Science.gov

Sample records for single-molecule vibrational spectroscopy

  1. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    PubMed

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  2. Communication: Atomic force detection of single-molecule nonlinear optical vibrational spectroscopy

    SciTech Connect

    Saurabh, Prasoon Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ{sup (3)}) and sum or difference frequency generation (χ{sup (2)})

  3. Effect of impurity molecules on the low-temperature vibrational dynamics of polyisobutylene: Investigation by single-molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Eremchev, I. Yu.; Naumov, A. V.; Vainer, Yu. G.; Kador, L.

    2009-05-01

    The influence of impurity chromophore molecules—tetra-tert-butylterrylene (TBT) and dibenzo-anthanthrene (DBATT)—on the vibrational dynamics of the amorphous polymer polyisobutylene (PIB) has been studied via single-molecule spectroscopy. The measurements were performed in the temperature region of 7-30 K, where the interaction of the chromophores with quasilocalized low-frequency vibrational modes (LFMs) determines the observed spectral line broadening. The analysis of the individual temperature dependences of the linewidths for a large number of single probe molecules yielded effective frequency values of those LFMs which are located near the respective chromophores. In this way the distributions of the LFM frequencies were measured for the two systems, and they were found to be similar. Moreover, they are in good agreement with the vibrational density of states as measured in pure PIB by inelastic neutron scattering. This allows us to conclude that, at least in the case of PIB, doping with low concentrations of the nonpolar and neutral molecules TBT and DBATT does not affect the vibrational dynamics of the matrix markedly.

  4. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  5. Variation of exciton-vibrational coupling in photosystem II core complexes from Thermosynechococcus elongatus as revealed by single-molecule spectroscopy.

    PubMed

    Skandary, Sepideh; Hussels, Martin; Konrad, Alexander; Renger, Thomas; Müh, Frank; Bommer, Martin; Zouni, Athina; Meixner, Alfred J; Brecht, Marc

    2015-03-19

    The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effect of spectral diffusion by applying a shifting algorithm. The increased signal-to-noise ratio enables us to determine the exciton-vibrational coupling strength (Huang-Rhys factor) with high precision. The Huang-Rhys factors vary between 0.03 and 0.8. The values of the Huang-Rhys factors show no obvious correlation between coupling strength and wavelength position. From this result, we conclude that electrostatic rather than exchange or dispersive interactions are the main contributors to the exciton-vibrational coupling in this system.

  6. Local vibrations in disordered solids studied via single-molecule spectroscopy: Comparison with neutron, nuclear, Raman scattering, and photon echo data

    NASA Astrophysics Data System (ADS)

    Vainer, Yu. G.; Naumov, A. V.; Kador, L.

    2008-06-01

    The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.

  7. Single Molecule Spectroscopy of Electron Transfer

    SciTech Connect

    Michael Holman; Ling Zang; Ruchuan Liu; David M. Adams

    2009-10-20

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  8. Near-field single molecule spectroscopy

    SciTech Connect

    Xie, X.S.; Dunn, R.C.

    1995-02-01

    The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.

  9. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  10. Single-molecule fluorescence spectroscopy in (bio)catalysis.

    PubMed

    Roeffaers, Maarten B J; De Cremer, Gert; Uji-i, Hiroshi; Muls, Benîot; Sels, Bert F; Jacobs, Pierre A; De Schryver, Frans C; De Vos, Dirk E; Hofkens, Johan

    2007-07-31

    The ever-improving time and space resolution and molecular detection sensitivity of fluorescence microscopy offer unique opportunities to deepen our insights into the function of chemical and biological catalysts. Because single-molecule microscopy allows for counting the turnover events one by one, one can map the distribution of the catalytic activities of different sites in solid heterogeneous catalysts, or one can study time-dependent activity fluctuations of individual sites in enzymes or chemical catalysts. By experimentally monitoring individuals rather than populations, the origin of complex behavior, e.g., in kinetics or in deactivation processes, can be successfully elucidated. Recent progress of temporal and spatial resolution in single-molecule fluorescence microscopy is discussed in light of its impact on catalytic assays. Key concepts are illustrated regarding the use of fluorescent reporters in catalytic reactions. Future challenges comprising the integration of other techniques, such as diffraction, scanning probe, or vibrational methods in single-molecule fluorescence spectroscopy are suggested.

  11. In situ analysis of bacterial extracellular polymeric substances from a Pseudomonas fluorescens biofilm by combined vibrational and single molecule force spectroscopies.

    PubMed

    Fahs, Ahmad; Quilès, Fabienne; Jamal, Dima; Humbert, François; Francius, Grégory

    2014-06-19

    Extracellular polymeric substances (EPS) play an important role in biofilm cohesion and adhesion to surfaces. EPS of a P. fluorescens biofilm were characterized through their vibrational spectra (infrared and Raman) and their conformational properties using single molecule force spectroscopy with specific probes for glucose, galactose, and N-acetyl glucosamine-rich EPS. Vibrational spectra evidenced the overproduction of glycogen and other carbohydrates in the biofilm. The conformational analysis was performed from both the freely jointed chain (FJC) and worm like chain (WLC) models. The results of the FJC fittings showed highly ramified and/or folded structures for all the detected EPS with molecular elongations up to 1000-2500 nm, and typical Kuhn lengths of glycogen macromolecules. The characteristics of galactose-rich EPS have been found to be significantly different from those of glucose- and N-acetyl glucosamine-rich EPS. On the basis of the theoretical fittings with the WLC model, our results suggested that carbohydrates may be associated with peptide domains.

  12. Current status of single-molecule spectroscopy: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Jung, YounJoon; Barkai, Eli; Silbey, Robert J.

    2002-12-01

    We survey the current status of single-molecule spectroscopy in the view point of theoretical aspects. After an explanation of basic concepts in single-molecule spectroscopy, we focus on the following topics: (1) line shape phenomena in disordered media, (2) photon counting statistics for time-dependent fluctuations in single-molecule spectroscopy, (3) fluorescence intensity fluctuations for nonergodic systems, (4) time-resolved single-molecule fluorescence for conformational dynamics of single biomolecules, (5) single-molecule reaction dynamics at room temperature, and (6) quantum jump method of single quantum system. We conclude this paper with some open questions and perspectives of single-molecule spectroscopy.

  13. Single molecule microscopy and spectroscopy: concluding remarks.

    PubMed

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  14. Tracking Nanocars Using Single Molecule Spectroscopy

    NASA Astrophysics Data System (ADS)

    Link, Stephan; Khatua, Saumyakanti; Claytor, Kevin; Guerrero, Jason; Tour, James

    2008-03-01

    Nanocars belong to an exciting new class of molecules known as molecular machines. They consist of four fullerene or carborane wheels attached to a chassis consisting of a stiff aromatic backbone. The nanocars are designed to roll over a solid surface making them potential candidates for nano-cargo transporters. Here, we present our results on tracking of nanocars by single molecule fluorescence spectroscopy. By attaching the fluorescent tag tetramethylrhodamin isothiocyanate to the nanocars, we were able to visualize and track individual nanocars using confocal sample scanning microscopy. Fluorescence images were analyzed for directional movement as opposed to random diffusion or stage drift. We had to overcome 2 major problems in our image analysis: 1) fluorescence photo-blinking and 2) photo-bleaching. We developed routines that are capable of tracking individual fluorescent molecules while accounting for photo-blinking and photo-bleaching. The ability to track individual nanocars is checked independently by simulations. Our method is not limited to tracking of nanocars however, and can be extended to follow individual molecules in biological or mechanical systems as well.

  15. Single molecule force spectroscopy of asphaltene aggregates.

    PubMed

    Long, Jun; Xu, Zhenghe; Masliyah, Jacob H

    2007-05-22

    Asphaltene aggregation and deposition cause severe problems in nearly all phases of petroleum processing. To resolve those problems, understanding the aggregation mechanisms is a prerequisite and has attracted the interest of a great number of investigators. However, to date, the nature and extent of asphaltene aggregation remain widely debated. In the present study, we attempt to investigate asphaltene aggregation from a completely new perspective. The technique of single molecule force spectroscopy (SMFS) was used to investigate the response of single asphaltene aggregates under an external pulling force. Force curves representing the stretching of single asphaltene aggregates were obtained in simple electrolyte solutions (KCl and calcium) and organic solvents (toluene and heptane). These force curves were well-fitted by the modified worm-like chain model, indicating that those asphaltene aggregates acted like long-chain polymers under pulling by an external force. It was found that lower solution pH values and the presence of divalent cations resulted in a lower bending rigidity of the formed aggregates. The information retrieved from the force curves suggests that asphaltene molecules with a structure featuring small aromatic clusters connected by aliphatic chains do exist and that asphaltene aggregation could occur through a linear polymerization mechanism. The current study extends the application scope of SMFS.

  16. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    PubMed

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.

  17. Action spectroscopy for single-molecule reactions - Experiments and theory

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Motobayashi, K.; Frederiksen, T.; Ueba, H.; Kawai, M.

    2015-05-01

    We review several representative experimental results of action spectroscopy (AS) of single molecules on metal surfaces using a scanning tunneling microscope (STM) by M. Kawai's group over last decade. The experimental procedures to observe STM-AS are described. A brief description of a low-temperature STM and experimental setup are followed by key experimental techniques of how to determine an onset bias voltage of a reaction and how to measure a current change associated with reactions and finally how to observe AS for single molecule reactions. The experimental results are presented for vibrationally mediated chemical transformation of trans-2-butene to 1.3-butadiene molecule and rotational motion of a single cis-2-butene molecule among four equivalent orientations on Pd(1 1 0). The AS obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with an STM. AS is demonstrated as a useful and novel single molecule vibrational spectroscopy. The AS for a lateral hopping of water dimer on Pt(1 1 1) is presented as an example of novelty. Several distinct vibrational modes are detected as the thresholds in the AS. The assignment of the vibrational modes determined from the analysis of the AS is made from a view of the adsorption geometry of hydrogen-bond donor or acceptor molecules in water dimer. A generic theory of STM-AS, i.e., a reaction rate or yield as a function of bias voltage, is presented using a single adsorbate resonance model for single molecule reactions induced by the inelastic tunneling current. Formulas for the reaction rate R (V) and Y (V) , i.e., reaction yield per electron Y (V) = eR (V) / I are derived. It provides a versatile framework to analyze any vibrationally mediated reactions of single adsorbates on metal surfaces. Numerical examples are presented to demonstrate generic features of the vibrational generation rate and Y (V) at different levels of approximations and to show how the effective

  18. Single-molecule fluorescence spectroscopy in (bio)catalysis

    PubMed Central

    Roeffaers, Maarten B. J.; De Cremer, Gert; Uji-i, Hiroshi; Muls, Benîot; Sels, Bert F.; Jacobs, Pierre A.; De Schryver, Frans C.; De Vos, Dirk E.; Hofkens, Johan

    2007-01-01

    The ever-improving time and space resolution and molecular detection sensitivity of fluorescence microscopy offer unique opportunities to deepen our insights into the function of chemical and biological catalysts. Because single-molecule microscopy allows for counting the turnover events one by one, one can map the distribution of the catalytic activities of different sites in solid heterogeneous catalysts, or one can study time-dependent activity fluctuations of individual sites in enzymes or chemical catalysts. By experimentally monitoring individuals rather than populations, the origin of complex behavior, e.g., in kinetics or in deactivation processes, can be successfully elucidated. Recent progress of temporal and spatial resolution in single-molecule fluorescence microscopy is discussed in light of its impact on catalytic assays. Key concepts are illustrated regarding the use of fluorescent reporters in catalytic reactions. Future challenges comprising the integration of other techniques, such as diffraction, scanning probe, or vibrational methods in single-molecule fluorescence spectroscopy are suggested. PMID:17664433

  19. Single-molecule spectroscopy and dynamics at room temperature

    SciTech Connect

    Xie, X.S.

    1996-12-01

    The spirit of studying single-molecule behaviors dates back to the turn of the century. In addition to Einstein`s well-known work on Brownian motion, there has been a tradition for studying single {open_quotes}macromolecules{close_quotes} or a small number of molecules either by light scattering or by fluorescence using an optical microscope. Modern computers have allowed detailed studies of single-molecule behaviors in condensed media through molecular dynamics simulations. Optical spectroscopy offers a wealth of information on the structure, interaction, and dynamics of molecular species. With the motivation of removing {open_quotes}inhomogeneous broadening{close_quotes}, spectroscopic techniques have evolved from spectral hole burning, fluorescence line narrowing, and photo-echo to the recent pioneering work on single-molecule spectroscopy in solids at cryogenic temperatures. High-resolution spectroscopic work on single molecules relies on zero phonon lines which appear at cryogenic temperatures, and have narrow line widths and large absorption cross sections. Recent advances in near-field and confocal fluorescence have allowed not only fluorescence imaging of single molecules with high spatial resolutions but also single-molecule spectroscopy at room temperature. In this Account, the author provides a physical chemist`s perspective on experimental and theoretical developments on room-temperature single-molecule spectroscopy and dynamics, with the emphasis on the information obtainable from single-molecule experiments. 61 refs., 9 figs.

  20. Theory of single molecule emission spectroscopy

    SciTech Connect

    Bel, Golan; Brown, Frank L. H.

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  1. Single-Molecule Spectroscopy and Imaging Over the Decades

    PubMed Central

    Moerner, W. E.; Shechtman, Yoav; Wang, Quan

    2016-01-01

    As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990's, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many

  2. Tunneling spectroscopy of organic monolayers and single molecules.

    PubMed

    Hipps, K W

    2012-01-01

    Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types. It can provide both vibrational and electron spectroscopic data about the molecules comprising the A layer. In IETS there are no strong selection rules (although there are preferences) so that transitions that are normally IR, Raman, or even photon-forbidden can be observed. In the electronic transition domain, spin and Laporte forbidden transitions may be observed. Both vibrational and electronic IETS can be acquired from single molecules. The negative aspect of this seemingly ideal spectroscopic method is the thermal line width of about 5 k(B)T. This limits the useful measurement of vibrational IETS to temperatures below about 10 K. In the case of most electronic transitions where the intrinsic linewidth is much broader, useful experiments above 100 K are possible. One further limitation of electronic IETS is that it is generally limited to transitions with energy less than about 20,000 cm(-1). IETS can be identified by peaks in d(2) I/dV (2) vs bias voltage plots that occur at the same position (but not necessarily same intensity) in either bias polarity.Elastic tunneling spectroscopy is discussed in the context of processes involving molecular ionization and electron affinity states, a technique we call orbital mediated tunneling spectroscopy, or OMTS. OMTS can be applied readily to M-I-A-M and M-I-A-I'-M systems, but application to M-A-M junctions is problematic. Spectra can be obtained from single molecules. Ionization state results correlate well with UPS spectra obtained from the same systems in the same environment. Both ionization and affinity levels measured by OMTS can usually be correlated with one electron oxidation and reduction potentials for the

  3. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    PubMed

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  4. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    NASA Astrophysics Data System (ADS)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  5. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  6. THEORY OF SINGLE-MOLECULE SPECTROSCOPY: Beyond the Ensemble Average

    NASA Astrophysics Data System (ADS)

    Barkai, Eli; Jung, Younjoon; Silbey, Robert

    2004-01-01

    Single-molecule spectroscopy (SMS) is a powerful experimental technique used to investigate a wide range of physical, chemical, and biophysical phenomena. The merit of SMS is that it does not require ensemble averaging, which is found in standard spectroscopic techniques. Thus SMS yields insight into complex fluctuation phenomena that cannot be observed using standard ensemble techniques. We investigate theoretical aspects of SMS, emphasizing (a) dynamical fluctuations (e.g., spectral diffusion, photon-counting statistics, antibunching, quantum jumps, triplet blinking, and nonergodic blinking) and (b) single-molecule fluctuations in disordered systems, specifically distribution of line shapes of single molecules in low-temperature glasses. Special emphasis is given to single-molecule systems that reveal surprising connections to Levy statistics (i.e., blinking of quantum dots and single molecules in glasses). We compare theory with experiment and mention open problems. Our work demonstrates that the theory of SMS is a complementary field of research for describing optical spectroscopy in the condensed phase.

  7. Methods of single-molecule fluorescence spectroscopy and microscopy

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.; Fromm, David P.

    2003-08-01

    Optical spectroscopy at the ultimate limit of a single molecule has grown over the past dozen years into a powerful technique for exploring the individual nanoscale behavior of molecules in complex local environments. Observing a single molecule removes the usual ensemble average, allowing the exploration of hidden heterogeneity in complex condensed phases as well as direct observation of dynamical state changes arising from photophysics and photochemistry, without synchronization. This article reviews the experimental techniques of single-molecule fluorescence spectroscopy and microscopy with emphasis on studies at room temperature where the same single molecule is studied for an extended period. Key to successful single-molecule detection is the need to optimize signal-to-noise ratio, and the physical parameters affecting both signal and noise are described in detail. Four successful microscopic methods including the wide-field techniques of epifluorescence and total internal reflection, as well as confocal and near-field optical scanning microscopies are described. In order to extract the maximum amount of information from an experiment, a wide array of properties of the emission can be recorded, such as polarization, spectrum, degree of energy transfer, and spatial position. Whatever variable is measured, the time dependence of the parameter can yield information about excited state lifetimes, photochemistry, local environmental fluctuations, enzymatic activity, quantum optics, and many other dynamical effects. Due to the breadth of applications now appearing, single-molecule spectroscopy and microscopy may be viewed as useful new tools for the study of dynamics in complex systems, especially where ensemble averaging or lack of synchronization may obscure the details of the process under study.

  8. Coherent spectroscopy in the single molecule limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.; Crampton, Kevin; Fast, Alex; Alfonso García, Alba; Apkarian, Vartkess A.

    2016-10-01

    Surface enhanced Raman scattering (SERS) is a popular technique for detecting and analyzing molecules at very low concentrations. The sensitivity of SERS is high enough to detect single molecules. It has proven difficult, however, to perform similar measurements in the so-called nonlinear optical regime, a regime in which the molecule is responding to multiple light pulses. Nonetheless, recent experiments indicate that after careful optimization, it is possible to generate signals derived from nonlinear analogs of SERS. Such measurements make it possible to view molecular vibrations in real time, which amounts to the femto- to pico-second range. In this contribution, we discuss in detail under which conditions detectable surface-enhanced coherent Raman signals can be expected, provide experimental evidence of coherent Raman scattering of single molecules, and highlight the unique information that can be attained from such measurements.

  9. High-throughput multispot single-molecule spectroscopy

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Kim, Taiho; Rech, Ivan; Resnati, Daniele; Marangoni, Stefano; Ghioni, Massimo; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2011-01-01

    Solution-based single-molecule spectroscopy and fluorescence correlation spectroscopy (FCS) are powerful techniques to access a variety of molecular properties such as size, brightness, conformation, and binding constants. However, this is limited to low concentrations, which results in long acquisition times in order to achieve good statistical accuracy. Data can be acquired more quickly by using parallelization. We present a new approach using a multispot excitation and detection geometry made possible by the combination of three powerful new technologies: (i) a liquid crystal spatial light modulator to produce multiple diffraction-limited excitation spots; (ii) a multipixel detector array matching the excitation pattern and (iii) a low-cost reconfigurable multichannel counting board. We demonstrate the capabilities of this technique by reporting FCS measurements of various calibrated samples as well as single-molecule burst measurements. PMID:21643532

  10. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  11. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  12. Optimized free energies from bidirectional single-molecule force spectroscopy.

    PubMed

    Minh, David D L; Adib, Artur B

    2008-05-09

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy-valid for biasing potentials of arbitrary stiffness-are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  13. Nonlinear coherent spectroscopy in the single molecule limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.

    2015-10-01

    Detecting coherent anti-Stokes Raman scattering (CARS) signals from signal molecules is a longstanding experimental challenge. Driving the vibrational CARS response with surface plasmon fields has proven notoriously difficult due to strong background contributions, unfavorable heat dissipation and the phase dispersion of the plasmon modes in the ensemble. In this work we overcome previous experimental limitations and demonstrate time-resolved, vibrational CARS from molecules in the low copy number limit, down to the single molecule level. Our measurements, which are performed under ambient and non-electronic resonance conditions, establish that the coherent response from vibrational modes of individual molecules can be studied experimentally, opening up a new realm of molecular spectroscopic investigations.

  14. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; van Grondelle, Rienk; Mančal, Tomáš

    2016-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII. PMID:27189196

  15. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Malý, Pavel; Gruber, J. Michael; van Grondelle, Rienk; Mančal, Tomáš

    2016-05-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII.

  16. Analysis of DNA interactions using single-molecule force spectroscopy.

    PubMed

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  17. Single-molecule Force Spectroscopy Approach to Enzyme Catalysis*

    PubMed Central

    Alegre-Cebollada, Jorge; Perez-Jimenez, Raul; Kosuri, Pallav; Fernandez, Julio M.

    2010-01-01

    Enzyme catalysis has been traditionally studied using a diverse set of techniques such as bulk biochemistry, x-ray crystallography, and NMR. Recently, single-molecule force spectroscopy by atomic force microscopy has been used as a new tool to study the catalytic properties of an enzyme. In this approach, a mechanical force ranging up to hundreds of piconewtons is applied to the substrate of an enzymatic reaction, altering the conformational energy of the substrate-enzyme interactions during catalysis. From these measurements, the force dependence of an enzymatic reaction can be determined. The force dependence provides valuable new information about the dynamics of enzyme catalysis with sub-angstrom resolution, a feat unmatched by any other current technique. To date, single-molecule force spectroscopy has been applied to gain insight into the reduction of disulfide bonds by different enzymes of the thioredoxin family. This minireview aims to present a perspective on this new approach to study enzyme catalysis and to summarize the results that have already been obtained from it. Finally, the specific requirements that must be fulfilled to apply this new methodology to any other enzyme will be discussed. PMID:20382731

  18. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems.

    PubMed

    Kondo, Toru; Chen, Wei Jia; Schlau-Cohen, Gabriela S

    2017-01-25

    Photosynthesis begins when a network of pigment-protein complexes captures solar energy and transports it to the reaction center, where charge separation occurs. When necessary (under low light conditions), photosynthetic organisms perform this energy transport and charge separation with near unity quantum efficiency. Remarkably, this high efficiency is maintained under physiological conditions, which include thermal fluctuations of the pigment-protein complexes and changing local environments. These conditions introduce multiple types of heterogeneity in the pigment-protein complexes, including structural heterogeneity, energetic heterogeneity, and functional heterogeneity. Understanding how photosynthetic light-harvesting functions in the face of these fluctuations requires understanding this heterogeneity, which, in turn, requires characterization of individual pigment-protein complexes. Single-molecule spectroscopy has the power to probe individual complexes. In this review, we present an overview of the common techniques for single-molecule fluorescence spectroscopy applied to photosynthetic systems and describe selected experiments on these systems. We discuss how these experiments provide a new understanding of the impact of heterogeneity on light harvesting and thus how these systems are optimized to capture sunlight under physiological conditions.

  19. Single-molecule force spectroscopy approach to enzyme catalysis.

    PubMed

    Alegre-Cebollada, Jorge; Perez-Jimenez, Raul; Kosuri, Pallav; Fernandez, Julio M

    2010-06-18

    Enzyme catalysis has been traditionally studied using a diverse set of techniques such as bulk biochemistry, x-ray crystallography, and NMR. Recently, single-molecule force spectroscopy by atomic force microscopy has been used as a new tool to study the catalytic properties of an enzyme. In this approach, a mechanical force ranging up to hundreds of piconewtons is applied to the substrate of an enzymatic reaction, altering the conformational energy of the substrate-enzyme interactions during catalysis. From these measurements, the force dependence of an enzymatic reaction can be determined. The force dependence provides valuable new information about the dynamics of enzyme catalysis with sub-angstrom resolution, a feat unmatched by any other current technique. To date, single-molecule force spectroscopy has been applied to gain insight into the reduction of disulfide bonds by different enzymes of the thioredoxin family. This minireview aims to present a perspective on this new approach to study enzyme catalysis and to summarize the results that have already been obtained from it. Finally, the specific requirements that must be fulfilled to apply this new methodology to any other enzyme will be discussed.

  20. Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.

    Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.

  1. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  2. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    PubMed Central

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  3. Theoretical Insights into Sub-Terahertz Acoustic Vibrations of Proteins Measured in Single-Molecule Experiments.

    PubMed

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2016-12-15

    Proteins are an important class of nanobioparticles with acoustical modes in the sub-THz frequency range. There is considerable interest to measure and establish the role of these acoustical vibrations for biological function. So far, the technique providing the most detailed information about the acoustical modes of proteins is the very recent Extraordinary Acoustic Raman (EAR) spectroscopy. In this technique, proteins are trapped in nanoholes and excited by two optical lasers of slightly different wavelengths producing an electric field at low frequency (<100 GHz). We demonstrate that the acoustical modes of proteins studied by EAR spectroscopy are both infrared- and Raman-active modes, and we provided interpretation of the spectroscopic fingerprints measured at the single-molecule level. A combination of the present calculations with techniques based on the excitation of a single nanobioparticle by an electric field, such as EAR spectroscopy, should provide a wealth of information on the role of molecular dynamics for biological function.

  4. Voltage tuning of vibrational mode energies in single-molecule junctions

    PubMed Central

    Li, Yajing; Doak, Peter; Kronik, Leeor; Neaton, Jeffrey B.; Natelson, Douglas

    2014-01-01

    Vibrational modes of molecules are fundamental properties determined by intramolecular bonding, atomic masses, and molecular geometry, and often serve as important channels for dissipation in nanoscale processes. Although single-molecule junctions have been used to manipulate electronic structure and related functional properties of molecules, electrical control of vibrational mode energies has remained elusive. Here we use simultaneous transport and surface-enhanced Raman spectroscopy measurements to demonstrate large, reversible, voltage-driven shifts of vibrational mode energies of C60 molecules in gold junctions. C60 mode energies are found to vary approximately quadratically with bias, but in a manner inconsistent with a simple vibrational Stark effect. Our theoretical model instead suggests that the mode shifts are a signature of bias-driven addition of electronic charge to the molecule. These results imply that voltage-controlled tuning of vibrational modes is a general phenomenon at metal–molecule interfaces and is a means of achieving significant shifts in vibrational energies relative to a pure Stark effect. PMID:24474749

  5. Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs.

    PubMed

    Nath, Abhinav; Trexler, Adam J; Koo, Peter; Miranker, Andrew D; Atkins, William M; Rhoades, Elizabeth

    2010-01-01

    Nanodiscs are a new class of model membranes that are being used to solubilize and study a range of integral membrane proteins and membrane-associated proteins. Unlike other model membranes, the Nanodisc bilayer is bounded by a scaffold protein coat that confers enhanced stability and a narrow particle size distribution. The bilayer diameter can be precisely controlled by changing the diameter of the protein coat. All these properties make Nanodiscs excellent model membranes for single-molecule fluorescence applications. In this chapter, we describe our work using Nanodiscs to apply total internal reflection fluorescence microscopy (TIRFM), fluorescence correlation spectroscopy (FCS), and Förster resonance energy transfer (FRET) to study the integral membrane protein cytochrome P450 3A4 and the peripheral membrane-binding proteins islet amyloid polypeptide (IAPP) and alpha-synuclein, respectively. The monodisperse size distribution of Nanodiscs enhances control over the oligomeric state of the membrane protein of interest, and facilitates accurate solution-based measurements as well. Nanodiscs also comprise an excellent system to stably immobilize integral membrane proteins in a bilayer without covalent modification, enabling a range of surface-based experiments where accurate localization of the protein of interest is required. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    PubMed

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  7. alpha-Synuclein misfolding: single molecule AFM force spectroscopy study.

    PubMed

    Yu, Junping; Malkova, Sarka; Lyubchenko, Yuri L

    2008-12-26

    Protein misfolding and aggregation are the very first and critical steps in development of various neurodegenerative disorders, including Parkinson's disease, induced by misfolding of alpha-synuclein. Thus, elucidating properties of proteins in misfolded states and understanding the mechanisms of their assembly into the disease prone aggregates are critical for the development of rational approaches to prevent protein misfolding-mediated pathologies. To accomplish this goal and as a first step to elucidate the mechanism of alpha-synuclein misfolding, we applied single-molecule force spectroscopy capable of detecting protein misfolding. We immobilized alpha-synuclein molecules at their C-termini at the atomic force microscope tips and substrate surfaces, and measured the interaction between the proteins by probing the microscope tip at various locations on the surface. Using this approach, we detected alpha-synuclein misfolded states by enhanced interprotein interaction. We used a dynamics force spectroscopy approach to measure such an important characteristic of dimers of misfolded alpha-synuclein as their lifetimes. We found that the dimer lifetimes are in the range of seconds and these values are much higher than the characteristics for the dynamics of the protein in monomeric state. These data show that compared to highly dynamic monomeric forms, alpha-synuclein dimers are much more stable and thus can serve as stable nuclei for the formation of multimeric and aggregated forms of alpha-synuclein. Importantly, two different lifetimes were observed for the dimers, suggesting that aggregation can follow different pathways that may lead to different aggregated morphologies of alpha-synuclein.

  8. Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity.

    PubMed

    Xu, Xiaoji G; Rang, Mathias; Craig, Ian M; Raschke, Markus B

    2012-07-05

    While scattering-scanning near-field optical microscopy (s-SNOM) has demonstrated its potential to extend infrared (IR) spectroscopy into the nanometer scale, it has not yet reached its full potential in terms of spectroscopic sensitivity. We combine broadband femtosecond mid-IR excitation with an optimized spectral irradiance of ∼2 W/cm(2)/ cm(-1) (power/area/bandwidth) and a combination of tip- and substrate enhancement to demonstrate single-monolayer sensitivity with exceptional signal-to-noise ratio. Using interferometric time domain detection, the near-field IR s-SNOM spectral phase directly reflects the molecular vibrational resonances and their intrinsic line shapes. We probe the stretching resonance of ∼1000 carbonyl groups at 1700 cm(-1) in a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) on an evaporated gold substrate with spectroscopic contrast and sensitivity of ≲100 vibrational oscillators. From these results we provide a roadmap for achieving true single-molecule IR vibrational spectroscopy in s-SNOM by implementing optical antenna resonant enhancement, increased spectral pump power, and improved detection schemes.

  9. Theoretical analysis of single molecule spectroscopy lineshapes of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Devi, Murali

    Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature SMES lineshapes for a particular CP, called poly(2,5-di-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV). A minimal quantum mechanical model of a two-level system coupled to a Brownian oscillator bath is utilized. The main objective is to identify the set of model parameters best fitting a SMES lineshape for each of about 200 samples of DEH-PPV, from which new insight into the nature of exciton-bath coupling can be gained. This project also entails developing a reliable computational methodology for quantum mechanical modeling of spectral lineshapes in general. Well-known optimization techniques such as gradient descent, genetic algorithms, and heuristic searches have been tested, employing an L2 measure between theoretical and experimental lineshapes for guiding the optimization. However, all of these tend to result in theoretical lineshapes qualitatively different from experimental ones. This is attributed to the ruggedness of the parameter space and inadequateness of the L2 measure. On the other hand, when the dynamic reduction of the original parameter space to a 2-parameter space through feature searching and visualization of the search space paths using directed acyclic graphs(DAGs), the qualitative nature of the fitting improved significantly. For a more

  10. Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions.

    PubMed

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B; Elbing, Mark; Mayor, Marcel; Bryce, Martin R; Thoss, Michael; Weber, Heiko B

    2012-08-03

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  11. Hybrid photodetector for single-molecule spectroscopy and microscopy

    PubMed Central

    Michalet, X.; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2011-01-01

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications. PMID:21822361

  12. Multiplexed single-molecule force spectroscopy using a centrifuge.

    PubMed

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-03-17

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  13. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  14. Hybrid photodetector for single-molecule spectroscopy and microscopy.

    PubMed

    Michalet, X; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2008-02-15

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications.

  15. Theoretical investigation on single-molecule chiroptical spectroscopy

    SciTech Connect

    Wakabayashi, M.; Yokojima, S.; Fukaminato, T.; Ogata, K.; Nakamura, S.

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  16. Multiplexed single-molecule force spectroscopy using a centrifuge

    NASA Astrophysics Data System (ADS)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-03-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  17. Directly measuring single-molecule heterogeneity using force spectroscopy

    PubMed Central

    Hinczewski, Michael; Thirumalai, D.

    2016-01-01

    One of the most intriguing results of single-molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Although we now have proof of functional heterogeneity in a handful of systems—enzymes, motors, adhesion complexes—identifying and measuring it remains a formidable challenge. Here, we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single-molecule techniques: atomic force microscopy or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Surveying 10 published datasets, we find heterogeneity in 5 of them, all with interconversion rates slower than 10 s−1. Moreover, we identify two systems where additional data at realizable pulling velocities is likely to find a theoretically predicted, but so far unobserved crossover regime between heterogeneous and nonheterogeneous behavior. The significance of this regime is that it will allow far more precise estimates of the slow conformational switching times, one of the least understood aspects of functional heterogeneity. PMID:27317744

  18. Vibrational spectroscopy

    Treesearch

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  19. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy.

    PubMed

    Wang, Bowen; Durantini, Javier; Decan, Matthew R; Nie, Jun; Lanterna, Anabel E; Scaiano, Juan C

    2016-12-22

    Single molecule spectroscopy (SMS) inspired the optimization of a heterogeneous 'click' catalyst leading to enhanced yields of the Cu-catalyzed reaction of azides with terminal alkynes. Changes in SMS data after optimization confirm the improvements in catalyst performance.

  20. Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Villa, Federica A.; Guerrieri, Fabrizio; Tisa, Simone; Zappa, Franco; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2013-01-01

    Single-molecule spectroscopy is a powerful approach to measuring molecular properties such as size, brightness, conformation, and binding constants. Due to the low concentrations in the single-molecule regime, measurements with good statistical accuracy require long acquisition times. Previously we showed a factor of 8 improvement in acquisition speed using a custom-CMOS 8x1 SPAD array. Here we present preliminary results with a 64X improvement in throughput obtained using a liquid crystal on silicon spatial light modulator (LCOS-SLM) and a novel standard CMOS 1024 pixel SPAD array, opening the way to truly high-throughput single-molecule spectroscopy. PMID:24386535

  1. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents.

    PubMed

    Black, Jacob; Kamenetska, Maria; Ganim, Ziad

    2017-10-03

    Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.

  2. Electrochemical scanning tunneling microscopy and spectroscopy for single-molecule investigation.

    PubMed

    Alessandrini, Andrea; Facci, Paolo

    2013-01-01

    The technique of electrochemical scanning tunneling microscopy (ECSTM) and spectroscopy (ECSTS) for studying electron transport through single redox molecules is here described. Redox molecules of both biological and organic nature have been studied by this technique with the aim of understanding the transport mechanisms ruling the flow of electrons via a single molecule placed in a nanometer-sized gap between two electrodes while elucidating the role of the redox density of states brought about by the molecule. The obtained results provide unique clues to single-molecule transport behavior and support the concept of single-molecule electrochemical gating.

  3. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  4. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.

    PubMed

    Neuman, Keir C; Nagy, Attila

    2008-06-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  5. Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas.

    PubMed

    Wustholz, Kristin L; Brosseau, Christa L; Casadio, Francesca; Van Duyne, Richard P

    2009-09-14

    This perspective presents recent surface-enhanced Raman spectroscopy (SERS) studies of dyes, with applications to the fields of single-molecule spectroscopy and art conservation. First we describe the development and outlook of single-molecule SERS (SMSERS). Rather than providing an exhaustive review of the literature, SMSERS experiments that we consider essential for its future development are emphasized. Shifting from single-molecule to ensemble-averaged experiments, we describe recent efforts toward SERS analysis of colorants in precious artworks. Our intention is to illustrate through these examples that the forward development of SERS is dependent upon both fundamental (e.g., SMSERS) and applied (e.g., on-the-specimen SERS of historical art objects) investigations and that the future of SERS is very bright indeed.

  6. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    NASA Astrophysics Data System (ADS)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  7. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    PubMed

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  8. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    PubMed Central

    Laine, Romain F; Kaminski Schierle, Gabriele S; van de Linde, Sebastian; Kaminski, Clemens F

    2016-01-01

    Abstract For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research. PMID:28809165

  9. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  10. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    PubMed

    Moerner, W E William E

    2015-07-06

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  11. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    NASA Astrophysics Data System (ADS)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  12. Highlights from Faraday Discussion 184: Single-Molecule Microscopy and Spectroscopy, London, UK, September 2015.

    PubMed

    Gellings, E; Faez, S; Piatkowski, L

    2016-02-07

    The 2015 Faraday Discussion on single-molecule microscopy and spectroscopy brought together leading scientists involved in various topics of single-molecule research. It attracted almost a hundred delegates from a broad spectrum of backgrounds and experience levels - from experimentalists to theoreticians, from biologists to materials scientists, from masters students to Nobel Prize Laureates. The meeting was merely a reflection of how big of an impact the ability to detect individual molecules has had on science over the past quarter of a century. In the following we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

  13. Tandem repeating modular proteins avoid aggregation in single molecule force spectroscopy experiments.

    PubMed

    Dougan, Lorna; Fernandez, Julio M

    2007-12-13

    We have used single molecule force spectroscopy to explore the unfolding and refolding behavior of the immunoglobulin-like I27 protein in aqueous 2,2,2-trifluoroethanol (TFE). In bulk solution experiments, a 28% v/v TFE solution has previously been observed to enhance intermolecular attractions and lead to misfolding and aggregation of tandem modular proteins of high sequence identity. In our single molecule experiments, however, we measure successful refolding of the polyprotein I27(8) in all TFE solutions up to 35% v/v. Using a single molecule micromanipulation technique, we have shown that refolding of a polyprotein with identical repeats is not hindered by the presence of this cosolvent. These experimental results provide new insight into the properties of tandem repeating proteins and raise interesting questions as to the evolutionary success of such proteins in avoiding misfolding and aggregation.

  14. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  15. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    SciTech Connect

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular

  16. Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Yin, Y. F.; Jiang, J. W.; Mo, Y. J.

    2009-02-01

    4-Dimethylaminoazobenzene (DAB) is anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals. The trace detection of DAB is of great significance in environmental protection and safe life of the people. To test the availability of DAB trace detection using surface-enhanced Raman scattering (SERS), the SERS spectra of DAB single molecules adsorbed on the silver particle aggregates in colloid were investigated. The phenomena of blinking, spectral diffusion, and intensity fluctuations of the vibrational lines in the SERS spectra were observed. Statistical analysis of spectral intensity fluctuations indicates a multimodal distribution of some specific Raman bands, which are consistent with the identification of single molecule detection. Our results demonstrated that SERS can be applied to the trace detection of DAB molecules and other azo dyes.

  17. Forcing a Connection: Impacts of Single-Molecule Force Spectroscopy on In Vivo Tension Sensing

    PubMed Central

    Brenner, Michael D.; Zhou, Ruobo; Ha, Taekjip

    2011-01-01

    Mechanical tension plays a large role in cell development ranging from morphology to gene expression. On the molecular level, the effects of tension can be seen in the dynamic arrangement of membrane proteins as well as the recruitment and activation of intracellular proteins. Forces applied to biopolymers during in vitro force measurements offer greater understanding of the effects of tension on molecules in live cells, and experimental techniques in test tubes and live cells can often overlap. Indeed, when forces exerted on cellular components can be calibrated ex vivo with force spectroscopy, a powerful tool is available for researchers in probing cellular mechanotransduction on the molecular scale. This review will discuss the techniques used in measuring both cellular traction forces and single-molecule force spectroscopy. Emphasis will be placed on the use of fluorescence reporter systems for the development of in vivo tension sensors that can be used for calibration with single molecule force methods. PMID:21267988

  18. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    PubMed

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  19. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  20. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy.

    PubMed

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-10-04

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures ("metasurfaces") can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent.

  1. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.

    PubMed

    Chang, Te-Wei; Wang, Xinhao; Mahigir, Amirreza; Veronis, Georgios; Liu, Gang Logan; Gartia, Manas Ranjan

    2017-08-25

    Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 10(3)). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 10(10) was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10(-12) M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.

  2. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy.

    PubMed

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P; Gaucher, Eric A; Gaucher, Eric; Sanchez-Ruiz, Jose M; Berne, Bruce J; Fernandez, Julio M

    2009-08-01

    Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.

  3. Analysis of RNA Folding and Ribonucleoprotein Assembly by Single-Molecule Fluorescence Spectroscopy

    PubMed Central

    Pljevaljčić, Goran; Robertson-Anderson, Rae; van der Schans, Edwin; Millar, David

    2013-01-01

    Summary To execute their diverse range of biological functions, RNA molecules must fold into specific tertiary structures and/or associate with one or more proteins to form ribonucleoprotein (RNP) complexes. Single-molecule fluorescence spectroscopy is a powerful tool for the study of RNA folding and RNP assembly processes, directly revealing different conformational subpopulations that are hidden in conventional ensemble measurements. Moreover, kinetic processes can be observed without the need to synchronize a population of molecules. In this chapter, we describe the fluorescence spectroscopic methods used for single-molecule measurements of freely diffusing or immobilized RNA molecules or RNA-protein complexes. We also provide practical protocols to prepare the fluorescently labeled RNA and protein molecules required for such studies. Finally, we provide two examples of how these various preparative and spectroscopic methods are employed in the study of RNA folding and RNP assembly processes. PMID:22573447

  4. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  5. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    PubMed Central

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P.; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P.; Gaucher, Eric; Sanchez-Ruiz, Jose M.; Berne, Bruce J.; Fernandez, Julio M.

    2009-01-01

    Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. PMID:19597482

  6. Copper nanoparticle heterogeneous catalytic 'click' cycloaddition confirmed by single-molecule spectroscopy.

    PubMed

    Decan, Matthew R; Impellizzeri, Stefania; Marin, M Luisa; Scaiano, Juan C

    2014-08-11

    Colloidal or heterogeneous nanocatalysts can improve the range and diversity of Cu(I)-catalysed click reactions and facilitate catalyst separation and reuse. Catalysis by metal nanoparticles raises the question as to whether heterogeneous catalysts may cause homogeneous catalysis through metal ion leaching, since the catalytic process could be mediated by the particle, or by metal ions released from it. The question is critical as unwanted homogeneous processes could offset the benefits of heterogeneous catalysis. Here, we combine standard bench scale techniques with single-molecule spectroscopy to monitor single catalytic events in real time and demonstrate that click catalysis occurs directly at the surface of copper nanoparticles; this general approach could be implemented in other systems. We use 'from the mole to the molecule' to describe this emerging idea in which mole scale reactions can be optimized through an intimate understanding of the catalytic process at the single-molecule-single catalytic nanoparticle level.

  7. Probing and Manipulating Protein Conformation Changes by Time-Resolved Single-Molecule Spectroscopy and Site-Specific Ultramicroscopy

    DTIC Science & Technology

    2008-04-01

    Biomolecular Recognition with Single Molecule Dynamics,” Phys. Rev. Lett. 98, 128105 (2007). 4. V. Biju, D. Pan, Yuri A. Gorby , Jim Fredrickson, J. Mclean, D...Protein Interactions of Calmodulin by Single-Molecule Spectroscopy," J. Am. Chem. Soc. 128, 10034-10042 ( 2006 ).

  8. Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations.

    PubMed

    Cao, Yi; Li, Hongbin

    2011-02-15

    Single-molecule force-clamp spectroscopy has become a powerful tool for studying protein folding/unfolding, bond rupture, and enzymatic reactions. Different methods have been developed to analyze force-clamp spectroscopy data on polyproteins to obtain kinetic parameters characterizing the mechanical unfolding of proteins, which are often modeled as a two-state process (a Poisson process). However, because of the finite number of domains in polyproteins, the statistical analysis of the force-clamp spectroscopy data is different from that of a classical Poisson process, and the equivalency of different analysis methods remains to be proven. In this article, we show that these methods are equivalent and lead to accurate measurements of the unfolding rate constant. We also demonstrate that distinct from the constant-pulling-velocity experiments, in which the unfolding rate extracted from the data is dependent on the number of protein domains in the polyproteins (the N effect), force-clamp experiments do not show any N effect. Using a simulated data set, we also highlighted important practical considerations that one needs to take into account when using the single-molecule force-clamp spectroscopy technique to characterize the unfolding energy landscape of proteins.

  9. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy.

    PubMed

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-10-31

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.

  10. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.

    PubMed

    Kusumi, Akihiro; Shirai, Yuki M; Koyama-Honda, Ikuko; Suzuki, Kenichi G N; Fujiwara, Takahiro K

    2010-05-03

    Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.

  11. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.

    PubMed

    Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix

    2016-07-05

    We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.

  12. Single-molecule bonds characterized by solid-state nanopore force spectroscopy.

    PubMed

    Tabard-Cossa, Vincent; Wiggin, Matthew; Trivedi, Dhruti; Jetha, Nahid N; Dwyer, Jason R; Marziali, Andre

    2009-10-27

    Weak molecular interactions drive processes at the core of living systems, such as enzyme-substrate interactions, receptor-ligand binding, and nucleic acid replication. Single-molecule force spectroscopy is a remarkable tool for revealing molecular scale energy landscapes of noncovalent bonds, by exerting a mechanical force directly on an individual molecular complex and tracking its survival as a function of time and applied force. In principle, force spectroscopy methods can also be used for highly specific molecular recognition assays, by directly characterizing the strength of bonds between probe and target molecules. However, complexity and low throughput of conventional force spectroscopy techniques render such biosensing applications impractical. Here we demonstrate a straightforward single-molecule approach, suitable for both biophysical studies and molecular recognition assays, in which a approximately 3 nm silicon nitride nanopore is used to determine the bond lifetime spectrum of the biotin-neutravidin complex. Thousands of individual molecular complexes are captured and dissociated in the solid-state nanopore under constant applied forces, ranging from 400 to 900 mV, allowing us to extract the location of the energy barrier that governs the interaction, mapped at Deltax approximately 0.5 nm. These results highlight the capacity of a solid-state nanopore to detect and characterize intermolecular interactions and demonstrate how this could be applied to rapid, highly specific molecular detection assays.

  13. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein.

    PubMed

    Horejs, Christine; Ristl, Robin; Tscheliessnig, Rupert; Sleytr, Uwe B; Pum, Dietmar

    2011-08-05

    Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.

  14. Fluorescence spectroscopy of single molecules at room temperature and its applications

    SciTech Connect

    Ha, Taekjip

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  15. Unequivocal Single-Molecule Force Spectroscopy of Proteins by AFM Using pFS Vectors

    PubMed Central

    Oroz, Javier; Hervás, Rubén; Carrión-Vázquez, Mariano

    2012-01-01

    Nanomechanical analysis of proteins by single-molecule force spectroscopy based on atomic force microscopy is increasingly being used to investigate the inner workings of mechanical proteins and substrate proteins of unfoldase machines as well as to gain new insight into the process of protein folding. However, such studies are hindered by a number of technical problems, including the noise of the proximal region, ambiguous single-molecule identification, as well as difficulties in protein expression/folding and full-length purification. To overcome these major drawbacks in protein nanomechanics, we designed a family of cloning/expression vectors, termed pFS (plasmid for force spectroscopy), that essentially has an unstructured region to surmount the noisy proximal region, a homomeric polyprotein marker, a carrier to mechanically protect the protein of interest (only the pFS-2 version) that also acts as a reporter, and two purification tags. pFS-2 enables the unambiguous analysis of proteins with low mechanical stability or/and complex force spectra, such as the increasingly abundant class of intrinsically disordered proteins, which are hard to characterize by traditional bulk techniques and have important biological and clinical implications. The advantages, applications, and potential of this ready-to-go system are illustrated through the analysis of representative proteins. PMID:22325292

  16. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).

  17. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  18. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  19. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding.

    PubMed

    Hughes, Megan L; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  20. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology.

    PubMed

    Wang, Yuling; Irudayaraj, Joseph

    2013-02-05

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences.

  1. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Basuray, Sagnik; Pathak, Avinash; Bok, Sangho; Chen, Biyan; Hamm, Steven C.; Mathai, Cherian J.; Guha, Suchismita; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2017-01-01

    Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as ‘nano-protrusions’, due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 108 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a

  2. Can Dissipative Properties of Single Molecules Be Extracted from a Force Spectroscopy Experiment?

    PubMed

    Benedetti, Fabrizio; Gazizova, Yulia; Kulik, Andrzej J; Marszalek, Piotr E; Klinov, Dmitry V; Dietler, Giovanni; Sekatskii, Sergey K

    2016-09-20

    We performed dynamic force spectroscopy of single dextran and titin I27 molecules using small-amplitude and low-frequency (40-240 Hz) dithering of an atomic force microscope tip excited by a sine wave voltage fed onto the tip-carrying piezo. We show that for such low-frequency dithering experiments, recorded phase information can be unambiguously interpreted within the framework of a transparent theoretical model that starts from a well-known partial differential equation to describe the dithering of an atomic force microscope cantilever and a single molecule attached to its end system, uses an appropriate set of initial and boundary conditions, and does not exploit any implicit suggestions. We conclude that the observed phase (dissipation) signal is due completely to the dissipation related to the dithering of the cantilever itself (i.e., to the change of boundary conditions in the course of stretching). For both cases, only the upper bound of the dissipation of a single molecule has been established as not exceeding 3⋅10(-7)kg/s. We compare our results with previously reported measurements of the viscoelastic properties of single molecules, and we emphasize that extreme caution must be taken in distinguishing between the dissipation related to the stretched molecule and the dissipation that originates from the viscous damping of the dithered cantilever. We also present the results of an amplitude channel data analysis, which reveal that the typical values of the spring constant of a I27 molecule at the moment of module unfolding are equal to 4±1.5mN/m, and the typical values of the spring constant of dextran at the moment of chair-boat transition are equal to 30-50mN/m.

  3. Electron-vibration interaction in single-molecule junctions: from contact to tunneling regimes.

    PubMed

    Tal, O; Krieger, M; Leerink, B; van Ruitenbeek, J M

    2008-05-16

    Point contact spectroscopy on a H(2)O molecule bridging Pt electrodes reveals a clear crossover between enhancement and reduction of the conductance due to electron-vibration interaction. As single-channel models predict such a crossover at a transmission probability of tau=0.5, we used shot noise measurements to analyze the transmission and observed at least two channels across the junction where the dominant channel has a tau=0.51 +/- 0.01 transmission probability at the crossover conductance, which is consistent with the predictions for single-channel models.

  4. Microfluidic mixing for non-equilibrium single-molecule optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Pfeil, Shawn H.

    We describe a series of experiments made possible by the combination of single-molecule fluorescence spectroscopy and microfluidic mixing. To perform these measurements, a microfluidic sample handling system was developed and characterized. This system allows observation at times as early as 2.4 ms after a reaction is triggered, which is an more than an order of magnitude earlier than previous microfabricated devices. Dilutions as high as 1:19 (v/v) are achieved, allowing measurements of molecular refolding in native conditions. The interconversion of subpopulations, masked by averaging in ensemble measurements, is observed. This technology also facilitates ultra-sensitive chemiluminescence measurements, using only microliters of sample. Microfluidics are designed and fabricated to extend single-molecule measurements to samples out of equilibrium. The system is optimized for sensitive optical detection and experimental convenience. Channels are replica-molded in poly-dimethyl-siloxane (PDMS) elastomer and sealed to coverglass. The resulting devices are compatible with a broad range of chemicals, and exhibit low background fluorescence. The combination of continuous flow, which decouples reaction progress from measurement duration, with low background enables single molecules to be probed at well defined times after a reaction is triggered. Fluid delivery and pressure connections are made using an interface optimized for rapid assembly, rapid sample exchange, and modular device replacement, while providing access for high numerical aperture optics. The kinetics of Csp, the cold shock protein from Thermotoga maritima, are studied with the mixer. An order of magnitude decrease in deadtime puts a new upper limit of 4.6 ms on the time required for collapse after mixing. This result is in agreement with indirect measurements of chain reconfiguration time, which suggest collapse happens on the timescale of 10--100 ns. Measurements of the kinetics of a DNA sequence that

  5. Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy

    PubMed Central

    Kuo, Tzu-Ling; Garcia-Manyes, Sergi; Li, Jingyuan; Barel, Itay; Lu, Hui; Berne, Bruce J.; Urbakh, Michael; Klafter, Joseph; Fernández, Julio M.

    2010-01-01

    The widely used Arrhenius equation describes the kinetics of simple two-state reactions, with the implicit assumption of a single transition state with a well-defined activation energy barrier ΔE, as the rate-limiting step. However, it has become increasingly clear that the saddle point of the free-energy surface in most reactions is populated by ensembles of conformations, leading to nonexponential kinetics. Here we present a theory that generalizes the Arrhenius equation to include static disorder of conformational degrees of freedom as a function of an external perturbation to fully account for a diverse set of transition states. The effect of a perturbation on static disorder is best examined at the single-molecule level. Here we use force-clamp spectroscopy to study the nonexponential kinetics of single ubiquitin proteins unfolding under force. We find that the measured variance in ΔE shows both force-dependent and independent components, where the force-dependent component scales with F2, in excellent agreement with our theory. Our study illustrates a novel adaptation of the classical Arrhenius equation that accounts for the microscopic origins of nonexponential kinetics, which are essential in understanding the rapidly growing body of single-molecule data. PMID:20534507

  6. Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy.

    PubMed

    Kuo, Tzu-Ling; Garcia-Manyes, Sergi; Li, Jingyuan; Barel, Itay; Lu, Hui; Berne, Bruce J; Urbakh, Michael; Klafter, Joseph; Fernández, Julio M

    2010-06-22

    The widely used Arrhenius equation describes the kinetics of simple two-state reactions, with the implicit assumption of a single transition state with a well-defined activation energy barrier DeltaE, as the rate-limiting step. However, it has become increasingly clear that the saddle point of the free-energy surface in most reactions is populated by ensembles of conformations, leading to nonexponential kinetics. Here we present a theory that generalizes the Arrhenius equation to include static disorder of conformational degrees of freedom as a function of an external perturbation to fully account for a diverse set of transition states. The effect of a perturbation on static disorder is best examined at the single-molecule level. Here we use force-clamp spectroscopy to study the nonexponential kinetics of single ubiquitin proteins unfolding under force. We find that the measured variance in DeltaE shows both force-dependent and independent components, where the force-dependent component scales with F(2), in excellent agreement with our theory. Our study illustrates a novel adaptation of the classical Arrhenius equation that accounts for the microscopic origins of nonexponential kinetics, which are essential in understanding the rapidly growing body of single-molecule data.

  7. Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates

    PubMed Central

    Motlagh, Hesam N.; Toptygin, Dmitri; Kaiser, Christian M.; Hilser, Vincent J.

    2016-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool for studying the folding of biological macromolecules. Mechanical manipulation has revealed a wealth of mechanistic information on transient and intermediate states. To date, the majority of state assignment of intermediates has relied on empirical demarcation. However, performing such experiments in the presence of different osmolytes provides an alternative approach that reports on the structural properties of intermediates. Here, we analyze the folding and unfolding of T4 lysozyme with optical tweezers under a chemo-mechanical perturbation by adding osmolytes. We find that two unrelated protective osmolytes, sorbitol and trimethylamine-n-oxide, function by marginally decelerating unfolding rates and specifically modulating early events in the folding process, stabilizing formation of an on-pathway intermediate. The chemo-mechanical perturbation provides access to two independent metrics of the relevant states during folding trajectories, the contour length, and the solvent-accessible surface area. We demonstrate that the dependence of the population of the intermediate in different osmolytes, in conjunction with its measured contour length, provides the ability to discriminate between potential structural models of intermediate states. Our study represents a general strategy that may be employed in the structural modeling of equilibrium intermediate states observed in single-molecule experiments. PMID:27028638

  8. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  9. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds.

    PubMed

    Martines, E; Zhong, J; Muzard, J; Lee, A C; Akhremitchev, B B; Suter, D M; Lee, G U

    2012-08-22

    Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.

  10. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy

    PubMed Central

    Oroudjev, E.; Soares, J.; Arcidiacono, S.; Thompson, J. B.; Fossey, S. A.; Hansma, H. G.

    2002-01-01

    Despite its remarkable materials properties, the structure of spider dragline silk has remained unsolved. Results from two probe microscopy techniques provide new insights into the structure of spider dragline silk. A soluble synthetic protein from dragline silk spontaneously forms nanofibers, as observed by atomic force microscopy. These nanofibers have a segmented substructure. The segment length and amino acid sequence are consistent with a slab-like shape for individual silk protein molecules. The height and width of nanofiber segments suggest a stacking pattern of slab-like molecules in each nanofiber segment. This stacking pattern produces nano-crystals in an amorphous matrix, as observed previously by NMR and x-ray diffraction of spider dragline silk. The possible importance of nanofiber formation to native silk production is discussed. Force spectra for single molecules of the silk protein demonstrate that this protein unfolds through a number of rupture events, indicating a modular substructure within single silk protein molecules. A minimal unfolding module size is estimated to be around 14 nm, which corresponds to the extended length of a single repeated module, 38 amino acids long. The structure of this spider silk protein is distinctly different from the structures of other proteins that have been analyzed by single-molecule force spectroscopy, and the force spectra show correspondingly novel features. PMID:11959907

  11. The Citrate Carrier CitS Probed by Single-Molecule Fluorescence Spectroscopy

    PubMed Central

    Kästner, Christopher N.; Prummer, Michael; Sick, Beate; Renn, Alois; Wild, Urs P.; Dimroth, Peter

    2003-01-01

    A prominent region of the Na+-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were selectively labeled with the thiol-reactive fluorophores AlexaFluor 546/568 C5 maleimide (AF546, AF568). While both single-cysteine mutants were catalytically active citrate carriers, labeling with the fluorophore was only tolerated at C398. Upon citrate addition to the functional protein fluorophore conjugate CitS-sC398-AF546, complete fluorescence quenching of the majority of molecules was observed, indicating a citrate-induced conformational change of the fluorophore-containing domain of CitS. This quenching was specific for the physiological substrate citrate and therefore most likely reflecting a conformational change in the citrate transport mechanism. Single-molecule studies with dual-labeled CitS-sC398-AF546/568 and dual-color detection provided strong evidence for a homodimeric association of CitS. PMID:12609868

  12. Single Molecule Manipulation and Spectroscopy of Chlorophyll-a from Spinach

    NASA Astrophysics Data System (ADS)

    Benson, Jessica-Jones

    2005-03-01

    Chlorophyll-a, a molecule produced from `Spinach', adsorbed on a Au(111) surface has been investigated by using an ultra-high-vacuum low-temperature scanning-tunneling-microscope (UHV-LT-STM) at liquid helium temperatures. Studies are carried out both on isolated single molecules and on self-assembled molecular layers. The tunneling I-V and dI-dV spectroscopy of chlorophyll-a elucidate electronic properties of single molecule, such as the HOMO-LOMO gap and molecular orbital states. Mechanical stability of the chlorophyll-a is examined by using STM lateral manipulation (1,2). Here, the STM tip is placed just a few angstrom separation from the molecule to increase the tip-molecule interaction. Then the tip is laterally scanned across the surface resulting in pulling of the molecule. The detailed molecule movement is directly monitored through the corresponding STM-tip height signals. Our results reveal that the spinach molecule is a promising candidate for environmental friendly nano-device applications. (1). S.-W. Hla, K.-H. Rieder, Ann. Rev. Phys. Chem. 54 (2003) 307-330. (2). S.-W. Hla, et al. Phys. Rev. Lett. 93 (2004), 208302. This work is financially supported by the US-DOE grant DE-FG02-02ER46012.

  13. Studying the mechanism of CD47-SIRPα interactions on red blood cells by single molecule force spectroscopy.

    PubMed

    Pan, Yangang; Wang, Feng; Liu, Yanhou; Jiang, Junguang; Yang, Yong-Guang; Wang, Hongda

    2014-09-07

    The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level.

  14. Minimizing Pulling Geometry Errors in Atomic Force Microscope Single Molecule Force Spectroscopy

    PubMed Central

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E.; Cole, Daniel G.; Clark, Robert L.

    2008-01-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies. PMID:18641069

  15. Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiji; Wang, Chungang; Irudayaraj, Joseph

    2009-07-01

    A one-step rapid and ultrasensitive immunoassay capable of detecting proteins in blood serum is developed using gold nanoprobes and fluorescence correlation spectroscopy (FCS). In this approach we take advantage of the inherent photoluminescence property of gold nanoparticles (GNPs) to develop a fluorophore-free assay to observe binding entities by monitoring the diffusion of bound versus unbound molecules in a limited confocal volume. 40-nm GNPs conjugated separately with rabbit anti-IgG (Fc) and goat anti-IgG (Fab) when incubated in blood serum containing IgG forms a sandwich structure constituting dimers and oligomers that can be differentiated by to detect IgG in blood serum at a limit of detection (LOD) of 5 pg/ml. The novelty of integrating GNPs with FCS to develop a sensitive blood immunoassay brings single molecule methods one step closer to the clinic.

  16. Role of denatured-state properties in chaperonin action probed by single-molecule spectroscopy.

    PubMed

    Hofmann, Hagen; Hillger, Frank; Delley, Cyrille; Hoffmann, Armin; Pfeil, Shawn H; Nettels, Daniel; Lipman, Everett A; Schuler, Benjamin

    2014-12-16

    The bacterial chaperonin GroEL/GroES assists folding of a broad spectrum of denatured and misfolded proteins. Here, we explore the limits of this remarkable promiscuity by mapping two denatured proteins with very different conformational properties, rhodanese and cyclophilin A, during binding and encapsulation by GroEL/GroES with single-molecule spectroscopy, microfluidic mixing, and ensemble kinetics. We find that both proteins bind to GroEL with high affinity in a reaction involving substantial conformational adaptation. However, whereas the compact denatured state of rhodanese is encapsulated efficiently upon addition of GroES and ATP, the more expanded and unstructured denatured cyclophilin A is not encapsulated but is expelled into solution. The origin of this surprising disparity is the weaker interactions of cyclophilin A with a transiently formed GroEL-GroES complex, which may serve as a crucial checkpoint for substrate discrimination.

  17. Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins.

    PubMed

    Schuler, Benjamin; Soranno, Andrea; Hofmann, Hagen; Nettels, Daniel

    2016-07-05

    The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology. We have thus seen a reemergence of polymer physics as a versatile framework for understanding their structure and dynamics. An important driving force for these developments has been single-molecule spectroscopy, as it allows structural heterogeneity, intramolecular distance distributions, and dynamics to be quantified over a wide range of timescales and solution conditions. Polymer concepts provide an important basis for relating the physical properties of unstructured proteins to folding and function.

  18. Force dependency of biochemical reactions measured by single molecule force-clamp spectroscopy

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M.

    2015-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique. PMID:23744288

  19. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  20. Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Decan, Matthew R.; Impellizzeri, Stefania; Marin, M. Luisa; Scaiano, Juan C.

    2014-08-01

    Colloidal or heterogeneous nanocatalysts can improve the range and diversity of Cu(I)-catalysed click reactions and facilitate catalyst separation and reuse. Catalysis by metal nanoparticles raises the question as to whether heterogeneous catalysts may cause homogeneous catalysis through metal ion leaching, since the catalytic process could be mediated by the particle, or by metal ions released from it. The question is critical as unwanted homogeneous processes could offset the benefits of heterogeneous catalysis. Here, we combine standard bench scale techniques with single-molecule spectroscopy to monitor single catalytic events in real time and demonstrate that click catalysis occurs directly at the surface of copper nanoparticles; this general approach could be implemented in other systems. We use ‘from the mole to the molecule’ to describe this emerging idea in which mole scale reactions can be optimized through an intimate understanding of the catalytic process at the single-molecule—single catalytic nanoparticle level.

  1. Towards single-molecule NMR detection and spectroscopy using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hall, L. T.; Simpson, D. A.; Hill, C. D.; Hollenberg, L. C. L.

    2014-02-01

    Nanomagnetometry using the nitrogen-vacancy (NV) center in diamond has attracted a great deal of interest due to its unique combination of room temperature operation, nanoscale resolution, and high sensitivity. One of the important goals for nanomagnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis details a method by which a single molecule on the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV center on a time scale of an order of seconds with nanometer precision. We perform spatiotemporal resolution optimization and subsequently outline paths to greater sensitivity. Our method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.

  2. Role of Denatured-State Properties in Chaperonin Action Probed by Single-Molecule Spectroscopy

    PubMed Central

    Hofmann, Hagen; Hillger, Frank; Delley, Cyrille; Hoffmann, Armin; Pfeil, Shawn H.; Nettels, Daniel; Lipman, Everett A.; Schuler, Benjamin

    2014-01-01

    The bacterial chaperonin GroEL/GroES assists folding of a broad spectrum of denatured and misfolded proteins. Here, we explore the limits of this remarkable promiscuity by mapping two denatured proteins with very different conformational properties, rhodanese and cyclophilin A, during binding and encapsulation by GroEL/GroES with single-molecule spectroscopy, microfluidic mixing, and ensemble kinetics. We find that both proteins bind to GroEL with high affinity in a reaction involving substantial conformational adaptation. However, whereas the compact denatured state of rhodanese is encapsulated efficiently upon addition of GroES and ATP, the more expanded and unstructured denatured cyclophilin A is not encapsulated but is expelled into solution. The origin of this surprising disparity is the weaker interactions of cyclophilin A with a transiently formed GroEL-GroES complex, which may serve as a crucial checkpoint for substrate discrimination. PMID:25517154

  3. Unraveling the Electronic Heterogeneity of Charge Traps in Conjugated Polymers by Single-Molecule Spectroscopy.

    PubMed

    Adachi, Takuji; Vogelsang, Jan; Lupton, John M

    2014-02-06

    Charge trapping is taken for granted in modeling the characteristics of organic semiconductor devices, but very few techniques actually exist to spectroscopically pinpoint trap states. For example, trap levels are often assumed to be discrete in energy. Using the well-known keto defect in polyfluorene as a model, we demonstrate how single-molecule spectroscopy can directly track the formation of charge and exciton traps in conjugated polymers in real time, providing crucial information on the energetic distribution of trap sites relative to the polymer optical gap. Charge traps with universal spectral fingerprints scatter by almost 1 eV in depth, implying that substantial heterogeneity must be taken into account when modeling devices.

  4. Probing Protein Multidimensional Conformational Fluctuations by Single-Molecule Multiparameter Photon Stamping Spectroscopy

    PubMed Central

    2015-01-01

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  5. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy.

    PubMed

    Lu, Maolin; Lu, H Peter

    2014-10-16

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  6. Is Single-Molecule Fluorescence Spectroscopy Ready To Join the Organic Chemistry Toolkit? A Test Case Involving Click Chemistry.

    PubMed

    Scaiano, Juan C; Lanterna, Anabel E

    2017-04-06

    Single molecule spectroscopy (SMS) has matured to a point where it can be used as a convenient tool to guide organic synthesis and drug discovery, particularly applicable to catalytic systems where questions related to homogeneous vs heterogeneous pathways are important. SMS can look at intimate mechanistic details that can inspire major improvements of the catalyst performance, its recovery, and reuse. Here, we use the click reaction between alkynes and azides as an example where improvements at the bench have been inspired and validated using single-molecule fluorescence spectroscopy.

  7. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  8. Single-Molecule Force Spectroscopy of DNA-Based Reversible Polymer Bridges: Surface Robustness and Homogeneity

    PubMed Central

    Serpe, Michael J.; Whitehead, Jason R.; Rivera, Monica; Clark, Robert L.; Craig, Stephen L.

    2011-01-01

    Single-molecule force spectroscopy, as implemented in an atomic force microscope, provides a rarely-used method by which to monitor dynamic processes that occur near surfaces. Here, a methodology is presented and characterized that facilitates the study of polymer bridging across nanometer-sized gaps. The model system employed is that of DNA-based reversible polymers, and an automated procedure is introduced that allows the AFM tip-surface contact point to be automatically determined, and the distance d between opposing surfaces to be actively controlled. Using this methodology, the importance of several experimental parameters was systematically studied, e.g. the frequency of repeated tip/surface contacts, the area of the substrate surface sampled by the AFM, and the use of multiple AFM tips and substrates. Experiments revealed the surfaces to be robust throughout pulling experiments, so that multiple touches and pulls could be carried out on a single spot with no measurable affect on the results. Differences in observed bridging probabilities were observed, both on different spots on the same surface and, more dramatically, from one day to another. Data normalization via a reference measurement allows data from multiple days to be directly compared. PMID:21966095

  9. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Krüger, T. P. J.; van Grondelle, R.

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  10. Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy

    PubMed Central

    Gensler, Manuel; Eidamshaus, Christian; Taszarek, Maurice; Reissig, Hans-Ulrich

    2015-01-01

    Summary Multivalent biomolecular interactions allow for a balanced interplay of mechanical stability and malleability, and nature makes widely use of it. For instance, systems of similar thermal stability may have very different rupture forces. Thus it is of paramount interest to study and understand the mechanical properties of multivalent systems through well-characterized model systems. We analyzed the rupture behavior of three different bivalent pyridine coordination complexes with Cu2+ in aqueous environment by single-molecule force spectroscopy. Those complexes share the same supramolecular interaction leading to similar thermal off-rates in the range of 0.09 and 0.36 s−1, compared to 1.7 s−1 for the monovalent complex. On the other hand, the backbones exhibit different flexibility, and we determined a broad range of rupture lengths between 0.3 and 1.1 nm, with higher most-probable rupture forces for the stiffer backbones. Interestingly, the medium-flexible connection has the highest rupture forces, whereas the ligands with highest and lowest rigidity seem to be prone to consecutive bond rupture. The presented approach allows separating bond and backbone effects in multivalent model systems. PMID:26124883

  11. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.

    PubMed Central

    Müller, Daniel J; Kessler, Max; Oesterhelt, Filipp; Möller, Clemens; Oesterhelt, Dieter; Gaub, Hermann

    2002-01-01

    The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane alpha-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the alpha-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR. PMID:12496125

  12. Red antenna states of Photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy.

    PubMed

    Brecht, Marc; Hussels, Martin; Schlodder, Eberhard; Karapetyan, Navassard V

    2012-03-01

    Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ≅726 and ≅760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ≅714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.

  13. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy

    PubMed Central

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R.; Müller-Späth, Sonja; Pfeil, Shawn H.; Hoffmann, Armin; Lipman, Everett A.; Makarov, Dmitrii E.; Schuler, Benjamin

    2012-01-01

    Internal friction, which reflects the “roughness” of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners. PMID:22492978

  14. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores.

    PubMed

    Petrosyan, Rafayel; Bippes, Christian A; Walheim, Stefan; Harder, Daniel; Fotiadis, Dimitrios; Schimmel, Thomas; Alsteens, David; Müller, Daniel J

    2015-05-13

    Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.

  15. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    PubMed

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation. Copyright © 2016 Biophysical Society. All rights reserved.

  16. Motion of a DNA Sliding Clamp Observed by Single Molecule Fluorescence Spectroscopy*S⃞

    PubMed Central

    Laurence, Ted A.; Kwon, Youngeun; Johnson, Aaron; Hollars, Christopher W.; O'Donnell, Mike; Camarero, Julio A.; Barsky, Daniel

    2008-01-01

    DNA sliding clamps attach to polymerases and slide along DNA to allow rapid, processive replication of DNA. These clamps contain many positively charged residues that could curtail the sliding due to attractive interactions with the negatively charged DNA. By single-molecule spectroscopy we have observed a fluorescently labeled sliding clamp (polymerase III β subunit or β clamp) loaded onto freely diffusing, single-stranded M13 circular DNA annealed with fluorescently labeled DNA oligomers of up to 90 bases. We find that the diffusion constant for the β clamp diffusing along DNA is on the order of 10–14 m2/s, at least 3 orders of magnitude less than that for diffusion through water alone. We also find evidence that the β clamp remains at the 3′ end in the presence of Escherichia coli single-stranded-binding protein. These results may imply that the clamp not only acts to hold the polymerase on the DNA but also prevents excessive drifting along the DNA. PMID:18556658

  17. Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy.

    PubMed

    Gensler, Manuel; Eidamshaus, Christian; Taszarek, Maurice; Reissig, Hans-Ulrich; Rabe, Jürgen P

    2015-01-01

    Multivalent biomolecular interactions allow for a balanced interplay of mechanical stability and malleability, and nature makes widely use of it. For instance, systems of similar thermal stability may have very different rupture forces. Thus it is of paramount interest to study and understand the mechanical properties of multivalent systems through well-characterized model systems. We analyzed the rupture behavior of three different bivalent pyridine coordination complexes with Cu(2+) in aqueous environment by single-molecule force spectroscopy. Those complexes share the same supramolecular interaction leading to similar thermal off-rates in the range of 0.09 and 0.36 s(-1), compared to 1.7 s(-1) for the monovalent complex. On the other hand, the backbones exhibit different flexibility, and we determined a broad range of rupture lengths between 0.3 and 1.1 nm, with higher most-probable rupture forces for the stiffer backbones. Interestingly, the medium-flexible connection has the highest rupture forces, whereas the ligands with highest and lowest rigidity seem to be prone to consecutive bond rupture. The presented approach allows separating bond and backbone effects in multivalent model systems.

  18. High-throughput single-molecule force spectroscopy for membrane proteins

    NASA Astrophysics Data System (ADS)

    Bosshart, Patrick D.; Casagrande, Fabio; Frederix, Patrick L. T. M.; Ratera, Merce; Bippes, Christian A.; Müller, Daniel J.; Palacin, Manuel; Engel, Andreas; Fotiadis, Dimitrios

    2008-09-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ~400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ~200 (AdiC) and ~400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  19. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy.

    PubMed

    Sapra, K Tanuj; Besir, Hüseyin; Oesterhelt, Dieter; Muller, Daniel J

    2006-01-27

    Using single-molecule force spectroscopy we characterized inter- and intramolecular interactions stabilizing structural segments of individual bacteriorhodopsin (BR) molecules assembled into trimers and dimers, and monomers. While the assembly of BR did not vary the location of these structural segments, their intrinsic stability could change up to 70% increasing from monomer to dimer to trimer. Since each stable structural segment established one unfolding barrier, we conclude that the locations of unfolding barriers were determined by intramolecular interactions but that their strengths were strongly influenced by intermolecular interactions. Subtracting the unfolding forces of the BR trimer from that of monomer allowed us to calculate the contribution of inter- and intramolecular interactions to the membrane protein stabilization. Statistical analyses showed that the unfolding pathways of differently assembled BR molecules did not differ in their appearance but in their population. This suggests that in our experiments the membrane protein assembly does not necessarily change the location of unfolding barriers within the protein, but certainly their strengths, and thus alters the probability of a protein to choose certain unfolding pathways.

  20. Low Temperature STM Manipulation and Spectroscopy of Chlorophyll-a Single Molecules from Spinach

    NASA Astrophysics Data System (ADS)

    Benson, Jessica J.; Iancu, Violeta; Deshpande, Aparna; Hla, Saw-Wai

    2004-04-01

    We interrogate single chlorophyll-a, a molecule produced from Spinach, on Cu(111) surface to check its mechanical stability and electronic properties using an ultra-high-vacuum low-temperature scanning-tunneling-microscope (UHV-LT-STM) at liquid helium temperatures. The measured results of isolated single chlorophyll-a molecules are then compared with that of self-assembled molecular layer. The tunneling I/V and dI/dV spectroscopy techniques are used to probe the electronic properties of the chlorophyll-a molecule with atomic precision (1). These spectroscopic investigations elucidate properties of the single molecule such as the band gap and additional molecular orbital states. Mechanical stability of the chlorophyll-a molecule is examined using lateral manipulation techniques with the STM tip (2). In this procedure, the STM tip is placed in close proximity to the molecule (just a few angstrom separation) to increase the tip-molecule interaction. Then the tip is laterally moved across the surface, which results in pulling of the chlorophyll-a molecule to relocate to the specific surface sites. The detailed molecule movement during this manipulation is directly monitored through the corresponding STM-tip height signals. Our results highlight that the Spinach molecule is a promising candidate for environmental friendly nano-electronic device applications. (1) F. Moresco et al, Phy. Rev. Lett. 86, 672-675, (2001) (2) S-W. Hla, K-H. Rieder, Ann. Phy. Chem. 54, 307-330, (2003)

  1. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    SciTech Connect

    Laurence, Ted Alfred

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  2. Time resolved single molecule spectroscopy of semiconductor quantum dot/conjugated organic hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Odoi, Michael Yemoh

    Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd

  3. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    PubMed

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  4. Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets.

    PubMed

    Escalera-Moreno, L; Suaud, N; Gaita-Ariño, A; Coronado, E

    2017-04-06

    To design molecular spin qubits and nanomagnets operating at high temperatures, there is an urgent need to understand the relationship between vibrations and spin relaxation processes. Herein we develop a simple first-principles methodology to determine the modulation that vibrations exert on spin energy levels. This methodology is applied to [Cu(mnt)2](2-) (mnt(2-) = 1,2-dicyanoethylene-1,2-dithiolate), a highly coherent complex. By theoretically identifying the most relevant vibrational modes, we are able to offer general strategies to chemically design more resilient magnetic molecules, where the energy of the spin states is not coupled to vibrations.

  5. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  6. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  7. Bloch Surface Wave-Coupled Emission from Quantum Dots by Ensemble and Single Molecule Spectroscopy.

    PubMed

    Ray, Krishanu; Badugu, Ramachandram; Lakowicz, Joseph R

    We report the spectral properties and spatial distribution of quantum dot (QD575 ) emission on a one-dimensional photonic crystal (1DPC). Our 1DPC substrate consists of multiple layers of dielectrics with a photonic band gap (PBG) near the QD575 emission maximum. The 1DPC was designed to display a surface-trapped electromagnetic state known as a Bloch surface wave (BSW) at the 1DPC-air (sample) interface. Ensemble angle-dependent emission intensities revealed a sharp angular emission peak near 41° from the normal which is consistent with the BSW resonance at 575 nm. We further examined the emission from single QDs on the 1DPC. A notable increase in fluorescence intensity from QD575 particles was observed on BSW substrate compared to the glass substrate from the scanning confocal fluorescence images and from the intensity-time trajectories of single QD575 particles. The intensity-decays showed substantially faster decay (4-fold decrease in emission lifetime) from the single QD575 particles on 1DPC substrate (∼4.8 nsec) as compared to the glass substrate (∼18 nsec). We observed the spectral characteristics of the individual QD575 particles on 1DPC and glass substrates, by recording the single particle emission spectra through the 1DPC. The emission spectra of the single QD575 particles are similar (with emission maxima around 575 nm) on both substrates except a substantial increase in intensity (over 10-fold) on the BSW substrate. Our results demonstrate that quantum dots can interact with Bloch Surface Waves (BSW) on a 1DPC. To the best of our knowledge, this is the first report on the single particle fluorescence studies on 1DPC substrate. The 10-fold increase in intensity in combination with 4-fold reduction in emission lifetime suggest 1DPCs with BSW modes have potential use in sensing and single molecule spectroscopy.

  8. Blinking effect and the use of quantum dots in single molecule spectroscopy

    SciTech Connect

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M.P.; Pardo, Julian; Graeber, P.; Galvez, E.M.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  9. Proposal for Quantum Sensing Based on Two-Dimensional Dynamical Decoupling: NMR Correlation Spectroscopy of Single Molecules

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-11-01

    Nuclear magnetic resonance (NMR) has enormous applications. Two-dimensional NMR is an essential technique to characterize correlations between nuclei and, hence, molecule structures. Towards the ultimate goal of single-molecule NMR, dynamical-decoupling- (DD) enhanced diamond quantum sensing enables the detection of single nuclear spins and nanoscale NMR. However, there is still the lack of a standard method in DD-based quantum sensing to characterize correlations between nuclear spins in single molecules. Here we present a scheme of two-dimensional DD-based quantum sensing, as a universal method for correlation spectroscopy of single molecules. We design two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies for resonant DD. We find that under the resonant DD condition the sensor coherence patterns, as functions of the two independent pulse numbers of DD subsequences, can fully determine different types of correlations between nuclear spin transitions. This work offers a systematic approach to correlation spectroscopy for single-molecule NMR.

  10. Studying the mechanism of CD47-SIRPα interactions on red blood cells by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, Yangang; Wang, Feng; Liu, Yanhou; Jiang, Junguang; Yang, Yong-Guang; Wang, Hongda

    2014-08-01

    The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level.The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level. Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c4nr02889a

  11. Mechanical properties of NRR domain from human Notch 1 studied by single molecule AFM force spectroscopy

    NASA Astrophysics Data System (ADS)

    Szoszkiewicz, Robert; Dey, Ashim

    2011-03-01

    For proteins in living cells, forces are present from macroscopic to single molecule levels. Single molecule atomic force microscopy in force extension (FX-AFM) mode measures forces at which proteins undergo major conformational transitions with ~ 10 pN force sensitivity (FX-AFM). Here, we present the results of the FX-AFM experiments on a construct comprising the NRR domain from human Notch 1. It is believed that understanding the mechanical properties of Notch at the single molecule level can help to understand its role in triggering some breast cancers. The experimental results on the Notch construct and further analysis revealed several conformational transitions of this molecule under force. These results opened a path for further investigations of Notch constructs at various physiologically relevant conditions.

  12. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein.

    PubMed

    Pirchi, Menahem; Ziv, Guy; Riven, Inbal; Cohen, Sharona Sedghani; Zohar, Nir; Barak, Yoav; Haran, Gilad

    2011-10-11

    Proteins attain their function only after folding into a highly organized three-dimensional structure. Much remains to be learned about the mechanisms of folding of large multidomain proteins, which may populate metastable intermediate states on their energy landscapes. Here we introduce a novel method, based on high-throughput single-molecule fluorescence experiments, which is specifically geared towards tracing the dynamics of folding in the presence of a plethora of intermediates. We employ this method to characterize the folding reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov modelling, we identify six metastable states on adenylate kinase's folding landscape. Remarkably, the connectivity of the intermediates depends on denaturant concentration; at low concentration, multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced here will find broad applicability in the study of folding of large proteins, and will provide a more realistic scenario of their conformational dynamics.

  13. Shapes of dominant transition paths from single-molecule force spectroscopy.

    PubMed

    Makarov, Dmitrii E

    2015-11-21

    Recent single molecule measurements of biomolecular folding achieved the time resolution sufficient for observation of individual transition paths. This note discusses several ways in which transition path ensembles can be statistically analyzed to extract a single, "typical" transition path. Analytical approximations derived here for such a transition path further allow one to estimate dynamical parameters (such as the intramolecular diffusion coefficient) directly from the transition path shapes.

  14. Testing Landscape Theory for Biomolecular Processes with Single Molecule Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Chung, Hoi Sung; Louis, John M.; Eaton, William A.

    2015-07-01

    Although Kramers' theory for diffusive barrier crossing on a 1D free energy profile plays a central role in landscape theory for complex biomolecular processes, it has not yet been rigorously tested by experiment. Here we test this 1D diffusion scenario with single molecule fluorescence measurements of DNA hairpin folding. We find an upper bound of 2.5 μ s for the average transition path time, consistent with the predictions by theory with parameters determined from optical tweezer measurements.

  15. The Study of Biomolecule-Substrate Interactions by Single Molecule Force Spectroscopy and Brownian Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Sara Iliafar

    Hybrids of biomolecules and nanomaterials have been identified as promising candidates in the development of novel therapeutics and electronic devices. Single stranded DNA (ssDNA)-bound Single-walled carbon nanotubes (SWCNTs) are of particular interest as they may be the key to solving the challenges that face the carbon nanotube separation technology and because of their potential application in bio-nanomedicine. The ability of ssDNA to form a stable hybrid with CNTs has been attributed to the structure and amphiphilic nature of this macromolecule, enabling the dispersion, sorting and patterned placement of nanotubes. Considering the significant role of ssDNA-CNTs in future technologies and the potential toxicity of such nanomaterials in biological systems, it is essential to gain a quantitative and fundamental understanding on the interactions that allow, weaken or prevent the formation of these hybrids. In this dissertation, we use both experimental and theoretical methods to systematically investigate the major characteristics of these interactions. The free energy of binding of ssDNA homopolymers to solvated carbon nanotubes is one of the key characteristics that determine the stability of such dispersions. We used single molecule force spectroscopy (SMFS), first on graphite and next on single walled carbon nanotubes, to probe and directly quantify the binding strength of ssDNA homopolymer oligomers to these substrates. The force resisting removal of DNA molecules from these surfaces shows characteristic steady-state force plateaus which were distinguishable for each DNA sequence. The free energy of binding per nucleotide for these oligomers on graphite were ranked as T >= A > G >= C (11.3 +/- 0.8 kT, 9.9 +/- 0.4 kT, 8.3 +/- 0.2 kT, and 7.5 +/- 0.8 kT, respectively). On SWCNTs, these interactions decreased in the following order: A > G > T > C, and their magnitude was much larger than on graphite (38.1 +/- 0.2; 33.9 +/- 0.1; 23.3 +/- 0.1; 17.1 +/- 0.1 k

  16. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Shan, Yuping; Wang, Hongda

    2015-06-07

    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

  17. Review insights into the interactions of amino acids and peptides with inorganic materials using single molecule force spectroscopy.

    PubMed

    Das, Priyadip; Reches, Meital

    2015-09-01

    Understanding the interactions between proteins and inorganic surfaces is important for the development of new biomaterials and implants as they interface with the immune response by proteins. In addition, the adsorption of proteins to inorganic surfaces leads to the formation of a conditioning layer that facilitates bacterial attachments and biofilm formation. As biofilm provides bacterial resistance to antibiotics, biofilm formation is an undesirable process that could be prevented by resisting protein interactions with the substrate. Moreover, the interaction between proteins and inorganic materials is the basis for the formation of composite materials in nature. Understanding the underlying forces that governs these interactions would lead to the design of new and unique composite materials in vitro. This review focuses on the insights gained using single-molecule force spectroscopy by AFM on these interactions. This tool provides molecular information, at the single molecule level, on the interaction between a molecule on the AFM tip and a substrate.

  18. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    PubMed

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  19. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.

    PubMed

    Orte, Angel; Clarke, Richard W; Klenerman, David

    2008-11-15

    Single-molecule fluorescence resonance energy transfer (FRET) is commonly used to probe different conformations and conformational dynamics of single biomolecules. However, the analysis of raw burst traces is not always straightforward. The presence of a "zero peak" and the skewness of peaks at high and low FRET efficiencies in proximity ratio histograms make the accurate evaluation of the histogram a challenging task. This is further compounded by the difficulty associated with siting two fluorophores in optimal range of each other. Here we present an alternative method of analysis, based on handling coincident FRET photon bursts, that addresses these problems. In addition, we demonstrate methods to enhance coincidence levels and thus the accuracy of FRET determination: the use of dual-color excitation, including direct excitation of the acceptor fluorophore; the addition of a remote dye to the biomolecule, not involved in the FRET process; or a combination of the two. We show the advantages of dual excitation by studying several labeled double-stranded DNA samples as FRET models. This method extends the application of single-molecule FRET to more complicated biological systems where only a small fraction of complexes are fully assembled.

  20. Extracting intrinsic dynamic parameters of biomolecular folding from single-molecule force spectroscopy experiments.

    PubMed

    Nam, Gi-Moon; Makarov, Dmitrii E

    2016-01-01

    Single-molecule studies in which a mechanical force is transmitted to the molecule of interest and the molecular extension or position is monitored as a function of time are versatile tools for probing the dynamics of protein folding, stepping of molecular motors, and other biomolecular processes involving activated barrier crossing. One complication in interpreting such studies, however, is the fact that the typical size of a force probe (e.g., a dielectric bead in optical tweezers or the atomic force microscope tip/cantilever assembly) is much larger than the molecule itself, and so the observed molecular motion is affected by the hydrodynamic drag on the probe. This presents the experimenter with a nontrivial task of deconvolving the intrinsic molecular parameters, such as the intrinsic free energy barrier and the effective diffusion coefficient exhibited while crossing the barrier from the experimental signal. Here we focus on the dynamical aspect of this task and show how the intrinsic diffusion coefficient along the molecular reaction coordinate can be inferred from single-molecule measurements of the rates of biomolecular folding and unfolding. We show that the feasibility of accomplishing this task is strongly dependent on the relationship between the intrinsic molecular elasticity and that of the linker connecting the molecule to the force probe and identify the optimal range of instrumental parameters allowing determination of instrument-free molecular dynamics. © 2015 The Protein Society.

  1. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  2. Single-molecule spectroscopy of protein folding in a chaperonin cage

    PubMed Central

    Hofmann, Hagen; Hillger, Frank; Pfeil, Shawn H.; Hoffmann, Armin; Streich, Daniel; Haenni, Dominik; Nettels, Daniel; Lipman, Everett A.; Schuler, Benjamin

    2010-01-01

    Molecular chaperones are known to be essential for avoiding protein aggregation in vivo, but it is still unclear how they affect protein folding mechanisms. We use single-molecule Förster resonance energy transfer to follow the folding of a protein inside the GroEL/GroES chaperonin cavity over a time range from milliseconds to hours. Our results show that confinement in the chaperonin decelerates the folding of the C-terminal domain in the substrate protein rhodanese, but leaves the folding rate of the N-terminal domain unaffected. Microfluidic mixing experiments indicate that strong interactions of the substrate with the cavity walls impede the folding process, but the folding hierarchy is preserved. Our results imply that no universal chaperonin mechanism exists. Rather, a competition between intra- and intermolecular interactions determines the folding rates and mechanisms of a substrate inside the GroEL/GroES cage. PMID:20547872

  3. Spectroscopy and single-molecule emission of a fluorene-terthiophene oligomer.

    PubMed

    Khalil, G E; Adawi, A M; Robinson, B; Cadby, A J; Tsoi, W C; Kim, J-S; Charas, A; Morgado, J; Lidzey, D G

    2011-10-27

    We study the thiophene-based oligomer poly[2,7-(9,9-bis(2'-ethylhexyl)fluorene)-alt-2,5-terthiophene] (PF3T) in solution and when dispersed at low concentration into a polynorbornene matrix. We find that at high concentration in solution the 0-0 electronic transition observed in fluorescence is suppressed, a result indicative of the formation of weakly coupled H-aggregates. At low concentration in a polymer matrix, emission from both single molecules and molecular aggregates is observed. We find that the fluorescence spectra of most PF3T emitters are composed of a number of relatively narrow emission features, indicating that the emission usually occurs from multiple chromophores. A small number of PF3T molecules are however characterized by single chromophore emission, spectral blinking, and narrowed emission peaks.

  4. Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay.

    PubMed

    Grossman, Iris; Yuval Aviram, Haim; Armony, Gad; Horovitz, Amnon; Hofmann, Hagen; Haran, Gilad; Fass, Deborah

    2015-10-15

    The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles.

  5. Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay

    NASA Astrophysics Data System (ADS)

    Grossman, Iris; Yuval Aviram, Haim; Armony, Gad; Horovitz, Amnon; Hofmann, Hagen; Haran, Gilad; Fass, Deborah

    2015-10-01

    The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles.

  6. A Simple Bioconjugate Attachment Protocol for Use in Single Molecule Force Spectroscopy Experiments Based on Mixed Self-Assembled Monolayers

    PubMed Central

    Attwood, Simon J.; Simpson, Anna M. C.; Stone, Rachael; Hamaia, SamirW.; Roy, Debdulal; Farndale, RichardW.; Ouberai, Myriam; Welland, Mark E.

    2012-01-01

    Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin. PMID:23202965

  7. Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.

    PubMed

    Tych, Katarzyna M; Hoffmann, Toni; Batchelor, Matthew; Hughes, Megan L; Kendrick, Katherine E; Walsh, Danielle L; Wilson, Michael; Brockwell, David J; Dougan, Lorna

    2015-04-01

    Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.

  8. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    PubMed

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  9. Mechanism of amyloid β-protein dimerization determined using single-molecule AFM force spectroscopy

    NASA Astrophysics Data System (ADS)

    Lv, Zhengjian; Roychaudhuri, Robin; Condron, Margaret M.; Teplow, David B.; Lyubchenko, Yuri L.

    2013-10-01

    Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dramatic difference in the interaction patterns of Aβ42 and Aβ40 monomers within dimers. Although the sequence difference between the two peptides is at the C-termini, the N-terminal segment plays a key role in the peptide interaction in the dimers. This is an unexpected finding as N-terminal was considered as disordered segment with no effect on the Aβ peptide aggregation. These novel properties of Aβ proteins suggests that the stabilization of N-terminal interactions is a switch in redirecting of amyloids form the neurotoxic aggregation pathway, opening a novel avenue for the disease preventions and treatments.

  10. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  11. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy.

    PubMed

    Tang, Jilin; Ebner, Andreas; Kraxberger, Bernhard; Leitner, Michael; Hykollari, Alba; Kepplinger, Christian; Grunwald, Christian; Gruber, Hermann J; Tampé, Robert; Sleytr, Uwe B; Ilk, Nicola; Hinterdorfer, Peter

    2009-10-01

    Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His(6)-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His(6)-tags. The accessibility of the His(6)-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His(6)-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris-NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His(6)-tags in the presence of nickel ions. Thus the His(6)-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris-NTA derivatives.

  12. Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments.

    PubMed

    Farrance, Oliver E; Paci, Emanuele; Radford, Sheena E; Brockwell, David J

    2015-02-24

    The atomic force microscope (AFM) is able to manipulate biomolecules and their complexes with exquisite force sensitivity and distance resolution. This capability, complemented by theoretical models, has greatly improved our understanding of the determinants of mechanical strength in proteins and revealed the diverse effects of directional forces on the energy landscape of biomolecules. In unbinding experiments, the interacting partners are usually immobilized on their respective substrates via extensible linkers. These linkers affect both the force and contour length (Lc) of the complex at rupture. Surprisingly, while the former effect is well understood, the latter is largely neglected, leading to incorrect estimations of Lc, a parameter that is often used as evidence for the detection of specific interactions and remodeling events and for the inference of interaction regions. To address this problem, a model that predicts contour length measurements from single-molecule forced-dissociation experiments is presented that considers attachment position on the AFM tip, geometric effects, and polymer dynamics of the linkers. Modeled data are compared with measured contour length distributions from several different experimental systems, revealing that current methods underestimate contour lengths. The model enables nonspecific interactions to be identified unequivocally, allows accurate determination of Lc, and, by comparing experimental and modeled distributions, enables partial unfolding events before rupture to be identified unequivocally.

  13. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers.

    PubMed

    Meng, He; Andresen, Kurt; van Noort, John

    2015-04-20

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

    PubMed Central

    Meng, He; Andresen, Kurt; van Noort, John

    2015-01-01

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  15. Multiple unfolding pathways of leucine binding protein (LBP) probed by single-molecule force spectroscopy (SMFS).

    PubMed

    Kotamarthi, Hema Chandra; Sharma, Riddhi; Narayan, Satya; Ray, Sayoni; Ainavarapu, Sri Rama Koti

    2013-10-02

    Experimental studies on the folding and unfolding of large multi-domain proteins are challenging, given the proteins' complex energy landscapes with multiple intermediates. Here, we report a mechanical unfolding study of a 346-residue, two-domain leucine binding protein (LBP) from the bacterial periplasm. Forced unfolding of LBP is a prerequisite for its translocation across the cytoplasmic membrane into the bacterial periplasm. During the mechanical stretching of LBP, we observe that 38% of the unfolding flux followed a two-state pathway, giving rise to a single unfolding force peak at ~70 pN with an unfolding contour length of 120 nm in constant-velocity single-molecule pulling experiments. The remaining 62% of the unfolding flux followed multiple three-state pathways, with intermediates having unfolding contour lengths in the range ~20-85 nm. These results suggest that the energy landscape of LBP is complex, with multiple intermediate states, and a large fraction of molecules go through intermediate states during the unfolding process. Furthermore, the presence of the ligand leucine increased the unfolding flux through the two-state pathway from 38% to 65%, indicating the influence of ligand binding on the energy landscape. This study suggests that unfolding through parallel pathways might be a general mechanism for the large two-domain proteins that are translocated to the bacterial periplasmic space.

  16. Interactions of light with matter: Applications to single molecule spectroscopy and quantum control

    NASA Astrophysics Data System (ADS)

    Brown, Frank Leon Halet

    Two different applications of the interaction between light and matter are discussed. First, we consider the single molecule spectra (SMS) of chromophores embedded in low temperature glasses. We demonstrate that it is possible to rationalize recent experimental results within the framework of the standard tunneling model (STM) for glassy dynamics as proposed by Anderson, Halperin and Varma and Phillips. Our analysis enables insight to be gained as to what features of the model are most important in describing experiment. Implicit in our treatment is the assumption that the two level systems, central to the STM, do not interact. The validity of this assumption is critically examined by extending the model to allow for such interactions. This complication of the theoretical model, beyond the lowest order implications of the STM, is found to influence individual spectra, but not the averaged quantities which are typically reported in the experimental literature. Our second application is a brief foray into the field of quantum control. Within the limit of weak applied fields and quadratic potentials for the control target, we describe a general method capable of determining the best possible field for affecting a desired configuration of the nuclear positions in the target. Several simple models are discussed within this framework to prove the validity of the formulation and its ease of implementation. Possibilities for extension to more complicated applications will be discussed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307, Ph. 617-253-5668; Fax 617-253- 1690.)

  17. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    PubMed

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  18. Structural architecture of prothrombin in solution revealed by single molecule spectroscopy

    DOE PAGES

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; ...

    2016-07-19

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr93 in kringle-1 onto Trp547 in the protease domain that obliterates access to the activemore » site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.« less

  19. Structural architecture of prothrombin in solution revealed by single molecule spectroscopy

    SciTech Connect

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico

    2016-07-19

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr93 in kringle-1 onto Trp547 in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.

  20. Calibration of a dual-trap optical tweezers for single molecule force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Hu, Chunguang; Gao, Xiaoqing; Su, Chenguang; Wang, Sirong; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-10-01

    Optical tweezers has shown its significant advantages in applying pico-Newton force on micro beads and handling them with nanometer-level precision, and becomes a powerful tool for single-molecule biology. Many excellent researching results in use of the optical tweezers have been reported. Most of them focus on the single-trap optical tweezers experiments. However, when a single-trap optical tweezers is applied to biological molecule, there is often an obvious noise from the sample chamber holder to which one end of the sample molecule is tethered. In contrast, a dual-trap optical tweezers can intrinsically avoid this problem because both ends of the sample tethered to microspheres are manipulated with two separate optical traps. In order to force the molecule precisely, it is of importance to do calibrations for both traps. Many approaches have been studied to obtain the stiffness and sensitivity of the trap, but those are not quite suitable for making calibration during experiment. Here, we use a modified method of power spectrum density (PSD) for the calibrations of the stiffness and sensitivity of the traps, which combines a sinusoidal motion of the sample stage. The main strength of the method is that the beads used for the calibration also can be used in experiment later. In addition, the calibration can be performed during experiment. Finally, an experiment using a dsDNA molecule to test the system is presented. The results show that the calibration approach for the dual-trap optical tweezers is efficient and accurate.

  1. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies.

    PubMed

    Amo, Carlos A; Garcia, Ricardo

    2016-07-26

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force-distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50-500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations.

  2. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies

    PubMed Central

    2016-01-01

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force–distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50–500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations. PMID:27359243

  3. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  4. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    USDA-ARS?s Scientific Manuscript database

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  5. Spectroscopy and microscopy of single molecules in nanoscopic channels: spectral behavior vs. confinement depth.

    PubMed

    Gmeiner, Benjamin; Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2016-07-20

    We perform high-resolution spectroscopy and localization microscopy to study single dye molecules confined to nanoscopic dimensions in one direction. We provide the fabrication details of our nanoscopic glass channels and the procedure for filling them with organic matrices. Optical data on hundreds of molecules in different channel depths show a clear trend from narrow stable lines in deep channels to broader linewidths in ultrathin matrices. In addition, we observe a steady blue shift of the center of the inhomogeneous band as the channels become thinner. Furthermore, we use super-resolution localization microscopy to correlate the positions and orientations of the individual dye molecules with the lateral landscape of the organic matrix, including cracks and strain-induced dislocations. Our results and methodology are useful for a number of studies in various fields such as physical chemistry, solid-state spectroscopy, and quantum nano-optics.

  6. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

    PubMed Central

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  7. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy.

    PubMed

    Borgia, Alessandro; Wensley, Beth G; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B; Hoffmann, Armin; Pfeil, Shawn H; Lipman, Everett A; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes.

  8. How does the molecular linker in dynamic force spectroscopy affect probing molecular interactions at the single-molecule level?

    NASA Astrophysics Data System (ADS)

    Taninaka, Atsushi; Aizawa, Kota; Hanyu, Tatsuya; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-08-01

    Dynamic force spectroscopy (DFS) based on atomic force microscopy, which enables us to obtain information on the interaction potential between molecules such as antigen-antibody complexes at the single-molecule level, is a key technique for advancing molecular science and technology. However, to ensure the reliability of DFS measurement, its basic mechanism must be well understood. We examined the effect of the molecular linker used to fix the target molecule to the atomic force microscope cantilever, i.e., the force direction during measurement, for the first time, which has not been discussed until now despite its importance. The effect on the lifetime and barrier position, which can be obtained by DFS, was found to be ˜10 and ˜50%, respectively, confirming the high potential of DFS.

  9. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy.

    PubMed

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-05-12

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.

  10. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-05-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.

  11. Studying σ 54-dependent transcription at the single-molecule level using alternating-laser excitation (ALEX) spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilemann, M.; Lymperopoulos, K.; Wigneshweraraj, S. R.; Buck, M.; Kapanidis, A. N.

    2007-07-01

    We present single-molecule fluorescence studies of σ 54-dependent gene-transcription complexes using singlemolecule fluorescence resonance energy transfer (smFRET) and alternating-laser excitation (ALEX) spectroscopy. The ability to study one biomolecule at the time allowed us to resolve and analyze sample heterogeneities and extract structural information on subpopulations and transient intermediates of transcription; such information is hidden in bulk experiments. Using site-specifically labeled σ 54 derivatives and site-specifically labeled promoter-DNA fragments, we demonstrate that we can observe single diffusing σ 54-DNA and transcription-initiation RNA polymerase-σ 54- DNA complexes, and that we can measure distances within such complexes; the identity of the complexes has been confirmed using electrophoretic-mobility-shift assays. Our studies pave the way for understanding the mechanism of abortive initiation and promoter escape in σ 54-dependent transcription.

  12. Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures.

    PubMed

    Hussels, Martin; Konrad, Alexander; Brecht, Marc

    2012-12-01

    The construction of a microscope with fast sample transfer system for single-molecule spectroscopy and microscopy at low temperatures using 2D/3D sample-scanning is reported. The presented construction enables the insertion of a sample from the outside (room temperature) into the cooled (4.2 K) cryostat within seconds. We describe the mechanical and optical design and present data from individual Photosystem I complexes. With the described setup numerous samples can be investigated within one cooling cycle. It opens the possibility to investigate biological samples (i) without artifacts introduced by prolonged cooling procedures and (ii) samples that require preparation steps like plunge-freezing or specific illumination procedures prior to the insertion into the cryostat.

  13. Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy.

    PubMed

    Skandary, Sepideh; Konrad, Alexander; Hussels, Martin; Meixner, Alfred J; Brecht, Marc

    2015-10-29

    Single-molecule spectroscopy at low temperature was used to study the spectral properties, heterogeneities, and spectral dynamics of the chlorophyll a (Chl a) molecules responsible for the fluorescence emission of photosystem I monomers (PS I-M) from the cyanobacterium Thermosynechococcus elongatus. The fluorescence spectra of single PS I-M are dominated by several red-shifted chlorophyll a molecules named C708 and C719. The emission spectra show broad spectral distributions and several zero-phonon lines (ZPLs). Compared with the spectra of the single PS I trimers, some contributions are missing due to the lower number of C719 Chl's in monomers. Polarization-dependent measurements show an almost perpendicular orientation between the emitters corresponding to C708 and C719. These contributions can be assigned to chlorophyll dimers B18B19, B31B32, and B32B33.

  14. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    PubMed Central

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. PMID:25963832

  15. Instrumentation for Atomic Layer Deposition and Single Molecule SERS/TERS Excitation Spectroscopy

    DTIC Science & Technology

    2009-08-17

    with the scanning tunneling microscope via a homebuilt optical microscope. The second laser for tip-enhanced Raman is a Spectra-Physics 632.8nm HeNe...Figure 3) with 12mW of polarized power. This laser is interfaced with a homebuilt , cryogenic, scanning tunneling microscope in an ultra-high vacuum...analogue (~1100 cm"’). B. Ambient Tip-Enhanced Raman Spectroscopy (TERS) The Coherent 640 nm cube laser was interfaced with a homebuilt Raman

  16. Single molecule tunneling spectroscopy investigation of reversibly switched dipolar vanadyl phthalocyanine on graphite

    SciTech Connect

    Zhang, Jialin; Wang, Zhunzhun; Li, Zhenyu E-mail: phycw@nus.edu.sg; Niu, Tianchao; Chen, Wei E-mail: phycw@nus.edu.sg

    2014-03-17

    We report a spatially resolved scanning tunneling spectroscopy (STS) investigation of reversibly switchable dipolar vanadyl phthalocyanine (VOPc) on graphite by using low temperature scanning tunneling microscopy. VOPc molecule can be switched between O-up and O-down configurations by changing the polarity of the pulse voltage applied to the tip, actuated by the inelastic tunneling electrons. The spatially resolved STS measurements allow the identification of the electronic structures of VOPc with different dipole orientation. The present approach provides geometry images and electronic characterization of a molecular switch on surface spontaneously.

  17. Single-molecule dynamic force spectroscopy of the fibronectin-heparin interaction

    SciTech Connect

    Mitchell, Gabriel; Lamontagne, Charles-Antoine; Lebel, Rejean; Grandbois, Michel Malouin, Francois

    2007-12-21

    The integrity of cohesive tissues strongly depends on the presence of the extracellular matrix, which provides support and anchorage for cells. The fibronectin protein and the heparin-like glycosaminoglycans are key components of this dynamic structural network. In this report, atomic force spectroscopy was used to gain insight into the compliance and the resistance of the fibronectin-heparin interaction. We found that this interaction can be described by an energetic barrier width of 3.1 {+-} 0.2 A and an off-rate of 0.2 {+-} 0.1 s{sup -1}. These dissociation parameters are similar to those of other carbohydrate-protein interactions and to off-rate values reported for more complex interactions between cells and extracellular matrix components. Our results indicate that the function of the fibronectin-heparin interaction is supported by its capacity to sustain significant deformations and considerable external mechanical forces.

  18. Single-molecule surface-enhanced Raman spectroscopy of 4,4‧-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Aiba, Kiyohito; Ikegami, Kohei; Isono, Yoshitada

    2017-06-01

    In this study, single-molecule detection on a prefabricated substrate through surface-enhanced Raman spectroscopy (SERS) with 4,4‧-bipyridine molecules was achieved. The use of a substrate with directionally arrayed gold nanoparticle dimers was proposed for the single-molecule detection and identification of a wide range of bio/chemical molecules. Around 50 Raman measurements and statistical analyses were performed to demonstrate a single-molecule SERS. At 10-11 M, the distribution was fitted by three Gaussian curves, whereas the distribution of Raman intensities was fitted by one Gaussian curve at 10-5 M. The probability of molecule detection is consistent with the Poisson distribution. This result indicates the possibility of detecting 0, 1, and 2 molecules. Thus, we confirmed that the developed substrates achieved single-molecule SERS detection and identification.

  19. Ultrafast dynamics of single molecules.

    PubMed

    Brinks, Daan; Hildner, Richard; van Dijk, Erik M H P; Stefani, Fernando D; Nieder, Jana B; Hernando, Jordi; van Hulst, Niek F

    2014-04-21

    The detection of individual molecules has found widespread application in molecular biology, photochemistry, polymer chemistry, quantum optics and super-resolution microscopy. Tracking of an individual molecule in time has allowed identifying discrete molecular photodynamic steps, action of molecular motors, protein folding, diffusion, etc. down to the picosecond level. However, methods to study the ultrafast electronic and vibrational molecular dynamics at the level of individual molecules have emerged only recently. In this review we present several examples of femtosecond single molecule spectroscopy. Starting with basic pump-probe spectroscopy in a confocal detection scheme, we move towards deterministic coherent control approaches using pulse shapers and ultra-broad band laser systems. We present the detection of both electronic and vibrational femtosecond dynamics of individual fluorophores at room temperature, showing electronic (de)coherence, vibrational wavepacket interference and quantum control. Finally, two colour phase shaping applied to photosynthetic light-harvesting complexes is presented, which allows investigation of the persistent coherence in photosynthetic complexes under physiological conditions at the level of individual complexes.

  20. Structure-Dependent Electronic Interactions in Ethyne-Bridged Porphyrin Arrays Investigated by Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Lee, Sang Hyeon; Yang, Jaesung; Kim, Dongho

    2016-09-15

    By using single-molecule fluorescence spectroscopy, we have investigated the electronic interaction of ethyne-bridged porphyrin arrays (ZNE) depending on their structure. The fluorescence dynamics of ZNE show a large amount of one-step photobleaching behaviors, indicating the high degree of π-conjugation. The ratio of one-step photobleaching behavior decreased as the number of porphyrin units increased. This behavior indicates that the linear and shortest Z2E shows a strong electronic coupling between constituent porphyrin moieties. Structural properties and orientation of ZNE were also measured by wide-field excitation fluorescence spectroscopy (ExPFS) and defocused wide-field imaging (DWFI). The ExPFS and DWFI show that the structure of absorbing and emitting units of Z2E and Z3E are linear. On the other hand, star-shaped pentamer with five porphyrins acts as an absorbing unit, but unidirectional trimer moiety acts as an emitting unit in the Z5E molecule. Collectively, these studies provide further information on the electronic interaction depending on their structure and length.

  1. AZIDE-SPECIFIC LABELLING OF BIOMOLECULES BY STAUDINGER-BERTOZZI LIGATION: PHOSPHINE DERIVATIVES OF FLUORESCENT PROBES SUITABLE FOR SINGLE-MOLECULE FLUORESCENCE SPECTROSCOPY

    PubMed Central

    Chakraborty, Anirban; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2010-01-01

    We describe the synthesis of phosphine derivatives of three fluorescent probes that have brightness and photostability suitable for single-molecule fluorescence spectroscopy and microscopy: Alexa488, Cy3B, and Alexa647. In addition, we describe procedures for use of these reagents in azide-specific, bioorthogonal labelling through use of the Staudinger-Bertozzi ligation and procedures for quantitation of labelling specificity and labelling efficiency. The reagents and procedures of this report enable chemoselective, site-selective labelling of azide-containing biomolecules for single-molecule fluorescence spectroscopy and microscopy. PMID:20580957

  2. Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions

    PubMed Central

    Scholl, Zackary N.; Marszalek, Piotr E.

    2013-01-01

    The benefits of single molecule force spectroscopy (SMFS) clearly outweigh the challenges which include small sample sizes, tedious data collection and introduction of human bias during the subjective data selection. These difficulties can be partially eliminated through automation of the experimental data collection process for atomic force microscopy (AFM). Automation can be accomplished using an algorithm that triages usable force-extension recordings quickly with positive and negative selection. We implemented an algorithm based on the windowed fast Fourier transform of force-extension traces that identifies peaks using force-extension regimes to correctly identify usable recordings from proteins composed of repeated domains. This algorithm excels as a real-time diagnostic because it involves <30 ms computational time, has high sensitivity and specificity, and efficiently detects weak unfolding events. We used the statistics provided by the automated procedure to clearly demonstrate the properties of molecular adhesion and how these properties change with differences in the cantilever tip and protein functional groups and protein age. PMID:24001740

  3. Single-molecule spectroscopy of the unexpected collapse of an unfolded protein at low pH

    NASA Astrophysics Data System (ADS)

    Hofmann, Hagen; Nettels, Daniel; Schuler, Benjamin

    2013-09-01

    The dimensions of intrinsically disordered and unfolded proteins critically depend on the solution conditions, such as temperature, pH, ionic strength, and osmolyte or denarurant concentration. However, a quantitative understanding of how the complex combination of chain-chain and chain-solvent interactions is affected by the solvent is still missing. Here, we take a step towards this goal by investigating the combined effect of pH and denaturants on the dimensions of an unfolded protein. We use single-molecule fluorescence spectroscopy to extract the dimensions of unfolded cold shock protein (CspTm) in mixtures of the denaturants urea and guanidinium chloride (GdmCl) at neutral and acidic pH. Surprisingly, even though a change in pH from 7 to 2.9 increases the net charge of CspTm from -3.8 to +10.2, the radius of gyration of the chain is very similar under both conditions, indicating that protonation of acidic side chains at low pH results in additional hydrophobic interactions. We use a simple shared binding site model that describes the joint effect of urea and GdmCl, together with polyampholyte theory and an ion cloud model that includes the chemical free energy of counterion interactions and side chain protonation, to quantify this effect.

  4. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy.

    PubMed

    Liu, Ningning; Bu, Tianjia; Song, Yu; Zhang, Wei; Li, Jinjing; Zhang, Wenke; Shen, Jiacong; Li, Hongbin

    2010-06-15

    Single-stranded DNA binding proteins (SSB) interact with single-stranded DNA (ssDNA) specifically. Taking advantage of this character, we have employed Bacillus subtilis SSB protein to investigate the nature of force-induced conformation transition of double-stranded DNA (dsDNA) by using AFM-based single molecule force spectroscopy (SMFS) technique. Our results show that, when a dsDNA is stretched beyond its contour length, the dsDNA is partially melted, producing some ssDNA segments which can be captured by SSB proteins. We have also systematically investigated the effects of stretching length, waiting time, and salt concentration on the conformation transition of dsDNA and SSB-ssDNA interactions, respectively. Furthermore, the effect of proflavine, a DNA intercalator, on the SSB-DNA interactions has been investigated, and the results indicate that the proflavine-saturated dsDNA can be stabilized to the extent that the dsDNA will no longer melt into ssDNA under the mechanical force even up to 150 pN, and no SSB-DNA interactions are detectable.

  5. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection

    NASA Astrophysics Data System (ADS)

    Kondo, Toru; Pinnola, Alberta; Chen, Wei Jia; Dall'Osto, Luca; Bassi, Roberto; Schlau-Cohen, Gabriela S.

    2017-08-01

    In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.

  6. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection.

    PubMed

    Kondo, Toru; Pinnola, Alberta; Chen, Wei Jia; Dall'Osto, Luca; Bassi, Roberto; Schlau-Cohen, Gabriela S

    2017-08-01

    In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity-step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.

  7. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    PubMed

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores.

  8. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    PubMed

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  9. Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy

    PubMed Central

    Cui, Yi; Irudayaraj, Joseph

    2015-01-01

    The detailed mechanism for DNA methylation homeostasis relies on an intricate regulatory network with a possible contribution from methyl-CpG-binding domain protein 3 (MBD3). In this study we examine the single-molecule behavior of MBD3 and its functional implication in balancing the activity of DNA methyltransferases (DNMTs). Besides a localization tendency to DNA demethylating sites, MBD3 experiences a concurrent transcription with DNMTs in cell cycle. Fluorescence lifetime correlation spectroscopy (FLCS) and photon counting histogram (PCH) were applied to characterize the chromatin binding kinetics and stoichiometry of MBD3 in different cell phases. In the G1-phase, MBD3, in the context of the Mi-2/NuRD (nucleosome remodeling deacetylase) complex, could adopt a salt-dependent homodimeric association with its target epigenomic loci. Along with cell cycle progression, utilizing fluorescence lifetime imaging microscopy-based Förster resonance energy transfer (FLIM-FRET) we revealed that a proportion of MBD3 and MBD2 would co-localize with DNMT1 during DNA maintenance methylation, providing a proofreading and protective mechanism against a possible excessive methylation by DNMT1. In accordance with our hypothesis, insufficient MBD3 induced by small interfering RNA (siRNA) was found to result in a global DNA hypermethylation as well as increased methylation in the promoter CpG islands (CGIs) of a number of cell cycle related genes. PMID:25753672

  10. Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions.

    PubMed

    Scholl, Zackary N; Marszalek, Piotr E

    2014-01-01

    The benefits of single molecule force spectroscopy (SMFS) clearly outweigh the challenges which include small sample sizes, tedious data collection and introduction of human bias during the subjective data selection. These difficulties can be partially eliminated through automation of the experimental data collection process for atomic force microscopy (AFM). Automation can be accomplished using an algorithm that triages usable force-extension recordings quickly with positive and negative selection. We implemented an algorithm based on the windowed fast Fourier transform of force-extension traces that identifies peaks using force-extension regimes to correctly identify usable recordings from proteins composed of repeated domains. This algorithm excels as a real-time diagnostic because it involves <30 ms computational time, has high sensitivity and specificity, and efficiently detects weak unfolding events. We used the statistics provided by the automated procedure to clearly demonstrate the properties of molecular adhesion and how these properties change with differences in the cantilever tip and protein functional groups and protein age. Published by Elsevier B.V.

  11. Stable, non-destructive immobilization of native nuclear membranes to micro-structured PDMS for single-molecule force spectroscopy.

    PubMed

    Rangl, Martina; Nevo, Reinat; Liashkovich, Ivan; Shahin, Victor; Reich, Ziv; Ebner, Andreas; Hinterdorfer, Peter

    2009-07-13

    In eukaryotic cells the nucleus is separated from the cytoplasm by a double-membraned nuclear envelope (NE). Exchange of molecules between the two compartments is mediated by nuclear pore complexes (NPCs) that are embedded in the NE membranes. The translocation of molecules such as proteins and RNAs through the nuclear membrane is executed by transport shuttling factors (karyopherines). They thereby dock to particular binding sites located all over the NPC, the so-called phenylalanine-glycin nucleoporines (FG Nups). Molecular recognition force spectroscopy (MRFS) allows investigations of the binding at the single-molecule level. Therefore the AFM tip carries a ligand for example, a particular karyopherin whereas the nuclear membrane with its receptors is mounted on a surface. Hence, one of the first requirements to study the nucleocytoplasmatic transport mechanism using MRFS is the development of an optimized membrane preparation that preserves structure and function of the NPCs. In this study we present a stable non-destructive preparation method of Xenopus laevis nuclear envelopes. We use micro-structured polydimethylsiloxane (PDMS) that provides an ideal platform for immobilization and biological integrity due to its elastic, chemical and mechanical properties. It is a solid basis for studying molecular recognition, transport interactions, and translocation processes through the NPC. As a first recognition system we investigate the interaction between an important transport shuttling factor, importin beta, and its binding sites on the NPC, the FG-domains.

  12. Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ma, Ke; Hu, Ting; Jiang, Bo; Xu, Bin; Tian, Wenjing; Sun, Jing Zhi; Zhang, Wenke

    2015-05-01

    AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The experimental data indicate that DSAI can strongly intercalate into DNA base pairs, while DSABr-C6 is unable to intercalate into DNA due to the steric hindrance of the alkyl side chains. Cis-TPEDPy and trans-TPEDPy can also intercalate into DNA base pairs, but the binding shows strong ionic strength dependence. Multiple binding modes of TPEDPy with dsDNA have been discussed. In addition, the electrostatic interaction enhanced intercalation of cis-TPEDPy with dsDNA has also been revealed.AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The

  13. The Effect of Electrode Coupling on Single Molecule Device Characteristics: An X-Ray Spectroscopy and Scanning Probe Microscopy Study

    NASA Astrophysics Data System (ADS)

    Batra, Arunabh

    This thesis studies electronic properties of molecular devices in the limiting cases of strong and weak electrode-molecule coupling. In these two limits, we use the complementary techniques of X-Ray spectroscopy and Scanning Tunneling Microscopy (STM) to understand the mechanisms for electrode-molecule bond formation, the energy level realignment due to metal-molecule bonds, the effect of coupling strength on single-molecule conductance in low-bias measurements, and the effect of coupling on transport under high-bias. We also introduce molecular designs with inherent asymmetries, and develop an analytical method to determine the effect of these features on high-bias conductance. This understanding of the role of electrode-molecule coupling in high-bias regimes enables us to develop a series of functional electronic devices whose properties can be predictably tuned through chemical design. First, we explore the weak electrode-molecule coupling regime by studing the interaction of two types of paracyclophane derivates that are coupled 'through-space' to underlying gold substrates. The two paracyclophane derivatives differ in the strength of their intramolecular through-space coupling. X-Ray photoemission spectroscopy (XPS) and Near-Edge X-ray Absorbance Fine Structure (NEXAFS) spectroscopy allows us to determine the orientation of both molecules; Resonant Photoemission Spectroscopy (RPES) then allows us to measure charge transfer time from molecule to metal for both molecules. This study provides a quantititative measure of charge transfer time as a function of through-space coupling strength. Next we use this understanding in STM based single-molecule current-voltage measurements of a series of molecules that couple through-space to one electrode, and through-bond to the other. We find that in the high-bias regime, these molecules respond differently depending on the direction of the applied field. This asymmetric response to electric field direction results in

  14. Characterization of unfolding mechanism of human lamin A Ig fold by single-molecule force spectroscopy-implications in EDMD.

    PubMed

    Bera, Manindra; Kotamarthi, Hema Chandra; Dutta, Subarna; Ray, Angana; Ghosh, Saptaparni; Bhattacharyya, Dhananjay; Ainavarapu, Sri Rama Koti; Sengupta, Kaushik

    2014-11-25

    A- and B-type lamins are intermediate filament proteins constituting the nuclear lamina underneath the nuclear envelope thereby conferring proper shape and mechanical rigidity to the nucleus. Lamin proteins are also shown to be related diversely to basic nuclear processes. More than 400 mutations in human lamin A protein alone have been reported to produce at least 11 different disease conditions jointly termed as laminopathies. These mutations in lamin A are scattered throughout its helical rod domain, as well as the C-terminal domain containing the conserved Ig-fold region. The commonality of phenotypes in all these diseases is characterized by misshapen nuclei of the affected tissues which might stem from altered rigidity of the supporting lamina hence lamins. Here we have focused on autosomal dominant Emery-Dreifuss Muscular Dystrophy, one such laminopathy where R453W is the causative mutation located in the Ig domain of lamin A. We have investigated by single-molecule force spectroscopy how a stretching mechanical perturbation senses the destabilizing effect of the mutation in the lamin A Ig domain and compared the mechanoelastic properties of the mutant R453W with that of the wild-type in conjunction with steered molecular dynamics. Furthermore, we have shown the interaction of Ig domain with emerin, another key player and interacting partner in the pathogenesis of EDMD, is disrupted in the R453W mutant. This altered mechanoresistance of Ig domain itself and consequent uncoupling of lamin A-emerin interaction might underlie the altered mechanotransduction properties of EDMD affected nuclei.

  15. Mechanical properties of NRR domain from human Notch 1 studied by single molecule AFM force spectroscopy and steered molecular dynamics

    NASA Astrophysics Data System (ADS)

    Dey, Ashim; Chen, Jianhan; Li, Hui; Zolkiewska, Anna; Wu, Hui-Chuan; Zolkiewski, Michal; Szoszkiewicz, Robert

    2010-10-01

    For proteins in living cells, forces are present from macroscopic to single molecule levels. Single molecule atomic force microscopy in force extension (FX-AFM) mode measures forces at which proteins undergo major conformational transitions with ˜ 10 pN force sensitivity (FX-AFM). Here, we present the results of the FX-AFM experiments on a construct comprising the NRR domain from human Notch 1. It is believed that understanding the mechanical properties of Notch at the single molecule level can help to understand its role in triggering some breast cancers. The experimental results on our Notch construct revealed several conformational transitions of this molecule under force. These results were confronted with the steered molecular dynamics simulations based on a simplified Go model. These results opened a path for further investigations of Notch constructs at various physiologically relevant conditions.

  16. Single-molecule force spectroscopy studies of fibrin 'A-a' polymerization interactions via the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Averett, Laurel E.

    Fibrin, the polymerized form of the soluble plasma protein fibrinogen, plays a critical role in hemostasis as the structural scaffold of blood clots. The primary functions of fibrin are to withstand the shear forces of blood flow and provide mechanical stability to the clot, protecting the wound. While studies have investigated the mechanical properties of fibrin constructs, the response to force of critical polymerization interactions such as the 'A--a' knob--hole interaction remains unclear. Herein, the response of the 'A--a' bond to force was examined at the single-molecule level using the atomic force microscope. Force spectroscopy methodology was developed to examine the 'A--a' interaction while reducing the incidence of both nonspecific and multiple molecule interactions. The rupture of this interaction resulted in a previously unreported characteristic force profile comprised of up to four events. We hypothesized that the first event represented reorientation of the fibrinogen molecule, the second and third represented unfolding of structures in the D region of fibrinogen, and the last event was the rupture of the 'A--a' bond weakened by prior structural unfolding. The configuration, molecular extension, and kinetic parameters of each event in the characteristic pattern were examined to compare the unfolding of fibrin to other proteins unfolded by force. Fitting the pattern with polymer models showed that the D region of fibrinogen could lengthen by ˜50% of the length of a fibrin monomer before rupture of the 'A--a' bond. Analysis showed that the second and third events had kinetic parameters similar to other protein structures unfolded by force. Studies of the dependence of the characteristic pattern on calcium, concentration of sodium chloride, pH, and temperature demonstrated that the incidence of the last event was affected by solution conditions. However, only low pH and high temperatures reduced the probability that an interaction was characteristic

  17. Vibrational Spectroscopy of Ionic Liquids.

    PubMed

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-01-04

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  18. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  19. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy

    PubMed Central

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  20. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  1. One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced Raman scattering.

    PubMed

    Zhao, Ke; Xu, Hongxing; Gu, Baohua; Zhang, Zhenyu

    2006-08-28

    The optical properties of one-dimensional arrays of metal nanoshell dimers are studied systematically using the T-matrix method based on Mie theory, within the context of surface enhanced Raman scattering (SERS). It is shown that the local electromagnetic enhancement can be as high as approximately 4.5 x 10(13) for nanoshell dimer arrays with optimal geometry, and sensitive tunability in the resonant frequency can be gained by varying the geometrical parameters, making such structures appealing templates for SERS measurements with single molecule sensitivity. The extraordinarily high enhancement is attributed to a collective photonic effect constructively superposed onto the intrinsic enhancement associated with an isolated nanoshell dimer.

  2. One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Xu, Hongxing; Gu, Baohua; Zhang, Zhenyu

    2006-08-01

    The optical properties of one-dimensional arrays of metal nanoshell dimers are studied systematically using the T-matrix method based on Mie theory, within the context of surface enhanced Raman scattering (SERS). It is shown that the local electromagnetic enhancement can be as high as ˜4.5×1013 for nanoshell dimer arrays with optimal geometry, and sensitive tunability in the resonant frequency can be gained by varying the geometrical parameters, making such structures appealing templates for SERS measurements with single molecule sensitivity. The extraordinarily high enhancement is attributed to a collective photonic effect constructively superposed onto the intrinsic enhancement associated with an isolated nanoshell dimer.

  3. Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.

    PubMed

    Wozniak, A; van Mameren, J; Ragona, S

    2009-08-01

    Since the development of detection and analysis techniques for optical tweezers setups, there has been an ever-increasing interest in optical tweezers as a quantitative method, shifting its applications from a pure manipulation tool towards the investigation of motions and forces. With the capability of manipulation and detection of forces of a few hundred picoNewtons down to a fraction of a picoNewton, optical tweezers are perfectly suitable for the investigation of single molecules. Accordingly, the technique has been extensively used for the biophysical characterization of biomolecules, ranging from the mechanical and elastic properties of biological polymers to the dynamics associated with enzymatic activity and protein motility. Here, the use of state-of-the-art optical tweezers on the elasticity of single DNA molecules is presented, highlighting the possibilities this technique offers for the investigation of protein-DNA interaction, but also for other single molecule applications. Technical in nature, design aspects of the NanoTracker optical tweezers setup are addressed, presenting the recent advances in the development of optical tweezers, ranging from noise reduction to detection and calibration methodology.

  4. Low-temperature spectroscopy of organic molecules in solid matrices: from the Shpol'skii effect to laser luminescent spectromicroscopy for all effectively emitting single molecules

    NASA Astrophysics Data System (ADS)

    Naumov, A. V.

    2013-06-01

    Sixty years ago, in 1952, Prof. E V Shpol'skii and his colleagues were the first to see quasilinear spectra from complex organic compounds in specially selected solvents at low temperatures. Twenty years later, in 1972, a team headed by Prof. R I Personov discovered laser fluorescence line narrowing in the solid solutions of organic dyes. These two discoveries served as the basis for the field of laser selective spectroscopy of impurity centers in solids. The work in this field culminated in the techniques of spectroscopy and luminescence imaging (microscopy) of single molecules in condensed matter. Today, optical spectroscopy of impurity centers in solid solutions has become one of the most popular tools for solving a wide variety of interdisciplinary problems in physics, physical chemistry, optics and spectroscopy, biophysics, quantum optics, and nanotechnology. In this article, the development of this field is briefly reviewed, potentials of the developed methods are discussed, and some research results are highlighted.

  5. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy.

    PubMed

    Liu, Zheng; Ding, Song-Yuan; Chen, Zhao-Bin; Wang, Xiang; Tian, Jing-Hua; Anema, Jason R; Zhou, Xiao-Shun; Wu, De-Yin; Mao, Bing-Wei; Xu, Xin; Ren, Bin; Tian, Zhong-Qun

    2011-01-01

    The conductance of single-molecule junctions may be governed by the structure of the molecule in the gap or by the way it bonds with the leads, and the information contained in a Raman spectrum is ideal for examining both. Here we demonstrate that molecule-to-surface bonding may be characterized during electron transport by 'fishing-mode' tip-enhanced Raman spectroscopy (FM-TERS). This technique allows mutually verifiable single-molecule conductance and Raman signals with single-molecule contributions to be acquired simultaneously at room temperature. Density functional theory calculations reveal that the most significant spectral change seen for a gold-4,4'-bipyridine-gold junction results from the deformation of the pyridine ring in contact with the drain electrode at high voltage, and these calculations suggest that a stronger bonding interaction between the molecule and the drain may account for the nonlinear dependence of conductance on bias voltage. FM-TERS will lead to a better understanding of electron-transport processes in molecular junctions.

  6. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  7. A novel drug delivery system of gold nanorods with doxorubicin and study of drug release by single molecule spectroscopy.

    PubMed

    Mirza, Agha Zeeshan

    2015-01-01

    The work presented here describes the fabrication of a novel drug delivery system, which consists of gold nanorods and doxorubicin, with the attachment of thioctic acid and folic acid, for the targeted release of drug to cancer cells. Doxorubicin, the potent anticancer drug, is widely used to treat various cancers. Gold nanorods were functionalized chemically to generate active groups for the attachment of drug molecules and subsequently attached to folic acid. The resulting nanostructure was characterized by UV-visible-NIR spectrophotometry, TEM techniques, zeta potential measurement and subsequently used to target folate receptor-expressing cancers cells for the delivery of doxorubicin. We generated a release profile for the release of doxorubicin from the nanostructures in KB cells using single-molecule fluorescence intensity images and fluorescence lifetime images. The results indicated that the nanorods were able to enter the target cells because of the attachment of folic acid and used as a carriers for the targeted delivery of doxorubicin.

  8. Four-color alternating-laser excitation single-molecule fluorescence spectroscopy for next-generation biodetection assays.

    PubMed

    Yim, Seok W; Kim, Taiho; Laurence, Ted A; Partono, Steve; Kim, Dongsik; Kim, Younggyu; Weiss, Shimon; Reitmair, Armin

    2012-04-01

    Single-molecule detection (SMD) technologies are well suited for clinical diagnostic applications by offering the prospect of minimizing precious patient sample requirements while maximizing clinical information content. Not yet available, however, is a universal SMD-based platform technology that permits multiplexed detection of both nucleic acid and protein targets and that is suitable for automation and integration into the clinical laboratory work flow. We have used a sensitive, specific, quantitative, and cost-effective homogeneous SMD method that has high single-well multiplexing potential and uses alternating-laser excitation (ALEX) fluorescence-aided molecule sorting extended to 4 colors (4c-ALEX). Recognition molecules are tagged with different-color fluorescence dyes, and coincident confocal detection of ≥2 colors constitutes a positive target-detection event. The virtual exclusion of the majority of sources of background noise eliminates washing steps. Sorting molecules with multidimensional probe stoichiometries (S) and single-molecule fluorescence resonance energy transfer efficiencies (E) allows differentiation of numerous targets simultaneously. We show detection, differentiation, and quantification-in a single well-of (a) 25 different fluorescently labeled DNAs; (b) 8 bacterial genetic markers, including 3 antibiotic drug-resistance determinants found in 11 septicemia-causing Staphylococcus and Enterococcus strains; and (c) 6 tumor markers present in blood. The results demonstrate assay utility for clinical molecular diagnostic applications by means of multiplexed detection of nucleic acids and proteins and suggest potential uses for early diagnosis of cancer and infectious and other diseases, as well as for personalized medicine. Future integration of additional technology components to minimize preanalytical sample manipulation while maximizing throughput should allow development of a user-friendly ("sample in, answer out") point

  9. Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants.

    PubMed

    Blum, Christian; Meixner, Alfred J; Subramaniam, Vinod

    2004-12-01

    It is known from ensemble spectroscopy at cryogenic temperatures that variants of the Aequorea green fluorescent protein (GFP) occur in interconvertible spectroscopically distinct forms which are obscured in ensemble room temperature spectroscopy. By analyzing the fluorescence of the GFP variants EYFP and EGFP by spectrally resolved single-molecule spectroscopy we were able to observe spectroscopically different forms of the proteins and to dynamically monitor transitions between these forms at room temperature. In addition to the predominant EYFP B-form we have observed the blue-shifted I-form thus far only seen at cryogenic temperatures and have followed transitions between these forms. Further we have identified for EYFP and for EGFP three more, so far unknown, forms with red-shifted fluorescence. Transitions between the predominant forms and the red-shifted forms show a dark time which indicates the existence of a nonfluorescent intermediate. The spectral position of the newly-identified red-shifted forms and their formation via a nonfluorescent intermediate hint that these states may account for the possible photoactivation observed in bulk experiments. The comparison of the single-protein spectra of the red-shifted EYFP and EGFP forms with single-molecule fluorescence spectra of DsRed suggest that these new forms possibly originate from an extended chromophoric pi-system analogous to the DsRed chromophore.

  10. Binding Strength and Dynamics of Invariant Natural Killer Cell T Cell Receptor/CD1d-Glycosphingolipid Interaction on Living Cells by Single Molecule Force Spectroscopy*

    PubMed Central

    Bozna, Bianca L.; Polzella, Paolo; Rankl, Christian; Zhu, Rong; Salio, Mariolina; Shepherd, Dawn; Duman, Memed; Cerundolo, Vincenzo; Hinterdorfer, Peter

    2011-01-01

    Invariant natural killer T (iNKT) cells are a population of T lymphocytes that play an important role in regulating immunity to infection and tumors by recognizing endogenous and exogenous CD1d-bound lipid molecules. Using soluble iNKT T cell receptor (TCR) molecules, we applied single molecule force spectroscopy for the investigation of the iNKT TCR affinity for human CD1d molecules loaded with glycolipids differing in the length of the phytosphingosine chain using either recombinant CD1d molecules or lipid-pulsed THP1 cells. In both settings, the dissociation of the iNKT TCR from human CD1d molecules loaded with the lipid containing the longer phytosphingosine chain required higher unbinding forces compared with the shorter phytosphingosine lipid. Our findings are discussed in the context of previous results obtained by surface plasmon resonance measurements. We present new insights into the energy landscape and the kinetic rate constants of the iNKT TCR/human CD1d-glycosphingolipid interaction and emphasize the unique potential of single molecule force spectroscopy on living cells. PMID:21454514

  11. Binding strength and dynamics of invariant natural killer cell T cell receptor/CD1d-glycosphingolipid interaction on living cells by single molecule force spectroscopy.

    PubMed

    Bozna, Bianca L; Polzella, Paolo; Rankl, Christian; Zhu, Rong; Salio, Mariolina; Shepherd, Dawn; Duman, Memed; Cerundolo, Vincenzo; Hinterdorfer, Peter

    2011-05-06

    Invariant natural killer T (iNKT) cells are a population of T lymphocytes that play an important role in regulating immunity to infection and tumors by recognizing endogenous and exogenous CD1d-bound lipid molecules. Using soluble iNKT T cell receptor (TCR) molecules, we applied single molecule force spectroscopy for the investigation of the iNKT TCR affinity for human CD1d molecules loaded with glycolipids differing in the length of the phytosphingosine chain using either recombinant CD1d molecules or lipid-pulsed THP1 cells. In both settings, the dissociation of the iNKT TCR from human CD1d molecules loaded with the lipid containing the longer phytosphingosine chain required higher unbinding forces compared with the shorter phytosphingosine lipid. Our findings are discussed in the context of previous results obtained by surface plasmon resonance measurements. We present new insights into the energy landscape and the kinetic rate constants of the iNKT TCR/human CD1d-glycosphingolipid interaction and emphasize the unique potential of single molecule force spectroscopy on living cells.

  12. Cotunneling spectroscopy and the properties of excited-state spin manifolds of Mn12 single molecule magnets

    NASA Astrophysics Data System (ADS)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2014-10-01

    We study charge transport through single molecule magnet (SMM) junctions in the cotunneling regime as a tool for investigating the properties of the excited-state manifolds of neutral Mn12 SMs. This study is motivated by a recent transport experiment [S. Kahle et al., Nano Lett. 12, 518 (2012), 10.1021/nl204141z] that probed the details of the magnetic and electronic structure of Mn12 SMMs beyond the ground-state spin manifold. A giant spin Hamiltonian and master equation approach is used to explore theoretically the cotunneling transport through Mn12-Ac SMM junctions. We identify SMM transitions that can account for both the strong and weak features of the experimental differential conductance spectra. We find the experimental results to imply that the excited spin-state manifolds of the neutral SMM have either different anisotropy constants or different g factors in comparison with its ground-state manifold. However, the latter scenario accounts best for the experimental data.

  13. Nanometer Resolution Imaging by SIngle Molecule Switching

    SciTech Connect

    Hu, Dehong; Orr, Galya

    2010-04-02

    The fluorescence intensity of single molecules can change dramatically even under constant laser excitation. The phenomenon is frequently called "blinking" and involves molecules switching between high and low intensity states.[1-3] In additional to spontaneous blinking, the fluorescence of some special fluorophores, such as cyanine dyes and photoactivatable fluorescent proteins, can be switched on and off by choice using a second laser. Recent single-molecule spectroscopy investigations have shed light on mechanisms of single molecule blinking and photoswitching. This ability to controllably switch single molecules led to the invention of a novel fluorescence microscopy with nanometer spatial resolution well beyond the diffraction limit.

  14. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    PubMed

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  15. Single molecule electronic devices.

    PubMed

    Song, Hyunwook; Reed, Mark A; Lee, Takhee

    2011-04-12

    Single molecule electronic devices in which individual molecules are utilized as active electronic components constitute a promising approach for the ultimate miniaturization and integration of electronic devices in nanotechnology through the bottom-up strategy. Thus, the ability to understand, control, and exploit charge transport at the level of single molecules has become a long-standing desire of scientists and engineers from different disciplines for various potential device applications. Indeed, a study on charge transport through single molecules attached to metallic electrodes is a very challenging task, but rapid advances have been made in recent years. This review article focuses on experimental aspects of electronic devices made with single molecules, with a primary focus on the characterization and manipulation of charge transport in this regime. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Time-resolved vibrational spectroscopy

    SciTech Connect

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.; Nelson, Keith A.; Ziegler, Larry

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  17. Vibrational Spectroscopy and Quantum Localization

    NASA Astrophysics Data System (ADS)

    Fillaux, François

    These lecture-notes are meant to provide newcomers with an overview of the impact of vibrational spectroscopy in the field of nonlinear dynamics of atoms and molecules, in the perspective of energy localization. In the introduction, the terminology of nonlinear excitations and tentative experimental evidences are briefly recalled in a brief historical perspective. The basic principles of vibrational spectroscopy are presented in section 11 for infrared, Raman and inelastic neutron scattering. The potentialities for each technique to probing energy localization are discussed. In section 12, nonlinear dynamics in isolated molecules are treated within the framework of normal versus local mode representations. It is shown that these complementary representations are not necessarily distinctive of weak versus strong anharmonicity, in the context of chemical complexity. It is emphasized that local modes and energy localization are totally independent concepts. In section 4, examples of nonlinear dynamics in crystals are reviewed: multiphonon bound states, strong coupling between phonons and electrons probed with resonance Raman, local modes and quantum rotation in one-dimension probed with inelastic neutron scattering, strong coupling in hydrogen-bonded crystals and self-trapping probed with time-resolved vibrational-spectroscopy. The extended character of eigenstates in crystals free of impurities and disorder, the nature of the interaction of periodic lattices with plane waves, the Franck-Condon principle and the particle-wave duality in the quantum regime are key factors preventing observation of energy localization. It is shown that free spatially-localized nondissipative classical waves give rise to free pseudoparticles that behave as planar waves in the quantum regime. In conclusion, a clear demonstration that energy localization corresponds to eigenstates is eagerly expected for further evidencing these states with vibrational spectroscopy.

  18. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  19. Forces and Kinetics of the Bacillus subtilis Spore Coat Proteins CotY and CotX Binding to CotE Inspected by Single Molecule Force Spectroscopy.

    PubMed

    Liu, Huiqing; Krajcikova, Daniela; Wang, Nan; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin

    2016-02-18

    Spores are uniquely stable cell types that are produced when bacteria encounter nutrient limitations. Spores are encased in a complex multilayered coat, which provides protection against environmental insults. The spore coat of Bacillus subtilis is composed of around 70 individual proteins that are organized into four distinct layers. Here we explored how morphogenetic protein CotE guides formation of the outermost layer of the coat, the crust, around the forespore by focusing on three proteins: CotE, CotY, and CotX. Single molecule force spectroscopy (SMFS) was used to investigate the interactions among CotE, CotY, and CotX at the single-molecule level. Direct interactions among these three proteins were observed. Additionally, the dissociation kinetics was also studied by measuring the unbinding forces of the complexes at different loading rates. A series of kinetic data of these complexes were acquired. It was found that the interaction of CotE and CotY was stronger than that of CotE and CotX.

  20. Single-Molecule Spectroscopy Unmasks the Lowest Exciton State of the B850 Assembly in LH2 from Rps. acidophila

    PubMed Central

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen

    2014-01-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933

  1. Soil chemical insights provided through vibrational spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  2. Highly specific identification of single nucleic polymorphism in M. tuberculosis using smart probes and single-molecule fluorescence spectroscopy in combination with blocking oligonucleotides

    NASA Astrophysics Data System (ADS)

    Friedrich, Achim; Müller, Matthias; Nolte, Oliver; Wolfrum, Jürgen; Sauer, Markus; Hoheisel, Jörg D.; Knemeyer, Jens-Peter; Marme, Nicole

    2008-02-01

    In this article we present a method for the highly specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis. This approach applies fluorescently labeled hairpin-structured oligonucleotides (smart probes) and confocal single-molecule fluorescence spectroscopy. Smart probes are fluorescently labeled at the 5'-end. The dye's fluorescence is quenched in the closed hairpin conformation due to close proximity of the guanosine residues located at the 3'-end. As a result of the hybridization to the complementary target sequence the hairpin structure and thus fluorescence quenching gets lost and a strong fluorescence increase appears. To enhance the specificity of the SNP detection unlabeled "blocking oligonucleotides" were added to the sample. These oligonucleotides hybridizes to the DNA sequence containing the mismatch thus masking this sequence and hereby preventing the smart probe from hybridizing to the mismatched sequence.

  3. Correlative Synchrotron Fourier Transform Infrared Spectroscopy and Single Molecule Super Resolution Microscopy for the Detection of Composition and Ultrastructure Alterations in Single Cells.

    PubMed

    Whelan, Donna R; Bell, Toby D M

    2015-12-18

    Single molecule localization microscopy (SMLM) and synchrotron Fourier transform infrared (S-FTIR) spectroscopy are two techniques capable of elucidating unique and valuable biological detail. SMLM provides images of the structures and distributions of targeted biomolecules at spatial resolutions up to an order of magnitude better than the diffraction limit, whereas IR spectroscopy objectively measures the holistic biochemistry of an entire sample, thereby revealing any variations in overall composition. Both tools are currently applied extensively to detect cellular response to disease, chemical treatment, and environmental change. Here, these two techniques have been applied correlatively at the single cell level to probe the biochemistry of common fixation methods and have detected various fixation-induced losses of biomolecular composition and cellular ultrastructure. Furthermore, by extensive honing and optimizing of fixation protocols, many fixation artifacts previously considered pervasive and regularly identified using IR spectroscopy and fluorescence techniques have been avoided. Both paraformaldehyde and two-step glutaraldehyde fixation were identified as best preserving biochemistry for both SMLM and IR studies while other glutaraldehyde and methanol fixation protocols were demonstrated to cause significant biochemical changes and higher variability between samples. Moreover, the potential complementarity of the two techniques was strikingly demonstrated in the correlated detection of biochemical changes as well as in the detection of fixation-induced damage that was only revealed by one of the two techniques.

  4. Extracting Models in Single Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  5. Single molecules: Thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2012-09-01

    Technologies aimed at single-molecule resolution of non-equilibrium systems increasingly require sophisticated new ways of thinking about thermodynamics. An elegant extension to standard fluctuation theory grants access to the kinetic intermediate states of these systems -- as DNA-pulling experiments now demonstrate.

  6. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  7. Analysis of acid-base interactions at Al2O3 (11-20) interfaces by means of single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Mosebach, Bastian; Ozkaya, Berkem; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido

    2017-10-01

    Single molecule force spectroscopy (SMFS) was employed to investigate the interaction forces between aliphatic amino, hydroxyl and ether groups and aluminum oxide single crystal surfaces in an aqueous electrolyte at pH = 6. The force studies were based on the variation of the terminal group of polyethylene glycol which was bound via a Ssbnd Au bond to the gold coated AFM tip. X-ray Photoelectron Spectroscopy (XPS) was performed to characterize the surface chemistry of the substrate. Force distance curves were measured between the PEG-NH2, sbnd OH and sbnd OCH3 functionalized atomic force microscope (AFM) tip and the non-polar single crystalline Al2O3(11-20) surface. The experimental results exhibit non-equilibrium desorption events which hint at acid-base interactions of the electron donating hydroxyl and amino groups with Al-ions in the surface of the oxide. The observed desorption forces for the sbnd NH2, sbnd OH/Al2O3(11-20) were in the range of 100-200 pN.

  8. Vibrational spectroscopy of HNS degradation

    NASA Astrophysics Data System (ADS)

    Alam, M. Kathleen; Martin, Laura; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric

    2008-08-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a σ-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  9. Vibrational spectroscopy of HNS degradation.

    SciTech Connect

    Martin, Laura Elizabeth; Welle, Eric James; Ten Eyck, Gregory A.; Schmitt, Randal L.; Alam, Mary Kathleen

    2008-07-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a {sigma}-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  10. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  11. Vibrational Spectroscopy in Body Fluids Analysis.

    PubMed

    Bunaciu, Andrei A; Fleschin, Şerban; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-01-02

    Vibrational spectroscopy offers a unique opportunity to investigate the composition of unknown substances on a molecular basis. The spectroscopy of molecular vibrations using mid-infrared or Raman techniques has been applied to samples of body fluids. This review presents some applications related to body fluids published in the period 2005-2015.

  12. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  13. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy.

    PubMed

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-05-07

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.

  14. Effects of Supramolecular Encapsulation on Photophysics and Photostability of a 9,10-Bis(arylethynyl)anthracene-Based Chromophore Revealed by Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Mitsui, Masaaki; Higashi, Koji; Hirumi, Yohei; Kobayashi, Kenji

    2016-10-18

    The effects of supramolecular encapsulation on the photophysics and photostability of a highly fluorescent dimeric derivative of 2,6-diacetoxy-9,10-bis(arylethynyl)anthracene (G2) were investigated by single-molecule fluorescence spectroscopy (SMFS). The fluorescence properties of free-G2 and its self-assembled boronic ester encapsulation complex, G2@(Cap)2, were compared in solution and a glassy polymer film. The fluorescence spectral characteristics and theoretical calculations suggest that the environment affects the excited-state conformation and subsequent fluorescence emission of G2@(Cap)2. In particular, in the liquid and polymer environments, G2@(Cap)2 emits a fluorescence photon in the planar and twist conformation, respectively, whereas the fluorescence-emitting conformation of free-G2 is planar in both environments. The luminous conformation differences between free-G2 and G2@(Cap)2 in polymer are reflected in the intersystem crossing (ISC) parameters (the ISC quantum yield and triplet lifetime), as determined by fluorescence autocorrelation analysis. The photobleaching yield revealed a 3-fold enhancement in the photostability of encapsulated G2 (relative to free-G2). Under the SMFS measurement conditions, the photostability of the encapsulation complex was independent of the guest's photostability and appeared to be dominated by the thermal stability of the Cap host molecule.

  15. Single molecule magnets with protective ligand shells on gold and titanium dioxide surfaces: in situ electrospray deposition and x-ray absorption spectroscopy.

    PubMed

    Handrup, Karsten; Richards, Victoria J; Weston, Matthew; Champness, Neil R; O'Shea, James N

    2013-10-21

    Two single molecule magnets based on the dodecamanganese (III, IV) cluster with either benzoate or terphenyl-4-carboxylate ligands, have been studied on the Au(111) and rutile TiO2(110) surfaces. We have used in situ electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. X-ray absorption spectroscopy measured at the Mn L-edge (Mn 2p) has been used to study the effect of adsorption on the oxidation states of the manganese atoms in the core. In the case of the benzoate-functionalised complex reduction of the manganese metal centres is observed due to the interaction of the manganese core with the underlying surface. In the case of terphenyl-4-carboxylate, the presence of this much larger ligand prevents the magnetic core from interacting with either the gold or the titanium dioxide surfaces and the characteristic Mn(3+) and Mn(4+) oxidation states necessary for magnetic behaviour are preserved.

  16. Watching single molecules dance

    NASA Astrophysics Data System (ADS)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  17. Vibrational spectroscopy in the electron microscope.

    PubMed

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  18. Vibrational spectroscopy in the electron microscope

    NASA Astrophysics Data System (ADS)

    Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R. W.; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E.; Lagos, Maureen J.; Egerton, Ray F.; Crozier, Peter A.

    2014-10-01

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for `aloof' spectroscopy that largely avoids radiation damage.

  19. Single-molecule electrometry

    NASA Astrophysics Data System (ADS)

    Ruggeri, Francesca; Zosel, Franziska; Mutter, Natalie; Różycka, Mirosława; Wojtas, Magdalena; Ożyhar, Andrzej; Schuler, Benjamin; Krishnan, Madhavi

    2017-05-01

    Mass and electrical charge are fundamental properties of biological macromolecules. Although molecular mass has long been determined with atomic precision, a direct and precise determination of molecular charge remains an outstanding challenge. Here we report high-precision (<1e) measurements of the electrical charge of molecules such as nucleic acids, and globular and disordered proteins in solution. The measurement is based on parallel external field-free trapping of single macromolecules, permits the estimation of a dielectric coefficient of the molecular interior and can be performed in real time. Further, we demonstrate the direct detection of single amino acid substitution and chemical modifications in proteins. As the electrical charge of a macromolecule strongly depends on its three-dimensional conformation, this kind of high-precision electrometry offers an approach to probe the structure, fluctuations and interactions of a single molecule in solution.

  20. Enhancing single-molecule fluorescence with nanophotonics.

    PubMed

    Acuna, Guillermo; Grohmann, Dina; Tinnefeld, Philip

    2014-10-01

    Single-molecule fluorescence spectroscopy has become an important research tool in the life sciences but a number of limitations hinder the widespread use as a standard technique. The limited dynamic concentration range is one of the major hurdles. Recent developments in the nanophotonic field promise to alleviate these restrictions to an extent that even low affinity biomolecular interactions can be studied. After motivating the need for nanophotonics we introduce the basic concepts of nanophotonic devices such as zero mode waveguides and nanoantennas. We highlight current applications and the future potential of nanophotonic approaches when combined with biological systems and single-molecule spectroscopy.

  1. Single molecule study of silicon quantum dots

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Li, Qi; Jin, Rongchao; Peteanu, Linda

    2016-09-01

    Recently, fluorescent Silicon (Si) Quantum Dots (QDs) have attracted much interest due to their high quantum yield, use of non-toxic and environmentally-benign chemicals, and water-solubility. However, more research is necessary to understand the energy level characteristics and single molecule behavior to enable their development for imaging applications. Therefore, single molecule time-resolved fluorescence spectroscopy of fluorescent Si QDs (cyan, green, and yellow) is needed. A rigorous analysis of time-resolved photon correlation spectroscopy and fluorescence lifetime data on single Si QDs at room temperature is presented.

  2. β-connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Marchetti, S.; Sbrana, F.; Toscano, A.; Fratini, E.; Carlà, M.; Vassalli, M.; Tiribilli, B.; Pacini, A.; Gambi, C. M. C.

    2011-05-01

    The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I27 to I34, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I27-I34 fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

  3. Gradual disordering of the native state on a slow two-state folding protein monitored by single-molecule fluorescence spectroscopy and NMR.

    PubMed

    Campos, Luis A; Sadqi, Mourad; Liu, Jianwei; Wang, Xiang; English, Douglas S; Muñoz, Victor

    2013-10-24

    Theory predicts that folding free energy landscapes are intrinsically malleable and as such are expected to respond to perturbations in topographically complex ways. Structural changes upon perturbation have been observed experimentally for unfolded ensembles, folding transition states, and fast downhill folding proteins. However, the native state of proteins that fold in a two-state fashion is conventionally assumed to be structurally invariant during unfolding. Here we investigate how the native and unfolded states of the chicken α-spectrin SH3 domain (a well characterized slow two-state folder) change in response to chemical denaturants and/or temperature. We can resolve the individual properties of the two end-states across the chemical unfolding transition employing single-molecule fluorescence spectroscopy (SM-FRET) and across the thermal unfolding transition by NMR because SH3 folds-unfolds in the slow chemical exchange regime. Our results demonstrate that α-spectrin SH3 unfolds in a canonical way in the sense that it converts between the native state and an unfolded ensemble that expands in response to chemical denaturants. However, as conditions become increasingly destabilizing, the native state also expands gradually, and a large fraction of its native intramolecular hydrogen bonds break up. This gradual disordering of the native state takes place in times shorter than the 100 μs resolution of our SM-FRET experiments. α-Spectrin SH3 thus showcases the extreme plasticity of folding landscapes, which extends to the native state of slow two-state proteins. Our results point to the idea that folding mechanisms under physiological conditions might be quite different from those obtained by linear extrapolation from denaturing conditions. Furthermore, they highlight a pressing need for re-evaluating the conventional procedures for analyzing and interpreting folding experiments, which may be based on too-simplistic assumptions.

  4. Spin resolved photoelectron spectroscopy of [Mn6(III)Cr(III)]3+ single-molecule magnets and of manganese compounds as reference layers.

    PubMed

    Helmstedt, Andreas; Müller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich; Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten; Bouvron, Samuel; Fonin, Mikhail; Neumann, Manfred

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn(6)(III)Cr(III)](3+) are studied. It contains six Mn(III) ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S(t) = 21/2. The dominant structures in the electron emission spectra of [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge are the L(3)M(2, 3)M(2, 3), L(3)M(2, 3)V and L(3)VV Auger emission groups following the decay of the primary p(3/2) core hole state. Significant differences of the Auger spectra from intact and degraded [Mn(6)(III)Cr(III)](3+) show up. First measurements of the electron spin polarization in the L(3)M(2, 3)V and L(3)VV Auger emission peaks from the manganese constituents in [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn(2)O(3) and Mn(II)(acetate)(2)·4H(2)O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn(II)(acetate)(2)·4H(2)O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn(4)(II)O(6) core at 5 K in an external magnetic field of 5 T.

  5. {beta}-connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy

    SciTech Connect

    Marchetti, S.; Carla, M.; Gambi, C. M. C.; Sbrana, F.; Vassalli, M.; Toscano, A.; Pacini, A.; Fratini, E.; Tiribilli, B.

    2011-05-15

    The three-dimensional structure and the mechanical properties of a {beta}-connectin fragment from human cardiac muscle, belonging to the I band, from I{sub 27} to I{sub 34}, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I{sub 27}-I{sub 34} fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

  6. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Quan

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  7. Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy

    PubMed Central

    Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi

    2016-01-01

    Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states. PMID:27812020

  8. Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi

    2016-11-01

    Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)‑1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states.

  9. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  10. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    PubMed Central

    2014-01-01

    Summary Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR) are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis. PMID:25551056

  11. Single Molecule Mechanochemistry

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Zhang, Yanxing; Ho, Wilson; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Wilson Ho, Shaowei Li Team

    Mechanical forces can be used to trigger chemical reactions through bending and stretching of chemical bonds. Using the reciprocating movement of the tip of a scanning tunneling microscope (STM), mechanical energy can be provided to a single molecule sandwiched between the tip and substrate. When the mechanical pulse center was moved to the outer ring feature of a CO molecule, the reaction rate was significantly increased compared with bare Cu surface and over Au atoms. First, DFT calculations show that the presence of CO makes the Cu cavity more attractive toward H2 Second, H2 prefers the horizontal adsorption geometry in the Cu-Cu and Au-Cu cavities and no hybridization occurs between the antibonding states of H2 and states of Cu atoms. While H2 loses electrons from its bonding state in all three cavities, the filling of its anti-bonding state only occurs in the CO-Cu cavity. Both make the CO-Cu cavity much more effectively to chop the H2 molecule. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  12. Towards single molecule DNA sequencing

    NASA Astrophysics Data System (ADS)

    Liu, Hao

    Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule differentiation and DNA translocation control are the two main challenges in all single molecule DNA sequencing methods. In this thesis, I will first introduce DNA sequencing technology development and its application, and then explain the performance and limitation of prior art in detail. Following that, I will show a single molecule DNA base differentiation result obtained in recognition tunneling experiments. Furthermore, I will explain the assembly of a nanofluidic platform for single strand DNA translocation, which holds the promised to be integrated into a single molecule DNA sequencing instrument for DNA translocation control. Taken together, my dissertation research demonstrated the potential of using recognition tunneling techniques to serve as a general readout system for single molecule DNA sequencing application.

  13. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  14. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches.

  15. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  16. Vibrational Spectroscopy of Chromatographic Interfaces

    SciTech Connect

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  17. Vibrational Spectroscopy and Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Girish, T. E.; Sony, K. S.

    2008-11-01

    Vibrational spectroscopy is one of the vital tools in astrobiology. In this paper we have studied the role of IR spectroscopy in the detection of plant and animal life elsewhere in our galaxy. Using relevant astrophysical data of nearby extrasolar planets we have calculated the detection limits of IR spectra of life related chemical compounds from these objects. The probability of detection of methane and plant pigments is found to relatively higher near M type stars compared to G type stars. A list of Jupiter size extrasolar planets discovered around G type stars which are potential objects for possible detection of plant life through IR reflection spectroscopy is also prepared.

  18. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  19. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  20. Interplay of hole transfer and host-guest interaction in a molecular dyad and triad: ensemble and single-molecule spectroscopy and sensing applications.

    PubMed

    Wu, Xiangyang; Liu, Fang; Wells, Kym L; Tan, Serena L J; Webster, Richard D; Tan, Howe-Siang; Zhang, Dawei; Xing, Bengang; Yeow, Edwin K L

    2015-02-16

    A new molecular dyad consisting of a Cy5 chromophore and ferrocene (Fc) and a triad consisting of Cy5, Fc, and β-cyclodextrin (CD) are synthesized and their photophysical properties investigated at both the ensemble and single-molecule levels. Hole transfer efficiency from Cy5 to Fc in the dyad is reduced upon addition of CD. This is due to an increase in the Cy5-Fc separation (r) when the Fc is encapsulated in the macrocyclic host. On the other hand, the triad adopts either a Fc-CD inclusion complex conformation in which hole transfer quenching of the Cy5 by Fc is minimal or a quasi-static conformation with short r and rapid charge transfer. Single-molecule fluorescence measurements reveal that r is lengthened when the triad molecules are deposited on a glass substrate. By combining intramolecular charge transfer and competitive supramolecular interaction, the triad acts as an efficient chemical sensor to detect different bioactive analytes such as amantadine hydrochloride and sodium lithocholate in aqueous solution and synthetic urine.

  1. Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.

    PubMed

    Kern, Andreas M; Zhang, Dai; Brecht, Marc; Chizhik, Alexey I; Failla, Antonio Virgilio; Wackenhut, Frank; Meixner, Alfred J

    2014-02-21

    While single-molecule fluorescence from emitters with high quantum efficiencies such as organic dye molecules can easily be detected by modern apparatus, many less efficient emission processes such as Raman scattering and metal luminescence require dramatic enhancement to exceed the single-particle detection limit. This enhancement can be achieved using resonant optical systems such as plasmonic particles or nanoantennas, the study of which has led to substantial progress in understanding the interaction of quantum emitters with their electromagnetic environment. This review is focused on the advances in measurement techniques and potential applications enabled by a deeper understanding of fundamental optical interaction processes occurring between single quantum systems on the nanoscale. While the affected phenomena are numerous, including molecular fluorescence and also exciton luminescence and Raman scattering, the interaction itself can often be described from a unified point of view. Starting from a single underlying model, this work elucidates the dramatic enhancement potential of plasmonic tips and nanoparticles and also the more deterministic influence of a Fabry-Pérot microresonator. With the extensive knowledge of the radiative behavior of a quantum system, insight can be gained into nonradiative factors as well, such as energy transfer phenomena or spatial and chemical configurations in single molecules.

  2. Single-molecule magnets: structural characterization, magnetic properties, and (19)F NMR spectroscopy of a Mn(12) family spanning three oxidation levels.

    PubMed

    Chakov, Nicole E; Soler, Monica; Wernsdorfer, Wolfgang; Abboud, Khalil A; Christou, George

    2005-07-25

    lower temperatures reflects the decreasing magnetic anisotropy upon successive reduction and, hence, the decreasing energy barrier to magnetization relaxation. Relaxation rate vs T data obtained from chi(M)' ' vs AC oscillation frequency studies down to 1.8 K were combined with rate vs T data from DC magnetization decay vs time measurements at lower temperatures to generate an Arrhenius plot from which the effective barrier (U(eff)) to magnetization reversal was obtained; the U(eff) values are 59 K for 2, 49 and 21 K for the slower- and faster-relaxing species of 3, respectively, and 25 K for 4. Hysteresis loops obtained from single-crystal magnetization vs DC field scans are typical of single-molecule magnets with the coercivities increasing with decreasing T and increasing field sweep rate and containing steps caused by the quantum tunneling of magnetization (QTM). The step separations gave D/g values of 0.22 cm(-)(1) for 2, 0.15 and 0.042 cm(-)(1) for the slower- and faster-relaxing species of 3, and 0.15 cm(-)(1) for 4.

  3. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    PubMed Central

    Hosseinpour, Saman; Johnson, Magnus

    2017-01-01

    Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm. PMID:28772781

  4. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1-240) dimers.

    PubMed

    Long, Saran; Zhou, Meng; Tang, Kun; Zeng, Xiao-Li; Niu, Yingli; Guo, Qianjin; Zhao, Kai-Hong; Xia, Andong

    2015-05-28

    ApcE(1-240) dimers with one intrinsic phycocyanobilin (PCB) chromophore in each monomer that is truncated from the core-membrane linker (ApcE) of phycobilisomes (PBS) in Nostoc sp. PCC 7120 show a sharp and significantly red-shifted absorption. Two explanations either conformation-dependent Förster resonance energy transfer (FRET) or the strong exciton coupling limit have been proposed for red-shifted absorption. This is a classic example of the special pair in the photosynthetic light harvesting proteins, but the mechanism of this interaction is still a matter of intense debate. We report the studies using single-molecule and transient absorption spectra on the interaction in the special pair of ApcE dimers. Our results demonstrate the presence of conformation-dependent FRET between the two PCB chromophores in ApcE dimers. The broad distributions of fluorescence intensities, lifetimes and polarization difference from single-molecule measurements reveal the heterogeneity of local protein-pigment environments in ApcE dimers, where the same molecular structures but different protein environments are the main reason for the two PCB chromophores with different spectral properties. The excitation energy transfer rate between the donor and the acceptor about (110 ps)(-1) is determined from transient absorption measurements. The red-shifted absorption in ApcE dimers could result from more extending conformation, which shows another type of absorption redshift that does not depend on strong exciton coupling. The results here stress the importance of conformation-controlled spectral properties of the chemically identical chromophores, which could be a general feature to control energy/electron transfer, widely existing in the light harvesting complexes.

  5. Vibrational spectroscopy in shock-compressed liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.

    1992-01-01

    Coherent anti-Stokes Raman spectroscopy is being used to study the structure and energy transfer in simple molecular liquids at the high pressures and temperatures characteristic of explosive detonation. Dense fluids to several thousand degrees temperature and several hundred kilobars pressure are obtained using the shock-compression technique. Vibrational frequencies, third-order susceptibility ratios, and linewidths have been measured for N{sub 2}, O{sub 2}, CO, mixtures of N{sub 2}, O{sub 2}, and CO, and N{sub 2}O. Frequencies are found to increase with pressure. The transition intensity and line-width data suggest that thermal equilibrium of the vibrational levels is attained in less than a few nanoseconds at these high pressures and temperatures. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations.

  6. Vibrational spectroscopy in shock-compressed liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.

    1992-03-01

    Coherent anti-Stokes Raman spectroscopy is being used to study the structure and energy transfer in simple molecular liquids at the high pressures and temperatures characteristic of explosive detonation. Dense fluids to several thousand degrees temperature and several hundred kilobars pressure are obtained using the shock-compression technique. Vibrational frequencies, third-order susceptibility ratios, and linewidths have been measured for N{sub 2}, O{sub 2}, CO, mixtures of N{sub 2}, O{sub 2}, and CO, and N{sub 2}O. Frequencies are found to increase with pressure. The transition intensity and line-width data suggest that thermal equilibrium of the vibrational levels is attained in less than a few nanoseconds at these high pressures and temperatures. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations.

  7. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    NASA Astrophysics Data System (ADS)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  8. Illuminating single molecules in condensed matter.

    PubMed

    Moerner, W E; Orrit, M

    1999-03-12

    Efficient collection and detection of fluorescence coupled with careful minimization of background from impurities and Raman scattering now enable routine optical microscopy and study of single molecules in complex condensed matter environments. This ultimate method for unraveling ensemble averages leads to the observation of new effects and to direct measurements of stochastic fluctuations. Experiments at cryogenic temperatures open new directions in molecular spectroscopy, quantum optics, and solid-state dynamics. Room-temperature investigations apply several techniques (polarization microscopy, single-molecule imaging, emission time dependence, energy transfer, lifetime studies, and the like) to a growing array of biophysical problems where new insight may be gained from direct observations of hidden static and dynamic inhomogeneity.

  9. The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions

    NASA Astrophysics Data System (ADS)

    Mack, A. H.; Schlingman, D. J.; Kamenetska, M.; Collins, R.; Regan, L.; Mochrie, S. G. J.

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  10. The molecular yo-yo method: live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions.

    PubMed

    Mack, A H; Schlingman, D J; Kamenetska, M; Collins, R; Regan, L; Mochrie, S G J

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  11. Nanodevices for Single Molecule Studies

    NASA Astrophysics Data System (ADS)

    Craighead, H. G.; Stavis, S. M.; Samiee, K. T.

    During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.

  12. Heterodyne-Detected Dispersed Vibrational Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Kevin C.; Ganim, Ziad; Tokmakoff, Andrei

    2009-11-01

    We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.

  13. Transport mirages in single-molecule devices

    NASA Astrophysics Data System (ADS)

    Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.

    2017-03-01

    Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.

  14. Laser-Assisted Single Molecule Refolding

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Marshall, Myles; Aleman, Elvin; Lamichhane, Rajan; Rueda, David

    2010-03-01

    In vivo, many RNA molecules can adopt multiple conformations depending on their biological context such as the HIV Dimerization Initiation Sequence (DIS) or the DsrA RNA in bacteria. It is quite common that the initial interaction between the two RNAs takes place via complementary unpaired regions, thus forming a so-called kissing complex. However, the exact kinetic mechanism by which the two RNA molecules reach the dimerized state is still not well understood. To investigate the refolding energy surface of RNA molecules, we have developed new technology based on the combination of single molecule spectroscopy with laser induced temperature jump kinetics, called Laser Assisted Single-molecule Refolding (LASR). LASR enables us to induce folding reactions of otherwise kinetically trapped RNAs at the single molecule level, and to characterize their folding landscape. LASR provides an exciting new approach to study molecular memory effects and kinetically trapped RNAs in general. LASR should be readily applicable to study DNA and protein folding as well.

  15. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis.

    PubMed

    Hashimoto, Hideki; Sugisaki, Mitsuru; Yoshizawa, Masayuki

    2015-01-01

    This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.

  16. Single-molecule detection with active transport

    NASA Astrophysics Data System (ADS)

    Ball, David Allan

    A glass capillary is used near the focal region of a custom-built confocal microscope to investigate the use of active transport for single-molecule detection in solution, with both one and two-photon laser excitation. The capillary tip has a diameter of several microns and is carefully aligned nearby to the sub-micron laser beam waist, collinear to the optical axis, so that a negative pressure-difference causes molecules to be drawn into the capillary, along the laser beam axis. The flow of solution, which is characterized by fluorescence correlation spectroscopy (FCS), can increase the single-molecule detection rate for slowly diffusing proteins by over a factor of 100, while the mean rate of photons during each burst is similar to that for random diffusional transport. Also, the flow is along the longest axis of the ellipsoidally-shaped confocal volume, which results in more collected photons per molecule than that for transverse flow at the same speed. When transport is dominated by flow, FCS can no longer distinguish molecules with differing translational diffusion, and hence a fluorescence fluctuation spectroscopy method based on differences in fluorescence brightness is investigated as a means for assaying different solution components, for applications in pharmaceutical drug discovery. Multi-channel fluctuation spectroscopy techniques can also be used for assays with the flow system and hence this dissertation also reports the characterization of a prototype 4-channel single-photon detector with a two-wavelength polarization-resolved optical set-up.

  17. Single-molecule nanopore enzymology

    PubMed Central

    Wloka, Carsten; Maglia, Giovanni

    2017-01-01

    Biological nanopores are a class of membrane proteins that open nanoscale water-conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. More recently, proteins and enzymes have started being analysed with nanopores. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here we describe the approaches and challenges in nanopore enzymology. PMID:28630164

  18. Single-molecule optomechanics in "picocavities".

    PubMed

    Benz, Felix; Schmidt, Mikolaj K; Dreismann, Alexander; Chikkaraddy, Rohit; Zhang, Yao; Demetriadou, Angela; Carnegie, Cloudy; Ohadi, Hamid; de Nijs, Bart; Esteban, Ruben; Aizpurua, Javier; Baumberg, Jeremy J

    2016-11-11

    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer ("picocavities"), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 10(6) enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.

  19. Photoemission of Mn6Cr single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  20. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  1. Mechanoenzymatics and Nanoassembly of Single Molecules

    NASA Astrophysics Data System (ADS)

    Puchner, Elias M.; Gaub, Hermann E.

    We investigated the muscle enzyme, titin kinase, by means of single-molecule force spectroscopy. Our results show that the binding of ATP, which is the first step of its signaling cascade controlling the muscle gene expression and protein turnover, is mechanically induced. The detailed determination of barrier positions in the mechanical activation pathway and the corresponding functional states allow structural insight, by comparing the experiment with molecular dynamics simulations. From our results, we conclude that titin kinase acts as a natural force sensor controlling the muscle build-up. To study the interplay of functional units, we developed the single-molecule cut-and-paste technique, which combines the precision of AFM with the selectivity of DNA hybridization. Functional units can be assembled one-by-one in an arbitrarily predefined pattern, with an accuracy that is better than 11 nm. The cyclic assembly process is optically monitored and mechanically recorded by force-extension traces. Using biotin as a functional unit attached to the transported DNA, patterns of binding sites may be created, to which streptavidin-modified nanoobjects like fluorescent nanoparticles can specifically self-assemble in a second step.

  2. Uncovering hierarchical data structure in single molecule transport

    NASA Astrophysics Data System (ADS)

    Wu, Ben H.; Ivie, Jeffrey A.; Johnson, Tyler K.; Monti, Oliver L. A.

    2017-03-01

    Interpretation of single molecule transport data is complicated by the fact that all such data are inherently highly stochastic in nature. Features are often broad, seemingly unstructured and distributed over more than an order of magnitude. However, the distribution contains information necessary for capturing the full variety of processes relevant in nanoscale transport, and a better understanding of its hierarchical structure is needed to gain deeper insight into the physics and chemistry of single molecule electronics. Here, we describe a novel data analysis approach based on hierarchical clustering to aid in the interpretation of single molecule conductance-displacement histograms. The primary purpose of statistically partitioning transport data is to provide avenues for unbiased hypothesis generation in single molecule break junction experiments by revealing otherwise potentially hidden aspects in the conductance data. Our approach is generalizable to the analysis of a wide variety of other single molecule experiments in molecular electronics, as well as in single molecule fluorescence spectroscopy, force microscopy, and ion-channel conductance measurements.

  3. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  4. Ultrashort Laser Pulses in Single Molecule Spectroscopy

    NASA Astrophysics Data System (ADS)

    Haustein, E.; Schwille, P.

    Craig Venter published the sequence of the human genome a few years ago [1]. However, the 2.91 billion base pair DNA examined seems to code for only about 30 000 proteins. A vast majority of them are barely known to exist, let alone fully understood. Therefore, major goals of current biological research are not only the identification, but also the precise physico-chemical characterization of elementary processes on the level of individual proteins and nucleic acids. These molecules are believed to be the smallest functional units in biological systems.

  5. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies.

    PubMed

    Gaynor, James D; Khalil, Munira

    2017-09-07

    Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.

  6. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies

    NASA Astrophysics Data System (ADS)

    Gaynor, James D.; Khalil, Munira

    2017-09-01

    Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.

  7. Vibrational spectroscopy in biomedical science: bone

    NASA Astrophysics Data System (ADS)

    Gamsjäger, Sonja; Zoehrer, R.; Roschger, P.; Fratzl, P.; Klaushofer, K.; Mendelsohn, R.; Paschalis, E. P.

    2009-02-01

    Fourier transform infrared imaging (FTIR) and Raman Microspectroscopy are powerful tools for characterizing the distribution of different chemical moieties in heterogeneous materials. FTIR and Raman measurements have been adapted to assess the maturity of the mineral and the quality of the organic component (collagen and non-collagenous proteins) of the mineralized tissue in bone. Unique to the FTIRI analysis is the capability to provide the spatial distribution of two of the major collagen cross-links (pyridinoline, and dehydro-dihydroxylysinonorleucine) and through the study of normal and diseased bone, relate them to bone strength. These FTIR parameters have been validated based on analysis of model compounds. It is widely accepted that bone strength is determined by bone mass and bone quality. The latter is a multifactorial term encompassing the material and structural properties of bone, and one important aspect of the bone material properties is the organic matrix. The bone material properties can be defined by parameters of mineral and collagen, as determined by FTIR and Raman analysis. Considerably less attention has been directed at collagen, although there are several publications in the literature reporting altered collagen properties associated with fragile bone, in both animals and humans. Since bone is a heterogeneous tissue due to the remodeling process, microscopic areas may be carefully selected based on quantitative Backscattered Electron Imaging or histological staining, thus ensuring comparison of areas with similar metabolic activity and mineral content. In conclusion, FTIRI and Raman vibrational spectroscopy are proving to be powerful tools in bone-related medical research.

  8. 2010 GRC VIBRATIONAL SPECTROSCOPY AUGUST 1 - AUGUST 6, 2010

    SciTech Connect

    Brooks Pate

    2010-08-06

    The Vibrational Spectroscopy conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear and multidimensional spectroscopies. The conference highlights the application of these techniques in chemistry, materials, biology, and medicine. The theory of molecular vibrational motion and its connection to spectroscopic signatures and chemical reaction dynamics is the third major theme of the meeting. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules and nanomaterials.

  9. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  10. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    PubMed Central

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-01-01

    Emitters placed in an optical cavity experience an environment that changes their coupling to light. In the weak-coupling regime light extraction is enhanced, but more profound effects emerge in the single-molecule strong-coupling regime where mixed light-matter states form1,2. Individual two-level emitters in such cavities become non-linear for single photons, forming key building blocks for quantum information systems as well as ultra-low power switches and lasers3–6. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complex fabrication, severely compromising their use5,7,8. Here, by scaling the cavity volume below 40 nm3 and using host-guest chemistry to align 1-10 protectively-isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from >50 plasmonic nanocavities display characteristic anticrossings, with Rabi frequencies of 300 meV for 10 molecules decreasing to 90 meV for single molecules, matching quantitative models. Statistical analysis of vibrational spectroscopy time-series and dark-field scattering spectra provide evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis9 and pathways towards manipulation of chemical bonds10. PMID:27296227

  11. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings

    PubMed Central

    Bie, Ya-Qing; Horng, Jason; Shi, Zhiwen; Ju, Long; Zhou, Qin; Zettl, Alex; Yu, Dapeng; Wang, Feng

    2015-01-01

    Microscopic understanding of physical and electrochemical processes at electrolyte/electrode interfaces is critical for applications ranging from batteries, fuel cells to electrocatalysis. However, probing such buried interfacial processes is experimentally challenging. Infrared spectroscopy is sensitive to molecule vibrational signatures, yet to approach the interface three stringent requirements have to be met: interface specificity, sub-monolayer molecular detection sensitivity, and electrochemically stable and infrared transparent electrodes. Here we show that transparent graphene gratings electrode provide an attractive platform for vibrational spectroscopy at the electrolyte/electrode interfaces: infrared diffraction from graphene gratings offers enhanced detection sensitivity and interface specificity. We demonstrate the vibrational spectroscopy of methylene group of adsorbed sub-monolayer cetrimonium bromide molecules and reveal a reversible field-induced electrochemical deposition of cetrimonium bromide on the electrode controlled by the bias voltage. Such vibrational spectroscopy with graphene gratings is promising for real time and in situ monitoring of different chemical species at the electrolyte/electrode interfaces. PMID:26123807

  12. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  13. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings

    NASA Astrophysics Data System (ADS)

    Bie, Ya-Qing; Horng, Jason; Shi, Zhiwen; Ju, Long; Zhou, Qin; Zettl, Alex; Yu, Dapeng; Wang, Feng

    2015-06-01

    Microscopic understanding of physical and electrochemical processes at electrolyte/electrode interfaces is critical for applications ranging from batteries, fuel cells to electrocatalysis. However, probing such buried interfacial processes is experimentally challenging. Infrared spectroscopy is sensitive to molecule vibrational signatures, yet to approach the interface three stringent requirements have to be met: interface specificity, sub-monolayer molecular detection sensitivity, and electrochemically stable and infrared transparent electrodes. Here we show that transparent graphene gratings electrode provide an attractive platform for vibrational spectroscopy at the electrolyte/electrode interfaces: infrared diffraction from graphene gratings offers enhanced detection sensitivity and interface specificity. We demonstrate the vibrational spectroscopy of methylene group of adsorbed sub-monolayer cetrimonium bromide molecules and reveal a reversible field-induced electrochemical deposition of cetrimonium bromide on the electrode controlled by the bias voltage. Such vibrational spectroscopy with graphene gratings is promising for real time and in situ monitoring of different chemical species at the electrolyte/electrode interfaces.

  14. Grafting single molecule magnets on gold nanoparticles.

    PubMed

    Perfetti, Mauro; Pineider, Francesco; Poggini, Lorenzo; Otero, Edwige; Mannini, Matteo; Sorace, Lorenzo; Sangregorio, Claudio; Cornia, Andrea; Sessoli, Roberta

    2014-01-29

    The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2-dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV-vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X-ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross-linking ability of Fe4 through the two 1,2-dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron-based X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating-current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure.

  15. The road to medical vibrational spectroscopy--a history.

    PubMed

    Mantsch, Henry H

    2013-07-21

    The present Editorial chronicles the journey from classical infrared and Raman spectroscopy to medical vibrational spectroscopy, as experienced by a contemporary witness of the times. During the second half of the last century vibrational biospectroscopy became a topic of increasing global interest and has spawned a number of international conferences of which the most recent, SPEC 2012 - Shedding New Light on Disease, constitutes the basis of the present themed issue.

  16. Simultaneous time and frequency resolved fluorescence microscopy of single molecules.

    SciTech Connect

    Hayden, Carl C.; Gradinaru, Claudiu C.; Chandler, David W.; Luong, A. Khai

    2005-01-01

    Single molecule fluorophores were studied for the first time with a new confocal fluorescence microscope that allows the wavelength and emission time to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive detector. This detector records the wavelength and emission time of each detected photon relative to an excitation laser pulse. A histogram of many events for any selected spatial region or time interval can generate a full fluorescence spectrum and correlated decay plot for the given selection. At the single molecule level, this approach makes entirely new types of temporal and spectral correlation spectroscopy of possible. This report presents the results of simultaneous time- and frequency-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 embedded in thin films of polymethylmethacrylate (PMMA).

  17. Optical microscopy using a single-molecule light source

    PubMed

    Michaelis; Hettich; Mlynek; Sandoghdar

    2000-05-18

    Rapid progress in science on nanoscopic scales has promoted increasing interest in techniques of ultrahigh-resolution optical microscopy. The diffraction limit can be surpassed by illuminating an object in the near field through a sub-wavelength aperture at the end of a sharp metallic probe. Proposed modifications of this technique involve replacing the physical aperture by a nanoscopic active light source. Advances in the spatial and spectral detection of individual fluorescent molecules, using near-field and far-field methods, suggest the possibility of using a single molecule as the illumination source. Here we present optical images taken with a single molecule as a point-like source of illumination, by combining fluorescence excitation spectroscopy with shear-force microscopy. Our single-molecule probe has potential for achieving molecular resolution in optical microscopy; it should also facilitate controlled studies of nanometre-scale phenomena (such as resonant energy transfer) with improved lateral and axial spatial resolution.

  18. Spectroscopy and reactions of vibrationally excited transient molecules

    SciTech Connect

    Dai, H.L.

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  19. Figuration and detection of single molecules

    NASA Astrophysics Data System (ADS)

    Nevels, R.; Welch, G. R.; Cremer, P. S.; Hemmer, P.; Phillips, T.; Scully, S.; Sokolov, A. V.; Svidzinsky, A. A.; Xia, H.; Zheltikov, A.; Scully, M. O.

    2012-08-01

    Recent advances in the description of atoms and molecules based on Dimensional scaling analysis, developed by Dudley Herschbach and co-workers, provided new insights into visualization of molecular structure and chemical bonding. Prof. Herschbach is also a giant in the field of single molecule scattering. We here report on the engineering of molecular detectors. Such systems have a wide range of application from medical diagnostics to the monitoring of chemical, biological and environmental hazards. We discuss ways to identify preselected molecules, in particular, mycotoxin contaminants using coherent laser spectroscopy. Mycotoxin contaminants, e.g. aflatoxin B1 which is present in corn and peanuts, are usually analysed by time-consuming microscopic, chemical and biological assays. We present a new approach that derives from recent experiments in which molecules are prepared by one (or more) femtosecond laser(s) and probed by another set. We call this technique FAST CARS (femto second adaptive spectroscopic technique for coherent anti-Stokes Raman spectroscopy). We propose and analyse ways in which FAST CARS can be used to identify preselected molecules, e.g. aflatoxin, rapidly and economically.

  20. Geometric Phases in Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Fenochio, Brian Canchola

    The characterization of the material properties of Single Molecule Magnets (SMMs) has grown in importance over the last few decades with the rise of novel applications such as high-density magnetic storage and quantum computation. Many of the applications require the probing of SMMs with spectroscopic methods that make use of electromagnetic radiation. The interaction with these time-dependent fields leads to energy shifts, which can be attributed to the geometric phase acquired by the system or the Bloch-Siegert shift. We model an SMM by a giant spin Hamiltonian, and use Floquet perturbation theory to find the geometric phase shifts. The locations where the phase shift between two levels is zero is useful for performing accurate spectroscopies, whereas the regions where relative phase differences exist are useful in applications like quantum computing. Using the same giant spin Hamiltonian, we can use Floquet theory and Salwen perturbation theory to determine the Bloch-Siegert shift and derive a modified version of the Rabi formula for transition probabilities between the energy states Ealpha → Ealpha+/-1, Ealpha → Ealpha+/-3, and Ealpha → Ealpha+/-5 , where alpha is the index of an arbitrary initial state. The shifted eigenvalues and modified transition probabilities can be useful in spectroscopies where accurate values for the energy-splitting between magnetic states needs to be determined.

  1. Massively Parallel Single-Molecule Manipulation Using Centrifugal Force

    NASA Astrophysics Data System (ADS)

    Wong, Wesley; Halvorsen, Ken

    2011-03-01

    Precise manipulation of single molecules has led to remarkable insights in physics, chemistry, biology, and medicine. However, two issues that have impeded the widespread adoption of these techniques are equipment cost and the laborious nature of making measurements one molecule at a time. To meet these challenges, we have developed an approach that enables massively parallel single- molecule force measurements using centrifugal force. This approach is realized in the centrifuge force microscope, an instrument in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force- field while their micro-to-nanoscopic motions are observed. We demonstrate high- throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Currently, we are taking steps to integrate high-resolution detection, fluorescence, temperature control and a greater dynamic range in force. With significant benefits in efficiency, cost, simplicity, and versatility, single-molecule centrifugation has the potential to expand single-molecule experimentation to a wider range of researchers and experimental systems.

  2. Sizing up single-molecule enzymatic conformational dynamics.

    PubMed

    Lu, H Peter

    2014-02-21

    Enzymatic reactions and related protein conformational dynamics are complex and inhomogeneous, playing crucial roles in biological functions. The relationship between protein conformational dynamics and enzymatic reactions has been a fundamental focus in modern enzymology. It is extremely difficult to characterize and analyze such complex dynamics in an ensemble-averaged measurement, especially when the enzymes are associated with multiple-step, multiple-conformation complex chemical interactions and transformations. Beyond the conventional ensemble-averaged studies, real-time single-molecule approaches have been demonstrated to be powerful in dissecting the complex enzymatic reaction dynamics and related conformational dynamics. Single-molecule enzymology has come a long way since the early demonstrations of the single-molecule spectroscopy studies of enzymatic dynamics about two decades ago. The rapid development of this fundamental protein dynamics field is hand-in-hand with the new development of single-molecule imaging and spectroscopic technology and methodology, theoretical model analyses, and correlations with biological preparation and characterization of the enzyme protein systems. The complex enzymatic reactions can now be studied one molecule at a time under physiological conditions. Most exciting developments include active manipulation of enzymatic conformational changes and energy landscape to regulate and manipulate the enzymatic reactivity and associated conformational dynamics, and the new advancements have established a new stage for studying complex protein dynamics beyond by simply observing but by actively manipulating and observing the enzymatic dynamics at the single-molecule sensitivity temporally and spatially.

  3. Single-Molecule Protein Conformational Dynamics in Cell Signaling

    SciTech Connect

    Lu, H PETER.

    2004-08-22

    We have demonstrated the application of single-molecule imaging and ultrafast spectroscopy to probe protein conformational dynamics in solution and in lipid bilayers. Dynamic protein-protein interactions involve significant conformational motions that initiate chain reactions leading to specific cellular responses. We have carried out a single molecule study of dynamic protein-protein interactions in a GTPase intracellular signaling protein Cdc42 in complex with a downstream effector protein, WASP. We were able to probe hydrophobic interactions significant to Cdc42/WASP recognition. Single molecule fluorescence intensity and polarization measurements have revealed the dynamic and inhomogeneous nature of protein-protein interactions within the Cdc42/WASP complex that is characterized by structured distributions of conformational fluctuation rates. Conducting a single-molecule fluorescence anisotropy study of calmodulin (CaM), a regulatory protein for calcium-dependent cell signaling, we were able to probe CaM conformational dynamics at a wide time scale. In this study, CaM contains a site-specifically inserted tetra-cysteine motif that reacted with FlAsH, a biarsenic fluorescein derivative that can be rotationally locked to the host protein. The study provided direct characterization of the nanosecond motions of CaM tethered to a biologically compatible surface under physiological buffer solution. The unique technical approaches are applicable of studying single-molecule dynamics of protein conformational motions and protein-protein interactions at a wide time range without the signal convolution of probe-dye molecule motions

  4. Vibrational spectroscopy in stem cell characterisation: is there a niche?

    PubMed

    Sulé-Suso, J; Forsyth, N R; Untereiner, V; Sockalingum, G D

    2014-05-01

    Vibrational spectroscopy using both infrared and Raman spectroscopies has been used in recent years with the aim to aid clinicians in disease diagnosis. More recently, these techniques have been applied to study stem cell differentiation and to determine stem cell presence in tissues. These studies have demonstrated the potential of these techniques in better characterising stem cell differentiation phenotypes with potential applications in tissue engineering strategies. However, before the translation of vibrational spectroscopy into clinical practice becomes a reality, several issues still need to be addressed. We describe here an overview of the work carried out so far and the problems that might be encountered when using vibrational spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Single-molecule studies of DNA mechanics.

    PubMed

    Bustamante, C; Smith, S B; Liphardt, J; Smith, D

    2000-06-01

    During the past decade, physical techniques such as optical tweezers and atomic force microscopy were used to study the mechanical properties of DNA at the single-molecule level. Knowledge of DNA's stretching and twisting properties now permits these single-molecule techniques to be used in the study of biological processes such as DNA replication and transcription.

  6. Chemical principles of single-molecule electronics

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Neupane, Madhav; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2016-03-01

    The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure-property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

  7. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    to sample similar conformers. This work demonstrates that the conductance of bithiophene displays a strong dependence on the conformational fluctuations accessible within a given junction configuration, and that the symmetry of such small molecules can significantly influence their conductance behavior. Next, the single-molecule conductance of a family of oligothiophenes comprising one to six thiophene units was measured. An anomalous behavior was found: the peak of the conductance histogram distribution did not follow a clear exponential decay with increasing number of thiophene units in the chain. The electronic properties of the materials were characterized by optical spectroscopy and electrochemistry to gain an understanding of the factors affecting the conductance of these molecules. Different conformers in the junction were postulated to be a contributing factor to the anomalous trend in the observed conductance as a function of molecule length. Then, the electronic properties of the thiophene-1,1-dioxide unit were investigated. These motifs have become synthetically accessible in the last decade, due to Rozen's unprecedentedly potent oxidizing reagent - HOF˙CH 3CN - which has been shown to be powerful yet selective enough to oxidize thiophenes in various environments. The resulting thiophene-1,1-dioxides show great promise for electronic devices. The oxidation chemistry of thiophenes was expanded and tuning of the frontier energy levels was demonstrated through combining electron poor and electron rich units. Finally, charge carriers in single-molecule junctions were shown to be tunable within a family of molecules containing these thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed in order to increase electron affinity, maintain delocalized frontier orbitals, while significantly decreasing the transport gap. Through thermopower measurements, the dominant charge carriers were shown to change from holes to electrons as the number of

  8. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  9. Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum

    PubMed Central

    Liu, Yuan; King, Matthew D.; Tu, Haohua; Zhao, Youbo; Boppart, Stephen A.

    2013-01-01

    Vibrational spectroscopy has been widely applied in different fields due to its label-free chemical-sensing capability. Coherent anti-Stokes Raman scattering (CARS) provides stronger signal and faster acquisition than spontaneous Raman scattering, making it especially suitable for molecular imaging. Coherently-controlled single-beam CARS simplifies the conventional multi-beam setup, but the vibrational bandwidth and non-trivial spectrum retrieval have been limiting factors. In this work, a coherent supercontinuum generated in an all-normal-dispersion nonlinear fiber is phase-shaped within a narrow bandwidth for broadband vibrational spectroscopy. The Raman spectra can be directly retrieved from the CARS measurements, covering the fingerprint regime up to 1750 cm−1. The retrieved spectra of several chemical species agree with their spontaneous Raman data. The compact fiber supercontinuum source offers broad vibrational bandwidth with high stability and sufficient power, showing the potential for spectroscopic imaging in a wide range of applications. PMID:23571917

  10. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation

    DOE PAGES

    O’Callahan, Brian T.; Lewis, William E.; Möbius, Silke; ...

    2015-12-03

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy.With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainablemore » near-field signal levels in s-SNOM in general. As a result, the use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.« less

  11. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation

    SciTech Connect

    O’Callahan, Brian T.; Lewis, William E.; Möbius, Silke; Stanley, Jared C.; Muller, Eric A.; Raschke, Markus B.

    2015-12-03

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy.With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. As a result, the use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.

  12. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  13. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the

  14. Single-Molecule Fluorescence Spectroscopy of Perylene Diimide Dyes in a γ-Cyclodextrin Film: Manifestation of Photoinduced H-Atom Transfer via Higher Triplet (n, π*) Excited States.

    PubMed

    Mitsui, Masaaki; Fukui, Hiroki; Takahashi, Ryoya; Takakura, Yasushi; Mizukami, Toshinari

    2017-03-02

    Supramolecular complexation of γ-cyclodextrin (γ-CD) with N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide (DMP-PDI) or N,N'-bis(2,6-dioctyl)perylene-3,4,9,10-tetracarboxylic diimide (C8-PDI) dye in an aqueous solution and in a γ-CD solid film were investigated via ensemble and single-molecule fluorescence spectroscopy. These two perylene diimide derivatives possess almost the same electronic structure but have different terminal functional groups. This structural difference leads to formation of an inclusion complex of γ-CD with DMP-PDI but not with C8-PDI in aqueous solution. In a γ-CD solid film, the distributions of the wavelengths of emission maximum (λmax(em)) are strikingly different between these two dyes; a much narrower and blue-shifted λmax(em) distribution was observed for C8-PDI relative to DMP-PDI. This difference is attributed to the fact that the C8-PDI molecules are bound at the γ-CD/glass interface as a result of spin-coating of the sample solution, whereas the DMP-PDI molecules form 1:1 and 1:2 inclusion complexes with conformational heterogeneities in the film. In comparison to the case for C8-PDI, more frequent on-off blinking events were observed for DMP-PDI. The blinking statistics of DMP-PDI in the γ-CD film exhibit both single-exponential and nonexponential (i.e., dispersive) kinetics, revealed by robust statistical analysis. Energetic consideration with the aid of theoretical calculations suggests that the underlying photophysics most probably involves hydrogen atom transfer (HAT) between the DMP-PDI guest and γ-CD host via higher excited (n, π*) triplet states. The hypothesis of HAT in the inclusion complex reasonably explains the experimental results; however, a charge transfer hypothesis cannot explain the results. The dispersive kinetics is attributable to the effect of thermal fluctuation in the forward and backward HAT reactions.

  15. SINGLE MOLECULE ENZYMOLOGY FINDS ITS STRIDE.

    PubMed

    Perkel, Jeffrey

    2015-10-01

    More techniques aimed at probing the nature of single molecules are being developed and advanced in biophysics labs. Jeffrey Perkel takes a look at the scientists leading the charge into the micro-world.

  16. Analyzing single-molecule manipulation experiments.

    PubMed

    Calderon, Christopher P; Harris, Nolan C; Kiang, Ching-Hwa; Cox, Dennis D

    2009-01-01

    Single-molecule manipulation studies can provide quantitative information about the physical properties of complex biological molecules without ensemble artifacts obscuring the measurements. We demonstrate computational techniques which aim at more fully utilizing the wealth of information contained in noisy experimental time series. The "noise" comes from multiple sources e.g., inherent thermal motion, instrument measurement error, etc. The primary focus of this paper is a methodology that uses time domain based methods to extract the effective molecular friction from single-molecule pulling data. We studied molecules composed of eight tandem repeat titin I27 domains, but the modeling approaches have applicability to other single-molecule mechanical studies. The merits and challenges associated with applying such a computational approach to existing single-molecule manipulation data are also discussed. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. Single molecule sensing with carbon nanotube devices

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Sims, Patrick C.; Olsen, Tivoli J.; Iftikhar, Mariam; Corso, Brad L.; Gul, O. Tolga; Weiss, Gregory A.; Collins, Philip G.

    2013-09-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes have the requisite sensitivity to detect single molecule events and sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring the dynamic, single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. In each case, recordings resolved detailed trajectories of tens of thousands of individual chemical events and provided excellent statistics for single-molecule events. This electronic technique has a temporal resolution approaching 1 microsecond, which provides a new window for observing brief, intermediate transition states. In addition, the devices are indefinitely stable, so that the same molecule can be observed for minutes and hours. The extended recordings provide new insights into rare events like transitions to chemically-inactive conformations.

  18. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  19. Single Molecule Detection in Solution: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  20. Methods and applications in single molecule electronics

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua

    In recent years it has become possible to measure charge transport in a single molecule contacted to two metal electrodes. However, a thorough understanding of how a molecule behaves while contacted to two electrodes and how it interacts with its environment is still lacking. This thesis demonstrates various experimental methods for understanding and controlling charge transport in a single molecule junction and the application of these methods to various molecular systems to help elucidate the conduction mechanisms invoked. First, the conductance of DNA is examined in a controlled environment while varying the length, sequence, base-pair matching, bias, temperature, and electrochemical gate of the molecule. These studies show that the conductance of DNA is extremely sensitive to changes in length, sequence, and base-matching, but not as sensitive to temperature and electrochemical gate. Despite the variety of experimental methods applied, the subtleties of the conduction mechanism remain uncertain, and as such necessitate the development of additional tools for understanding the behavior of a single molecule junction. Next, the Conductance Screening Tool for Molecules (CSTM) is described. This is a new tool capable of creating 1000's of single molecules junctions in a matter of minutes. This tool has been used to study the conductance of alkanedithiols, molecules in an array, and single amino acid residues. This system allows for greater speed and flexibility in determining the conductance of a single molecule junction, and provides a capability for performing large-scale systematic studies of molecular systems to determine the conduction mechanism. Finally, an additional experimental method capable of extracting information about the interaction between a molecule and its environment is developed. Here, electron-phonon interactions in a single molecule contacted to two electrodes are studied. This method allows one to obtain a specific, chemical signature of a

  1. Convex lens-induced confinement for imaging single molecules.

    PubMed

    Leslie, Sabrina R; Fields, Alexander P; Cohen, Adam E

    2010-07-15

    Fluorescence imaging is used to study the dynamics of a wide variety of single molecules in solution or attached to a surface. Two key challenges in this pursuit are (1) to image immobilized single molecules in the presence of a high level of fluorescent background and (2) to image freely diffusing single molecules for long times. Strategies that perform well by one measure often perform poorly by the other. Here, we present a simple modification to a wide-field fluorescence microscope that addresses both challenges and dramatically improves single-molecule imaging. The technique of convex lens-induced confinement (CLIC) restricts molecules to a wedge-shaped gap of nanoscale depth, formed between a plano-convex lens and a planar coverslip. The shallow depth of the imaging volume leads to 20-fold greater rejection of background fluorescence than is achieved with total internal reflection fluorescence (TIRF) imaging. Elimination of out-of-plane diffusion leads to an approximately 10,000-fold longer diffusion-limited observation time per molecule than is achieved with confocal fluorescence correlation spectroscopy. The CLIC system also provides a new means to determine molecular size. The CLIC system does not require any nanofabrication, nor any custom optics, electronics, or computer control.

  2. Single-molecule dynamics in nanofabricated traps

    NASA Astrophysics Data System (ADS)

    Cohen, Adam

    2009-03-01

    The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.

  3. Directional Raman scattering from single molecules in the feed gaps of optical antennas.

    PubMed

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-05-08

    Controlling light from single emitters is an overarching theme of nano-optics. Antennas are routinely used to modify the angular emission patterns of radio wave sources. "Optical antennas" translate these principles to visible and infrared wavelengths and have been recently used to modify fluorescence from single quantum dots and single molecules. Understanding the properties of single molecules, however, would be advanced were one able to observe their vibrational spectra through Raman scattering in a very reproducible manner but it is a hugely challenging task, as Raman scattering cross sections are very weak. Here we measure for the first time the highly directional emission patterns of Raman scattering from single molecules in the feed gaps of optical antennas fabricated on a chip. More than a thousand single molecule events are observed, revealing that an unprecedented near-unity fraction of optical antennas have single molecule sensitivity.

  4. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  5. Vibrational Spectroscopy of PTSA—Doped Polyaniline

    NASA Astrophysics Data System (ADS)

    Arora, Manju; Gupta, S. K.

    2008-11-01

    Infrared transmittance spectra of polyaniline emeraldine base (EB) form and its different PTSA (p-toulene sulphonic acid) concentration doped samples were measured in 4000-400 cm-1 region at ambient temperature to reveal the polymeric chain oligomeric unit, interaction of sulphonate ions with these chains and effect of its concentration. The vibrational peaks of benzenoid (B) ring, quinoid (Q) ring, their combination modes and semiquinone units in PTSA doped emeraldine salts (PTSA:ES) are observed and assigned by using Oligomer Compound Approach. The para-substitution of B rings is confirmed by the appearance of B ring C-H out-of-plane deformation mode as a medium intensity band at 827 cm-1 in EB and at 824 cm-1 in ES:PTSA salts. The out-of-plane wagging mode of five adjacent hydrogen in end capped phenyl group due to conformational deformation of rings in polymeric chain is obtained as very weak bands at 712 and 682 cm-1 in EB and PTSA doped salts. These studies showed that B4Q1 is the basic oligomeric unit in polymer chain formation with their ends capped with phenyl rings. The strong and broad sulphonate ion stretching vibration and C-H bending of Q ring is observed at 1120 cm-1 due to the high degree of electron delocalization in PANI polymeric chain. On increasing PTSA concentration minor variations in intensity and position of peaks were observed.

  6. Profiling of counterfeit medicines by vibrational spectroscopy.

    PubMed

    Been, Frederic; Roggo, Yves; Degardin, Klara; Esseiva, Pierre; Margot, Pierre

    2011-09-10

    Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results. The present study offers a methodology allowing to provide more valuable information for organisations engaged in the fight against counterfeiting of medicines. A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers. The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Intra-operative optical diagnostics with vibrational spectroscopy.

    PubMed

    Stelling, Allison; Salzer, Reiner; Kirsch, Matthias; Sobottka, Stephan B; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald

    2011-07-01

    Established methods for characterization of tissue and diagnostics, for example histochemistry, magnetic resonance imaging (MRI), X-ray tomography, or positron emission tomography (PET), are mostly not suitable for intra-operative use. However, there is a clear need for an intra-operative diagnostics especially to identify the borderline between normal and tumor tissue. Currently, vibrational spectroscopy techniques (both Raman and infrared) complement the standard methods for tissue diagnostics. Vibrational spectroscopy has the potential for intra-operative use, because it can provide a biochemically based profile of tissue in real time and without requiring additional contrast agents, which may perturb the tissue under investigation. In addition, no electric potential needs to be applied, and the measurements are not affected by electromagnetic fields. Currently, promising approaches include Raman fiber techniques and nonlinear Raman spectroscopy. Infrared spectroscopy is also being used to examine freshly resected tissue ex vivo in the operating theater. The immense volume of information contained in Raman and infrared spectra requires multivariate analysis to extract relevant information to distinguish different types of tissue. The promise and limitations of vibrational spectroscopy methods as intra-operative tools are surveyed in this review.

  8. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  9. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  10. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  11. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  12. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  13. Single-Molecule Studies in Live Cells.

    PubMed

    Yu, Ji

    2016-05-27

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  14. Protein folding at single-molecule resolution

    PubMed Central

    Ferreon, Allan Chris M.; Deniz, Ashok A.

    2011-01-01

    The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. PMID:21303706

  15. Torque Measurement at the Single Molecule Level

    PubMed Central

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  16. Single molecule fluorescence and force microscopy.

    PubMed

    Schütz, G J; Hinterdorfer, P

    2002-12-01

    The investigation of biomolecules has entered a new age since the development of methodologies capable of studies at the level of single molecules. In biology, most molecules show a complex dynamical behavior, with individual motions and transitions between different states occurring highly correlated in space and time within an arrangement of various elements. Recent advances in the development of new microscopy techniques with sensitivity at the single molecule have gained access to essentially new types of information obtainable from imaging biomolecular samples. These methodologies are described here in terms of their applicability to the in vivo detection and visualization of molecular processes on surfaces, membranes, and cells. First examples of single molecule microscopy on cell membranes revealed new basic insight into the lateral organization of the plasma membrane, providing the captivating perspective of an ultra-sensitive methodology as a general tool to study local processes and heterogeneities in living cells.

  17. Single molecule dynamics of polyproline by using AFM

    NASA Astrophysics Data System (ADS)

    Tamamushi, Hironori; Kawakami, Masaru; Furukawa, Hidemitsu

    2017-04-01

    Polyproline forms a unique structure, called polyproline helix. It takes polyproline II helix in water and Polyproline I helix in n-propanol. PP II is known to be a rigid molecule in spite of no hydrogen bonds between backbone atoms, and to play an important role in biological functions such as formation of collagen structure and in the cell-adhesion. In this study, we carried out single molecule force spectroscopy of polyproline with AFM(Atomic Force Microscope) and covalent immobilization of polyproline molecule on gold substrate to evaluate the rigidity of PP II at single molecule level. We found that the force-extension curve of polyproline shows a linear increase, which is unusual and not seen with others homo-polypeptide molecules. These results indicate that the high rigidity of polyproline II helix can be explained by "enthalpic", not "entropic" driven elasticity.

  18. Nonlinear Vibrational Spectroscopy: a Method to Study Vibrational Self-Trapping

    NASA Astrophysics Data System (ADS)

    Hamm, Peter; Edler, Julian

    We review the capability of nonlinear vibrational spectroscopy to study vibrational self-trapping in hydrogen-bonded molecular crystals. For that purpose, the two relevant coupling mechanisms, excitonic coupling and nonlinear exciton-phonon coupling, are first introduced separately using appropriately chosen molecular systems as examples. Both coupling mechanisms are subsequently combined, yielding vibrational selftrapping. The experiments unambiguously prove that both the N-H and the C=O band of crystalline acetanilide (ACN), a model system for proteins, show vibrational self-trapping. The C=O band is self-trapped only at low enough temperature, while thermally induced disorder destroys the mechanism at room temperature. The binding energy of the N-H band, on the other hand, is considerably larger and self-trapping survives thermal fluctuations even at room temperature.

  19. Life at the Single Molecule Level

    SciTech Connect

    Xie, Xiaoliang Sunny

    2011-03-04

    In a living cell, gene expression—the transcription of DNA to messenger RNA followed by translation to protein—occurs stochastically, as a consequence of the low copy number of DNA and mRNA molecules involved. Can one monitor these processes in a living cell in real time? How do cells with identical genes exhibit different phenotypes? Recent advances in single-molecule imaging in living bacterial cells allow these questions to be answered at the molecular level in a quantitative manner. It was found that rare events of single molecules can have important biological consequences.

  20. Thermal degradation of polyketones. Vibrational spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Conti, G.; Sommazzi, A.

    1993-03-01

    Thermal degradation studies of regular alternating polymers of carbon monoxide and olefin have been followed by FT-IR spectroscopy. The I.R spectra of solid samples, performed in inert atmosphere and in high vacuum, were recorded as a function of time at different temperatures. From the I.R. data it is possible to conclude that the reaction process, near the melting point of the polymers, could consist of intra or intermolecular hydrogen transfer yielding an enol and a small quantity of insaturations. The thermal degradation process, at temperatures higher than melting point, involves the scission of the polymer chain and produces fragments with a large number of insaturations.

  1. Vibrational spectroscopy standoff detection of threat chemicals

    NASA Astrophysics Data System (ADS)

    Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Felix-Rivera, Hilsamar; Hernandez-Rivera, Samuel P.

    2011-06-01

    Spectroscopy based standoff detection systems: Raman and FTIR have been tested for detection of threat chemicals, including highly energetic materials, homemade explosives, explosives formulations and high explosives mixtures. Other threat chemicals studied included toxic industrial compounds (TIC) and chemical agent simulants. Microorganisms and biological threat agent simulants have also been detected at standoff distances. Open Path FTIR has been used to detect vapors and chemicals deposited on metal surfaces at μg/cm2 levels at distances as far as 30 m in active mode and 60 m in passive mode. In the case of Raman telescope, standoff distances for acetonitrile and ammonium nitrate were 140 m.

  2. Monitoring Water Clusters "Melt" Through Vibrational Spectroscopy.

    PubMed

    Brown, Sandra E; Götz, Andreas W; Cheng, Xiaolu; Steele, Ryan P; Mandelshtam, Vladimir A; Paesani, Francesco

    2017-05-24

    Characterizing structural and phase transformations of water at the molecular level is key to understanding a variety of multiphase processes ranging from ice nucleation in the atmosphere to hydration of biomolecules and wetting of solid surfaces. In this study, state-of-the-art quantum simulations with a many-body water potential energy surface, which exhibits chemical and spectroscopic accuracy, are carried out to monitor the microscopic melting of the water hexamer through the analysis of vibrational spectra and appropriate structural order parameters as a function of temperature. The water hexamer is specifically chosen as a case study due to the central role of this cluster in the molecular-level understanding of hydrogen bonding in water. Besides being in agreement with the experimental data available for selected isomers at very low temperature, the present results provide quantitative insights into the interplay between energetic, entropic, and nuclear quantum effects on the evolution of water clusters from "solid-like" to "liquid-like" structures. This study thus demonstrates that computer simulations can now bridge the gap between measurements currently possible for individual isomers at very low temperature and observations of isomer mixtures at ambient conditions.

  3. Single Molecule Analysis Research Tool (SMART): An Integrated Approach for Analyzing Single Molecule Data

    PubMed Central

    Mabuchi, Hideo; Herschlag, Daniel

    2012-01-01

    Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data. PMID:22363412

  4. Vibrational spectroscopy standoff detection of explosives.

    PubMed

    Pacheco-Londoño, Leonardo C; Ortiz-Rivera, William; Primera-Pedrozo, Oliva M; Hernández-Rivera, Samuel P

    2009-09-01

    Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2-30 microg/cm(2)) for SIRS experiments and as particles (3-85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of approximately 180 degrees from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection-absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 microg/cm(2) were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source-target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.

  5. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    PubMed

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  6. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  7. Nanoscience: Single-molecule instant replay

    NASA Astrophysics Data System (ADS)

    Camillone, Nicholas

    2016-11-01

    A nanoscale imaging method that uses ultrashort light pulses to initiate and follow the motion of a single molecule adsorbed on a solid surface opens a window onto the physical and chemical dynamics of molecules on surfaces. See Letter p.263

  8. Single-molecule techniques for drug discovery.

    PubMed

    Skinner, Gary M; Visscher, Koen

    2004-08-01

    Single-molecule techniques offer a number of key benefits over conventional in vitro assay methods for drug screening, as they use less material and unlock the ability to observe transient states. By observing such states, it should be possible to screen for chemical compounds that isolate these steps. The benefit of this is twofold: (a) inhibitors can be found that target key phases in biochemical processes, e.g., transcription initiation; and (b) the total number of drug targets increases as many biochemical processes consist of many transient steps, e.g., transcription promoter binding, initiation, elongation, and termination. Although single-molecule methods offer exciting opportunities for new ways of discovering drugs, there are a number of obstacles to their adoption for drug screening. The main hurdle is to develop robust apparatus that will allow many thousands of individual single molecule experiments to be performed in parallel. By using recently developed integrated microfluidics technology, this hurdle may be overcome. Here, a number of potential single-molecule approaches to drug screening are presented along with a discussion of the benefits and technical obstacles that must be overcome.

  9. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  10. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy.

    PubMed

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm(-1) wavenumber region about 500, 1150, 1490 and 2000 cm(-1), which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Single-molecule Michaelis-Menten equations.

    PubMed

    Kou, S C; Cherayil, Binny J; Min, Wei; English, Brian P; Xie, X Sunney

    2005-10-20

    This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular, it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the interconversion among the enzyme's conformers with different catalytic rate constants. In the presence of dynamic disorder, f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten equation for the reciprocal of the first moment of f(t), 1/, which shows a hyperbolic dependence on the substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation, the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also suggest that the randomness parameter r, defined as <(t - )2> / t2, can serve as an indicator for dynamic disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate concentrations in the presence of dynamic disorder.

  12. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  13. Nonequilibrium single molecule protein folding in a coaxial mixer.

    PubMed

    Hamadani, Kambiz M; Weiss, Shimon

    2008-07-01

    We have developed a continuous-flow mixing device suitable for monitoring bioconformational reactions at the single-molecule level with a response time of approximately 10 ms under single-molecule flow conditions. Its coaxial geometry allows three-dimensional hydrodynamic focusing of sample fluids to diffraction-limited dimensions where diffusional mixing is rapid and efficient. The capillary-based design enables rapid in-lab construction of mixers without the need for expensive lithography-based microfabrication facilities. In-line filtering of sample fluids using granulated silica particles virtually eliminates clogging and extends the lifetime of each device to many months. In this article, to determine both the distance-to-time transfer function and the instrument response function of the device we characterize its fluid flow and mixing properties using both fluorescence cross-correlation spectroscopy velocimetry and finite element fluid dynamics simulations. We then apply the mixer to single molecule FRET protein folding studies of Chymotrypsin Inhibitor protein 2. By transiently populating the unfolded state of Chymotrypsin Inhibitor Protein 2 (CI2) under nonequilibrium in vitro refolding conditions, we spatially and temporally resolve the denaturant-dependent nonspecific collapse of the unfolded state from the barrier-limited folding transition of CI2. Our results are consistent with previous CI2 mixing results that found evidence for a heterogeneous unfolded state consisting of cis- and trans-proline conformers.

  14. Low-frequency vibrational modes of benzoic acid investigated by terahertz time-domain spectroscopy and theoretical simulations

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Fan, Wen-hui; Zheng, Zhuan-ping

    2011-08-01

    In this paper, the low-frequency vibrational modes of crystalline benzoic acid (BA) have been investigated by terahertz time-domain spectroscopy (THz-TDS) and theoretical simulations based on the linearity combination of atomic orbital within the Density Functional Theory (DFT) as well as ab initio molecular orbital method at second-order Moller-Plesset Perturbation Theory (MP2) level for single molecule and dimer. Experimentally, a series of prominent absorption features of pure benzoic acid relevant to intra- and inter-molecular vibrational modes have been obtained below 4 THz at room temperature. For the theoretical simulations, geometry-optimization results of bond lengths and dihedral angles in both BA monomer and dimer are very close to experimental neutron diffraction measurements. Furthermore, the simulation results demonstrate absorption profile centered at 1.89 THz contains low-frequency modes of Ph-COOH twisting due to intramolecular motion and cogwheel owing to intermolecular motion. All the intra- and inter-molecular vibrational modes measured have also been assigned.

  15. Detection of complex formation and determination of intermolecular geometry through electrical anharmonic coupling of molecular vibrations using electron-vibration-vibration two-dimensional infrared spectroscopy.

    PubMed

    Guo, Rui; Fournier, Frederic; Donaldson, Paul M; Gardner, Elizabeth M; Gould, Ian R; Klug, David R

    2009-10-14

    Electrical interactions between molecular vibrations can be non-linear and thereby produce intermolecular coupling even in the absence of a chemical bond. We use this fact to detect the formation of an intermolecular complex using electron-vibration-vibration two-dimensional infrared spectroscopy (EVV 2DIR) and also to determine the distance and angle between the two molecular species.

  16. Vibrational spectroscopy of microhydrated conjugate base anions.

    PubMed

    Asmis, Knut R; Neumark, Daniel M

    2012-01-17

    Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO(4)(2-)(H(2)O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water

  17. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  18. Do-it-yourself guide: How to use the modern single molecule toolkit

    PubMed Central

    Walter, Nils G.; Huang, Cheng-Yen; Manzo, Anthony J.; Sobhy, Mohamed A.

    2008-01-01

    Single molecule microscopy has evolved into the ultimate-sensitivity toolkit to study systems from small molecules to living cells, with the prospect of revolutionizing the modern biosciences. Here we survey the current state-of-the-art in single molecule tools including fluorescence spectroscopy, tethered particle microscopy, optical and magnetic tweezers, and atomic force microscopy. Our review seeks to guide the biological scientist in choosing the right approach from the available single molecule toolkit for applications ranging as far as structural biology, enzymology, nanotechnology, and systems biology. PMID:18511916

  19. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    PubMed Central

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  20. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology.

    PubMed

    Claridge, Shelley A; Schwartz, Jeffrey J; Weiss, Paul S

    2011-02-22

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution.

  1. Photophysics of Molecular Materials: From Single Molecules to Single Crystals

    NASA Astrophysics Data System (ADS)

    Lanzani, Guglielmo

    2005-12-01

    Carbon based pi-conjugated materials offer a broad range of applications, going from molecular electronics and single molecule devices to nanotechnology, plastic electronics and optoelectronics. The proper physical description of such materials is in between that of molecular solids and that of low-dimensional covalent semiconductors. This book is a comprehensive review of their elementary excitations processes and dynamics, which merges the two viewpoints, sometimes very different if not contrasting. In each chapter, a broad tutorial introduction provides a solid physical background to the topic, which is further discussed based on recent experimental results obtained via state-of-the-art techniques. Both the molecular, intra-chain character and the solid state, inter-molecular physics is addressed. Reports on single molecule and single polymer chain spectroscopy introduce the on-site phenomena. Several chapters are dedicated to nano-probes, steady state and transient spectroscopies. The highly ordered state, occurring in single crystals, is also discussed thoroughly. Finally, less conventional tools such as THz spectroscopy are discussed in detail. The book provides a useful introduction to the field for newcomers, and a valid reference for experienced researchers in the field.

  2. Photophysics of Molecular Materials: From Single Molecules to Single Crystals

    NASA Astrophysics Data System (ADS)

    Lanzani, Guglielmo

    2003-09-01

    Carbon based pi-conjugated materials offer a broad range of applications, going from molecular electronics and single molecule devices to nanotechnology, plastic electronics and optoelectronics. The proper physical description of such materials is in between that of molecular solids and that of low-dimensional covalent semiconductors. This book is a comprehensive review of their elementary excitations processes and dynamics, which merges the two viewpoints, sometimes very different if not contrasting. In each chapter, a broad tutorial introduction provides a solid physical background to the topic, which is further discussed based on recent experimental results obtained via state-of-the-art techniques. Both the molecular, intra-chain character and the solid state, inter-molecular physics is addressed. Reports on single molecule and single polymer chain spectroscopy introduce the on-site phenomena. Several chapters are dedicated to nano-probes, steady state and transient spectroscopies. The highly ordered state, occurring in single crystals, is also discussed thoroughly. Finally, less conventional tools such as THz spectroscopy are discussed in detail. The book provides a useful introduction to the field for newcomers, and a valid reference for experienced researchers in the field.

  3. The symmetry of single-molecule conduction.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  4. Superresolution Imaging using Single-Molecule Localization

    PubMed Central

    Patterson, George; Davidson, Michael; Manley, Suliana; Lippincott-Schwartz, Jennifer

    2013-01-01

    Superresolution imaging is a rapidly emerging new field of microscopy that dramatically improves the spatial resolution of light microscopy by over an order of magnitude (∼10–20-nm resolution), allowing biological processes to be described at the molecular scale. Here, we discuss a form of superresolution microscopy based on the controlled activation and sampling of sparse subsets of photoconvertible fluorescent molecules. In this single-molecule based imaging approach, a wide variety of probes have proved valuable, ranging from genetically encodable photoactivatable fluorescent proteins to photoswitchable cyanine dyes. These have been used in diverse applications of superresolution imaging: from three-dimensional, multicolor molecule localization to tracking of nanometric structures and molecules in living cells. Single-molecule-based superresolution imaging thus offers exciting possibilities for obtaining molecular-scale information on biological events occurring at variable timescales. PMID:20055680

  5. Modeling of Single Molecule Cytoplasmic Dynein

    NASA Astrophysics Data System (ADS)

    Yu, Clare

    2010-03-01

    A living cell has an infrastructure much like that of a city. We will describe the transportation system that consists of roads (filaments) and molecular motors (proteins) that haul cargo along these roads. Dynein is one type of motor protein that walks along microtubules towards the nucleus of the cell. Dynein is more complicated in its structure and function than other motors. Experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single molecule experiments. We make testable predictions that should guide future experiments related to dynein function.

  6. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  7. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  8. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing.

    PubMed

    Boujday, Souhir; de la Chapelle, Marc Lamy; Srajer, Johannes; Knoll, Wolfgang

    2015-08-28

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  9. XAS and XMCD of Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Sessoli, R.; Mannini, M.; Pineider, F.; Cornia, A.; Sainctavit, Ph.

    Molecular magnetism is here presented with emphasis concerning the single molecule magnets (SMMs). The architecture of SMMs is reviewed as well as the various ingredients promoting magnetic anisotropy and the relation between magnetic anisotropy and the dynamics of magnetization. Then it is shown how XAS and XMCD can be unique tools to unravel the magnetic properties of SMM submonolayers grafted on clean surfaces. We bring a special attention to the spectral features associated with the magnetic anisotropy and magnetization dynamics.

  10. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  11. Single molecule thermodynamics in biological motors.

    PubMed

    Taniguchi, Yuichi; Karagiannis, Peter; Nishiyama, Masayoshi; Ishii, Yoshiharu; Yanagida, Toshio

    2007-04-01

    Biological molecular machines use thermal activation energy to carry out various functions. The process of thermal activation has the stochastic nature of output events that can be described according to the laws of thermodynamics. Recently developed single molecule detection techniques have allowed each distinct enzymatic event of single biological machines to be characterized providing clues to the underlying thermodynamics. In this study, the thermodynamic properties in the stepping movement of a biological molecular motor have been examined. A single molecule detection technique was used to measure the stepping movements at various loads and temperatures and a range of thermodynamic parameters associated with the production of each forward and backward step including free energy, enthalpy, entropy and characteristic distance were obtained. The results show that an asymmetry in entropy is a primary factor that controls the direction in which the motor will step. The investigation on single molecule thermodynamics has the potential to reveal dynamic properties underlying the mechanisms of how biological molecular machines work.

  12. Graphical models for inferring single molecule dynamics

    PubMed Central

    2010-01-01

    Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm, the most important being a natural form of model selection and a well-posed (non-divergent) optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics. PMID:21034427

  13. Single-Molecule Imaging of Nuclear Transport

    PubMed Central

    Goryaynov, Alexander; Sarma, Ashapurna; Ma, Jiong; Yang, Weidong

    2010-01-01

    The utility of single molecule fluorescence microscopy approaches has been proven to be of a great avail in understanding biological reactions over the last decade. The investigation of molecular interactions with high temporal and spatial resolutions deep within cells has remained challenging due to the inherently weak signals arising from individual molecules. Recent works by Yang et al. demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single molecule level. By the single molecule approach, important kinetics, such as nuclear transport time and efficiency, for signal-dependent and independent cargo molecules have been obtained. Here we described a protocol for the methodological approach with an improved spatiotemporal resolution of 0.4 ms and 12 nm. The improved resolution enabled us to capture transient active transport and passive diffusion events through the nuclear pore complexes (NPC) in semi-intact cells. We expect this method to be used in elucidating other binding and trafficking events within cells. PMID:20548283

  14. Trapping and manipulating single molecules of DNA

    NASA Astrophysics Data System (ADS)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  15. Model systems for single molecule polymer dynamics.

    PubMed

    Latinwo, Folarin; Schroeder, Charles M

    2011-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of "ideal" and "real" chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force-extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer-monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of "real" polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena.

  16. Single-Molecule Imaging of Cellular Signaling

    NASA Astrophysics Data System (ADS)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  17. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes.

    PubMed

    Scheidt, W Robert; Li, Jianfeng; Sage, J Timothy

    2017-09-18

    Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe (57)Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN(-)) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe-Im stretch in six-coordinate Fe(XO) hemes and the trans Fe-N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational "baseline" for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes.

  18. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of

  19. Quantitative Analysis of Single-Molecule RNA-Protein Interaction

    PubMed Central

    Fuhrmann, Alexander; Schoening, Jan C.; Anselmetti, Dario; Staiger, Dorothee; Ros, Robert

    2009-01-01

    Abstract RNA-binding proteins impact gene expression at the posttranscriptional level by interacting with cognate cis elements within the transcripts. Here, we apply dynamic single-molecule force spectroscopy to study the interaction of the Arabidopsis glycine-rich RNA-binding protein AtGRP8 with its RNA target. A dwell-time-dependent analysis of the single-molecule data in combination with competition assays and site-directed mutagenesis of both the RNA target and the RNA-binding domain of the protein allowed us to distinguish and quantify two different binding modes. For dwell times <0.21 s an unspecific complex with a lifetime of 0.56 s is observed, whereas dwell times >0.33 s result in a specific interaction with a lifetime of 208 s. The corresponding reaction lengths are 0.28 nm for the unspecific and 0.55 nm for the specific AtGRP8-RNA interactions, indicating formation of a tighter complex with increasing dwell time. These two binding modes cannot be dissected in ensemble experiments. Quantitative titration in RNA bandshift experiments yields an ensemble-averaged equilibrium constant of dissociation of KD = 2 × 10−7 M. Assuming comparable on-rates for the specific and nonspecific binding modes allows us to estimate their free energies as ΔG0 = −42 kJ/mol and ΔG0 = −28 kJ/mol for the specific and nonspecific binding modes, respectively. Thus, we show that single-molecule force spectroscopy with a refined statistical analysis is a potent tool for the analysis of protein-RNA interactions without the drawback of ensemble averaging. This makes it possible to discriminate between different binding modes or sites and to analyze them quantitatively. We propose that this method could be applied to complex interactions of biomolecules in general, and be of particular interest for the investigation of multivalent binding reactions. PMID:19527663

  20. Vibrational spectroscopy differentiates between multipotent and pluripotent stem cells.

    PubMed

    Pijanka, Jacek Klaudiusz; Kumar, Deepak; Dale, Tina; Yousef, Ibraheem; Parkes, Gary; Untereiner, Valérie; Yang, Ying; Dumas, Paul; Collins, David; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Forsyth, Nicholas Robert; Sulé-Suso, Josep

    2010-12-01

    Over the last few years, there has been an increased interest in the study of stem cells in biomedicine for therapeutic use and as a source for healing diseased or injured organs/tissues. More recently, vibrational spectroscopy has been applied to study stem cell differentiation. In this study, we have used both synchrotron based FTIR and Raman microspectroscopies to assess possible differences between human pluripotent (embryonic) and multipotent (adult mesenchymal) stem cells, and how O(2) concentration in cell culture could affect the spectral signatures of these cells. Our work shows that infrared spectroscopy of embryonic (pluripotent) and adult mesenchymal (multipotent) stem cells have different spectral signatures based on the amount of lipids in their cytoplasm (confirmed with cytological staining). Furthermore, O(2) concentration in cell culture causes changes in both the FTIR and Raman spectra of embryonic stem cells. These results show that embryonic stem cells might be more sensitive to O(2) concentration when compared to mesenchymal stem cells. While vibrational spectroscopy could therefore be of potential use in identifying different populations of stem cells further work is required to better understand these differences.

  1. New Antifouling Platform Characterized by Single-Molecule Imaging

    PubMed Central

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  2. Surface sum-frequency vibrational spectroscopy of nonpolar media

    SciTech Connect

    Sun, Shumei; Tian, Chuanshan; Shen, Y. Ron

    2015-04-27

    Sum-frequency generation spectroscopy is surface specific only if the bulk contribution to the signal is negligible. Negligible bulk contribution is, however, not necessarily true, even for media with inversion symmetry. The inevitable challenge is to find the surface spectrum in the presence of bulk contribution, part of which has been believed to be inseparable from the surface contribution. Here, we show that, for nonpolar media, it is possible to separately deduce surface and bulk spectra from combined phase-sensitive sum-frequency vibrational spectroscopic measurements in reflection and transmission. Finally, the study of benzene interfaces is presented as an example.

  3. Vibrational spectroscopy of cinnamaldehyde on graphite and supported Pd islands

    NASA Astrophysics Data System (ADS)

    Grimaud, C.-M.; Radosavkic, D.; Ustaze, S.; Palmer, R. E.

    2001-07-01

    We report the first experimental study of the adsorption of cinnamaldehyde on surfaces under ultra high vacuum (UHV) conditions. Cinnamaldehyde is an α,β-unsaturated aldehyde with important applications in the fine chemicals sector. High-resolution electron energy loss spectroscopy (HREELS) is employed to investigate the vibrational modes of cinnamaldehyde condensed on graphite at 100 K and absorbed on the surface of a Pd islands film (supported on graphite), also at 100 K. In the case of the Pd film, we find strong evidence for a parallel orientation of the phenyl ring consistent with theoretical calculations.

  4. Ultrafast infrared near-field molecular nano-spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoji; Craig, Ian M.; Rang, Matthias; Raschke, Markus B.

    2013-03-01

    We demonstrate molecular radiative infrared vibrational free-induction decay on the nano-scale and its control via near-field coupling between the transient molecular polarization and optical antenna properties of the metallic scanning near-field probe tip. This allows for pushing the sensitivity of infrared vibrational spectroscopy into the single molecule regime.

  5. Deep learning for single-molecule science

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  6. Deep learning for single-molecule science.

    PubMed

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, Masudur R

    2017-08-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in Machine Learning (ML), so-called Deep Learning (DL) offers an interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional Machine Learning strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the 'internal workings' of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a Convolutional Neural Network, may be used for base calling in DNA sequencing applications. We compare it with a Support Vector Machine as a more conventional ML method, and and discuss some of the strengths and weaknesses of the approach. In particular, a 'deep' neural network has many features of a 'black box', which has important implications on how we look at and interpret data. © 2017 IOP Publishing Ltd.

  7. Single-molecule measurements of adsorbed polymer

    NASA Astrophysics Data System (ADS)

    Yu, Changqian; Guan, Juan; Bae, Sung Chul; Granick, Steve

    2011-03-01

    Single-molecule tracking is used to study the surface mobility of PEG (polyethylene glycol) chains adsorbed to the solid-liquid interface from dilute aqueous solution. The end-labeled chains are visualized by objective-based total internal reflection fluorescence microscopy (TIRFM) and their trajectories are analyzed after cleaning the images with denoising algorithms. Surface mobility, which in this system depends on pH, is decomposed into one family of chains which remains adsorbed over the observation time window, and another family that appears to translate from point to point by hopping. This we quantify with nm-level resolution.

  8. Single-molecule electrophoresis. Final report

    SciTech Connect

    Castro, A.; Shera, E.B.

    1996-05-22

    A novel method for the detection and identification of single molecules in solution has been devised, computer-simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required by individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed beforehand in order to estimate the experimental feasibility of the method, and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented.

  9. Absorption and fluorescence of single molecules.

    PubMed

    Butter, J Y P; Hecht, B; Crenshaw, B R; Weder, C

    2006-10-21

    Simultaneous detection of single molecules by absorption and fluorescence is demonstrated using confocal microscopy at cryogenic temperature. Dynamical processes such as blinking and spectral jumping of single emitters are observed in both detection channels. The relative magnitude of fluorescence and absorption varies between molecules. In particular, we observe molecules that do not emit detectable Stokes-shifted fluorescence but show a strong absorption signal. The fact that coherent resonant scattering underlies the absorption process is demonstrated by a correlation between small linewidth and large absorption amplitude.

  10. Chemometrics applied to vibrational spectroscopy: overview, challenges and pitfalls

    SciTech Connect

    Haaland, D.M.

    1996-10-01

    Chemometric multivariate calibration methods are rapidly impacting quantitative infrared spectroscopy in many positive ways. The combination of vibrational spectroscopy and chemometrics has been used by industry for quality control and process monitoring. The growth of these methods has been phenomenal in the past decade. Yet, as with any new technology, there are growing pains. The methods are so powerful at finding correlations in the data, that when used without great care they can readily yield results that are not valid for the analysis of future unknown samples. In this paper, the power of the multivariate calibration methods is discussed while pointing out common pitfalls and some remaining challenges that may slow the implementation of chemometrics in research and industry.

  11. The dynamics of partially extended single molecules of DNA

    NASA Astrophysics Data System (ADS)

    Quake, Stephen R.; Babcock, Hazen; Chu, Steven

    1997-07-01

    The behaviour of an isolated polymer floating in a solvent forms the basis of our understanding of polymer dynamics,. Classical theories describe the motion of a polymer with linear equations of motion, which yield a set of `normal modes', analogous to the fundamental frequency and the harmonics of a vibrating violin string. But hydrodynamic interactions make polymer dynamics inherently nonlinear, and the linearizing approximations required for the normal-mode picture have therefore been questioned. Here we test the normal-mode theory by measuring the fluctuations of single molecules of DNA held in a partially extended state with optical tweezers. We find that the motion of the DNA can be described by linearly independent normal modes, and we have experimentally determined the eigenstates of the system. Furthermore, we show that the spectrum of relaxation times obeys a power law.

  12. The dynamics of partially extended single molecules of DNA.

    PubMed

    Quake, S R; Babcock, H; Chu, S

    1997-07-10

    The behaviour of an isolated polymer floating in a solvent forms the basis of our understanding of polymer dynamics. Classical theories describe the motion of a polymer with linear equations of motion, which yield a set of 'normal modes', analogous to the fundamental frequency and the harmonics of a vibrating violin string. But hydrodynamic interactions make polymer dynamics inherently nonlinear, and the linearizing approximations required for the normal-mode picture have therefore been questioned. Here we test the normal-mode theory by measuring the fluctuations of single molecules of DNA held in a partially extended state with optical tweezers. We find that the motion of the DNA can be described by linearly independent normal modes, and we have experimentally determined the eigenstates of the system. Furthermore, we show that the spectrum of relaxation times obeys a power law.

  13. Single-molecule optomechanics in “picocavities”

    NASA Astrophysics Data System (ADS)

    Benz, Felix; Schmidt, Mikolaj K.; Dreismann, Alexander; Chikkaraddy, Rohit; Zhang, Yao; Demetriadou, Angela; Carnegie, Cloudy; Ohadi, Hamid; de Nijs, Bart; Esteban, Ruben; Aizpurua, Javier; Baumberg, Jeremy J.

    2016-11-01

    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer (“picocavities”), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.

  14. [Structure analysis of disease-related proteins using vibrational spectroscopy].

    PubMed

    Hiramatsu, Hirotsugu

    2014-01-01

    Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.

  15. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification

    NASA Astrophysics Data System (ADS)

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z.; Clemmer, David E.; Rizzo, Thomas R.

    2017-06-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience.

  16. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification

    NASA Astrophysics Data System (ADS)

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z.; Clemmer, David E.; Rizzo, Thomas R.

    2017-10-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. [Figure not available: see fulltext.

  17. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    NASA Astrophysics Data System (ADS)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  18. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.

    PubMed

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R

    2017-06-22

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.

  19. VLT-CRIRES: ``Good Vibrations'' Rotational-vibrational molecular spectroscopy in astronomy

    NASA Astrophysics Data System (ADS)

    Käufl, H. U.

    2010-05-01

    Near-Infrared high spectral and spatial resolution spectroscopy offers new and innovative observing opportunities for astronomy. The ``traditional'' benefits of IR-astronomy - strongly reduced extinction and availability of adaptive optics - more than offset for many applications the compared to CCD-based astronomy strongly reduced sensitivity. Especially in high resolution spectroscopy interferences by telluric lines can be minimized. Moreover for abundance studies many important atomic lines can be accessed in the NIR. A novel spectral feature available for quantitative spectroscopy are the molecular rotational-vibrational transitions which allow for fundamentally new studies of condensed objects and atmospheres. This is also an important complement to radio-astronomy, especially with ALMA, where molecules are generally only observed in the vibrational ground state. Rot-vib transitions also allow high precision abundance measurements - including isotopic ratios - fundamental to understand the thermo-nuclear processes in stars beyond the main sequence. Quantitative modeling of atmospheres has progressed such that the unambiguous interpretation of IR-spectra is now well established. In combination with adaptive optics spectro-astrometry is even more powerful and with VLT-CRIRES a spatial resolution of better than one milli-arcsecond has been demonstrated. Some highlights and recent results will be presented: our solar system, extrasolar planets, star- and planet formation, stellar evolution and the formation of galactic bulges.

  20. Structural dynamics in complex liquids studied with multidimensional vibrational spectroscopy

    SciTech Connect

    Tokmakoff, Andrei

    2013-08-31

    The development of new sustainable energy sources is linked to our understanding of the molecular properties of water and aqueous solutions. Energy conversion, storage, and transduction processes, particularly those that occur in biology, fuel cells, and batteries, make use of water for the purpose of moving energy in the form of charges and mediating the redox chemistry that allows this energy to be stored as and released from chemical bonds. To build our fundamental knowledge in this area, this project supports work in the Tokmakoff group to investigate the molecular dynamics of water’s hydrogen bond network, and how these dynamics influence its solutes and the mechanism of proton transport in water. To reach the goals of this grant, we developed experiments to observe molecular dynamics in water as directly as possible, using ultrafast multidimensional vibrational spectroscopy. We excite and probe broad vibrational resonances of water, molecular solutes, and protons in water. By correlating how molecules evolve from an initial excitation frequency to a final frequency, we can describe the underlying molecular dynamics. Theoretical modeling of the data with the help of computational spectroscopy coupled with molecular dynamics simulations provided the atomistic insight in these studies.

  1. Challenges in quantitative single molecule localization microscopy.

    PubMed

    Shivanandan, A; Deschout, H; Scarselli, M; Radenovic, A

    2014-10-01

    Single molecule localization microscopy (SMLM), which can provide up to an order of magnitude improvement in spatial resolution over conventional fluorescence microscopy, has the potential to be a highly useful tool for quantitative biological experiments. It has already been used for this purpose in varied fields in biology, ranging from molecular biology to neuroscience. In this review article, we briefly review the applications of SMLM in quantitative biology, and also the challenges involved and some of the solutions that have been proposed. Due to its advantages in labeling specificity and the relatively low overcounting caused by photoblinking when photo-activable fluorescent proteins (PA-FPs) are used as labels, we focus specifically on Photo-Activated Localization Microscopy (PALM), even though the ideas presented might be applicable to SMLM in general. Also, we focus on the following three quantitative measurements: single molecule counting, analysis of protein spatial distribution heterogeneity and co-localization analysis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Single molecule and single cell epigenomics.

    PubMed

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Single Molecule and Single Cell Epigenomics

    PubMed Central

    Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.

    2014-01-01

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781

  4. Toward Single-Molecule Nanomechanical Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Roukes, Michael

    2009-03-01

    Mass spectrometry (MS) has become a preeminent methodology of proteomics since it provides rapid and quantitative identification of protein species with relatively low sample consumption. Yet with the trend toward biological analysis at increasingly smaller scales, ultimately down to the volume of an individual cell, MS with few-to-single molecule resolution will be required. We report the first realization of MS based on single-biological-molecule detection with nanoelectromechanical systems (NEMS). NEMS provide unparalleled mass resolution, now sufficient for detection of individual molecular species in real time. However, high sensitivity is only one of several components required for MS. We demonstrate a first complete prototype NEMS-MS system for single-molecule mass spectrometry providing proof-of-principle for this new technique. Nanoparticles and protein species are introduced by electrospray injection from the fluid phase in ambient conditions into vacuum and subsequently delivered to the NEMS detector by hexapole ion optics . Mass measurements are then recorded in real-time as analytes adsorb, one-by-one, onto a phase-locked, ultrahigh frequency (UHF) NEMS resonator. These first NEMS-MS spectra, obtained with modest resolution from only several hundred mass adsorption events, presage the future capabilities of this methodology. We outline the substantial improvements feasible in near term, through recent advances and technological avenues that are unique to NEMS-MS.

  5. Surface enhanced vibrational spectroscopy for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Büttner, Fritjof; Hagemann, Jan; Wellhausen, Mike; Funke, Sebastian; Lenth, Christoph; Rotter, Frank; Gundrum, Lars; Plachetka, Ulrich; Moormann, Christian; Strube, Moritz; Walte, Andreas; Wackerbarth, Hainer

    2013-10-01

    A detector which can detect a broad range of explosives without false alarms is urgently needed. Vibrational spectroscopy provides specific spectral information about molecules enabling the identification of analytes by their "fingerprint" spectra. The low detection limit caused by the inherent weak Raman process can be increased by the Surface Enhanced Raman (SER) effect. This is particularly attractive because it combines low detection limits with high information content for establishing molecular identity. Based on SER spectroscopy we have constructed a modular detection system. Here, we want to show a combination of SER spectroscopy and chemometrics to distinguish between chemically similar substances. Such an approach will finally reduce the false alarm rate. It is still a challenge to determine the limit of detection of the analyte on a SER substrate or its enhancement factor. For physisorbed molecules we have applied a novel approach. By this approach the performance of plasmonic substrates and Surface Enhanced Raman Scattering (SERS) enhancement of explosives can be evaluated. Moreover, novel nanostructured substrates for surface enhanced IR absorption (SEIRA) spectroscopy will be presented. The enhancement factor and a limit of detection are estimated.

  6. Exploiting the diagnostic potential of biomolecular fingerprinting with vibrational spectroscopy.

    PubMed

    Kendall, Catherine; Hutchings, Joanne; Barr, Hugh; Shepherd, Neil; Stone, Nicholas

    2011-01-01

    There is immense clinical need for techniques that can detect the biochemical changes associated with pre-malignancy. The ideal diagnostic test would provide rapid, non-invasive diagnosis at the point of care with high throughput and without prior tissue processing. Over the past decade vibrational spectroscopy techniques have demonstrated their ability to provide non-destructive, rapid, clinically relevant diagnostic information. Biochemical fingerprints of tissues measured using Raman and infrared spectroscopy analysed in conjunction with advanced chemometrics have shown great potential in the diagnostic assessment of biological material. Development of Raman probes is enabling the potential of in vivo clinical measurements to be realised. A novel probe design has been evaluated in clinical studies to identify and classify the subtle pre-malignant biochemical changes related to the carcinogenesis process. Exciting recent developments have enabled the probing of tissue samples at depth with huge potential for breast and prostate cancer diagnostics. Furthermore, the potential of vibrational spectroscopy to provide prognostic information is tantalising. Raman spectral data acquired on oesophageal biopsy samples analysed in conjunction with patient outcome data has shown the power of spectral biomolecular fingerprinting in predicting the outcome of patients with high-grade dysplasia in Barrett's oesophagus. Raman mapping can also be used to analyse thin tissue sections on calcium fluoride slides enabling the distribution of tissue constituents to be realised. The spectral data acquired effectively enables multiplexing of digital tissue stains since a whole array of information is gathered simultaneously. Technological developments are bringing the technologies closer to the clinical reality of spectral pathology and high-throughput non-destructive measurement with high resolution.

  7. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  8. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    PubMed

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  9. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  10. Biophysical characterization of DNA binding from single molecule force measurements

    PubMed Central

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-01-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function. PMID:20576476

  11. Biophysical characterization of DNA binding from single molecule force measurements

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-09-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.

  12. The information content in single-molecule Raman nanoscopy

    SciTech Connect

    El-Khoury, Patrick Z.; Abellan, Patricia; Chantry, Ruth L.; Gong, Yu; Joly, Alan G.; Novikova, Irina V.; Evans, James E.; Aprà, Edoardo; Hu, Dehong; Ramasse, Quentin M.; Hess, Wayne P.

    2016-01-02

    Nowadays, it is possible to establish the chemical identity of a substance at the ultimate detection limit of a single molecule, i.e. the sensitivity required to probe 1.66 yoctomoles (1/NA), using surface-enhanced Raman scattering (SERS). It is also possible to image within an individual molecule, all while retaining chemical selectivity, using tip-enhanced Raman scattering (TERS). The potential applications of ultrasensitive SERS and TERS in chemical and biological detection and imaging are evident, and have attracted significant attention over the past decade. Rather than focusing on conventional single/few-molecule SERS and TERS experiments, where the objective is ultrasensitive spectroscopy and nanoscale chemical imaging, we consider the reverse problem herein. Namely, we review recent efforts ultimately aimed at probing different aspects of a molecule’s local environment through a detailed analysis of its SERS and TERS signatures. Particular attention is devoted to local electric field imaging using TERS; we describe how the vector components and absolute magnitude of a local electric field may be inferred from molecular Raman spectra and images. We also propose experiments that can potentially be used to cross-check the insights gained from the described SERS and TERS measurements. The ultimate goal of this review is to demonstrate that there is much more to single molecule Raman scattering than mere ultrasensitive chemical nanoscopy.

  13. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  14. Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight From Nuclear Resonance Vibrational Spectroscopy

    SciTech Connect

    Paulat, F.; Berto, T.C.; George, S.DeBeer; Goodrich, L.; Praneeth, V.K.K.; Sulok, C.D.; Lehnert, N.

    2009-05-21

    This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to {sup 15}N{sup 18}O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm{sup -1}. Normal coordinate analysis shows that the 437 cm{sup -1} mode corresponds to the Fe-NO stretch, whereas the 563 cm{sup -1} band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.

  15. Single-molecule studies using magnetic traps.

    PubMed

    Lionnet, Timothée; Allemand, Jean-François; Revyakin, Andrey; Strick, Terence R; Saleh, Omar A; Bensimon, David; Croquette, Vincent

    2012-01-01

    In recent years, techniques have been developed to study and manipulate single molecules of DNA and other biopolymers. In one such technique, the magnetic trap, a single DNA molecule is bound at one end to a glass surface and at the other to a magnetic microbead. Small magnets, whose position and rotation can be controlled, pull on and rotate the microbead. This provides a simple method to stretch and twist the molecule. The system allows one to apply and measure forces ranging from 10(-3) to >100 pN. In contrast to other techniques, the force measurement is absolute and does not require calibration of the sensor. In this article, we describe the principle of the magnetic trap, as well as its use in the measurement of the elastic properties of DNA and the study of DNA-protein interactions.

  16. Magnetic tweezers for single-molecule manipulation.

    PubMed

    Seol, Yeonee; Neuman, Keir C

    2011-01-01

    Magnetic tweezers provide a versatile tool enabling the application of force and torque on individual biomolecules. Magnetic tweezers are uniquely suited to the study of DNA topology and protein-DNA interactions that modify DNA topology. Perhaps due to its presumed simplicity, magnetic tweezers instrumentation has been described in less detail than comparable techniques. Here, we provide a comprehensive description and guide for the design and implementation of a magnetic tweezers instrument for single-molecule measurements of DNA topology and mechanics. We elucidate magnetic trap design, as well as microscope and illumination setup, and provide a simple LabVIEW-based real-time position tracking algorithm. In addition, we provide procedures for production of supercoilable DNA tethers, flow-cell design, and construction tips.

  17. Proteomics: from single molecules to biological pathways.

    PubMed

    Langley, Sarah R; Dwyer, Joseph; Drozdov, Ignat; Yin, Xiaoke; Mayr, Manuel

    2013-03-15

    The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling technologies that focus on a global characterization of whole complements allows an exploration of the interconnectivity of pathways during pathophysiologically relevant processes, but has brought about the issue of statistical analysis and data integration. Proteins identified by differential expression as well as those in protein-protein interaction networks identified through experiments and through computational modelling techniques can be used as an initial starting point for functional analyses. In combination with other '-omics' technologies, such as transcriptomics and metabolomics, proteomics explores different aspects of disease, and the different pillars of observations facilitate the data integration in disease-specific networks. Ultimately, a systems biology approach may advance our understanding of cardiovascular disease processes at a 'biological pathway' instead of a 'single molecule' level and accelerate progress towards disease-modifying interventions.

  18. Increased throughput single molecule detection of DNA

    NASA Astrophysics Data System (ADS)

    Gurjar, Rajan; Seetamraju, Madhavi; Kolodziejski, Noah; Myers, Richard; Staples, Christopher; Christian, James; Squillante, Michael R.; Entine, Gerald

    2007-09-01

    In this work, we present research in using confocal optical techniques with femtolitre focal volumes and obtain very high signal-to-noise and signal-to-background ratios for single molecule detection (SMD). We were able to achieve improved signal strength by using highly fluorescent quantum dots and nanopatterned substrates to obtain plasmon induced resonant fluorescence enhancement. A method to simultaneously using multiple excitation spots without the use of confocal apertures and an array of single photon sensitive Geiger mode avalanche photodiodes was used to increase the throughput of the detection system. Using this highly sensitive SMD system, we detect small quantities of synthetic DNA through hybridization eliminating the need of polymerase chain reaction.

  19. Single-Molecule Localization Microscopy in Eukaryotes.

    PubMed

    Sauer, Markus; Heilemann, Mike

    2017-06-14

    Super-resolution fluorescence imaging by photoactivation or photoswitching of single fluorophores and position determination (single-molecule localization microscopy, SMLM) provides microscopic images with subdiffraction spatial resolution. This technology has enabled new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level. A unique strength of SMLM is that it delivers molecule-resolved information, along with super-resolved images of cellular structures. This allows quantitative access to cellular structures, for example, how proteins are distributed and organized and how they interact with other biomolecules. Ultimately, it is even possible to determine protein numbers in cells and the number of subunits in a protein complex. SMLM thus has the potential to pave the way toward a better understanding of how cells function at the molecular level. In this review, we describe how SMLM has contributed new knowledge in eukaryotic biology, and we specifically focus on quantitative biological data extracted from SMLM images.

  20. Single molecule measurements and biological motors.

    PubMed

    Knight, Alex E; Mashanov, Gregory; Molloy, Justin E

    2005-12-01

    Recent technological advances in lasers and optical detectors have enabled a variety of new, single molecule technologies to be developed. Using intense and highly collimated laser light sources in addition to super-sensitive cameras, the fluorescence of single fluorophores can now be imaged in aqueous solution. Also, laser optical tweezers have enabled the piconewton forces produced by pair of interacting biomolecules to be measured directly. However, for a researcher new to the field to begin to use such techniques in their own research might seem a daunting prospect. Most of the equipment that is in use is custom-built. However, most of the equipment is essence fairly simple and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on those practical aspects which are not particularly well covered in the literature, and aims to provide an overview of the field as a whole with references and web links to more detailed sources elsewhere. Indeed, the opportunity to publish an article such as this on the Internet affords many new opportunities (and more space!) for presenting scientific ideas and information. For example, we have illustrated the nature of optical trap data with an interactive Java simulation; provided links to relevant web sites and technical documents, and included a large number of colour figures and plots. Our group's research focuses on molecular motors, and the bias of this article reflects this. It turns out that molecular motors have been a paradigm (or prototype) for single molecule research and the field has seen a rapid development in the techniques. It is hoped that the methods described here will be broadly applicable to other biological systems.

  1. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    DTIC Science & Technology

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  2. Isotopic hydration of cellobiose: vibrational spectroscopy and dynamical simulations.

    PubMed

    Pincu, Madeleine; Cocinero, Emilio J; Mayorkas, Nitzan; Brauer, Brina; Davis, Benjamin G; Gerber, R Benny; Simons, John P

    2011-09-01

    The conformation and structural dynamics of cellobiose, one of the fundamental building blocks in nature, its C4' epimer, lactose, and their microhydrated complexes, isolated in the gas phase, have been explored through a combination of experiment and theory. Their structures at low temperature have been determined through double resonance, IR-UV vibrational spectroscopy conducted under molecular beam conditions, substituting D(2)O for H(2)O to separate isotopically, the carbohydrate (OH) bands from the hydration (OD) bands. Car-Parrinello (CP2K) simulations, employing dispersion corrected density functional potentials and conducted "on-the-fly" from ∼20 to ∼300 K, have been used to explore the consequences of raising the temperature. Comparisons between the experimental data, anharmonic vibrational self-consistent field calculations based upon ab initio potentials, and the CP2K simulations have established the role of anharmonicity; the reliability of classical molecular dynamics predictions of the vibrational spectra of carbohydrates and the accuracy of the dispersion corrected (BLYP-D) force fields employed; the structural consequences of increasing hydration; and the dynamical consequences of increasing temperature. The isolated and hydrated cellobiose and lactose units both present remarkably rigid structures: their glycosidic linkages adopt a "cis" (anti-ϕ and syn-ψ) conformation bound by inter-ring hydrogen bonds. This conformation is maintained when the temperature is increased to ∼300 K and it continues to be maintained when the cellobiose (or lactose) unit is hydrated by one or two explicitly bound water molecules. Despite individual fluctuations in the intra- and intermolecular hydrogen bonding pattern and some local structural motions, the water molecules remain locally bound and the isolated carbohydrates remain trapped within the cis potential well. The Car-Parrinello dynamical simulations do not suggest any accessible pathway to the trans

  3. Spectroscopic characterization of Venus at the single molecule level.

    PubMed

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments.

  4. Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Fu, Li; Chen, Shun-li; Gan, Wei; Wang, Hong-fei

    2016-02-27

    Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP geometry, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directly access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials.

  5. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    PubMed Central

    Zhang, Libing; Fu, Li; Wang, Hong-fei; Yang, Bin

    2017-01-01

    Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass. PMID:28290542

  6. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Libing; Fu, Li; Wang, Hong-Fei; Yang, Bin

    2017-03-01

    Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass.

  7. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  8. Monitoring Cellular Interactions during T Cell Activation at the Single Molecule Level Using Semiconductor Quantum-Dots

    DTIC Science & Technology

    2005-05-10

    correlation spectroscopy (FCS); (5) testing the lipid raft hypothesis by single molecule imaging of targeted peptide-coated quantum dots; and (6) molecular cloning and fusion of avidin to immunological synapse (IS) components.

  9. Vibrational Spectroscopy of Sympathetically Cooled CaH^+ Molecular Ions

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Goeders, James E.; Brown, Kenneth R.

    2013-06-01

    The search for time variation in the fundamental constants of nature such as the fine structure constant(α) and the proton/electron mass ratio(μ), is an area of active research. Comparing the vibrational overtones of CaH^+ with electronic transitions in atoms has been proposed as a means to detect possible time variation of μ Before these precision measurements can be realized, the survey spectroscopy needs to be performed. We describe our experiments using a Coulomb crystal of sympathetically cooled CaH^+ and laser-cooled Ca^+ ions to measure the vibrational overtones by resonance-enhanced multiphoton photo-dissociation (REMPD) in a linear Paul trap. The dissociation of CaH^+ is detected by observing the change in the crystal composition by monitoring the Ca^+ fluorescence. Future single ion experiments for the precision measurement are also discussed. J. Uzan, Rev. Mod. Phys. 75, 403 (2003). M. Kajita and Y. Moriwaki, J. Phys. B: At. Mol. Opt. Phys. 42, 154022(2009).

  10. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.

    2008-01-01

    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  11. Spectral modulation observed in artificial photosynthetic complexes by real-time vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Juan; Yuan, Wei; Xing, Xin; Miyatake, Tomohiro; Tamiaki, Hitoshi; Kobayashi, Takayoshi; Leng, Yuxin

    2017-09-01

    By real-time vibrational spectroscopy using 6.8 fs pulses, real-time vibronic coupling in stair-like zinc chlorin aggregates was studied. Besides the observed fast excitonic relaxation, amplitudes of coherent molecular vibrations are found to be linearly dispersed from the resonant peak as a function of their own vibrational frequencies. In addition, the initial phases of the molecular vibrations exhibiting clear π phase jump have been observed. All these results indicate that coherent vibrations in the artificial chlorosome intermediate energy exchange between the laser fields around the resonant peak and those separated from it by photon energy equal to the vibrational frequencies.

  12. Structural characterization and vibrational spectroscopy of the arsenate mineral wendwilsonite.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria; Xi, Yunfei

    2014-01-24

    In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe(2+), Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)(3-) stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)(3-) clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm(-1) are assigned to ν4 bending modes. Multiple bands in the 350-300 cm(-1) region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm(-1) are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

  13. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    SciTech Connect

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  14. Toward single-molecule microscopy on a smart phone.

    PubMed

    Khatua, Saumyakanti; Orrit, Michel

    2013-10-22

    Thanks to fluorescence, single nano-objects down to individual fluorophores can now be imaged in optical microscopes. Fluorescence imaging is still restricted to laboratory facilities as it usually involves expensive and bulky instrumentation. A report by Wei et al. in this issue of ACS Nano, however, shows that a sensitive, cost-effective, and portable device can be developed to image individual nano-objects as small as large viruses. This work opens the fascinating prospects of single-molecule microscopy and spectroscopy on a smart phone. We speculate on the possible applications of such a portable imaging device and on the perspectives it may open in different fields of science and technology.

  15. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  16. Force-induced tautomerization in a single molecule

    NASA Astrophysics Data System (ADS)

    Ladenthin, Janina N.; Frederiksen, Thomas; Persson, Mats; Sharp, John C.; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

  17. Electronic transport in benzodifuran single-molecule transistors.

    PubMed

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-05-07

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.

  18. n and p type character of single molecule diodes

    PubMed Central

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  19. Coherent control of single molecules at room temperature.

    PubMed

    Brinks, Daan; Hildner, Richard; Stefani, Fernando D; van Hulst, Niek F

    2011-01-01

    The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble.

  20. Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor.

    PubMed

    Lau, Chit Siong; Sadeghi, Hatef; Rogers, Gregory; Sangtarash, Sara; Dallas, Panagiotis; Porfyrakis, Kyriakos; Warner, Jamie; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A

    2016-01-13

    We report transport measurements on a graphene-fullerene single-molecule transistor. The device architecture where a functionalized C60 binds to graphene nanoelectrodes results in strong electron-vibron coupling and weak vibron relaxation. Using a combined approach of transport spectroscopy, Raman spectroscopy, and DFT calculations, we demonstrate center-of-mass oscillations, redox-dependent Franck-Condon blockade, and a transport regime characterized by avalanche tunnelling in a single-molecule transistor.

  1. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  2. Detection of Steps in Single Molecule Data

    PubMed Central

    Aggarwal, Tanuj; Materassi, Donatello; Davison, Robert; Hays, Thomas; Salapaka, Murti

    2013-01-01

    Over the past few decades, single molecule investigations employing optical tweezers, AFM and TIRF microscopy have revealed that molecular behaviors are typically characterized by discrete steps or events that follow changes in protein conformation. These events, that manifest as steps or jumps, are short-lived transitions between otherwise more stable molecular states. A major limiting factor in determining the size and timing of the steps is the noise introduced by the measurement system. To address this impediment to the analysis of single molecule behaviors, step detection algorithms incorporate large records of data and provide objective analysis. However, existing algorithms are mostly based on heuristics that are not reliable and lack objectivity. Most of these step detection methods require the user to supply parameters that inform the search for steps. They work well, only when the signal to noise ratio (SNR) is high and stepping speed is low. In this report, we have developed a novel step detection method that performs an objective analysis on the data without input parameters, and based only on the noise statistics. The noise levels and characteristics can be estimated from the data providing reliable results for much smaller SNR and higher stepping speeds. An iterative learning process drives the optimization of step-size distributions for data that has unimodal step-size distribution, and produces extremely low false positive outcomes and high accuracy in finding true steps. Our novel methodology, also uniquely incorporates compensation for the smoothing affects of probe dynamics. A mechanical measurement probe typically takes a finite time to respond to step changes, and when steps occur faster than the probe response time, the sharp step transitions are smoothed out and can obscure the step events. To address probe dynamics we accept a model for the dynamic behavior of the probe and invert it to reveal the steps. No other existing method addresses

  3. Theoretical Study of the Vibrational Spectroscopy of the Ethyl Radical

    NASA Astrophysics Data System (ADS)

    Tabor, Daniel P.; Sibert, Edwin. L. Sibert, Iii

    2013-06-01

    The rich spectroscopy of the ethyl radical has attracted the attention of several experimental and theoretical investigations. The purpose of these studies was to elucidate the signatures of hyperconjugation, torsion, inversion, and Fermi coupling in the molecular spectra. Due to the number of degrees of freedom in the system, previous theoretical studies have implemented reduced-dimensional models. Our ultimate goal is a full-dimensional theoretical treatment of the vibrations using both Van Vleck and variational approaches. The methods will be combined with the potential that we have calculated using the CCSD(T) method on the cc-pVTZ basis set. In this talk we will discuss our initial work, which builds up from these reduced-dimensional models. Our calculations use coordinates that exploit the system's G_{12} PI symmetry in a simple fashion. By systematically adding more degrees of freedom to our model, we can determine the effects of specific couplings on the spectroscopy. T. Häber, A. C. Blair, D. J. Nesbitt and M. D. Schuder J. Chem. Phys. {124}, 054316, (2006). G .E. Douberly, unpublished. R. S. Bhatta, A. Gao and D. S. Perry J. Mol. Struct.: THEOCHEM {941}, 22, (2010).

  4. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  5. Single-molecule strong coupling at room temperature in plasmonic nanocavities.

    PubMed

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J; Scherman, Oren A; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J

    2016-07-07

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  6. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  7. Determining the elastic properties of aptamer-ricin single molecule multiple pathways

    USDA-ARS?s Scientific Manuscript database

    Ricin and an anti-ricin aptamer showed three stable binding conformations with their special chemomechanical properties. The elastic properties of the ricin-aptamer single-molecule interactions were investigated by the dynamic force spectroscopy (DFS). The worm-like-chain model and Hook’s law were ...

  8. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of

  9. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  10. 'Single molecule': theory and experiments, an introduction.

    PubMed

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  11. 'Single molecule': theory and experiments, an introduction

    PubMed Central

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins - molecular motors - have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'. PMID:24565227

  12. Organization of Single Molecule Magnets on Surfaces

    NASA Astrophysics Data System (ADS)

    Sessoli, Roberta

    2006-03-01

    The field of magnetic molecular clusters showing slow relaxation of the magnetization has attracted a great interest for the spectacular quantum effects in the dynamics of the magnetization that range from resonant quantum tunneling to topological interferences. Recently these systems, known as Single Molecule Magnets (SMMs), have also been proposed as model systems for the investigation of flame propagation in flammable substances. A renewed interest in SMMs also comes from the possibility to exploit their rich and complex magnetic behavior in nano-spintronics. However, at the crystalline state these molecular materials are substantially insulating. They can however exhibit significant transport properties if the conduction occurs through one molecule connected to two metal electrodes, or through a tunneling mechanism when the SMM is grafted on a conducting surface, as occurs in scanning tunnel microscopy experiments. Molecular compounds can be organized on surfaces thanks to the self assembly technique that exploits the strong affinity of some groups for the surface, e.g. thiols for gold surfaces. However the deposition of large molecules mainly comprising relatively weak coordinative bonds is far from trivial. Several different approaches have started to be investigated. We will briefly review here the strategies developed in a collaboration between the Universities of Florence and Modena. Well isolated molecules on Au(111) surfaces have been obtained with sub-monolayer coverage and different spacers. Organization on a large scale of micrometric structures has been obtained thanks to micro-contact printing. The magnetic properties of the grafted molecules have been investigated through magneto-optical techniques and the results show a significant change in the magnetization dynamics whose origin is still object of investigations.

  13. A brief introduction to single-molecule fluorescence methods.

    PubMed

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches are addressed, we first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  14. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    PubMed

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  15. Single-Molecule Plasmon Sensing: Current Status and Future Prospects

    PubMed Central

    2017-01-01

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle–single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics. PMID:28762723

  16. Excitation of molecular vibrational modes with inelastic scanning tunneling microscopy processes: examination through action spectra of cis-2-butene on Pd(110).

    PubMed

    Sainoo, Yasuyuki; Kim, Yousoo; Okawa, Toshiro; Komeda, Tadahiro; Shigekawa, Hidemi; Kawai, Maki

    2005-12-09

    Inelastically tunneled electrons from a scanning tunneling microscope (STM) were used to induce vibrationally mediated motion of a single cis-2-butene molecule among four equivalent orientations on Pd(110) at 4.8 K. The action spectrum obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with a STM. We demonstrate the usefulness of the action spectroscopy as a novel single molecule vibrational spectroscopic method. We also discuss its selection rules in terms of resonance tunneling.

  17. Structure and mechanics of proteins from single molecules to cells

    NASA Astrophysics Data System (ADS)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  18. Intersystem Crossing Mechanisms and Single Molecule Fluorescence: Terrylene in Anthracene Crystals

    SciTech Connect

    Kol'chenko, M.A.; Nicolet, A.; Orrit, M.; Kozankiewicz, B.

    2005-05-15

    Single molecule spectroscopy requires molecules with low triplet yields and/or short triplet lifetimes. The intersystem crossing (ISC) rate may be dramatically enhanced by the host matrix. Comparing the fluorescence intensity of single terrylene molecules in para-terphenyl, naphthalene, and anthracene crystals, we found a reduction of the saturation intensity by three orders of magnitude in the latter case. The fluorescence autocorrelation function indicates that the bottleneck state is the terrylene triplet. We propose a ping-pong mechanism between host and guest. This intermolecular ISC mechanism, which can open whenever the host triplet lies lower than the guest singlet, was overlooked in previous single molecule investigations.

  19. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.

    PubMed

    Tan, Ming-Liang; Bizzarri, Anna Rita; Xiao, Yuming; Cannistraro, Salvatore; Ichiye, Toshiko; Manzoni, Cristian; Cerullo, Giulio; Adams, Michael W W; Jenney, Francis E; Cramer, Stephen P

    2007-03-01

    We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.

  20. Multidimensional vibrational spectroscopy for tunneling processes in a dissipative environment.

    PubMed

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2005-07-01

    Simulating tunneling processes as well as their observation are challenging problems for many areas. In this study, we consider a double-well potential system coupled to a heat bath with a linear-linear (LL) and square-linear (SL) system-bath interactions. The LL interaction leads to longitudinal (T1) and transversal (T2) homogeneous relaxations, whereas the SL interaction leads to the inhomogeneous dephasing (T2*) relaxation in the white noise limit with a rotating wave approximation. We discuss the dynamics of the double-well system under infrared (IR) laser excitations from a Gaussian-Markovian quantum Fokker-Planck equation approach, which was developed by generalizing Kubo's stochastic Liouville equation. Analytical expression of the Green function is obtained for a case of two-state-jump modulation by performing the Fourier-Laplace transformation. We then calculate a two-dimensional infrared signal, which is defined by the four-body correlation function of optical dipole, for various noise correlation time, system-bath coupling parameters, and temperatures. It is shown that the bath-induced vibrational excitation and relaxation dynamics between the tunneling splitting levels can be detected as the isolated off-diagonal peaks in the third-order two-dimensional infrared (2D-IR) spectroscopy for a specific phase matching condition. Furthermore, this spectroscopy also allows us to directly evaluate the rate constants for tunneling reactions, which relates to the coherence between the splitting levels; it can be regarded as a novel technique for measuring chemical reaction rates. We depict the change of reaction rates as a function of system-bath coupling strength and a temperature through the 2D-IR signal.

  1. Making connections — strategies for single molecule fluorescence biophysics

    PubMed Central

    Grohmann, Dina; Werner, Finn; Tinnefeld, Philip

    2013-01-01

    Fluorescence spectroscopy and fluorescence microscopy carried out on the single molecule level are elegant methods to decipher complex biological systems; it can provide a wealth of information that frequently is obscured in the averaging of ensemble measurements. Fluorescence can be used to localise a molecule, study its binding with interaction partners and ligands, or to follow conformational changes in large multicomponent systems. Efficient labelling of proteins and nucleic acids is very important for any fluorescence method, and equally the development of novel fluorophores has been crucial in making biomolecules amenable to single molecule fluorescence methods. In this paper we review novel coupling strategies that permit site-specific and efficient labelling of proteins. Furthermore, we will discuss progressive single molecule approaches that allow the detection of individual molecules and biomolecular complexes even directly isolated from cellular extracts at much higher and much lower concentrations than has been possible so far. PMID:23769868

  2. Red light, green light: probing single molecules using alternating-laser excitation.

    PubMed

    Santoso, Yusdi; Hwang, Ling Chin; Le Reste, Ludovic; Kapanidis, Achillefs N

    2008-08-01

    Single-molecule fluorescence methods, particularly single-molecule FRET (fluorescence resonance energy transfer), have provided novel insights into the structure, interactions and dynamics of biological systems. ALEX (alternating-laser excitation) spectroscopy is a new method that extends single-molecule FRET by providing simultaneous information about structure and stoichiometry; this new information allows the detection of interactions in the absence of FRET and extends the dynamic range of distance measurements that are accessible through FRET. In the present article, we discuss combinations of ALEX with confocal microscopy for studying in-solution and in-gel molecules; we also discuss combining ALEX with TIRF (total internal reflection fluorescence) for studying surface-immobilized molecules. We also highlight applications of ALEX to the study of protein-nucleic acid interactions.

  3. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  4. Capabilities for measuring the diffusivity of a single molecule by recycling it in a nanochannel

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Davis, Lloyd

    2014-03-01

    Analysis of the fractions of fluorescently labeled molecules with different diffusivities within a microliter drop of solution is often used for high-throughput screening of molecular binding interactions in pharmaceutical drug discovery research. Assays frequently employ fluorescence correlation spectroscopy, an ensemble technique that is able to resolve fast diffusing small ligands from those bound to much larger biomolecules with considerably slower diffusion. Single-molecule measurements have the potential to resolve species with different diffusivities and to count the numbers of molecules of each species. Single-molecule recycling in a nanochannel, which entails detection of bursts of fluorescence photons from the repeated passage of a molecule through a focused laser beam as the flow along a nanochannel is periodically alternated, can be used to determine the diffusivity of a single molecule from the fluctuations in the intervals between successive detections. We discuss Monte Carlo studies to determine favorable experimental conditions for determining single-molecule diffusivities, together with a weighted-sliding-sum photon burst detection algorithm for flow-control and maximum-likelihood based analysis of recycle times. We also discuss incorporation of the algorithms into our experimental apparatus for single-molecule recycling, which uses a LabView real-time system for photon count analysis and flow control.

  5. Deciphering the scaling of single-molecule interactions using Jarzynski's equality.

    PubMed

    Raman, Sangeetha; Utzig, Thomas; Baimpos, Theodoros; Ratna Shrestha, Buddha; Valtiner, Markus

    2014-11-21

    Unravelling the complexity of the macroscopic world relies on understanding the scaling of single-molecule interactions towards integral macroscopic interactions. Here, we demonstrate the scaling of single acid-amine interactions through a synergistic experimental approach combining macroscopic surface forces apparatus experiments and single-molecule force spectroscopy. This experimental framework is ideal for testing the well-renowned Jarzynski's equality, which relates work performed under non-equilibrium conditions with equilibrium free energy. Macroscopic equilibrium measurements scale linearly with the number density of interfacial bonds, providing acid-amine interaction energies of 10.9 ± 0.2 kT. Irrespective of how far from equilibrium single-molecule experiments are performed, the Jarzynski's free energy converges to 11 ± 1 kT. Our results validate the applicability of Jarzynski's equality to unravel the scaling of non-equilibrium single-molecule experiments to scenarios where large numbers of molecules interacts simultaneously in equilibrium. The developed scaling strategy predicts large-scale properties such as adhesion or cell-cell interactions on the basis of single-molecule measurements.

  6. Graphene-porphyrin single-molecule transistors.

    PubMed

    Mol, Jan A; Lau, Chit Siong; Lewis, Wilfred J M; Sadeghi, Hatef; Roche, Cecile; Cnossen, Arjen; Warner, Jamie H; Lambert, Colin J; Anderson, Harry L; Briggs, G Andrew D

    2015-08-21

    We demonstrate a robust graphene-molecule-graphene transistor architecture. We observe remarkably reproducible single electron charging, which we attribute to insensitivity of the molecular junction to the atomic configuration of the graphene electrodes. The stability of the graphene electrodes allow for high-bias transport spectroscopy and the observation of multiple redox states at room-temperature.

  7. Vibrational Spectroscopy of CO2- Radical Anion in Water

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2016-06-01

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, and methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 wn, attributed to the symmetric CO stretch, which is at 45 wn higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 wn which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 wn band also appears at 742 wn, and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28+/-0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4+/-0.2 measured in this work is consistent with the vibrational properties, bond structure and charge

  8. Characterizing Anharmonic Vibrational Modes of Quinones with Two-Dimensional Infrared Spectroscopy.

    PubMed

    Cyran, Jenée D; Nite, Jacob M; Krummel, Amber T

    2015-07-23

    Two-dimensional infrared (2D IR) spectroscopy was used to study the vibrational modes of three quinones--benzoquinone, naphthoquinone, and anthraquinone. The vibrations of interest were in the spectral range of 1560-1710 cm(-1), corresponding to the in-plane carbonyl and ring stretching vibrations. Coupling between the vibrational modes is indicated by the cross peaks in the 2D IR spectra. The diagonal and off-diagonal anharmonicities range from 4.6 to 17.4 cm(-1) for the quinone series. In addition, there is significant vibrational coupling between the in-plane carbonyl and ring stretching vibrations. The diagonal anharmonicity, off-diagonal anharmonicity, and vibrational coupling constants are reported for benzoquinone, naphthoquinone, and anthraquinone.

  9. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  10. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-07-01

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  11. Microfluidics for biological measurements with single-molecule resolution.

    PubMed

    Streets, Aaron M; Huang, Yanyi

    2014-02-01

    Single-molecule approaches in biology have been critical in studies ranging from the examination of physical properties of biological macromolecules to the extraction of genetic information from DNA. The variation intrinsic to many biological processes necessitates measurements with single-molecule resolution in order to accurately recapitulate population distributions. Microfluidic technology has proven to be useful in the facilitation and even enhancement of single-molecule studies because of the precise liquid handling, small volume manipulation, and high throughput capabilities of microfluidic devices. In this review we survey the microfluidic "toolbox" available to the single-molecule specialist and summarize some recent biological applications of single-molecule detection on chip. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference

    PubMed Central

    Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.

    2015-01-01

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922

  13. Recording Single Molecule Dynamics and Function using Carbon Nanotube Circuits

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Sims, Patrick; Moody, Issa; Olsen, Tivoli; Corso, Brad L.; Tolga Gul, O.; Weiss, Gregory A.; Collins, Philip G.

    2013-03-01

    Nanoscale electronic devices like field-effect transistors (FETs) have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes (SWNTs) have the requisite sensitivity to detect single molecule events, and have sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring the dynamic, single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of polymerase I. Initial successes in each case indicate the generality and attractiveness of SWNT FETs as a new tool to complement other single molecule techniques. Furthermore, our focused research on transduction mechanisms provides the design rules necessary to further generalize this SWNT FET technique. This presentation will summarize these rules, and demonstrate how the purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule nanocircuits from a wide range of enzymes or proteins.

  14. Vibrationally-resolved polyatomic photoelectron spectroscopy: Mode-specific behavior

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, J. D.; Lucchese, R. R.

    2002-05-01

    We report the first vibrationally-resolved photoelectron spectra for polyatomic molecules performed over a broad spectral range. Such studies elucidate vibrationally mode-specific aspects of the photoelectron scattering dynamics. Three linear triatomic systems (CO_2, N_2O, and CS_2) are studied, and the results exhibit striking differences for alternative modes. For CO_2^+(C^2Σ_g^+), a continuum resonance results in a 15 eV wide dip for the symmetric stretch branching ratio, while strong peaks are observed for vibrational branching ratios associated with the two symmetry forbidden modes. For CS_2^+(B^2Σ_u^+), mode-specific behavior is displayed, as resonance enhancement of a single quantum excitation is weak for the symmetric stretch, but strong for the bending vibration. For N_2O^+(A^2Σ^+), many vibrational excitations are observed and families of vibrational branching ratio spectra emerge.

  15. Vibrational predissociation spectroscopy of Ar-tagged, trisubstituted silyl cations

    NASA Astrophysics Data System (ADS)

    DeBlase, Andrew F.; Scerba, Michael T.; Lectka, Thomas; Johnson, Mark A.

    2013-05-01

    Vibrational predissociation spectra of the (CH3)2RSi+·Arn, (R = H and CH3, n = 1 and 2) ions are compared with harmonic calculations to structurally characterize these putative reactive intermediates. Although the vibrational photofragmentation behavior indicates that the Ar-Si bond is quite strong relative to that found in closed shell ions, formation of the Ar adducts is calculated to cause only minor perturbations to the intrinsic vibrational band patterns of the isolated ions. In both (R = H and CH3) cases, the vibrational spectra are very simple, consisting entirely of sharp features readily assigned to fundamentals anticipated by their harmonic spectra.

  16. Coherent Multidimensional Vibrational Spectroscopy of Representative N-Alkanes

    NASA Astrophysics Data System (ADS)

    Mathew, Nathan A.; Rickard, Mark A.; Kornau, Kathryn M.; Pakoulev, Andrei V.; Block, Stephen B.; Yurs, Lena A.; Wright, John C.

    2009-08-01

    Mixed frequency/time domain, two color triply vibrationally enhanced (TRIVE) four wave mixing (FWM) spectroscopy is used to study the methyl and methylene modes in octane and dotriacontane. The experiments involve scanning different combinations of the two excitation frequencies, the monochromator frequency, and the two time delays between the three excitation pulses while the remaining variables are fixed. Two dimensional spectra of the methyl and methylene stretching region have weak, asymmetrical diagonal- and cross-peaks when the excitation pulses are temporally overlapped. As the time delays change, the spectra change as new peaks appear and their peak intensity and position change. Combined two-dimensional scans of the excitation frequency and time delay show the changes are caused by relaxation of the initially excited populations to other states that are coupled to the methyl and methylene stretching modes. Two dimensional time delay scans show that the coherence dephasing rates are very fast so fully coherent TRIVE FWM pathways involving multiple quantum coherences are not possible without shorter excitation pulses. Similar experiments involving the methyl and methylene bend and stretching modes identify cross-peaks between these modes and population transfer processes that create cross-peaks. The asymmetric methylene stretch/Fermi resonance band is observed to contain unresolved states that couple differently with the symmetric methylene stretching and scissor modes as well as with lower lying quantum states that are fed by population transfer. The TRIVE FWM data show that the multidimensional spectra are dominated by rapid population transfer within the methyl and methylene stretching modes and to lower quantum states that are coupled to the stretching modes.

  17. Coherent multidimensional vibrational spectroscopy of representative N-alkanes.

    PubMed

    Mathew, Nathan A; Rickard, Mark A; Kornau, Kathryn M; Pakoulev, Andrei V; Block, Stephen B; Yurs, Lena A; Wright, John C

    2009-09-10

    Mixed frequency/time domain, two color triply vibrationally enhanced (TRIVE) four wave mixing (FWM) spectroscopy is used to study the methyl and methylene modes in octane and dotriacontane. The experiments involve scanning different combinations of the two excitation frequencies, the monochromator frequency, and the two time delays between the three excitation pulses while the remaining variables are fixed. Two dimensional spectra of the methyl and methylene stretching region have weak, asymmetrical diagonal- and cross-peaks when the excitation pulses are temporally overlapped. As the time delays change, the spectra change as new peaks appear and their peak intensity and position change. Combined two-dimensional scans of the excitation frequency and time delay show the changes are caused by relaxation of the initially excited populations to other states that are coupled to the methyl and methylene stretching modes. Two dimensional time delay scans show that the coherence dephasing rates are very fast so fully coherent TRIVE FWM pathways involving multiple quantum coherences are not possible without shorter excitation pulses. Similar experiments involving the methyl and methylene bend and stretching modes identify cross-peaks between these modes and population transfer processes that create cross-peaks. The asymmetric methylene stretch/Fermi resonance band is observed to contain unresolved states that couple differently with the symmetric methylene stretching and scissor modes as well as with lower lying quantum states that are fed by population transfer. The TRIVE FWM data show that the multidimensional spectra are dominated by rapid population transfer within the methyl and methylene stretching modes and to lower quantum states that are coupled to the stretching modes.

  18. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Fischer, Sean A; Aprà, Edoardo; Govind, Niranjan; Hess, Wayne P; El-Khoury, Patrick Z

    2017-02-16

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single-molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single-molecule SERS spectra and selection rules is a challenging task and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4'-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single-molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  19. Single-molecule spectroscopy of uniaxially oriented terrylene in polyethylene.

    PubMed

    Butter, Jacqueline Y P; Crenshaw, Brent R; Weder, Christoph; Hecht, Bert

    2006-01-16

    Single terrylene molecules doped into linear low-density polyethylene can be oriented by tensile deformation of the matrix. In measurements on ensembles at ambient and on single terrylene molecules at cryogenic temperature, strong orientation along the stretching direction was observed by polarization-resolved confocal microscopy. At cryogenic temperatures narrow and spectrally stable zero-phonon lines were found. The low saturation intensity of 0.07 W cm(-2) is consistent with an uniaxial orientation of terrylene in the sample plane.

  20. Observation of the Interference Effect in Vibrationally Resolved Electron Momentum Spectroscopy of H2

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Shan, Xu; Wang, Tian; Wang, Enliang; Chen, Xiangjun

    2014-01-01

    We report the first measurement on vibrationally resolved electron momentum spectroscopy of H2 by using a high-resolution (e, 2e) spectrometer. The vibrational-specific experimental momentum profiles have been obtained and shown to be in agreement with calculations of (e, 2e) ionization cross sections taking into account the vibrational wave functions. Distinct deviations from Franck-Condon predictions have been observed in vibrational ratios of cross sections, which can readily be ascribed to the Young-type two-center interference. Unlike previous (e, 2e) work, the present observation of an interference effect does not rely on the comparison with the one-center atomic cross section.