space station and NOAA satellite.

    PubMed

    Shurshakov, V A; Huston, S L; Dachev TsP; Petrov, V M; Ivanov YuV; Semkova, J V

    1998-01-01

    In March 1991 the CRRES spacecraft measured a new transient radiation belt resulting from a solar proton event and subsequent geomagnetic disturbance. The presence of this belt was also noted by dosimeter-radiometers aboard the Mir space station (approx. 400 km, 51 degrees orbit) and by particle telescopes on the NOAA-10 spacecraft (850 km, 98 degrees). This event provides a unique opportunity to compare particle flux and dose measurements made by different instruments in different orbits under changing conditions. We present here a comparison of the measurements made by the different detectors. We discuss the topology and dynamics of the transient radiation belt over a period of more than one year.

  17. Hard X-ray Detectability of Small Impulsive Heating Events in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Marsh, A.; Krucker, S.; Christe, S.

    2015-12-01

    Impulsive heating events ("nanoflares") are a candidate to supply the solar corona with its ~2 MK temperature. These transient events can be studied using extreme ultraviolet and soft X-ray observations, among others. However, the impulsive events may occur in tenuous loops on small enough timescales that the heating is essentially not observed due to ionization timescales, and only the cooling phase is observed. Bremsstrahlung hard X-rays could serve as a more direct and prompt indicator of transient heating events. A hard X-ray spacecraft based on the direct-focusing technology pioneered by the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket could search for these direct signatures. In this work, we use the hydrodynamical EBTEL code to simulate differential emission measures produced by individual heating events and by ensembles of such events. We then directly predict hard X-ray spectra and consider their observability by a future spaceborne FOXSI, and also by the RHESSI and NuSTAR spacecraft.

  18. The rate of transient beta frequency events predicts behavior across tasks and species

    PubMed Central

    Law, Robert; Tsutsui, Shawn; Moore, Christopher I; Jones, Stephanie R

    2017-01-01

    Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations. PMID:29106374

  19. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  1. Re-Verification of the IRHN57133SE and IRHN57250SE for Single Event Gate Rupture and Single Event Burnout

    NASA Technical Reports Server (NTRS)

    Scheick, Leif

    2010-01-01

    The vertical metal oxide semiconductor field-effect transistor (MOSFET) is a widely used power transistor onboard a spacecraft. The MOSFET is typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single event gate rupture (SEGR) or single event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. These radiation hardened devices are not immune to SEGR or SEB but, rather, can exhibit them at a much more damaging ion than their non-radiation hardened counterparts. See [1] through [5] for more information.This effort was to investigate the SEGR and SEB responses of two power MOSFETs from IR(the IRHN57133SE and the IRHN57250SE) that have recently been produced on a new fabrication line. These tests will serve as a limited verification of these parts, but it is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  2. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed

    Major, G

    1993-07-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.

  3. The maximum single dose of resistant maltodextrin that does not cause diarrhea in humans.

    PubMed

    Kishimoto, Yuka; Kanahori, Sumiko; Sakano, Katsuhisa; Ebihara, Shukuko

    2013-01-01

    The objective of the present study was to determine the maximum dose of resistant maltodextrin (Fibersol)-2, a non-viscous water-soluble dietary fiber), that does not induce transitory diarrhea. Ten healthy adult subjects (5 men and 5 women) ingested Fibersol-2 at increasing dose levels of 0.7, 0.8, 0.9, 1.0, and 1.1 g/kg body weight (bw). Each administration was separated from the previous dose by an interval of 1 wk. The highest dose level that did not cause diarrhea in any subject was regarded as the maximum non-effective level for a single dose. The results showed that no subject of either sex experienced diarrhea at dose levels of 0.7, 0.8, 0.9, or 1.0 g/kg bw. At the highest dose level of 1.1 g/kg bw, no female subject experienced diarrhea, whereas 1 male subject developed diarrhea with muddy stools 2 h after ingestion of the test substance. Consequently, the maximum non-effective level for a single dose of the resistant maltodextrin Fibersol-2 is 1.0 g/kg bw for men and >1.1 g/kg bw for women. Gastrointestinal symptoms were gurgling sounds in 4 subjects (7 events) and flatus in 5 subjects (9 events), although no association with dose level was observed. These symptoms were mild and transient and resolved without treatment.

  4. Vapor shielding models and the energy absorbed by divertor targets during transient events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S.; Pshenov, A. A.

    2016-02-15

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shieldingmore » is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and, therefore, strongly influence resulting erosion rate. Thus, E{sub max} cannot be used for validation of shielding models and codes, aimed at the target material erosion calculations.« less

  5. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension

    PubMed Central

    Cheyette, Samuel J.; Plaut, David C.

    2016-01-01

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012, Brain and Language, 120, 271-281; Laszlo & Armstrong, 2014, Brain and Language, 132, 22-27) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on “implicit semantic prediction error” (Rabovsky & McRae, 2014, Cognition, 132, 68-98) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. PMID:27871623

  6. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension.

    PubMed

    Cheyette, Samuel J; Plaut, David C

    2017-05-01

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Coherent production of π+ and π- mesons by charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, R. C.; Cence, R.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G.; Harris, F.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Jones, R. W.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Mann, W. A.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Wittek, W.; Yost (E632 Collaboration), G. P.

    1989-11-01

    Coherent single-pion production on neon nuclei is studied using the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mixture and exposed to the Tevatron neutrino beam. In the neutrino energy range 40-300 GeV, the net signal is 20+/-6 events, giving a corrected rate per charged-current event of (0.26+/-0.10)%. The cross section and kinematic distributions agree with the predictions of a model based on partial conservation of axial-vector current and meson dominance.

  8. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey

    NASA Astrophysics Data System (ADS)

    Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.

    2016-11-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (I) sub-relativistic merger ejecta and (II) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.

  9. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Kochanek, C. S.; Fraser, M.; Dong, Subo; Elias-Rosa, N.; Filippenko, A. V.; Benetti, S.; Cappellaro, E.; Tomasella, L.; Drake, A. J.; Harmanen, J.; Reynolds, T.; Shappee, B. J.; Smartt, S. J.; Chambers, K. C.; Huber, M. E.; Smith, K.; Stanek, K. Z.; Christensen, E. J.; Denneau, L.; Djorgovski, S. G.; Flewelling, H.; Gall, C.; Gal-Yam, A.; Geier, S.; Heinze, A.; Holoien, T. W.-S.; Isern, J.; Kangas, T.; Kankare, E.; Koff, R. A.; Llapasset, J.-M.; Lowe, T. B.; Lundqvist, P.; Magnier, E. A.; Mattila, S.; Morales-Garoffolo, A.; Mutel, R.; Nicolas, J.; Ochner, P.; Ofek, E. O.; Prosperi, E.; Rest, A.; Sano, Y.; Stalder, B.; Stritzinger, M. D.; Taddia, F.; Terreran, G.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Weiland, H.; Willman, M.; Young, D. R.; Zheng, W.

    2018-02-01

    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M(r) ~ -15.3 mag, while the second one (Event B) occurred over one month later and reached M(r) ~ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is detectable several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of a SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. The similarity with SN 2005gl suggests that all members of this family may finally explode as genuine SNe, although the unequivocal detection of nucleosynthesised elements in their nebular spectra is still missing.

  10. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-04-01

    Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  11. A geodetic matched filter search for slow slip with application to the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W. B.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low-frequency earthquakes and repeating earthquakes provide evidence of low-amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent data sets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with postprocessed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modeling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T, and Mw of events larger than Mw 6 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the downdip edges of the Mw>7.5 slow slip events.

  12. Applications of Wavelet Transform and Fuzzy Neural Network on Power Quality Recognition

    NASA Astrophysics Data System (ADS)

    Liao, Chiung-Chou; Yang, Hong-Tzer; Lin, Ying-Chun

    2008-10-01

    The wavelet transform coefficients (WTCs) contain plenty of information needed for transient event identification of power quality (PQ) events. However, adopting WTCs directly has the drawbacks of taking a longer time and too much memory for the recognition system. To solve the abovementioned recognition problems and to effectively reduce the number of features representing power transients, spectrum energies of WTCs in different scales are calculated by Parseval's Theorem. Through the proposed approach, features of the original power signals can be reserved and not influenced by occurring points of PQ events. The fuzzy neural classification systems are then used for signal recognition and fuzzy rule construction. Success rates of recognizing PQ events from noise-riding signals are proven to be feasible in power system applications in this paper.

  13. The SEM description of interaction of a transient electromagnetic wave with an object

    NASA Technical Reports Server (NTRS)

    Pearson, L. W.; Wilton, D. R.

    1980-01-01

    The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.

  14. From Sommerfeld and Brillouin forerunners to optical precursors

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Ségard, Bernard

    2013-04-01

    The Sommerfeld and Brillouin forerunners generated in a single-resonance absorbing medium by an incident step-modulated pulse are theoretically considered in the double limit where the susceptibility of the medium is weak and the resonance is narrow. Combining direct Laplace-Fourier integration and calculations by the saddle-point method, we establish an explicit analytical expression of the transmitted field valid at any time, even when the two forerunners significantly overlap. We examine how their complete overlapping, occurring for shorter propagation distances, originates the formation of the unique transient currently named resonant precursor or dynamical beat. We obtain an expression of this transient identical to that usually derived within the slowly varying envelope approximation in spite of the initial discontinuity of the incident field envelope. The dynamical beats and 0π pulses generated by ultrashort incident pulses are also briefly examined.

  15. Comparing the energy landscapes for native folding and aggregation of PrP

    PubMed Central

    Dee, Derek R.; Woodside, Michael T.

    2016-01-01

    ABSTRACT Protein sequences are evolved to encode generally one folded structure, out of a nearly infinite array of possible folds. Underlying this code is a funneled free energy landscape that guides folding to the native conformation. Protein misfolding and aggregation are also a manifestation of free-energy landscapes. The detailed mechanisms of these processes are poorly understood, but often involve rare, transient species and a variety of different pathways. The inherent complexity of misfolding has hampered efforts to measure aggregation pathways and the underlying energy landscape, especially using traditional methods where ensemble averaging obscures important rare and transient events. We recently studied the misfolding and aggregation of prion protein by examining 2 monomers tethered in close proximity as a dimer, showing how the steps leading to the formation of a stable aggregated state can be resolved in the single-molecule limit and the underlying energy landscape thereby reconstructed. This approach allows a more quantitative comparison of native folding versus misfolding, including fundamental differences in the dynamics for misfolding. By identifying key steps and interactions leading to misfolding, it should help to identify potential drug targets. Here we describe the importance of characterizing free-energy landscapes for aggregation and the challenges involved in doing so, and we discuss how single-molecule studies can help test proposed structural models for PrP aggregates. PMID:27191683

  16. [Transient expression and characterization of intracellular single chain Fv against the nucleocapsid protein of Hantavirus].

    PubMed

    Bai, Wen-tao; Xu, Zhi-kai; Zhang, Fang-lin; Luo, Wen; Liu, Yong; Wu, Xing-an; Yan, Yan

    2004-11-01

    To transiently express an intracellular single chain Fv of monoclonal antibody 1A8 against nucleocapsid protein of Hantavirus and characterize the immunological activities of the expressed products. COS-7 cells were transfected with mammalian expression vector 1A8-scFv-Ckappa/pCI-neo via lipofectin. The expressed product was identified by indirect immunofluorescence and immunoprecipitation. A diffuse pattern fluorescence was observed in less than 1% cytoplasm of transfected COS-7 cells. The binding of intracellular antibody fragments to NP antigen was confirmed by immunoprecipitation analysis. Transiently expressed single chain intrabodies can effectively target NP antigen in the cytoplasm. The present study may provide a new approach for treatment of Hantavirus.

  17. Enhancing photocurrent transient spectroscopy by electromagnetic modeling.

    PubMed

    Diesinger, H; Panahandeh-Fard, M; Wang, Z; Baillargeat, D; Soci, C

    2012-05-01

    The shape and duration of photocurrent transients generated by a photoconductive switch depend on both the intrinsic response of the active material and the geometry of the transmission line structure. The present electromagnetic model decouples both shape forming contributions. In contrast to previously published work, it accounts for the particular operating mode of transient spectroscopy. The objective is to increase the time resolution by two approaches, by optimizing structural response and by deconvolving it from experimental data. The switch structure is represented by an effective transimpedance onto which the active material acts as current generator. As proof of concept, the response of a standard microstrip switch is modeled and deconvolved from experimental data acquired in GaAs, yielding a single exponential material response and hence supporting the validity of the approach. Beyond compensating for the response deterioration by the structure, switch architectures can be a priori optimized with respect to frequency response. As an example, it is shown that a microstrip gap that can be deposited on materials incompatible with standard lithography reduces pulse broadening by an order of magnitude if it is provided with transitions to coplanar access lines.

  18. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere

    NASA Astrophysics Data System (ADS)

    Burov, E.; Guillou-Frottier, L.

    2005-05-01

    Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.

  19. A review for identification of initiating events in event tree development process on nuclear power plants

    NASA Astrophysics Data System (ADS)

    Riyadi, Eko H.

    2014-09-01

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  20. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

Top