Science.gov

Sample records for single-molecule vibrational spectroscopy

  1. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.

    PubMed

    Choi, Han-Kyu; Park, Won-Hwa; Park, Chan-Gyu; Shin, Hyun-Hang; Lee, Kang Sup; Kim, Zee Hwan

    2016-04-01

    The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions.

  2. Pushing The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscopy: From Monolayer Towards Single molecule sensitivity

    SciTech Connect

    Xu, Xiaoji G.; Rang, Matthias; Craig, Ian M.; Rashcke, Markus B.

    2012-06-18

    While scattering-scanning near-field optical microscopy (s-SNOM) has demonstrated its potential to extend infrared (IR) spectroscopy into the nanometer scale, it has not yet reached its full potential in terms of spectroscopic sensitivity. We combine broadband femtosecond mid-IR excitation with an optimized spectral irradiance of 2 W/cm2/ cm–1 (power/area/bandwidth) and a combination of tip- and substrate enhancement to demonstrate single-monolayer sensitivity with exceptional signal-to-noise ratio. Using interferometric time domain detection, the near-field IR s-SNOM spectral phase directly reflects the molecular vibrational resonances and their intrinsic line shapes. We probe the stretching resonance of 1000 carbonyl groups at 1700 cm–1 in a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) on an evaporated gold substrate with spectroscopic contrast and sensitivity of 100 vibrational oscillators. From these results we provide a roadmap for achieving true single-molecule IR vibrational spectroscopy in s-SNOM by implementing optical antenna resonant enhancement, increased spectral pump power, and improved detection schemes.

  3. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  4. Broadband single-molecule excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy.

  5. Single Molecule Spectroscopy of Electron Transfer

    SciTech Connect

    Michael Holman; Ling Zang; Ruchuan Liu; David M. Adams

    2009-10-20

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  6. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  7. Single molecule microscopy and spectroscopy: concluding remarks.

    PubMed

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives. PMID:26606461

  8. Single molecule microscopy and spectroscopy: concluding remarks.

    PubMed

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  9. Single-molecule surface- and tip-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno

    2010-08-01

    A review is given on single-molecule surface- and tip-enhanced Raman spectroscopy (SERS and TERS). It sketches the historical development along different routes toward huge near-field enhancements, the basis of single-molecule enhanced Raman spectroscopy; from SNOM to apertureless SNOM to tip-enhanced Raman spectroscopy (TERS) and microscopy; from SERS to single-molecule SERS to single-molecule TERS. The claim of extremely high enhancement factors of 1014 in single-molecule SERS is critically discussed, in particular in the view of recent experimental and theoretical results that limits the electromagnetic enhancement to ⩽ 1011. In the field of TERS only very few reports on single-molecule TERS exist: single-molecule TERS on dyes and on a protein (cytochrome c). In the latter case, TERS 'sees' even subunits of this protein, either amino-acids or the heme, depending on the orientation of the protein relative to the tip. The former case concerns the dye brilliant cresyl blue adsorbed either on a Au surface under ambient conditions or on a Au(111) surface in ultra high vacuum. These results indicate that significant progress is to be expected for TERS in general and for single-molecule TERS in particular.

  10. Theory of single molecule emission spectroscopy

    SciTech Connect

    Bel, Golan; Brown, Frank L. H.

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  11. Single-molecule spectroscopy and imaging over the decades.

    PubMed

    Moerner, W E; Shechtman, Yoav; Wang, Quan

    2015-01-01

    As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many

  12. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    PubMed

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions. PMID:27004879

  13. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  14. THEORY OF SINGLE-MOLECULE SPECTROSCOPY: Beyond the Ensemble Average

    NASA Astrophysics Data System (ADS)

    Barkai, Eli; Jung, Younjoon; Silbey, Robert

    2004-01-01

    Single-molecule spectroscopy (SMS) is a powerful experimental technique used to investigate a wide range of physical, chemical, and biophysical phenomena. The merit of SMS is that it does not require ensemble averaging, which is found in standard spectroscopic techniques. Thus SMS yields insight into complex fluctuation phenomena that cannot be observed using standard ensemble techniques. We investigate theoretical aspects of SMS, emphasizing (a) dynamical fluctuations (e.g., spectral diffusion, photon-counting statistics, antibunching, quantum jumps, triplet blinking, and nonergodic blinking) and (b) single-molecule fluctuations in disordered systems, specifically distribution of line shapes of single molecules in low-temperature glasses. Special emphasis is given to single-molecule systems that reveal surprising connections to Levy statistics (i.e., blinking of quantum dots and single molecules in glasses). We compare theory with experiment and mention open problems. Our work demonstrates that the theory of SMS is a complementary field of research for describing optical spectroscopy in the condensed phase.

  15. High-throughput multispot single-molecule spectroscopy

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Kim, Taiho; Rech, Ivan; Resnati, Daniele; Marangoni, Stefano; Ghioni, Massimo; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2011-01-01

    Solution-based single-molecule spectroscopy and fluorescence correlation spectroscopy (FCS) are powerful techniques to access a variety of molecular properties such as size, brightness, conformation, and binding constants. However, this is limited to low concentrations, which results in long acquisition times in order to achieve good statistical accuracy. Data can be acquired more quickly by using parallelization. We present a new approach using a multispot excitation and detection geometry made possible by the combination of three powerful new technologies: (i) a liquid crystal spatial light modulator to produce multiple diffraction-limited excitation spots; (ii) a multipixel detector array matching the excitation pattern and (iii) a low-cost reconfigurable multichannel counting board. We demonstrate the capabilities of this technique by reporting FCS measurements of various calibrated samples as well as single-molecule burst measurements. PMID:21643532

  16. Observation of vibrational overtones by single-molecule resonant photodissociation

    PubMed Central

    Khanyile, Ncamiso B.; Shu, Gang; Brown, Kenneth R.

    2015-01-01

    Molecular ions can be held in a chain of laser-cooled atomic ions by sympathetic cooling. This system is ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. Here we show that this same system can be coupled with a broadband laser to discover new molecular transitions. We use three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance-enhanced multiphoton dissociation detected by Ca+ fluorescence. On the basis of theoretical calculations, we assign the observed peaks to the transition from the ground vibrational state, ν=0 to ν=9 and 10. Our method allows us to track single-molecular events, and it can be extended to work with any molecule by using normal mode frequency shifts to detect the dissociation. This survey spectroscopy serves as a bridge to the precision spectroscopy required for molecular ion control. PMID:26197787

  17. Nonlinear coherent spectroscopy in the single molecule limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.

    2015-10-01

    Detecting coherent anti-Stokes Raman scattering (CARS) signals from signal molecules is a longstanding experimental challenge. Driving the vibrational CARS response with surface plasmon fields has proven notoriously difficult due to strong background contributions, unfavorable heat dissipation and the phase dispersion of the plasmon modes in the ensemble. In this work we overcome previous experimental limitations and demonstrate time-resolved, vibrational CARS from molecules in the low copy number limit, down to the single molecule level. Our measurements, which are performed under ambient and non-electronic resonance conditions, establish that the coherent response from vibrational modes of individual molecules can be studied experimentally, opening up a new realm of molecular spectroscopic investigations.

  18. Single Molecule Spectroscopy Illuminating the Molecular Dynamics of Life

    NASA Astrophysics Data System (ADS)

    Webb, Watt W.

    This chapter summarizes a series of new single-molecule spectroscopy investigations in the life sciences at Cornell University that began with our invention of Fluorescence Correlation Spectroscopy (FCS) about 1970. Our invention of FCS became my first focus on the "Molecular Dynamics of Life." It motivated my transition from research on quantum fluctuations and transport in condensed matter physics including superconductivity and in the molecular dynamics of coherent fluctuations and nano-transport in inanimate physical and chemical systems subject to the nonlinear dynamics of continuous phase transitions. These interdisciplinary transitions exemplify the productivity of such interdisciplinary interactions in science.

  19. Multiphoton cascade absorption in single molecule fluorescence saturation spectroscopy.

    PubMed

    Winckler, Pascale; Jaffiol, Rodolphe

    2013-05-01

    Saturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution.

  20. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; van Grondelle, Rienk; Mančal, Tomáš

    2016-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII. PMID:27189196

  1. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  2. Reconstructing folding energy landscapes by single-molecule force spectroscopy.

    PubMed

    Woodside, Michael T; Block, Steven M

    2014-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate.

  3. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    PubMed Central

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  4. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  5. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy.

    PubMed

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-24

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  6. Voltage tuning of vibrational mode energies in single-molecule junctions

    PubMed Central

    Li, Yajing; Doak, Peter; Kronik, Leeor; Neaton, Jeffrey B.; Natelson, Douglas

    2014-01-01

    Vibrational modes of molecules are fundamental properties determined by intramolecular bonding, atomic masses, and molecular geometry, and often serve as important channels for dissipation in nanoscale processes. Although single-molecule junctions have been used to manipulate electronic structure and related functional properties of molecules, electrical control of vibrational mode energies has remained elusive. Here we use simultaneous transport and surface-enhanced Raman spectroscopy measurements to demonstrate large, reversible, voltage-driven shifts of vibrational mode energies of C60 molecules in gold junctions. C60 mode energies are found to vary approximately quadratically with bias, but in a manner inconsistent with a simple vibrational Stark effect. Our theoretical model instead suggests that the mode shifts are a signature of bias-driven addition of electronic charge to the molecule. These results imply that voltage-controlled tuning of vibrational modes is a general phenomenon at metal–molecule interfaces and is a means of achieving significant shifts in vibrational energies relative to a pure Stark effect. PMID:24474749

  7. Novel Polymer Linkers for Single Molecule AFM Force Spectroscopy

    PubMed Central

    Tong, Zenghan; Mikheikin, Andrey; Krasnoslobodtsev, Alexey; Lv, Zhengjian; Lyubchenko, Yuri L.

    2013-01-01

    Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications. PMID:23624104

  8. Theoretical analysis of single molecule spectroscopy lineshapes of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Devi, Murali

    Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature SMES lineshapes for a particular CP, called poly(2,5-di-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV). A minimal quantum mechanical model of a two-level system coupled to a Brownian oscillator bath is utilized. The main objective is to identify the set of model parameters best fitting a SMES lineshape for each of about 200 samples of DEH-PPV, from which new insight into the nature of exciton-bath coupling can be gained. This project also entails developing a reliable computational methodology for quantum mechanical modeling of spectral lineshapes in general. Well-known optimization techniques such as gradient descent, genetic algorithms, and heuristic searches have been tested, employing an L2 measure between theoretical and experimental lineshapes for guiding the optimization. However, all of these tend to result in theoretical lineshapes qualitatively different from experimental ones. This is attributed to the ruggedness of the parameter space and inadequateness of the L2 measure. On the other hand, when the dynamic reduction of the original parameter space to a 2-parameter space through feature searching and visualization of the search space paths using directed acyclic graphs(DAGs), the qualitative nature of the fitting improved significantly. For a more

  9. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  10. Hybrid photodetector for single-molecule spectroscopy and microscopy

    PubMed Central

    Michalet, X.; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2011-01-01

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications. PMID:21822361

  11. Multiplexed single-molecule force spectroscopy using a centrifuge

    NASA Astrophysics Data System (ADS)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-03-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  12. Multiplexed single-molecule force spectroscopy using a centrifuge.

    PubMed

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  13. Theoretical investigation on single-molecule chiroptical spectroscopy

    SciTech Connect

    Wakabayashi, M.; Yokojima, S.; Fukaminato, T.; Ogata, K.; Nakamura, S.

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  14. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  15. Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Villa, Federica A.; Guerrieri, Fabrizio; Tisa, Simone; Zappa, Franco; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2013-01-01

    Single-molecule spectroscopy is a powerful approach to measuring molecular properties such as size, brightness, conformation, and binding constants. Due to the low concentrations in the single-molecule regime, measurements with good statistical accuracy require long acquisition times. Previously we showed a factor of 8 improvement in acquisition speed using a custom-CMOS 8x1 SPAD array. Here we present preliminary results with a 64X improvement in throughput obtained using a liquid crystal on silicon spatial light modulator (LCOS-SLM) and a novel standard CMOS 1024 pixel SPAD array, opening the way to truly high-throughput single-molecule spectroscopy. PMID:24386535

  16. Colour-tunable fluorescence of single molecules based on the vibration induced emission of phenazine.

    PubMed

    Huang, Wei; Sun, Lu; Zheng, Zhiwen; Su, Jianhua; Tian, He

    2015-03-14

    Due to the vibration of the phenazine unit, compound S1 exhibits dual fluorescence in solution but one peak in the solid state. Based on this novel phenomenon and combined with the intramolecular energy transfer (IET) effect, a colour-tunable luminescence, even near white emission from a single molecule could be achieved in two different ways: controlling the polarity of the solvent and the aggregation index. PMID:25679456

  17. Single molecule vibrationally mediated chemistry. Towards state-specific strategies for molecular handling

    NASA Astrophysics Data System (ADS)

    Pascual, J. I.

    2005-08-01

    Tunnelling electrons may scatter inelastically with an adsorbate, releasing part of their energy through the excitation of molecular vibrations. The resolution of inelastic processes with a low temperature scanning tunnelling microscope (STM) provides a valuable tool to chemically characterize single adsorbates and their adsorption mechanisms. Here, we present a molecular scale picture of single molecule vibrational chemistry, as resolved by STM. To understand the way a reaction proceed it is needed knowledge about both the excitation and damping of a molecular vibration. The excitation is mediated by the specific coupling between electronic molecular resonances present at the Fermi level and vibrational states of the adsorbate. Thus, the two-dimensional mapping of the inelastic signal with an STM provides the spatial distribution of the adsorbate electronic states (near the Fermi level) which are predominantly coupled to the particular vibrational mode observed. The damping of the vibration follows a competition between different mechanisms, mediated via the creation of electron-hole pairs or via anharmonic coupling between vibrational states. This latter case give rise to effective energy transfer mechanisms which eventually may focus vibrational energy in a specific reaction coordinate. In this single-molecule work-bench, STM provides alternative tools to understand reactivity in the limit of low excitation rate, which demonstrate the existence of state-specific excitation strategies which may lead to selectivity in the product of a reaction. The author acknowledges his co-workers in the work presented here, H. Conrad, N. Lorente, H.-P. Rust, and Z. Song, as well as collaborations with J. Gómez Herrero, J.J. Jackiw, D. Sánchez-Portal and P.S. Weiss.

  18. On artifacts in single-molecule force spectroscopy

    PubMed Central

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2015-01-01

    In typical force spectroscopy experiments, a small biomolecule is attached to a soft polymer linker that is pulled with a relatively large bead or cantilever. At constant force, the total extension stochastically changes between two (or more) values, indicating that the biomolecule undergoes transitions between two (or several) conformational states. In this paper, we consider the influence of the dynamics of the linker and mesoscopic pulling device on the force-dependent rate of the conformational transition extracted from the time dependence of the total extension, and the distribution of rupture forces in force-clamp and force-ramp experiments, respectively. For these different experiments, we derive analytic expressions for the observables that account for the mechanical response and dynamics of the pulling device and linker. Possible artifacts arise when the characteristic times of the pulling device and linker become comparable to, or slower than, the lifetimes of the metastable conformational states, and when the highly anharmonic regime of stretched linkers is probed at high forces. We also revisit the problem of relating force-clamp and force-ramp experiments, and identify a linker and loading rate-dependent correction to the rates extracted from the latter. The theory provides a framework for both the design and the quantitative analysis of force spectroscopy experiments by highlighting, and correcting for, factors that complicate their interpretation. PMID:26540730

  19. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  20. Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes

    SciTech Connect

    Chen, Lipeng; Zhao, Yang; Gelin, Maxim F.; Domcke, Wolfgang

    2015-04-28

    We develop a first principles theoretical description of femtosecond double-pump single-molecule signals of molecular aggregates. We incorporate all singly excited electronic states and vibrational modes with significant exciton-phonon coupling into a system Hamiltonian and treat the ensuing system dynamics within the Davydov D{sub 1} Ansatz. The remaining intra- and inter-molecular vibrational modes are treated as a heat bath and their effect is accounted for through lineshape functions. We apply our theory to simulate single-molecule signals of the light harvesting complex II. The calculated signals exhibit pronounced oscillations of mixed electron-vibrational (vibronic) origin. Their periods decrease with decreasing exciton-phonon coupling.

  1. Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes.

    PubMed

    Chen, Lipeng; Gelin, Maxim F; Domcke, Wolfgang; Zhao, Yang

    2015-04-28

    We develop a first principles theoretical description of femtosecond double-pump single-molecule signals of molecular aggregates. We incorporate all singly excited electronic states and vibrational modes with significant exciton-phonon coupling into a system Hamiltonian and treat the ensuing system dynamics within the Davydov D1 Ansatz. The remaining intra- and inter-molecular vibrational modes are treated as a heat bath and their effect is accounted for through lineshape functions. We apply our theory to simulate single-molecule signals of the light harvesting complex II. The calculated signals exhibit pronounced oscillations of mixed electron-vibrational (vibronic) origin. Their periods decrease with decreasing exciton-phonon coupling. PMID:25933751

  2. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    PubMed

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  3. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    NASA Astrophysics Data System (ADS)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  4. High-throughput single-molecule fluorescence spectroscopy using parallel detection

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Kim, T.; Levi, Moran; Aharoni, Daniel; Cheng, Adrian; Guerrieri, F.; Arisaka, Katsushi; Millaud, Jacques; Rech, I.; Resnati, D.; Marangoni, S.; Gulinatti, A.; Ghioni, M.; Tisa, S.; Zappa, F.; Cova, S.; Weiss, S.

    2011-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements obtained with different novel multipixel single-photon counting detectors. PMID:21625288

  5. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.

    PubMed

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-11-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements.

  6. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  7. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    PubMed

    Moerner, W E William E

    2015-07-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  8. Dye lipophilicity and retention in lipid membranes: implications for single-molecule spectroscopy.

    PubMed

    Godin, Robert; Liu, Hsiao-Wei; Smith, Laura; Cosa, Gonzalo

    2014-09-23

    Fluorescence studies of individual lipid vesicles rely on the proper positioning of probes in the lipid milieu. This is true for both positional tags and chemoselective fluorogenic probes that undergo chemical modification following reaction with an analyte of interest within the lipid environment. The present report describes lipophilicity and localization estimations for a series of BODIPY dyes bearing substituents of varying hydrophobicity. We also studied fluorogenic trap-reporter probes that undergo fluorescence emission enhancement upon trapping of reactive oxygen species (ROS), including lipid peroxyl radicals. We show that caution has to be taken to extrapolate ensemble partition measurements of dyes to the single-molecule regime as a result of the dramatically different lipid concentration prevailing in ensemble versus single-molecule experiments. We show that the mole fraction of dyes that remains embedded in liposomes during a typical single-molecule experiment may be accurately determined from a ratiometric single-particle imaging analysis. We further demonstrate that fluorescence correlation spectroscopy (FCS) provides a very rapid and reliable estimate of the lipophilic nature of a given dye under highly dilute single-molecule-like conditions. Our combined single-particle spectroscopy and FCS experiments suggest that the minimal mole fraction of membrane-associated dyes (x(m)) as determined from FCS experiments is about 0.5 for adequate dye retention during single-molecule imaging in lipid membranes. Our work further highlights the dramatic effect that chemical modifications can have on chemoselective fluorogenic probe localization.

  9. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    NASA Astrophysics Data System (ADS)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  10. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology.

    PubMed

    Tinnefeld, Philip; Sauer, Markus

    2005-04-29

    In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells. PMID:15849689

  11. New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Villa, F.; Guerrieri, F.; Rech, I.; Gulinatti, A.; Tisa, S.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain. PMID:24729836

  12. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    SciTech Connect

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular

  13. Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Yin, Y. F.; Jiang, J. W.; Mo, Y. J.

    2009-02-01

    4-Dimethylaminoazobenzene (DAB) is anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals. The trace detection of DAB is of great significance in environmental protection and safe life of the people. To test the availability of DAB trace detection using surface-enhanced Raman scattering (SERS), the SERS spectra of DAB single molecules adsorbed on the silver particle aggregates in colloid were investigated. The phenomena of blinking, spectral diffusion, and intensity fluctuations of the vibrational lines in the SERS spectra were observed. Statistical analysis of spectral intensity fluctuations indicates a multimodal distribution of some specific Raman bands, which are consistent with the identification of single molecule detection. Our results demonstrated that SERS can be applied to the trace detection of DAB molecules and other azo dyes.

  14. Noise-resilient quantum metrology for single-molecule spectroscopy with low light levels

    NASA Astrophysics Data System (ADS)

    Herrera, Felipe; Aspuru-Guzik, Alan

    2015-03-01

    Continuous observation of biological processes over long timescales exceeding seconds is challenging using standard fluorescence techniques due to technical issues such as photodamage. Current photonic technology can be exploited to overcome those challenges while preserving sensitivity at the single molecule level. We show that using a simple quantum metrology scheme involving periodic driving for optical state preparation, it is possible to perform spectroscopy of a single chiral molecule in a condensed phase environment, with low photon fluxes. We show that for certain non-classical optical probes and measurement settings, it is possible to exceed the standard quantum limit of precision for a range of driving parameters, even in the presence of high transmission losses due to background absorption. We compare the proposed scheme with fluorescence spectroscopy for single molecule detection, and discuss possible applications of quantum metrology in systems biology. Now at Department of Physics, Universidad de Santiago de Chile.

  15. Single molecule spin resonance spectroscopy and imaging by diamond-sensor

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng

    Single-molecule magnetic resonance spectroscopy and imaging is one of the ultimate goals in magnetic resonance and will has great applications in a broad range of scientific areas, from life science to physics and chemistry. The spin of a single nitrogen vacancy (NV) center in diamond is a highly sensitive magnetic-field sensor, which has been proposed for detection of single molecules or nanoscale targets. We and co-workers have successfully obtained the first single-protein spin resonance spectroscopy under ambient conditions, high-resolution vector microwave imaging, and realized atomic-scale structure analysis of single nuclear-spin clusters in diamond. Moreover, we have tried to improve the quantum control technique and succeed to achieve fault-tolerant universal quantum gates. As the last part, I will briefly introduce our most recently work on single protein imaging in situ in cell.

  16. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  17. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers. PMID:25860255

  18. Surface modified single molecules free-diffusion evidenced by fluorescence correlation spectroscopy.

    PubMed

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérôme; Royer, Pascal

    2008-11-01

    We report on the free diffusion of single molecule near an interface studied using fluorescence correlation spectroscopy. In particular, we show that the chemical nature of the substrate may modify the free diffusion of a widely used molecule (rhodamine 6G), thus inducing unexpected effects in fluorescence correlation spectroscopy measurements. Our results show a strong influence, up to a few micrometer from the interface, of the surface polarity. This effect is assessed through the relative weight of the two dimensions diffusion process observed close to the surface. Our results are discussed in terms of competition between surface-solvent, solvent-molecule and molecule-surface specific interactions.

  19. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells.

    PubMed

    König, Iwo; Zarrine-Afsar, Arash; Aznauryan, Mikayel; Soranno, Andrea; Wunderlich, Bengt; Dingfelder, Fabian; Stüber, Jakob C; Plückthun, Andreas; Nettels, Daniel; Schuler, Benjamin

    2015-08-01

    Single-molecule methods have become widely used for quantifying the conformational heterogeneity and structural dynamics of biomolecules in vitro. Their application in vivo, however, has remained challenging owing to shortcomings in the design and reproducible delivery of labeled molecules, the range of applicable analysis methods, and suboptimal cell culture conditions. By addressing these limitations in an integrated approach, we demonstrate the feasibility of probing protein dynamics from milliseconds down to the nanosecond regime in live eukaryotic cells with confocal single-molecule Förster resonance energy transfer (FRET) spectroscopy. We illustrate the versatility of the approach by determining the dimensions and submicrosecond chain dynamics of an intrinsically disordered protein; by detecting even subtle changes in the temperature dependence of protein stability, including in-cell cold denaturation; and by quantifying the folding dynamics of a small protein. The methodology opens possibilities for assessing the effect of the cellular environment on biomolecular conformation, dynamics and function.

  20. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins

    PubMed Central

    Nettels, Daniel; Müller-Späth, Sonja; Küster, Frank; Hofmann, Hagen; Haenni, Dominik; Rüegger, Stefan; Reymond, Luc; Hoffmann, Armin; Kubelka, Jan; Heinz, Benjamin; Gast, Klaus; Best, Robert B.; Schuler, Benjamin

    2009-01-01

    We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With single-molecule FRET, this question can be addressed even under near-native conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperature-dependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin α suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse. PMID:19933333

  1. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins.

    PubMed

    Nettels, Daniel; Müller-Späth, Sonja; Küster, Frank; Hofmann, Hagen; Haenni, Dominik; Rüegger, Stefan; Reymond, Luc; Hoffmann, Armin; Kubelka, Jan; Heinz, Benjamin; Gast, Klaus; Best, Robert B; Schuler, Benjamin

    2009-12-01

    We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With single-molecule FRET, this question can be addressed even under near-native conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperature-dependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin alpha suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse.

  2. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy

    PubMed Central

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-01-01

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicteddual binding modes across multiple bacterial species, our approach opens up newpossibilities for understanding assembly and catalytic properties of a broadrange of multi-enzyme complexes. DOI: http://dx.doi.org/10.7554/eLife.10319.001 PMID:26519733

  3. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.

    PubMed

    Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix

    2016-07-01

    We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence. PMID:27145878

  4. Synthesis of fluorescent dye-tagged nanomachines for single-molecule fluorescence spectroscopy.

    PubMed

    Vives, Guillaume; Guerrero, Jason M; Godoy, Jazmin; Khatua, Saumyakanti; Wang, Yu-Pu; Kiappes, J L; Link, Stephan; Tour, James M

    2010-10-01

    In an effort to elucidate the mechanism of movement of nanovehicles on nonconducting surfaces, the synthesis and optical properties of five fluorescently tagged nanocars are reported. The nanocars were specifically designed for studies by single-molecule fluorescence spectroscopy and bear a tetramethylrhodamine isothiocyanate fluorescent tag for excitation at 532 nm. The molecules were designed such that the arrangement of their molecular axles and p-carborane wheels relative to the chassis would be conducive to the control of directionality in the motion of these nanovehicles.

  5. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.

    PubMed

    Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix

    2016-07-01

    We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.

  6. Probing Ion Channel Conformational Dynamics Using Simultaneous Single-Molecule Ultrafast Spectroscopy and Patch-Champ Electric Recording

    SciTech Connect

    Harms, Gregory S.; Orr, Galya; Lu, H Peter

    2004-03-08

    A new approach to probing single-molecule ion channel kinetics and conformational dynamics, patch-clamp confocal fluorescence microscopy (PCCFM), uses simultaneous ultrafast fluorescence spectroscopy and single-channel electric current recording.

  7. Fluorescence spectroscopy of single molecules at room temperature and its applications

    SciTech Connect

    Ha, Taekjip

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  8. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp). PMID:11106807

  9. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  10. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  11. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding.

    PubMed

    Hughes, Megan L; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  12. Testing synthetic amyloid-β aggregation inhibitor using single molecule atomic force spectroscopy.

    PubMed

    Hane, Francis T; Lee, Brenda Y; Petoyan, Anahit; Rauk, Arvi; Leonenko, Zoya

    2014-04-15

    Alzheimer's disease is a neurodegenerative disease with no known cure and few effective treatment options. The principal neurotoxic agent is an oligomeric form of the amyloid-β peptide and one of the treatment options currently being studied is the inhibition of amyloid aggregation. In this work, we test a novel pseudopeptidic aggregation inhibitor designated as SG1. SG1 has been designed to bind at the amyloid-β self-recognition site and prevent amyloid-β from misfolding into β sheet. We used atomic force spectroscopy, a nanoscale measurement technique, to quantify the binding forces between two single amyloid peptide molecules. For the first time, we demonstrate that single molecule atomic force spectroscopy can be used to assess the effectiveness of amyloid aggregation inhibitors by measuring the experimental yield of binding and can potentially be used as a screening technique for quick testing of efficacy of inhibitor drugs for amyloid aggregation.

  13. Can Dissipative Properties of Single Molecules Be Extracted from a Force Spectroscopy Experiment?

    PubMed

    Benedetti, Fabrizio; Gazizova, Yulia; Kulik, Andrzej J; Marszalek, Piotr E; Klinov, Dmitry V; Dietler, Giovanni; Sekatskii, Sergey K

    2016-09-20

    We performed dynamic force spectroscopy of single dextran and titin I27 molecules using small-amplitude and low-frequency (40-240 Hz) dithering of an atomic force microscope tip excited by a sine wave voltage fed onto the tip-carrying piezo. We show that for such low-frequency dithering experiments, recorded phase information can be unambiguously interpreted within the framework of a transparent theoretical model that starts from a well-known partial differential equation to describe the dithering of an atomic force microscope cantilever and a single molecule attached to its end system, uses an appropriate set of initial and boundary conditions, and does not exploit any implicit suggestions. We conclude that the observed phase (dissipation) signal is due completely to the dissipation related to the dithering of the cantilever itself (i.e., to the change of boundary conditions in the course of stretching). For both cases, only the upper bound of the dissipation of a single molecule has been established as not exceeding 3⋅10(-7)kg/s. We compare our results with previously reported measurements of the viscoelastic properties of single molecules, and we emphasize that extreme caution must be taken in distinguishing between the dissipation related to the stretched molecule and the dissipation that originates from the viscous damping of the dithered cantilever. We also present the results of an amplitude channel data analysis, which reveal that the typical values of the spring constant of a I27 molecule at the moment of module unfolding are equal to 4±1.5mN/m, and the typical values of the spring constant of dextran at the moment of chair-boat transition are equal to 30-50mN/m. PMID:27653475

  14. Can Dissipative Properties of Single Molecules Be Extracted from a Force Spectroscopy Experiment?

    PubMed

    Benedetti, Fabrizio; Gazizova, Yulia; Kulik, Andrzej J; Marszalek, Piotr E; Klinov, Dmitry V; Dietler, Giovanni; Sekatskii, Sergey K

    2016-09-20

    We performed dynamic force spectroscopy of single dextran and titin I27 molecules using small-amplitude and low-frequency (40-240 Hz) dithering of an atomic force microscope tip excited by a sine wave voltage fed onto the tip-carrying piezo. We show that for such low-frequency dithering experiments, recorded phase information can be unambiguously interpreted within the framework of a transparent theoretical model that starts from a well-known partial differential equation to describe the dithering of an atomic force microscope cantilever and a single molecule attached to its end system, uses an appropriate set of initial and boundary conditions, and does not exploit any implicit suggestions. We conclude that the observed phase (dissipation) signal is due completely to the dissipation related to the dithering of the cantilever itself (i.e., to the change of boundary conditions in the course of stretching). For both cases, only the upper bound of the dissipation of a single molecule has been established as not exceeding 3⋅10(-7)kg/s. We compare our results with previously reported measurements of the viscoelastic properties of single molecules, and we emphasize that extreme caution must be taken in distinguishing between the dissipation related to the stretched molecule and the dissipation that originates from the viscous damping of the dithered cantilever. We also present the results of an amplitude channel data analysis, which reveal that the typical values of the spring constant of a I27 molecule at the moment of module unfolding are equal to 4±1.5mN/m, and the typical values of the spring constant of dextran at the moment of chair-boat transition are equal to 30-50mN/m.

  15. Microfluidic mixing for non-equilibrium single-molecule optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Pfeil, Shawn H.

    We describe a series of experiments made possible by the combination of single-molecule fluorescence spectroscopy and microfluidic mixing. To perform these measurements, a microfluidic sample handling system was developed and characterized. This system allows observation at times as early as 2.4 ms after a reaction is triggered, which is an more than an order of magnitude earlier than previous microfabricated devices. Dilutions as high as 1:19 (v/v) are achieved, allowing measurements of molecular refolding in native conditions. The interconversion of subpopulations, masked by averaging in ensemble measurements, is observed. This technology also facilitates ultra-sensitive chemiluminescence measurements, using only microliters of sample. Microfluidics are designed and fabricated to extend single-molecule measurements to samples out of equilibrium. The system is optimized for sensitive optical detection and experimental convenience. Channels are replica-molded in poly-dimethyl-siloxane (PDMS) elastomer and sealed to coverglass. The resulting devices are compatible with a broad range of chemicals, and exhibit low background fluorescence. The combination of continuous flow, which decouples reaction progress from measurement duration, with low background enables single molecules to be probed at well defined times after a reaction is triggered. Fluid delivery and pressure connections are made using an interface optimized for rapid assembly, rapid sample exchange, and modular device replacement, while providing access for high numerical aperture optics. The kinetics of Csp, the cold shock protein from Thermotoga maritima, are studied with the mixer. An order of magnitude decrease in deadtime puts a new upper limit of 4.6 ms on the time required for collapse after mixing. This result is in agreement with indirect measurements of chain reconfiguration time, which suggest collapse happens on the timescale of 10--100 ns. Measurements of the kinetics of a DNA sequence that

  16. Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates.

    PubMed

    Motlagh, Hesam N; Toptygin, Dmitri; Kaiser, Christian M; Hilser, Vincent J

    2016-03-29

    Single-molecule force spectroscopy has emerged as a powerful tool for studying the folding of biological macromolecules. Mechanical manipulation has revealed a wealth of mechanistic information on transient and intermediate states. To date, the majority of state assignment of intermediates has relied on empirical demarcation. However, performing such experiments in the presence of different osmolytes provides an alternative approach that reports on the structural properties of intermediates. Here, we analyze the folding and unfolding of T4 lysozyme with optical tweezers under a chemo-mechanical perturbation by adding osmolytes. We find that two unrelated protective osmolytes, sorbitol and trimethylamine-n-oxide, function by marginally decelerating unfolding rates and specifically modulating early events in the folding process, stabilizing formation of an on-pathway intermediate. The chemo-mechanical perturbation provides access to two independent metrics of the relevant states during folding trajectories, the contour length, and the solvent-accessible surface area. We demonstrate that the dependence of the population of the intermediate in different osmolytes, in conjunction with its measured contour length, provides the ability to discriminate between potential structural models of intermediate states. Our study represents a general strategy that may be employed in the structural modeling of equilibrium intermediate states observed in single-molecule experiments. PMID:27028638

  17. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy.

    PubMed

    Almaqwashi, Ali A; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C

    2016-05-19

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA-ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  18. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Oroudjev, E; Soares, J; Arcdiacono, S; Thompson, J B; Fossey, S A; Hansma, H G

    2002-04-30

    Despite its remarkable materials properties, the structure of spider dragline silk has remained unsolved. Results from two probe microscopy techniques provide new insights into the structure of spider dragline silk. A soluble synthetic protein from dragline silk spontaneously forms nanofibers, as observed by atomic force microscopy. These nanofibers have a segmented substructure. The segment length and amino acid sequence are consistent with a slab-like shape for individual silk protein molecules. The height and width of nanofiber segments suggest a stacking pattern of slab-like molecules in each nanofiber segment. This stacking pattern produces nano-crystals in an amorphous matrix, as observed previously by NMR and x-ray diffraction of spider dragline silk. The possible importance of nanofiber formation to native silk production is discussed. Force spectra for single molecules of the silk protein demonstrate that this protein unfolds through a number of rupture events, indicating a modular substructure within single silk protein molecules. A minimal unfolding module size is estimated to be around 14 nm, which corresponds to the extended length of a single repeated module, 38 amino acids long. The structure of this spider silk protein is distinctly different from the structures of other proteins that have been analyzed by single-molecule force spectroscopy, and the force spectra show correspondingly novel features.

  19. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  20. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  1. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy.

    PubMed

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M

    2013-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique.

  2. Low Temperature Scanning Tunneling Spectroscopy of isolated Mn12-Ph Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Reaves, K.; Han, P.; Iwaya, K.; Hitosugi, T.; Packwood, D.; Katzgraber, H. G.; Zhao, H.; Dunbar, K. R.; Kim, K.; Teizer, W.

    2015-03-01

    We study Mn12O12(C6H5COO)16(H2O)4 (Mn12-Ph) single-molecule magnets on a Cu(111) surface using scanning tunneling microscopy and scanning tunneling spectroscopy at cryogenic temperatures (T < 6K). We report the observation of Mn12-Ph in isolation and in thin films, deposited through in situ vacuum spray deposition onto clean Cu(111). The tunneling current of isolated Mn12-Ph, normalized with respect to the Cu background, shows a strong bias voltage dependence within the molecular interior. The qualitative features of these I vs.V curves differ by spatial location in several intriguing ways (e.g. fixed junction impedance with increasing bias voltages). We explore these normalized I vs. V curves and present a phenomenological explanation for the observed behaviors, corresponding to the physical and electronic structure within the molecule. Funding from WPI-AIMR.

  3. Force dependency of biochemical reactions measured by single molecule force-clamp spectroscopy

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M.

    2015-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique. PMID:23744288

  4. Single molecule force spectroscopy study of γ-polyglutamic acid by using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ahamed, Parbhej; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    γ-PGA is a versatile multi-functional biopolymer possessing much useful biological functionality. Each biological function is associated with specific properties related to various forms of γ-PGA. However, to date, knowledge about the molecular mechanism to control specific structures of γ-PGA under a certain environmental conditions are unknown. In this study, we used single molecule force spectroscopy (SMFS) method to characterize the structure of γ-PGA in two environmental conditions. A water environment or 0.5 M MgCl2 salt solution was used to observe the effect of metal ion on γ-PGA structure at room temperature. The obtained results revealed that γ-PGA exists branched and/or cross-linked structure of γ-PGA in water or MgCl2 salt solution.

  5. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    PubMed

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation.

  6. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    PubMed

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation. PMID:27558726

  7. Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Decan, Matthew R.; Impellizzeri, Stefania; Marin, M. Luisa; Scaiano, Juan C.

    2014-08-01

    Colloidal or heterogeneous nanocatalysts can improve the range and diversity of Cu(I)-catalysed click reactions and facilitate catalyst separation and reuse. Catalysis by metal nanoparticles raises the question as to whether heterogeneous catalysts may cause homogeneous catalysis through metal ion leaching, since the catalytic process could be mediated by the particle, or by metal ions released from it. The question is critical as unwanted homogeneous processes could offset the benefits of heterogeneous catalysis. Here, we combine standard bench scale techniques with single-molecule spectroscopy to monitor single catalytic events in real time and demonstrate that click catalysis occurs directly at the surface of copper nanoparticles; this general approach could be implemented in other systems. We use ‘from the mole to the molecule’ to describe this emerging idea in which mole scale reactions can be optimized through an intimate understanding of the catalytic process at the single-molecule—single catalytic nanoparticle level.

  8. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy.

    PubMed

    Lu, Maolin; Lu, H Peter

    2014-10-16

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  9. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  10. Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment.

    PubMed

    Noy, Aleksandr

    2011-10-01

    Single molecule force spectroscopy presents a deceptively simple approach to probing interaction between molecules and molecular assemblies on the nanoscale by measuring forces that it takes to pull the molecules apart. Yet, a more detailed analysis reveals a wealth of different behaviors and interesting physics. This article aims to explore basic physical concepts behind these experiments from a strictly practical point of using these data to extract meaningful information about the interactions. It also focuses on different loading regimes in these experiments, different kinetics that they cause, and different data interpretation that is required for measurements in those regimes. PMID:21862386

  11. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.

    PubMed Central

    Müller, Daniel J; Kessler, Max; Oesterhelt, Filipp; Möller, Clemens; Oesterhelt, Dieter; Gaub, Hermann

    2002-01-01

    The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane alpha-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the alpha-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR. PMID:12496125

  12. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Krüger, T. P. J.; van Grondelle, R.

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  13. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy.

    PubMed

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-12-14

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.

  14. Single-molecule spectroscopy on RC-LH1 complexes of Rhodopseudomonas acidophila strain 10050.

    PubMed

    Böhm, Paul S; Southall, June; Cogdell, Richard J; Köhler, Jürgen

    2013-03-21

    We have revisited the RC-LH1 complex from Rhodopseudomonas (Rps.) acidophila for single-molecule spectroscopy. For the current study the pigment-protein complexes were stabilized in the detergent buffer solution using a relatively mild detergent (dodecyl-β-D-maltoside (DDM) instead of lauryldimethylamine N-oxide (LDAO)). This leads to a significant reduction of the fraction of broken/dissociated RC-LH1 complexes with respect to previous studies and has allowed us to investigate a sufficiently large sample of individual RC-LH1 complexes. For most of the complexes the fluorescence-excitation spectra exhibit a narrow spectral feature at the red end of the spectrum. Analysis of the statistics of the spectral properties yields a close resemblance with the results obtained on RC-LH1 complexes from Rps. palustris for which a low-resolution X-ray structure is available. Based on this comparison we come to the conclusion that for both species the RC-LH1 complex can be described by the same structural model, that is, an overall elliptical assembly of pigments that features a gap.

  15. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    SciTech Connect

    Laurence, Ted Alfred

    2002-07-30

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  16. Comment on ``Scanning-probe Raman spectroscopy with single-molecule sensitivity''

    NASA Astrophysics Data System (ADS)

    Domke, Katrin F.; Pettinger, Bruno

    2007-06-01

    We reinterpret the scanning-probe Raman spectra shown in the paper of Neacsu [Phys. Rev. B 73, 193406 (2006)] and compare it to a variety of single-molecule surface-enhanced Raman studies. The observed blinking behavior and spectral features must be attributed to carbon contaminations rather than to malachite green single molecules, because, under the given experimental conditions, the extremely high-field enhancement of 5×109 will inevitably lead to a quick (photo)decomposition of the adsorbate.

  17. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  18. Blinking effect and the use of quantum dots in single molecule spectroscopy

    SciTech Connect

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M.P.; Pardo, Julian; Graeber, P.; Galvez, E.M.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  19. Studying the mechanism of CD47-SIRPα interactions on red blood cells by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, Yangang; Wang, Feng; Liu, Yanhou; Jiang, Junguang; Yang, Yong-Guang; Wang, Hongda

    2014-08-01

    The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level.The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level. Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c4nr02889a

  20. Blinking effect and the use of quantum dots in single molecule spectroscopy.

    PubMed

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M P; Pardo, Julian; Gräber, P; Galvez, E M

    2013-01-01

    Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the "on"/"off" states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  1. Single Molecule Spectroscopy and Scanning Probe Microscopy to Investigate Excited State Energy Transport in Quantum Dot Higher Order Structures

    NASA Astrophysics Data System (ADS)

    van Orden, Alan; Gelfand, Martin; Ryan, Duncan; Whitcomb, Kevin

    2014-03-01

    Single molecule fluorescence spectroscopy and scanning probe microscopy have been used to investigate small isolated clusters of CdSe/ZnS nanocrystalline quantum dots dispersed on insulating, conducting, and semiconducting surfaces. The aggregated quantum dots exhibit excited state energy transfer and charge transport which affects the time dependent autocorrelation of the photoluminescence (PL) emission intensity, photon counting statistics, blinking statistics, and PL lifetime, as observed by single molecule fluorescence spectroscopy. The structural arrangement of the nanocrystals and the electron transfer between the quantum dots and substrate can be investigated using atomic force microscopy, transmission electron microscopy, and scanning tunneling microscopy. These combined experiments provide novel perspectives on energy and electron transport in quantum dot higher order structures and the effects of structural arrangements, substrates, and attached ligands. These insights will enhance the development of technological applications of quantum dots, including bioimaging, display technology, and alternative energy technology. Research supported by NSF Grant 1059089.

  2. Vibrational Spectroscopy of Biomembranes

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Levin, Ira W.

    2011-07-01

    Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.

  3. Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example.

    PubMed

    Cogdell, Richard J; Köhler, Jürgen

    2009-08-13

    Optical single-molecule techniques can be used in two modes to investigate fundamental questions in biochemistry, namely single-molecule detection and single-molecule spectroscopy. This review provides an overview of how single-molecule spectroscopy can be used to gain detailed information on the electronic structure of purple bacterial antenna complexes and to draw conclusions about the underlying physical structure. This information can be used to understand the energy-transfer reactions that are responsible for the earliest reactions in photosynthesis.

  4. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.

    PubMed

    Punj, Deep; Ghenuche, Petru; Moparthi, Satish Babu; de Torres, Juan; Grigoriev, Victor; Rigneault, Hervé; Wenger, Jérôme

    2014-01-01

    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as Förster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero-mode waveguides (ZMW) and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometer scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET, and FCS. Single molecule spectroscopy techniques greatly benefit from ZMW and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics to biological problems with FRET and FCS is an emerging and exciting field, and is promising to reveal new insights on biological functions and dynamics.

  5. Testing Landscape Theory for Biomolecular Processes with Single Molecule Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Chung, Hoi Sung; Louis, John M.; Eaton, William A.

    2015-07-01

    Although Kramers' theory for diffusive barrier crossing on a 1D free energy profile plays a central role in landscape theory for complex biomolecular processes, it has not yet been rigorously tested by experiment. Here we test this 1D diffusion scenario with single molecule fluorescence measurements of DNA hairpin folding. We find an upper bound of 2.5 μ s for the average transition path time, consistent with the predictions by theory with parameters determined from optical tweezer measurements.

  6. The Study of Biomolecule-Substrate Interactions by Single Molecule Force Spectroscopy and Brownian Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Sara Iliafar

    Hybrids of biomolecules and nanomaterials have been identified as promising candidates in the development of novel therapeutics and electronic devices. Single stranded DNA (ssDNA)-bound Single-walled carbon nanotubes (SWCNTs) are of particular interest as they may be the key to solving the challenges that face the carbon nanotube separation technology and because of their potential application in bio-nanomedicine. The ability of ssDNA to form a stable hybrid with CNTs has been attributed to the structure and amphiphilic nature of this macromolecule, enabling the dispersion, sorting and patterned placement of nanotubes. Considering the significant role of ssDNA-CNTs in future technologies and the potential toxicity of such nanomaterials in biological systems, it is essential to gain a quantitative and fundamental understanding on the interactions that allow, weaken or prevent the formation of these hybrids. In this dissertation, we use both experimental and theoretical methods to systematically investigate the major characteristics of these interactions. The free energy of binding of ssDNA homopolymers to solvated carbon nanotubes is one of the key characteristics that determine the stability of such dispersions. We used single molecule force spectroscopy (SMFS), first on graphite and next on single walled carbon nanotubes, to probe and directly quantify the binding strength of ssDNA homopolymer oligomers to these substrates. The force resisting removal of DNA molecules from these surfaces shows characteristic steady-state force plateaus which were distinguishable for each DNA sequence. The free energy of binding per nucleotide for these oligomers on graphite were ranked as T >= A > G >= C (11.3 +/- 0.8 kT, 9.9 +/- 0.4 kT, 8.3 +/- 0.2 kT, and 7.5 +/- 0.8 kT, respectively). On SWCNTs, these interactions decreased in the following order: A > G > T > C, and their magnitude was much larger than on graphite (38.1 +/- 0.2; 33.9 +/- 0.1; 23.3 +/- 0.1; 17.1 +/- 0.1 k

  7. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Shan, Yuping; Wang, Hongda

    2015-06-01

    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

  8. Single-molecule conductance measurement of self-assembled organic monolayers using scanning tunneling spectroscopy in combination with statistics analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Dou, Chengfu; Wang, Yin

    2011-05-01

    Based on ambient atmosphere scanning tunneling microscope (STM) technique, scanning tunneling spectroscopy (STS) combined with statistics analysis was developed to investigate the single-molecule conductance of various kinds of molecules which were self-assembled on the Au (1 1 1). Conductance histograms obtained from current-voltage curves revealed well-defined peaks at integer multiples of a fundamental conductance and were used to identify the conductance of a single molecule. The conductances of saturated molecules like 1,8-octanedithol and hexanethiocyanate were found to be 0.072 × 10 -4G 0 and 0.06 × 10 -4G 0 respectively and 0.23 × 10 -4G 0 and 0.13 × 10 -4G 0 for unsaturated molecules like 5,5'-dithiol- 2,2',5',2″-terthiophene and 4,4'-dithio-tert(phenylene ethylene).

  9. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    PubMed

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  10. Directly measuring single molecule heterogeneity in proteins and RNA using force spectroscopy

    NASA Astrophysics Data System (ADS)

    Hinczewski, Michael; Hyeon, Changbong; Thirumalai, Devarajan

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with stochastic interconversions occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems--enzymes, motors, adhesion complexes--identifying and measuring it remains a formidable challenge. We show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Our work suggests experimental approaches for estimating the timescales of these fluctuations with unprecedented accuracy.

  11. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  12. Scanning Single-Molecule Fluorescence Correlation Spectroscopy Enables Kinetics Study of DNA Hairpin Folding with a Time Window from Microseconds to Seconds.

    PubMed

    Bi, Huimin; Yin, Yandong; Pan, Bailong; Li, Geng; Zhao, Xin Sheng

    2016-05-19

    Single-molecule fluorescence measurements have been widely used to explore kinetics and dynamics of biological systems. Among them, single-molecule imaging (SMI) is good at tracking processes slower than tens of milliseconds, whereas fluorescence correlation spectroscopy (FCS) is good at probing processes faster than submilliseconds. However, there is still shortage of simple yet effective single-molecule fluorescence method to cover the time-scale between submilliseconds and tens of milliseconds. To effectively bridge this millisecond gap, we developed a single-molecule fluorescence correlation spectroscopy (smFCS) method that works on surface-immobilized single molecules through surface scanning. We validated it by monitoring the classical DNA hairpin folding process. With a wide time window from microseconds to seconds, the experimental data are well fitted to the two-state folding model. All relevant molecular parameters, including the relative fluorescence brightness, equilibrium constant, and reaction rate constants, were uniquely determined.

  13. Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay

    NASA Astrophysics Data System (ADS)

    Grossman, Iris; Yuval Aviram, Haim; Armony, Gad; Horovitz, Amnon; Hofmann, Hagen; Haran, Gilad; Fass, Deborah

    2015-10-01

    The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles.

  14. Single-molecule spectroscopy of protein folding in a chaperonin cage

    PubMed Central

    Hofmann, Hagen; Hillger, Frank; Pfeil, Shawn H.; Hoffmann, Armin; Streich, Daniel; Haenni, Dominik; Nettels, Daniel; Lipman, Everett A.; Schuler, Benjamin

    2010-01-01

    Molecular chaperones are known to be essential for avoiding protein aggregation in vivo, but it is still unclear how they affect protein folding mechanisms. We use single-molecule Förster resonance energy transfer to follow the folding of a protein inside the GroEL/GroES chaperonin cavity over a time range from milliseconds to hours. Our results show that confinement in the chaperonin decelerates the folding of the C-terminal domain in the substrate protein rhodanese, but leaves the folding rate of the N-terminal domain unaffected. Microfluidic mixing experiments indicate that strong interactions of the substrate with the cavity walls impede the folding process, but the folding hierarchy is preserved. Our results imply that no universal chaperonin mechanism exists. Rather, a competition between intra- and intermolecular interactions determines the folding rates and mechanisms of a substrate inside the GroEL/GroES cage. PMID:20547872

  15. Model for Stretching and Unfolding the Giant Multidomain Muscle Protein Using Single-Molecule Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Staple, Douglas B.; Payne, Stephen H.; Reddin, Andrew L. C.; Kreuzer, Hans Jürgen

    2008-12-01

    Single-molecule manipulation has allowed the forced unfolding of multidomain proteins. Here we outline a theory that not only explains these experiments but also points out a number of difficulties in their interpretation and makes suggestions for further experiments. For titin we reproduce force-extension curves, the dependence of break force on pulling speed, and break-force distributions and also validate two common experimental views: Unfolding titin Ig domains can be explained as stepwise increases in contour length, and increasing force peaks in native Ig sequences represent a hierarchy of bond strengths. Our theory is valid for essentially any molecule that can be unfolded in atomic force microscopy; as a further example, we present force-extension curves for the unfolding of RNA hairpins.

  16. Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.

    PubMed

    Tych, Katarzyna M; Hoffmann, Toni; Batchelor, Matthew; Hughes, Megan L; Kendrick, Katherine E; Walsh, Danielle L; Wilson, Michael; Brockwell, David J; Dougan, Lorna

    2015-04-01

    Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.

  17. Probing ion channel conformational dynamics using simultaneous single-molecule ultrafast spectroscopy and patch-clamp electric recording

    NASA Astrophysics Data System (ADS)

    Harms, Greg; Orr, Galya; Lu, H. Peter

    2004-03-01

    An approach to probing single-molecule ion channel kinetics and conformational dynamics, patch-clamp confocal fluorescence microscopy (PCCFM), uses simultaneous ultrafast fluorescence spectroscopy and single-channel electric current recording. PCCFM is applied to determine single-channel conformational dynamics by probing single-pair fluorescence resonant energy transfer, fluorescence self-quenching, and anisotropy of the dye-labeled gramicidin ion channel incorporated in an artificial lipid bilayer. Hidden conformational changes were observed, which strongly suggests that multiple intermediate conformation states are involved in gramicidin ion channel dynamics.

  18. Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy.

    PubMed

    Kim, Youngsang; Hellmuth, Thomas Julian; Bürkle, Marius; Pauly, Fabian; Scheer, Elke

    2011-05-24

    A combined experimental and theoretical analysis of the charge transport through single-molecule junctions is performed to define the influence of molecular end groups for increasing electrode separation. For both amine-ended and thiol-ended octanes contacted to gold electrodes, we study signatures of chain formation by analyzing kinks in conductance traces, the junction length, and inelastic electron tunneling spectroscopy. The results show that for amine-ended molecular junctions no atomic chains are pulled under stretching, whereas the Au electrodes strongly deform for thiol-ended molecular junctions. This advanced approach hence provides unambiguous evidence that the amine anchors bind only weakly to Au. PMID:21506567

  19. Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay

    PubMed Central

    Grossman, Iris; Yuval Aviram, Haim; Armony, Gad; Horovitz, Amnon; Hofmann, Hagen; Haran, Gilad; Fass, Deborah

    2015-01-01

    The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles. PMID:26468675

  20. Revealing Two-State Protein-Protein Interaction of Calmodulin by Single-Molecule Spectroscopy

    SciTech Connect

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H PETER.

    2006-08-09

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of 28 amino-acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM-C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (F1AsH) that enables our unambiguously probing the CaM N-terminal target-binding domain motions at a millisecond timescale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between F1AsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal slow (at sub-second time scale) binding-unbinding motions of the N-terminal domain of the CaM in CaM-C28W complexes, which is a strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  1. Revealing Two-State Protein-Protein Interactions of Calmodulin by Single-Molecule Spectroscopy

    SciTech Connect

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H. Peter

    2006-08-01

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of a 28 amino acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM/C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (FlAsH) that enables our unambiguous probing of the CaM N-terminal target-binding domain motions on a millisecond time scale without convolution of the probe-dye random motions. Finally, by analyzing the distribution of FRET efficiency between FlAsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal binding-unbinding motions of the N-terminal domain of the CaM in CaM/C28W complexes, which is strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  2. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  3. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers.

    PubMed

    Meng, He; Andresen, Kurt; van Noort, John

    2015-04-20

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  4. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

    PubMed Central

    Meng, He; Andresen, Kurt; van Noort, John

    2015-01-01

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  5. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states

    PubMed Central

    Schlau-Cohen, Gabriela S.; Wang, Quan; Southall, June; Cogdell, Richard J.; Moerner, W. E.

    2013-01-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities. PMID:23776245

  6. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    PubMed

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  7. Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.

    PubMed

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico

    2016-08-26

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. PMID:27435675

  8. Calibration of a dual-trap optical tweezers for single molecule force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Hu, Chunguang; Gao, Xiaoqing; Su, Chenguang; Wang, Sirong; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-10-01

    Optical tweezers has shown its significant advantages in applying pico-Newton force on micro beads and handling them with nanometer-level precision, and becomes a powerful tool for single-molecule biology. Many excellent researching results in use of the optical tweezers have been reported. Most of them focus on the single-trap optical tweezers experiments. However, when a single-trap optical tweezers is applied to biological molecule, there is often an obvious noise from the sample chamber holder to which one end of the sample molecule is tethered. In contrast, a dual-trap optical tweezers can intrinsically avoid this problem because both ends of the sample tethered to microspheres are manipulated with two separate optical traps. In order to force the molecule precisely, it is of importance to do calibrations for both traps. Many approaches have been studied to obtain the stiffness and sensitivity of the trap, but those are not quite suitable for making calibration during experiment. Here, we use a modified method of power spectrum density (PSD) for the calibrations of the stiffness and sensitivity of the traps, which combines a sinusoidal motion of the sample stage. The main strength of the method is that the beads used for the calibration also can be used in experiment later. In addition, the calibration can be performed during experiment. Finally, an experiment using a dsDNA molecule to test the system is presented. The results show that the calibration approach for the dual-trap optical tweezers is efficient and accurate.

  9. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies.

    PubMed

    Amo, Carlos A; Garcia, Ricardo

    2016-07-26

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force-distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50-500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations. PMID:27359243

  10. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies

    PubMed Central

    2016-01-01

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force–distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50–500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations. PMID:27359243

  11. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies.

    PubMed

    Amo, Carlos A; Garcia, Ricardo

    2016-07-26

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force-distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50-500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations.

  12. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy

    PubMed Central

    Sett, S.; Ghosh, S.; Rakshit, T.; Mukhopadhyay, R.

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA—the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA—the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time. PMID:27183010

  13. pH-dependent deformations of the energy landscape of avidin-like proteins investigated by single molecule force spectroscopy.

    PubMed

    Köhler, Melanie; Karner, Andreas; Leitner, Michael; Hytönen, Vesa P; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas

    2014-08-18

    Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high pH values. We compared avidin with streptavidin and a recently developed avidin-based mutant, chimeric avidin. To gain insights of the energy landscape of these interactions we used a single molecule approach and performed the Single Molecule Force Spectroscopy atomic force microscopy technique. There, the ligand (biotin) is covalently coupled to a sharp AFM tip via a distensible hetero-bi-functional crosslinker, whereas the receptor of interest is immobilized on the probe surface. Receptor-ligand complexes are formed and ruptured by repeatedly approaching and withdrawing the tip from the surface. Varying both pulling velocity and pH value, we could determine changes of the energy landscape of the complexes. Our results clearly demonstrate that avidin, streptavidin and chimeric avidin are stable over a wide pH range although we could identify differences at the outer pH range. Taking this into account, they can be used in a broad range of applications, like surface sensors at extreme pH values.

  14. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  15. How does the molecular linker in dynamic force spectroscopy affect probing molecular interactions at the single-molecule level?

    NASA Astrophysics Data System (ADS)

    Taninaka, Atsushi; Aizawa, Kota; Hanyu, Tatsuya; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-08-01

    Dynamic force spectroscopy (DFS) based on atomic force microscopy, which enables us to obtain information on the interaction potential between molecules such as antigen-antibody complexes at the single-molecule level, is a key technique for advancing molecular science and technology. However, to ensure the reliability of DFS measurement, its basic mechanism must be well understood. We examined the effect of the molecular linker used to fix the target molecule to the atomic force microscope cantilever, i.e., the force direction during measurement, for the first time, which has not been discussed until now despite its importance. The effect on the lifetime and barrier position, which can be obtained by DFS, was found to be ˜10 and ˜50%, respectively, confirming the high potential of DFS.

  16. Single molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor.

    PubMed

    Posch, Sandra; Aponte-Santamaría, Camilo; Schwarzl, Richard; Karner, Andreas; Radtke, Matthias; Gräter, Frauke; Obser, Tobias; König, Gesa; Brehm, Maria A; Gruber, Hermann J; Netz, Roland R; Baldauf, Carsten; Schneppenheim, Reinhard; Tampé, Robert; Hinterdorfer, Peter

    2016-09-01

    We here give information for a deeper understanding of single molecule force spectroscopy (SMFS) data through the example of the blood protein von Willebrand factor (VWF). It is also shown, how fitting of rupture forces versus loading rate profiles in the molecular dynamics (MD) loading-rate range can be used to demonstrate the qualitative agreement between SMFS and MD simulations. The recently developed model by Bullerjahn, Sturm, and Kroy (BSK) was used for this demonstration. Further, Brownian dynamics (BD) simulations, which can be utilized to estimate the lifetimes of intramolecular VWF interactions under physiological shear, are described. For interpretation and discussion of the methods and data presented here, we would like to directly point the reader to the related research paper, "Mutual A domain interactions in the force sensing protein von Willebrand Factor" (Posch et al., 2016) [1]. PMID:27508268

  17. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-05-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.

  18. Studying σ 54-dependent transcription at the single-molecule level using alternating-laser excitation (ALEX) spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilemann, M.; Lymperopoulos, K.; Wigneshweraraj, S. R.; Buck, M.; Kapanidis, A. N.

    2007-07-01

    We present single-molecule fluorescence studies of σ 54-dependent gene-transcription complexes using singlemolecule fluorescence resonance energy transfer (smFRET) and alternating-laser excitation (ALEX) spectroscopy. The ability to study one biomolecule at the time allowed us to resolve and analyze sample heterogeneities and extract structural information on subpopulations and transient intermediates of transcription; such information is hidden in bulk experiments. Using site-specifically labeled σ 54 derivatives and site-specifically labeled promoter-DNA fragments, we demonstrate that we can observe single diffusing σ 54-DNA and transcription-initiation RNA polymerase-σ 54- DNA complexes, and that we can measure distances within such complexes; the identity of the complexes has been confirmed using electrophoretic-mobility-shift assays. Our studies pave the way for understanding the mechanism of abortive initiation and promoter escape in σ 54-dependent transcription.

  19. Single molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor.

    PubMed

    Posch, Sandra; Aponte-Santamaría, Camilo; Schwarzl, Richard; Karner, Andreas; Radtke, Matthias; Gräter, Frauke; Obser, Tobias; König, Gesa; Brehm, Maria A; Gruber, Hermann J; Netz, Roland R; Baldauf, Carsten; Schneppenheim, Reinhard; Tampé, Robert; Hinterdorfer, Peter

    2016-09-01

    We here give information for a deeper understanding of single molecule force spectroscopy (SMFS) data through the example of the blood protein von Willebrand factor (VWF). It is also shown, how fitting of rupture forces versus loading rate profiles in the molecular dynamics (MD) loading-rate range can be used to demonstrate the qualitative agreement between SMFS and MD simulations. The recently developed model by Bullerjahn, Sturm, and Kroy (BSK) was used for this demonstration. Further, Brownian dynamics (BD) simulations, which can be utilized to estimate the lifetimes of intramolecular VWF interactions under physiological shear, are described. For interpretation and discussion of the methods and data presented here, we would like to directly point the reader to the related research paper, "Mutual A domain interactions in the force sensing protein von Willebrand Factor" (Posch et al., 2016) [1].

  20. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    PubMed Central

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. PMID:25963832

  1. How does the molecular linker in dynamic force spectroscopy affect probing molecular interactions at the single-molecule level?

    NASA Astrophysics Data System (ADS)

    Taninaka, Atsushi; Aizawa, Kota; Hanyu, Tatsuya; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-08-01

    Dynamic force spectroscopy (DFS) based on atomic force microscopy, which enables us to obtain information on the interaction potential between molecules such as antigen–antibody complexes at the single-molecule level, is a key technique for advancing molecular science and technology. However, to ensure the reliability of DFS measurement, its basic mechanism must be well understood. We examined the effect of the molecular linker used to fix the target molecule to the atomic force microscope cantilever, i.e., the force direction during measurement, for the first time, which has not been discussed until now despite its importance. The effect on the lifetime and barrier position, which can be obtained by DFS, was found to be ∼10 and ∼50%, respectively, confirming the high potential of DFS.

  2. Spectroscopy and microscopy of single molecules in nanoscopic channels: spectral behavior vs. confinement depth.

    PubMed

    Gmeiner, Benjamin; Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2016-07-20

    We perform high-resolution spectroscopy and localization microscopy to study single dye molecules confined to nanoscopic dimensions in one direction. We provide the fabrication details of our nanoscopic glass channels and the procedure for filling them with organic matrices. Optical data on hundreds of molecules in different channel depths show a clear trend from narrow stable lines in deep channels to broader linewidths in ultrathin matrices. In addition, we observe a steady blue shift of the center of the inhomogeneous band as the channels become thinner. Furthermore, we use super-resolution localization microscopy to correlate the positions and orientations of the individual dye molecules with the lateral landscape of the organic matrix, including cracks and strain-induced dislocations. Our results and methodology are useful for a number of studies in various fields such as physical chemistry, solid-state spectroscopy, and quantum nano-optics.

  3. Single molecule tunneling spectroscopy investigation of reversibly switched dipolar vanadyl phthalocyanine on graphite

    SciTech Connect

    Zhang, Jialin; Wang, Zhunzhun; Li, Zhenyu E-mail: phycw@nus.edu.sg; Niu, Tianchao; Chen, Wei E-mail: phycw@nus.edu.sg

    2014-03-17

    We report a spatially resolved scanning tunneling spectroscopy (STS) investigation of reversibly switchable dipolar vanadyl phthalocyanine (VOPc) on graphite by using low temperature scanning tunneling microscopy. VOPc molecule can be switched between O-up and O-down configurations by changing the polarity of the pulse voltage applied to the tip, actuated by the inelastic tunneling electrons. The spatially resolved STS measurements allow the identification of the electronic structures of VOPc with different dipole orientation. The present approach provides geometry images and electronic characterization of a molecular switch on surface spontaneously.

  4. Ultrafast dynamics of single molecules.

    PubMed

    Brinks, Daan; Hildner, Richard; van Dijk, Erik M H P; Stefani, Fernando D; Nieder, Jana B; Hernando, Jordi; van Hulst, Niek F

    2014-04-21

    The detection of individual molecules has found widespread application in molecular biology, photochemistry, polymer chemistry, quantum optics and super-resolution microscopy. Tracking of an individual molecule in time has allowed identifying discrete molecular photodynamic steps, action of molecular motors, protein folding, diffusion, etc. down to the picosecond level. However, methods to study the ultrafast electronic and vibrational molecular dynamics at the level of individual molecules have emerged only recently. In this review we present several examples of femtosecond single molecule spectroscopy. Starting with basic pump-probe spectroscopy in a confocal detection scheme, we move towards deterministic coherent control approaches using pulse shapers and ultra-broad band laser systems. We present the detection of both electronic and vibrational femtosecond dynamics of individual fluorophores at room temperature, showing electronic (de)coherence, vibrational wavepacket interference and quantum control. Finally, two colour phase shaping applied to photosynthetic light-harvesting complexes is presented, which allows investigation of the persistent coherence in photosynthetic complexes under physiological conditions at the level of individual complexes. PMID:24473271

  5. Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein*

    PubMed Central

    Garcia-Manyes, Sergi; Giganti, David; Badilla, Carmen L.; Lezamiz, Ainhoa; Perales-Calvo, Judit; Beedle, Amy E. M.; Fernández, Julio M.

    2016-01-01

    Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation. PMID:26703476

  6. Structure-Dependent Electronic Interactions in Ethyne-Bridged Porphyrin Arrays Investigated by Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Lee, Sang Hyeon; Yang, Jaesung; Kim, Dongho

    2016-09-15

    By using single-molecule fluorescence spectroscopy, we have investigated the electronic interaction of ethyne-bridged porphyrin arrays (ZNE) depending on their structure. The fluorescence dynamics of ZNE show a large amount of one-step photobleaching behaviors, indicating the high degree of π-conjugation. The ratio of one-step photobleaching behavior decreased as the number of porphyrin units increased. This behavior indicates that the linear and shortest Z2E shows a strong electronic coupling between constituent porphyrin moieties. Structural properties and orientation of ZNE were also measured by wide-field excitation fluorescence spectroscopy (ExPFS) and defocused wide-field imaging (DWFI). The ExPFS and DWFI show that the structure of absorbing and emitting units of Z2E and Z3E are linear. On the other hand, star-shaped pentamer with five porphyrins acts as an absorbing unit, but unidirectional trimer moiety acts as an emitting unit in the Z5E molecule. Collectively, these studies provide further information on the electronic interaction depending on their structure and length. PMID:27575018

  7. Vibrational Echo Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbury, John B.; Steinel, Tobias; Fayer, M. D.

    Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl4 and HOD inH2O are studied using the shortest mid-IR pulses (< 45 fs, < 4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (> 400 cm-1) spectrum of the 0-1 and 1-2 vibrational transitions. Hydrogen bond population dynamics are extricated with exceptional detail in MeOD oligomers because the different hydrogen-bonded species are spectrally distinct. The experimental results along with detailed calculations indicate the strongest hydrogen bonds are selectively broken through a non-equilibrium relaxation pathway following vibrational relaxation of the hydroxyl stretch. Following hydrogen bond breaking, the broken MeOD oligomers retain a detailed structural memory of the prior intact hydrogen bond network. The correlation spectra are also a sensitive probe of the structural fluctuations in water and provide a stringent test of water models that are widely used in simulations of aqueous systems. The analysis of the 2D band shapes demonstrates that different hydrogen-bonded species are subject to distinct (wavelength-dependent) ultrafast (˜ 100 fs) local fluctuations and essentially identical slower (0.4 ps and ˜ 2 ps) structural rearrangements. Observation of wavelength-dependent dynamics demonstrates that standard theoretical approaches assuming Gaussian fluctuations cannot adequately describe water dynamics.

  8. Vibrational spectroscopy of stichtite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.

    2004-11-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to study the mineral stitchtite, a hydrotalcite of formula Mg 6Cr 2(CO 3)(OH) 16·4H 2O. Two bands are observed at 1087 and 1067 cm -1 with an intensity ratio of ˜2.5/1 and are attributed to the symmetric stretching vibrations of the carbonate anion. The observation of two bands is attributed to two species of carbonate in the interlayer, namely weakly hydrogen bonded and strongly hydrogen bonded. Two infrared bands are found at 1457 and 1381 cm -1 and are assigned to the antisymmetric stretching modes. These bands were not observed in the Raman spectrum. Two infrared bands are observed at 744 and 685 cm -1 and are assigned to the ν4 bending modes. Two Raman bands were observed at 539 and 531 cm -1 attributed to the ν2 bending modes. Importantly the band positions of the paragenically related hydrotalcites stitchtite, iowaite, pyroaurite and reevesite all of which contain the carbonate anion occur at different wavenumbers. Consequently, Raman spectroscopy can be used to distinguish these minerals, particularly in the field where many of these hydrotalcites occur simultaneously in ore zones.

  9. The Effect of Electrode Coupling on Single Molecule Device Characteristics: An X-Ray Spectroscopy and Scanning Probe Microscopy Study

    NASA Astrophysics Data System (ADS)

    Batra, Arunabh

    This thesis studies electronic properties of molecular devices in the limiting cases of strong and weak electrode-molecule coupling. In these two limits, we use the complementary techniques of X-Ray spectroscopy and Scanning Tunneling Microscopy (STM) to understand the mechanisms for electrode-molecule bond formation, the energy level realignment due to metal-molecule bonds, the effect of coupling strength on single-molecule conductance in low-bias measurements, and the effect of coupling on transport under high-bias. We also introduce molecular designs with inherent asymmetries, and develop an analytical method to determine the effect of these features on high-bias conductance. This understanding of the role of electrode-molecule coupling in high-bias regimes enables us to develop a series of functional electronic devices whose properties can be predictably tuned through chemical design. First, we explore the weak electrode-molecule coupling regime by studing the interaction of two types of paracyclophane derivates that are coupled 'through-space' to underlying gold substrates. The two paracyclophane derivatives differ in the strength of their intramolecular through-space coupling. X-Ray photoemission spectroscopy (XPS) and Near-Edge X-ray Absorbance Fine Structure (NEXAFS) spectroscopy allows us to determine the orientation of both molecules; Resonant Photoemission Spectroscopy (RPES) then allows us to measure charge transfer time from molecule to metal for both molecules. This study provides a quantititative measure of charge transfer time as a function of through-space coupling strength. Next we use this understanding in STM based single-molecule current-voltage measurements of a series of molecules that couple through-space to one electrode, and through-bond to the other. We find that in the high-bias regime, these molecules respond differently depending on the direction of the applied field. This asymmetric response to electric field direction results in

  10. Photoluminescence Enhancement in CdSe/ZnS–DNA linked–Au Nanoparticle Heterodimers Probed by Single Molecule Spectroscopy

    SciTech Connect

    Cotlet, M.; Maye, M.M.; Gang, O.

    2010-07-26

    Photoluminescence enhancement of up to 20 fold is demonstrated at the single molecule level for heterodimers composed of a core/shell CdSe/ZnS semiconductive quantum dot and a gold nanoparticle of 60 nm size separated by a 32 nm-long dsDNA linker when employing optical excitation at wavelengths near the surface plasmon resonance of the gold nanoparticle.

  11. Single-molecule force spectroscopy studies of fibrin 'A-a' polymerization interactions via the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Averett, Laurel E.

    Fibrin, the polymerized form of the soluble plasma protein fibrinogen, plays a critical role in hemostasis as the structural scaffold of blood clots. The primary functions of fibrin are to withstand the shear forces of blood flow and provide mechanical stability to the clot, protecting the wound. While studies have investigated the mechanical properties of fibrin constructs, the response to force of critical polymerization interactions such as the 'A--a' knob--hole interaction remains unclear. Herein, the response of the 'A--a' bond to force was examined at the single-molecule level using the atomic force microscope. Force spectroscopy methodology was developed to examine the 'A--a' interaction while reducing the incidence of both nonspecific and multiple molecule interactions. The rupture of this interaction resulted in a previously unreported characteristic force profile comprised of up to four events. We hypothesized that the first event represented reorientation of the fibrinogen molecule, the second and third represented unfolding of structures in the D region of fibrinogen, and the last event was the rupture of the 'A--a' bond weakened by prior structural unfolding. The configuration, molecular extension, and kinetic parameters of each event in the characteristic pattern were examined to compare the unfolding of fibrin to other proteins unfolded by force. Fitting the pattern with polymer models showed that the D region of fibrinogen could lengthen by ˜50% of the length of a fibrin monomer before rupture of the 'A--a' bond. Analysis showed that the second and third events had kinetic parameters similar to other protein structures unfolded by force. Studies of the dependence of the characteristic pattern on calcium, concentration of sodium chloride, pH, and temperature demonstrated that the incidence of the last event was affected by solution conditions. However, only low pH and high temperatures reduced the probability that an interaction was characteristic

  12. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  13. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  14. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  15. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy

    PubMed Central

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  16. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  17. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  18. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  19. A novel drug delivery system of gold nanorods with doxorubicin and study of drug release by single molecule spectroscopy.

    PubMed

    Mirza, Agha Zeeshan

    2015-01-01

    The work presented here describes the fabrication of a novel drug delivery system, which consists of gold nanorods and doxorubicin, with the attachment of thioctic acid and folic acid, for the targeted release of drug to cancer cells. Doxorubicin, the potent anticancer drug, is widely used to treat various cancers. Gold nanorods were functionalized chemically to generate active groups for the attachment of drug molecules and subsequently attached to folic acid. The resulting nanostructure was characterized by UV-visible-NIR spectrophotometry, TEM techniques, zeta potential measurement and subsequently used to target folate receptor-expressing cancers cells for the delivery of doxorubicin. We generated a release profile for the release of doxorubicin from the nanostructures in KB cells using single-molecule fluorescence intensity images and fluorescence lifetime images. The results indicated that the nanorods were able to enter the target cells because of the attachment of folic acid and used as a carriers for the targeted delivery of doxorubicin.

  20. Direct measurements of the interaction between pyrene and graphite in aqueous media by single molecule force spectroscopy: understanding the pi-pi interactions.

    PubMed

    Zhang, Yiheng; Liu, Chuanjun; Shi, Weiqing; Wang, Zhiqiang; Dai, Liming; Zhang, Xi

    2007-07-17

    Pyrene derivatives can absorb onto the surface of carbon nanotubes and graphite particles through pi-pi interactions to functionalize these inorganic building blocks with organic surface moieties. Using single molecule force spectroscopy, we have demonstrated the first direct measurement of the interaction between pyrene and a graphite surface. In particular, we have connected a pyrene molecule onto an AFM tip via a flexible poly(ethylene glycol) (PEG) chain to ensure the formation of a molecular bridge. The pi-pi interaction between pyrene and graphite is thus indicated to be approximately 55 pN with no hysteresis between the desorption and adhesion forces. PMID:17590031

  1. Cotunneling spectroscopy and the properties of excited-state spin manifolds of Mn12 single molecule magnets

    NASA Astrophysics Data System (ADS)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2014-10-01

    We study charge transport through single molecule magnet (SMM) junctions in the cotunneling regime as a tool for investigating the properties of the excited-state manifolds of neutral Mn12 SMs. This study is motivated by a recent transport experiment [S. Kahle et al., Nano Lett. 12, 518 (2012), 10.1021/nl204141z] that probed the details of the magnetic and electronic structure of Mn12 SMMs beyond the ground-state spin manifold. A giant spin Hamiltonian and master equation approach is used to explore theoretically the cotunneling transport through Mn12-Ac SMM junctions. We identify SMM transitions that can account for both the strong and weak features of the experimental differential conductance spectra. We find the experimental results to imply that the excited spin-state manifolds of the neutral SMM have either different anisotropy constants or different g factors in comparison with its ground-state manifold. However, the latter scenario accounts best for the experimental data.

  2. Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; Schroeyers, Wouter; Loos, Davey; Cotlet, Mircea; Köhn, Fabian; Vosch, Tom; Maus, Michael; Herrmann, A.; Müllen, K.; Gensch, Thomas; De Schryver, F. C.

    2001-09-01

    Energy transfer in antenna systems, ordered arrays of chromophores, is one of the key steps in the photosynthetic process. The photophysical processes taking place in such multichromophoric systems, even at the single molecule level, are complicated and not yet fully understood. Instead of directly studying individual antenna systems, we have chosen to focus first on systems for which the amount of chromophores and the interactions among the chromophores can be varied in a systematic way. Dendrimers with a controlled number of chromophores at the rim fulfill those requirements perfectly. A detailed photophysical study of a second-generation dendrimer, containing eight peryleneimide chromophores at the rim, was performed 'J. Am. Chem. Soc., 122 (2000) 9278'. One of the most intriguing findings was the presence of collective on/off jumps in the fluorescence intensity traces of the dendrimers. This phenomenon can be explained by assuming a simultaneous presence of both a radiative trap (energetically lowest chromophoric site) and a non-radiative trap (triplet state of one chromophore) within one individual dendrimer. It was shown that an analogue scheme could explain the collective on/off jumps in the fluorescence intensity traces of the photosynthetic pigment B-phycoerythrin (B-PE) ( Porphyridium cruentum). The different values of the triplet lifetime that could be recovered for a fluorescence intensity trace of B-PE were correlated with different intensity levels in the trace, suggesting different chromophores acting as a trap as function of time.

  3. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    SciTech Connect

    Andrei Tokmakoff, MIT; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  4. Observing single-molecule chemical reactions on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Emory, Steven R.; Ambrose, W. Patrick; Goodwin, Peter M.; Keller, Richard A.

    2001-06-01

    We report on the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scatters (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of bread SERS vibrational bands at 1592 cm-1 and 1340 cm-1 observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurement of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  5. Observing single molecule chemical reactions on metal nanoparticles.

    SciTech Connect

    Emory, S. R.; Ambrose, W. Patrick; Goodwin, P. M.; Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  6. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  7. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  8. Forces and Dynamics of Glucose and Inhibitor Binding to Sodium Glucose Co-transporter SGLT1 Studied by Single Molecule Force Spectroscopy*

    PubMed Central

    Neundlinger, Isabel; Puntheeranurak, Theeraporn; Wildling, Linda; Rankl, Christian; Wang, Lai-Xi; Gruber, Hermann J.; Kinne, Rolf K. H.; Hinterdorfer, Peter

    2014-01-01

    Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2′-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations. PMID:24962566

  9. Probing zeolites by vibrational spectroscopies.

    PubMed

    Bordiga, Silvia; Lamberti, Carlo; Bonino, Francesca; Travert, Arnaud; Thibault-Starzyk, Frédéric

    2015-10-21

    This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.

  10. Soil chemical insights provided through vibrational spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  11. Highly specific identification of single nucleic polymorphism in M. tuberculosis using smart probes and single-molecule fluorescence spectroscopy in combination with blocking oligonucleotides

    NASA Astrophysics Data System (ADS)

    Friedrich, Achim; Müller, Matthias; Nolte, Oliver; Wolfrum, Jürgen; Sauer, Markus; Hoheisel, Jörg D.; Knemeyer, Jens-Peter; Marme, Nicole

    2008-02-01

    In this article we present a method for the highly specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis. This approach applies fluorescently labeled hairpin-structured oligonucleotides (smart probes) and confocal single-molecule fluorescence spectroscopy. Smart probes are fluorescently labeled at the 5'-end. The dye's fluorescence is quenched in the closed hairpin conformation due to close proximity of the guanosine residues located at the 3'-end. As a result of the hybridization to the complementary target sequence the hairpin structure and thus fluorescence quenching gets lost and a strong fluorescence increase appears. To enhance the specificity of the SNP detection unlabeled "blocking oligonucleotides" were added to the sample. These oligonucleotides hybridizes to the DNA sequence containing the mismatch thus masking this sequence and hereby preventing the smart probe from hybridizing to the mismatched sequence.

  12. Single-molecule spectroscopy unmasks the lowest exciton state of the B850 assembly in LH2 from Rps. acidophila.

    PubMed

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen

    2014-05-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.

  13. Single-Molecule Spectroscopy Unmasks the Lowest Exciton State of the B850 Assembly in LH2 from Rps. acidophila

    PubMed Central

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen

    2014-01-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933

  14. Correlative Synchrotron Fourier Transform Infrared Spectroscopy and Single Molecule Super Resolution Microscopy for the Detection of Composition and Ultrastructure Alterations in Single Cells.

    PubMed

    Whelan, Donna R; Bell, Toby D M

    2015-12-18

    Single molecule localization microscopy (SMLM) and synchrotron Fourier transform infrared (S-FTIR) spectroscopy are two techniques capable of elucidating unique and valuable biological detail. SMLM provides images of the structures and distributions of targeted biomolecules at spatial resolutions up to an order of magnitude better than the diffraction limit, whereas IR spectroscopy objectively measures the holistic biochemistry of an entire sample, thereby revealing any variations in overall composition. Both tools are currently applied extensively to detect cellular response to disease, chemical treatment, and environmental change. Here, these two techniques have been applied correlatively at the single cell level to probe the biochemistry of common fixation methods and have detected various fixation-induced losses of biomolecular composition and cellular ultrastructure. Furthermore, by extensive honing and optimizing of fixation protocols, many fixation artifacts previously considered pervasive and regularly identified using IR spectroscopy and fluorescence techniques have been avoided. Both paraformaldehyde and two-step glutaraldehyde fixation were identified as best preserving biochemistry for both SMLM and IR studies while other glutaraldehyde and methanol fixation protocols were demonstrated to cause significant biochemical changes and higher variability between samples. Moreover, the potential complementarity of the two techniques was strikingly demonstrated in the correlated detection of biochemical changes as well as in the detection of fixation-induced damage that was only revealed by one of the two techniques.

  15. Vibrational spectroscopy of HNS degradation

    NASA Astrophysics Data System (ADS)

    Alam, M. Kathleen; Martin, Laura; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric

    2008-08-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a σ-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  16. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  17. Neutron Vibrational Spectroscopy and modeling of polymer/dopant interactions

    NASA Astrophysics Data System (ADS)

    Moule, Adam; Harrelson, Thomas; Cheng, Yongqiang; Ramirez-Cuesta, Anibal; Faller, Roland; Huang, David

    Neutron vibrational spectroscopy (VISION and ORNL) is a powerful technique to determine the configurations of organic species in amorphous samples. We apply this technique to samples of the semiconducting polymer regio-regular P3HT to determine the molecular configurations outside of the crystalline domains, which have never been investigated. Application of density functional theory modeling using crystal field theory and for the single molecule approach yield a variety of configurations of the polymer backbone and side chains. These results demonstrate that only 1% of the volume corresponds to the assumed crystal structure solved using x-ray diffraction. In addition we investigate the configurations of P3HT doped with the molecular dopant F4TCNQ and determine that the charging of the polymer backbone leads to increased side chain stiffness. These results have significant implications for design of organic electronic devices based on thiophenes.

  18. Watching single molecules dance

    NASA Astrophysics Data System (ADS)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  19. Single Molecule Manipulation

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2011-10-01

    Single-molecule manipulation studies open a door for a close-up investigation of complex biological interactions at the molecular level. In these studies, single biomolecules are pulled while their force response is being monitored. The process is often nonequilibrium, and interpretation of the results has been challenging. We used the atomic force microscope to pull proteins and DNA, and determined the equilibrium properties of the molecules using the recently derived nonequilibrium work theorem. I will present applications of the technique in areas ranging from fundamental biological problems such as DNA mechanics, to complex medical processes such as the mechanical activation of von Willebrand Factor, a key protein in blood coagulation.

  20. Single-molecule electrophoresis

    SciTech Connect

    Castro, A.; Shera, E.B.

    1995-09-15

    A novel method for the detection and identification of single molecules in solution has been devised, computer simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required for individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed before-hand in order to estimate the experimental feasibility of the method and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented. 20 refs., 8 figs.

  1. β-connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Marchetti, S.; Sbrana, F.; Toscano, A.; Fratini, E.; Carlà, M.; Vassalli, M.; Tiribilli, B.; Pacini, A.; Gambi, C. M. C.

    2011-05-01

    The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I27 to I34, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I27-I34 fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

  2. {beta}-connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy

    SciTech Connect

    Marchetti, S.; Carla, M.; Gambi, C. M. C.; Sbrana, F.; Vassalli, M.; Toscano, A.; Pacini, A.; Fratini, E.; Tiribilli, B.

    2011-05-15

    The three-dimensional structure and the mechanical properties of a {beta}-connectin fragment from human cardiac muscle, belonging to the I band, from I{sub 27} to I{sub 34}, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I{sub 27}-I{sub 34} fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

  3. Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein.

    PubMed

    Scholl, Zackary N; Li, Qing; Yang, Weitao; Marszalek, Piotr E

    2016-08-26

    Although multidomain proteins predominate the proteome of all organisms and are expected to display complex folding behaviors and significantly greater structural dynamics as compared with single-domain proteins, their conformational heterogeneity and its impact on their interaction with ligands are poorly understood due to a lack of experimental techniques. The multidomain calcium-binding βγ-crystallin proteins are particularly important because their deterioration and misfolding/aggregation are associated with melanoma tumors and cataracts. Here we investigate the mechanical stability and conformational dynamics of a model calcium-binding βγ-crystallin protein, Protein S, and elaborate on its interactions with calcium. We ask whether domain interactions and calcium binding affect Protein S folding and potential structural heterogeneity. Our results from single-molecule force spectroscopy show that the N-terminal (but not the C-terminal) domain is in equilibrium with an alternative conformation in the absence of Ca(2+), which is mechanically stable in contrast to other proteins that were observed to sample a molten globule under similar conditions. Mutagenesis experiments and computer simulations reveal that the alternative conformation of the N-terminal domain is caused by structural instability produced by the high charge density of a calcium binding site. We find that this alternative conformation in the N-terminal domain is diminished in the presence of calcium and can also be partially eliminated with a hitherto unrecognized compensatory mechanism that uses the interaction of the C-terminal domain to neutralize the electronegative site. We find that up to 1% of all identified multidomain calcium-binding proteins contain a similarly highly charged site and therefore may exploit a similar compensatory mechanism to prevent structural instability in the absence of ligand. PMID:27378818

  4. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  5. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  6. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    PubMed Central

    2014-01-01

    Summary Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR) are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis. PMID:25551056

  7. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  8. Vibrational spectroscopy in high temperature dense fluids

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1992-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) in conjunction with a two-stage light-gas gun has been used to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures, as well as liquid N{sub 2}O. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. The variation of the vibrational frequency shift at pressure with species concentration in mixtures is investigated.

  9. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches.

  10. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  12. Vibrational Spectroscopy of Chromatographic Interfaces

    SciTech Connect

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  13. Vibrational Spectroscopy on Trapped Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Brown, Kenneth R.

    2014-06-01

    We perform vibrational spectroscopy on the V0←10 overtone of a trapped and sympathetically cooled CaH+ molecular ion using a resonance enhanced two photon dissociation scheme. Our experiments are motivated by theoretical work that proposes comparing the vibrational overtones of CaH^+ with electronic transitions in atoms to detect possible time variation of in the mass ratio of the proton to electron. Due to the nonexistence of experimental data of the transition, we start the search with a broadband femtosecond Ti:Saph laser guided by theoretical calculations. Once the vibrational transition has been identified, we will move to CW lasers to perform rotationally resolved spectroscopy. M. Kajita and Y. Moriwaki, J. Phys. B. At. Mol. Opt.Phys., 42,154022(2009) Private communication

  14. Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.

    PubMed

    Panek, Paweł T; Jacob, Christoph R

    2016-08-18

    Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra. PMID:27472016

  15. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  16. Vibrational spectroscopy in shock-compressed liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.

    1992-01-01

    Coherent anti-Stokes Raman spectroscopy is being used to study the structure and energy transfer in simple molecular liquids at the high pressures and temperatures characteristic of explosive detonation. Dense fluids to several thousand degrees temperature and several hundred kilobars pressure are obtained using the shock-compression technique. Vibrational frequencies, third-order susceptibility ratios, and linewidths have been measured for N{sub 2}, O{sub 2}, CO, mixtures of N{sub 2}, O{sub 2}, and CO, and N{sub 2}O. Frequencies are found to increase with pressure. The transition intensity and line-width data suggest that thermal equilibrium of the vibrational levels is attained in less than a few nanoseconds at these high pressures and temperatures. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations.

  17. Vibrational spectroscopy in shock-compressed liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.

    1992-03-01

    Coherent anti-Stokes Raman spectroscopy is being used to study the structure and energy transfer in simple molecular liquids at the high pressures and temperatures characteristic of explosive detonation. Dense fluids to several thousand degrees temperature and several hundred kilobars pressure are obtained using the shock-compression technique. Vibrational frequencies, third-order susceptibility ratios, and linewidths have been measured for N{sub 2}, O{sub 2}, CO, mixtures of N{sub 2}, O{sub 2}, and CO, and N{sub 2}O. Frequencies are found to increase with pressure. The transition intensity and line-width data suggest that thermal equilibrium of the vibrational levels is attained in less than a few nanoseconds at these high pressures and temperatures. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations.

  18. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.

    PubMed

    Tanimura, Yoshitaka; Ishizaki, Akihito

    2009-09-15

    Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a

  19. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1-240) dimers.

    PubMed

    Long, Saran; Zhou, Meng; Tang, Kun; Zeng, Xiao-Li; Niu, Yingli; Guo, Qianjin; Zhao, Kai-Hong; Xia, Andong

    2015-05-28

    ApcE(1-240) dimers with one intrinsic phycocyanobilin (PCB) chromophore in each monomer that is truncated from the core-membrane linker (ApcE) of phycobilisomes (PBS) in Nostoc sp. PCC 7120 show a sharp and significantly red-shifted absorption. Two explanations either conformation-dependent Förster resonance energy transfer (FRET) or the strong exciton coupling limit have been proposed for red-shifted absorption. This is a classic example of the special pair in the photosynthetic light harvesting proteins, but the mechanism of this interaction is still a matter of intense debate. We report the studies using single-molecule and transient absorption spectra on the interaction in the special pair of ApcE dimers. Our results demonstrate the presence of conformation-dependent FRET between the two PCB chromophores in ApcE dimers. The broad distributions of fluorescence intensities, lifetimes and polarization difference from single-molecule measurements reveal the heterogeneity of local protein-pigment environments in ApcE dimers, where the same molecular structures but different protein environments are the main reason for the two PCB chromophores with different spectral properties. The excitation energy transfer rate between the donor and the acceptor about (110 ps)(-1) is determined from transient absorption measurements. The red-shifted absorption in ApcE dimers could result from more extending conformation, which shows another type of absorption redshift that does not depend on strong exciton coupling. The results here stress the importance of conformation-controlled spectral properties of the chemically identical chromophores, which could be a general feature to control energy/electron transfer, widely existing in the light harvesting complexes. PMID:25925197

  20. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches. PMID:27096701

  1. Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State

    SciTech Connect

    Yoo, Tae Yeon; Meisburger, Steve P.; Hinshaw, James; Pollack, Lois; Haran, Gilad; Sosnick, Tobin R.; Plaxco, Kevin

    2012-10-10

    The results of more than a dozen single-molecule Foerster resonance energy transfer (smFRET) experiments suggest that chemically unfolded polypeptides invariably collapse from an expanded random coil to more compact dimensions as the denaturant concentration is reduced. In sharp contrast, small-angle X-ray scattering (SAXS) studies suggest that, at least for single-domain proteins at non-zero denaturant concentrations, such compaction may be rare. Here, we explore this discrepancy by studying protein L, a protein previously studied by SAXS (at 5 C), which suggested fixed unfolded-state dimensions from 1.4 to 5 M guanidine hydrochloride (GuHCl), and by smFRET (at 25 C), which suggested that, in contrast, the chain contracts by 15-30% over this same denaturant range. Repeating the earlier SAXS study under the same conditions employed in the smFRET studies, we observe little, if any, evidence that the unfolded state of protein L contracts as the concentration of GuHCl is reduced. For example, scattering profiles (and thus the shape and dimensions) collected within {approx} 4 ms after dilution to as low as 0.67 M GuHCl are effectively indistinguishable from those observed at equilibrium at higher denaturant. Our results thus argue that the disagreement between SAXS and smFRET is statistically significant and that the experimental evidence in favor of obligate polypeptide collapse at low denaturant cannot be considered conclusive yet.

  2. The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions

    NASA Astrophysics Data System (ADS)

    Mack, A. H.; Schlingman, D. J.; Kamenetska, M.; Collins, R.; Regan, L.; Mochrie, S. G. J.

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  3. Single-Molecule Spectroscopy Reveals that Individual Low-Light LH2 Complexes from Rhodopseudomonas palustris 2.1.6. Have a Heterogeneous Polypeptide Composition

    PubMed Central

    Brotosudarmo, Tatas H.P.; Kunz, Ralf; Böhm, Paul; Gardiner, Alastair T.; Moulisová, Vladimíra; Cogdell, Richard J.; Köhler, Jürgen

    2009-01-01

    Abstract Rhodopseudomonas palustris belongs to the group of purple bacteria that have the ability to produce LH2 complexes with unusual absorption spectra when they are grown at low-light intensity. This ability is often related to the presence of multiple genes encoding the antenna apoproteins. Here we report, for the first time to our knowledge, direct evidence that individual low-light LH2 complexes have a heterogeneous αβ-apoprotein composition that modulates the site energies of Bchl a molecules, producing absorption bands at 800, 820, and 850 nm. The arrangement of the Bchl a molecules in the “tightly coupled ring” can be modeled by nine αβ-Bchls dimers, such that the Bchls bound to six αβ-pairs have B820-like site energies and the remaining Bchl a molecules have B850-like site energies. Furthermore, the experimental data can only be satisfactorily modeled when these six αβ-pairs with B820 Bchl a molecules are distributed such that the symmetry of the assembly is reduced to C3. It is also clear from the measured single-molecule spectra that the energies of the electronically excited states in the mixed B820/850 ring are mainly influenced by diagonal disorder. PMID:19720038

  4. New developments in IR surface vibrational spectroscopy

    SciTech Connect

    Hirschmugl, C.J.; Lamont, C.L.A.; Williams, G.P.

    1995-12-31

    Low frequency dynamics at surfaces, particularly in the region of the adsorbate-substrate vibrational modes is of fundamental importance in areas as varied as sliding friction, catalysis, corrosion and epitaxial growth. This paper reviews the new developments in low frequency Infrared Reflection Absorption Spectroscopy using synchrotron radiation as the source. Absolute changes induced in the far infrared for several adsorbate systems on Cu, including CO and H, are dominated by broadband reflectance changes and dipole forbidden vibrational modes which in some cases are an order of magnitude stronger than the dipole allowed modes. The experimental data can be explained by a theory developed by Persson, in which the dielectric response of the substrate is seen as playing a crucial role in the dynamics. In particular the relationships between the wavelength of the light, the penetration depth and the electron mean-free path, are critical.

  5. Vibrational spectroscopy of N-phenylmaleimide.

    PubMed

    Parker, Stewart F

    2006-03-01

    A combination of infrared, Raman and inelastic neutron scattering (INS) spectroscopies with density functional theory (DFT) calculations is used to provide a complete assignment of the vibrational spectra of N-phenylmaleimide and N-(perdeuterophenyl)maleimide. DFT is shown to give very good results for the frequencies and atomic displacements in the modes. These are used to generate INS spectra which are excellent agreement with the observed. The calculated infrared and Raman spectra are much less reliable, although this may be more of a presentation problem than a real failing. PMID:16157505

  6. Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; De Schryver, Frans C.; Cotlet, Mircea; Habuchi, Satoshi

    2004-06-01

    One of the most intriguing findings in single molecule spectroscopy (SMS) is the observation of Raman spectra of individual molecules, despite the small cross section of the transitions involved. The observation of the spectra can be explained by the surface enhanced Raman scattering (SERRS) effect. At the single-molecule level, the SERRS-spectra recorded as a function of time reveal inhomogeneous behaviour such as on/off blinking, spectral diffusion, intensity fluctuations of vibrational line, and even splitting of some lines within the spectrum of one molecule. Single-molecule SERRS (SM-SERRS) spectroscopy opens up exciting opportunities in the field of biophysics and biomedical spectroscopy. The first example of single protein SERRS was performed on hemoglobin. However, the possibility of extracting the heme group by silver sols can not be excluded. Here we report on SM-SERRS spectra of enhanced green fluorescent protein (EGFP) in which the chromophore is kept in the protein. The time series of SM-SERRS spectra suggest the conversion of the EGFP chromophore between the deprotonated and the protonated form. Autocorrelation analysis of SM-SERRS trajectory reveals the presence of fast dynamics taking place in the protein. Our findings show the potential of the technique to study structural dynamics of protein molecules.

  7. Vibrational spectroscopy of water at interfaces.

    PubMed

    Skinner, J L; Pieniazek, P A; Gruenbaum, S M

    2012-01-17

    Understanding liquid water's behavior at the molecular level is essential to progress in fields as disparate as biology and atmospheric sciences. Moreover, the properties of water in bulk and water at interfaces can be very different, making the study of the hydrogen-bonding networks therein very important. With recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, it is now possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider here three aqueous interfaces: the water liquid-vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface. In the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy (such as FTIR, pump-probe, two-dimensional IR, and the like) can be used to probe the interfacial water. In this Account, we discuss our attempts to model these three systems and interpret the existing experiments. For the water liquid-vapor interface, we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and canceling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H(2)O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red

  8. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  9. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes.

    PubMed

    Buckup, Tiago; Motzkus, Marcus

    2014-01-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm(-1) to over 2,000 cm(-1) and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  10. Vibrational spectroscopy in stem cell characterisation: is there a niche?

    PubMed

    Sulé-Suso, J; Forsyth, N R; Untereiner, V; Sockalingum, G D

    2014-05-01

    Vibrational spectroscopy using both infrared and Raman spectroscopies has been used in recent years with the aim to aid clinicians in disease diagnosis. More recently, these techniques have been applied to study stem cell differentiation and to determine stem cell presence in tissues. These studies have demonstrated the potential of these techniques in better characterising stem cell differentiation phenotypes with potential applications in tissue engineering strategies. However, before the translation of vibrational spectroscopy into clinical practice becomes a reality, several issues still need to be addressed. We describe here an overview of the work carried out so far and the problems that might be encountered when using vibrational spectroscopy. PMID:24703620

  11. Multireflection sum frequency generation vibrational spectroscopy.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Chen, Zhan

    2015-08-18

    We developed a multireflection data collection method in order to improve the signal-to-noise ratio (SNR) and sensitivity of sum frequency generation (SFG) spectroscopy, which we refer to as multireflection SFG, or MRSFG for short. To achieve MRSFG, a collinear laser beam propagation geometry was adopted and trapezoidal Dove prisms were used as sample substrates. An in-depth discussion on the signal and SNR in MRSFG was performed. We showed experimentally, with "m" total internal reflections in a Dove prism, MRSFG signal is ∼m times that of conventional SFG; SNR of the SFG signal-to-background is improved by a factor of >m(1/2) and vibrational signals. Surface molecular structures of adsorbed ethanol molecules, polymer films, and a lipid monolayer were characterized using both MRSFG and conventional SFG. Molecular orientation information on lipid molecules with a 9% composition in a mixed monolayer was measured using MRSFG, which showed a good agreement with that derived from 100% lipid surface coverage using conventional SFG. MRSFG can both improve the spectral quality and detection limit of SFG spectroscopy and is expected to have important applications in surface science for studying structures of molecules with a low surface coverage or less ordered molecular moieties. PMID:26176565

  12. Room temperature single molecule microscopes

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Enderlein, G.; Semin, D.J.; Keller, R.A.

    1997-12-31

    We have developed three capabilities to image the locations of and interrogate immobilized single fluorescent molecules: near-field scanning optical, confocal scanning optical, and wide-field epi-fluorescence microscopy. Each microscopy has its own advantages. Near-field illumination can beat the diffraction limit. Confocal microscopy has high brightness and temporal resolution. Wide-field has the quickest (parallel) imaging capability. With confocal microscopy, we have verified that single fluorescent spots in our images are due to single molecules by observing photon antibunching. Using all three microscopies, we have observed that xanthene molecules dispersed on dry silica curiously exhibit intensity fluctuations on millisecond to minute time scales. We are exploring the connection between the intensity fluctuations and fluctuations in individual photophysical parameters. The fluorescence lifetimes of Rhodamine 6G on silica fluctuate. The complex nature of the intensity and lifetime fluctuations is consistent with a mechanism that perturbs more than one photophysical parameter.

  13. Cobalt single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Yang, En-Che; Hendrickson, David N.; Wernsdorfer, Wolfgang; Nakano, Motohiro; Zakharov, Lev N.; Sommer, Roger D.; Rheingold, Arnold L.; Ledezma-Gairaud, Marisol; Christou, George

    2002-05-01

    A cobalt molecule that functions as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atom ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single crystal of the compound was studied by means of a micro-superconducting quantum interference device magnetometer in the range of 0.040-1.0 K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal.

  14. Ultrashort Laser Pulses in Single Molecule Spectroscopy

    NASA Astrophysics Data System (ADS)

    Haustein, E.; Schwille, P.

    Craig Venter published the sequence of the human genome a few years ago [1]. However, the 2.91 billion base pair DNA examined seems to code for only about 30 000 proteins. A vast majority of them are barely known to exist, let alone fully understood. Therefore, major goals of current biological research are not only the identification, but also the precise physico-chemical characterization of elementary processes on the level of individual proteins and nucleic acids. These molecules are believed to be the smallest functional units in biological systems.

  15. 2010 GRC VIBRATIONAL SPECTROSCOPY AUGUST 1 - AUGUST 6, 2010

    SciTech Connect

    Brooks Pate

    2010-08-06

    The Vibrational Spectroscopy conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear and multidimensional spectroscopies. The conference highlights the application of these techniques in chemistry, materials, biology, and medicine. The theory of molecular vibrational motion and its connection to spectroscopic signatures and chemical reaction dynamics is the third major theme of the meeting. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules and nanomaterials.

  16. Vibrational spectroscopy of ion exchange membranes

    NASA Astrophysics Data System (ADS)

    Kumari, Dunesh

    Infrared Spectroscopy (IR) and density functional theory (DFT) calculations were used to study Nafion, a sulfonated tetrafluoroethylene ionomer used as the electrolyte material of choice for polymer electrolyte membrane fuel cells (PEMFCs). A methodology is described for assignment of infrared peaks in terms of mechanically coupled internal coordinates of near neighbor functional groups. This work demonstrates (chapter 2--4) the use of ionomer functional group internal coordinate coupling analysis to assign two key Nafion peaks formerly assigned as the sulfonate symmetric stretch (1056 cm -1) and a COC (A) vibrational mode (971 cm-1). The experiments and theory complement each other to show that the dominate motions of the 1056 cm-1 and 971 cm-1 modes are attributed to the COC (A) and the sulfonate stretch respectively, exactly reverse of the convention used for decades. The salient point is that both peaks result from mechanically coupled internal coordinates of both functional groups. This explains why the 1056 cm-1 and 971 cm -1 peaks shift together with changes in the sulfonate group environment (i.e., ion exchange or membrane dehydration). The assignments, correlated with extensive literature data, and new data showing both peaks vanishing upon rigorous dehydration (i.e. conversion of a C3V deprotonated -SO3- to a C1 -SO3H) of the membrane, were based on the correlation of observed IR peaks with animations of mechanically coupled internal coordinates obtained by DFT calculations. Further, the above methodology was augmented with polarization modulated infrared reflection-adsorption spectroscopy (PM-IRRAS) to elucidate the Nafion ionomers functional groups that participate in self-assembly of Nafion onto Pt surfaces. A model for Nafion adsorption onto Pt shows that the Nafion side-chain sulfonate and CF3 co-adsorbates are structural components of the Nafion-Pt interface. The DFT-spectroscopy method of assigning peaks in terms of mechanically coupled internal

  17. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    to sample similar conformers. This work demonstrates that the conductance of bithiophene displays a strong dependence on the conformational fluctuations accessible within a given junction configuration, and that the symmetry of such small molecules can significantly influence their conductance behavior. Next, the single-molecule conductance of a family of oligothiophenes comprising one to six thiophene units was measured. An anomalous behavior was found: the peak of the conductance histogram distribution did not follow a clear exponential decay with increasing number of thiophene units in the chain. The electronic properties of the materials were characterized by optical spectroscopy and electrochemistry to gain an understanding of the factors affecting the conductance of these molecules. Different conformers in the junction were postulated to be a contributing factor to the anomalous trend in the observed conductance as a function of molecule length. Then, the electronic properties of the thiophene-1,1-dioxide unit were investigated. These motifs have become synthetically accessible in the last decade, due to Rozen's unprecedentedly potent oxidizing reagent - HOF˙CH 3CN - which has been shown to be powerful yet selective enough to oxidize thiophenes in various environments. The resulting thiophene-1,1-dioxides show great promise for electronic devices. The oxidation chemistry of thiophenes was expanded and tuning of the frontier energy levels was demonstrated through combining electron poor and electron rich units. Finally, charge carriers in single-molecule junctions were shown to be tunable within a family of molecules containing these thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed in order to increase electron affinity, maintain delocalized frontier orbitals, while significantly decreasing the transport gap. Through thermopower measurements, the dominant charge carriers were shown to change from holes to electrons as the number of

  18. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  19. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings

    PubMed Central

    Bie, Ya-Qing; Horng, Jason; Shi, Zhiwen; Ju, Long; Zhou, Qin; Zettl, Alex; Yu, Dapeng; Wang, Feng

    2015-01-01

    Microscopic understanding of physical and electrochemical processes at electrolyte/electrode interfaces is critical for applications ranging from batteries, fuel cells to electrocatalysis. However, probing such buried interfacial processes is experimentally challenging. Infrared spectroscopy is sensitive to molecule vibrational signatures, yet to approach the interface three stringent requirements have to be met: interface specificity, sub-monolayer molecular detection sensitivity, and electrochemically stable and infrared transparent electrodes. Here we show that transparent graphene gratings electrode provide an attractive platform for vibrational spectroscopy at the electrolyte/electrode interfaces: infrared diffraction from graphene gratings offers enhanced detection sensitivity and interface specificity. We demonstrate the vibrational spectroscopy of methylene group of adsorbed sub-monolayer cetrimonium bromide molecules and reveal a reversible field-induced electrochemical deposition of cetrimonium bromide on the electrode controlled by the bias voltage. Such vibrational spectroscopy with graphene gratings is promising for real time and in situ monitoring of different chemical species at the electrolyte/electrode interfaces. PMID:26123807

  20. Transient Two-Dimensional Infrared Spectroscopy in a Vibrational Ladder.

    PubMed

    Kemlin, Vincent; Bonvalet, Adeline; Daniault, Louis; Joffre, Manuel

    2016-09-01

    We report on transient 2D Fourier transform infrared spectroscopy (2DIR) after vibrational ladder climbing induced in the CO-moiety longitudinal stretch of carboxyhemoglobin. The population distribution, spreading up to seven vibrational levels, results in a nonequilibrium 2DIR spectrum evidencing a large number of peaks that can be easily attributed to individual transitions thanks to the anharmonicity of the vibrational potential. We discuss the physical origin of the observed peaks as well as the qualitative behavior of the subsequent dynamics governed by population relaxation in the vibrational ladder. PMID:27508408

  1. Simultaneous time and frequency resolved fluorescence microscopy of single molecules.

    SciTech Connect

    Hayden, Carl C.; Gradinaru, Claudiu C.; Chandler, David W.; Luong, A. Khai

    2005-01-01

    Single molecule fluorophores were studied for the first time with a new confocal fluorescence microscope that allows the wavelength and emission time to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive detector. This detector records the wavelength and emission time of each detected photon relative to an excitation laser pulse. A histogram of many events for any selected spatial region or time interval can generate a full fluorescence spectrum and correlated decay plot for the given selection. At the single molecule level, this approach makes entirely new types of temporal and spectral correlation spectroscopy of possible. This report presents the results of simultaneous time- and frequency-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 embedded in thin films of polymethylmethacrylate (PMMA).

  2. Spectroscopy and reactions of vibrationally excited transient molecules

    SciTech Connect

    Dai, H.L.

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  3. Figuration and detection of single molecules

    NASA Astrophysics Data System (ADS)

    Nevels, R.; Welch, G. R.; Cremer, P. S.; Hemmer, P.; Phillips, T.; Scully, S.; Sokolov, A. V.; Svidzinsky, A. A.; Xia, H.; Zheltikov, A.; Scully, M. O.

    2012-08-01

    Recent advances in the description of atoms and molecules based on Dimensional scaling analysis, developed by Dudley Herschbach and co-workers, provided new insights into visualization of molecular structure and chemical bonding. Prof. Herschbach is also a giant in the field of single molecule scattering. We here report on the engineering of molecular detectors. Such systems have a wide range of application from medical diagnostics to the monitoring of chemical, biological and environmental hazards. We discuss ways to identify preselected molecules, in particular, mycotoxin contaminants using coherent laser spectroscopy. Mycotoxin contaminants, e.g. aflatoxin B1 which is present in corn and peanuts, are usually analysed by time-consuming microscopic, chemical and biological assays. We present a new approach that derives from recent experiments in which molecules are prepared by one (or more) femtosecond laser(s) and probed by another set. We call this technique FAST CARS (femto second adaptive spectroscopic technique for coherent anti-Stokes Raman spectroscopy). We propose and analyse ways in which FAST CARS can be used to identify preselected molecules, e.g. aflatoxin, rapidly and economically.

  4. Chemical principles of single-molecule electronics

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Neupane, Madhav; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2016-03-01

    The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure-property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

  5. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    to sample similar conformers. This work demonstrates that the conductance of bithiophene displays a strong dependence on the conformational fluctuations accessible within a given junction configuration, and that the symmetry of such small molecules can significantly influence their conductance behavior. Next, the single-molecule conductance of a family of oligothiophenes comprising one to six thiophene units was measured. An anomalous behavior was found: the peak of the conductance histogram distribution did not follow a clear exponential decay with increasing number of thiophene units in the chain. The electronic properties of the materials were characterized by optical spectroscopy and electrochemistry to gain an understanding of the factors affecting the conductance of these molecules. Different conformers in the junction were postulated to be a contributing factor to the anomalous trend in the observed conductance as a function of molecule length. Then, the electronic properties of the thiophene-1,1-dioxide unit were investigated. These motifs have become synthetically accessible in the last decade, due to Rozen's unprecedentedly potent oxidizing reagent - HOF˙CH 3CN - which has been shown to be powerful yet selective enough to oxidize thiophenes in various environments. The resulting thiophene-1,1-dioxides show great promise for electronic devices. The oxidation chemistry of thiophenes was expanded and tuning of the frontier energy levels was demonstrated through combining electron poor and electron rich units. Finally, charge carriers in single-molecule junctions were shown to be tunable within a family of molecules containing these thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed in order to increase electron affinity, maintain delocalized frontier orbitals, while significantly decreasing the transport gap. Through thermopower measurements, the dominant charge carriers were shown to change from holes to electrons as the number of

  6. Single-molecule photophysics, from cryogenic to ambient conditions.

    PubMed

    Kozankiewicz, Bolesław; Orrit, Michel

    2014-02-21

    We review recent progress in characterizing and understanding the photophysics of single molecules in condensed matter, mostly at cryogenic temperatures. We discuss the central role of the triplet state in limiting the number of useful host-guest systems, notably a new channel, intermolecular intersystem crossing. Another important limitation to the use of single molecules is their photo-reactivity, leading to blinking of the fluorescence signal, and eventually to its loss by photo-bleaching. These processes are at the heart of modern super-resolution schemes. We then examine some of the new host-guest systems recently discovered following these general principles, and the mechanisms of spectral diffusion and dephasing that they have revealed. When charges are injected into organic conductors, they get trapped and influence single molecules via the local fields they create in the material, and via their coupling to localized vibrations. Understanding these processes is necessary for better control of spectral diffusion and dephasing of single molecules. We finally conclude by giving some outlook on future directions of this fascinating field.

  7. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  8. Fluorescent Biosensors Based on Single-Molecule Counting.

    PubMed

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  9. Fluorescent Biosensors Based on Single-Molecule Counting.

    PubMed

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  10. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    PubMed

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy. PMID:26698997

  11. Stretched polyethylene films probed by single molecules.

    PubMed

    Wirtz, Alexander C; Hofmann, Clemens; Groenen, Edgar J J

    2011-06-01

    Stretched films of low-density polyethylene (LDPE) doped with 2.3,8.9-dibenzanthanthrene (DBATT) were studied using polarization-selective single-molecule spectroscopy at 1.8 K. By measuring the in-plane component of the electronic transition-dipole moments of individual chromophores, the alignment of dopant molecules is determined without averaging. The distributions of chromophore orientations reveal the presence of two fractions of dopant molecules: those oriented along the stretching direction and randomly oriented molecules. With increasing drawing ratio of the polyethylene films, the ratio of oriented to randomly oriented guest molecules increases, whereas the extent of chromophore orientation, that is, the width of the orientation distribution, remains the same. The results are consistent with the interpretation that oriented chromophores reside on the surfaces of polyethylene crystals, instead of in the amorphous polyethylene regions. Guest molecules in stretched polyethylene are oriented due to the alignment of the crystallites on which they are adsorbed. As such, the shape and width of the distributions of chromophore orientations are determined by the interaction of guest molecules with the crystal surfaces.

  12. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  13. Vibrational spectroscopy of ferruginous smectite and nontronite.

    PubMed

    Frost, R L; Kloprogge, J T

    2000-10-01

    A comparison is made between the Raman and infrared spectra of ferruginous smectite and a nontronite using both absorption and emission techniques. Raman spectra show hydroxyl stretching bands at 3572, 3434, 3362, 3220 and 3102 cm(-1). The infrared emission spectra of the hydroxyl stretching region are significantly different to the absorption spectrum. These differences are attributed to the loss of water, absent in the emission spectrum, the reduction of the samples in the spectrometer and possible phase changes. Dehydroxylation of the two minerals may be followed by the loss of intensity of the hydroxyl stretching and hydroxyl deformation frequencies. Hydroxyl deformation modes are observed at 873 and 801 cm(-1) for the ferruginous smectite, and at 776 and 792 cm(-1) for the nontronite. Raman hydroxyl deformation vibrations are found at 879 cm(-1). Other Raman bands are observed at 1092 and 1032 cm(-1), assigned to the SiO stretching vibrations, at 675 and 587 cm(-1), assigned to the hydroxyl translation vibrations, at 487 and 450 cm(-1), attributed to OSiO bending type vibrations, and at 363, 287 and 239 cm(-1). The differences in the molecular structure of the two minerals are attributed to the Al/Fe ratio in the minerals. PMID:11058063

  14. Vibrational spectroscopy of shock-compressed liquid CO

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Shaw, M.S.; Johnson, J.D.

    1991-01-01

    Single-pulse, multiplex, coherent anti-Stokes Raman spectroscopy (CARS) was used to observe the vibrational spectra of liquid CO shock compressed to several pressures and temperatures up to 9.9 GPa and 2010 K. The experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities and Raman line widths. A comparison of these data with result in the isoelectronic and materially very similar N{sub 2} show a significant difference in vibrational frequency shift with pressure. 21 refs., 2 figs.

  15. Pair Tunneling through Single Molecules

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail

    2007-03-01

    Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

  16. Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy

    NASA Astrophysics Data System (ADS)

    Jafri, S. H. M.; Löfås, H.; Fransson, J.; Blom, T.; Grigoriev, A.; Wallner, A.; Ahuja, R.; Ottosson, H.; Leifer, K.

    2013-05-01

    Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few

  17. Single molecule sensing with carbon nanotube devices

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Sims, Patrick C.; Olsen, Tivoli J.; Iftikhar, Mariam; Corso, Brad L.; Gul, O. Tolga; Weiss, Gregory A.; Collins, Philip G.

    2013-09-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes have the requisite sensitivity to detect single molecule events and sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring the dynamic, single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. In each case, recordings resolved detailed trajectories of tens of thousands of individual chemical events and provided excellent statistics for single-molecule events. This electronic technique has a temporal resolution approaching 1 microsecond, which provides a new window for observing brief, intermediate transition states. In addition, the devices are indefinitely stable, so that the same molecule can be observed for minutes and hours. The extended recordings provide new insights into rare events like transitions to chemically-inactive conformations.

  18. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  19. Microsecond protein dynamics observed at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-07-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.

  20. Visualizing Cellular Machines with Colocalization Single Molecule Microscopy

    PubMed Central

    Larson, Joshua D.; Rodgers, Margaret L.

    2013-01-01

    Many of the cell's macromolecular machines contain multiple components that transiently associate with one another. This compositional and dynamic complexity presents a challenge for understanding how these machines are constructed and function. Colocalization single molecule spectroscopy enables simultaneous observation of individual components of these machines in real-time and grants a unique window into processes that are typically obscured in ensemble assays. Colocalization experiments can yield valuable information about assembly pathways, compositional heterogeneity, and kinetics that together contribute to the development of richly detailed reaction mechanisms. This review focuses on recent advances in colocalization single molecule spectroscopy and how this technique has been applied to enhance our understanding of transcription, RNA splicing, and translation. PMID:23970346

  1. Single molecule study of ClpP enzymatic activity

    NASA Astrophysics Data System (ADS)

    Mazouchi, Amir; Yu, Angela; Houry, Walid; Gradinaru, Claudiu

    2009-03-01

    Elementary processes that form the basis of biological activities pass through a number of short-lived intermediate states while progressing from initial state to final state. Single-molecule techniques, unlike ensemble averaging measurements, are often able to resolve these transient states. ClpP, a known target of antibacterial drugs like acydepsipeptides (ADEPs), is a classical representative of serine proteases, enzymes that cleave peptide bonds in proteins. We performed single-molecule fluorescence measurements including burst spectroscopy and fluorescence correlation spectroscopy (FCS) to address unknown aspects of this degradation process. Our study reveals important molecular details of protein degradation, such as the enzyme-substrate binding rate, the lifetime distribution of the conjugated state and the probability of substrate cleavage upon conjugation.

  2. Single Molecule Detection in Solution: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  3. Examining surface and bulk structures using combined nonlinear vibrational spectroscopies.

    PubMed

    Zhang, Chi; Wang, Jie; Khmaladze, Alexander; Liu, Yuwei; Ding, Bei; Jasensky, Joshua; Chen, Zhan

    2011-06-15

    We combined sum-frequency generation (SFG) vibrational spectroscopy with coherent anti-Stokes Raman scattering (CARS) spectroscopy in one system to examine both surface and bulk structures of materials with the same geometry and without the need to move the sample. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) thin films were tested before and after plasma treatment. The sensitivities of SFG and CARS were tested by varying polymer film thickness and using a lipid monolayer. PMID:21685990

  4. Ultrafast time resolved vibrational spectroscopy in liquid systems

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Hofmann, M.; Weidlich, K.; Graener, H.

    1996-04-01

    The ultrafast dynamics of small molecules in the liquid phase can successfully be studied tracing the relaxation pathways of vibrational excess energy. Two complementing experimental techniques, picosecond IR double resonance spectroscopy and time resolved incoherent Anti-Stokes Raman spectroscopy, are very powerful tools for such studies. The capabilities of investigations combining these methods are discussed on the example of new experimental data on liquid dichloromethane (CH2Cl2).

  5. Directional Raman scattering from single molecules in the feed gaps of optical antennas.

    PubMed

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-05-01

    Controlling light from single emitters is an overarching theme of nano-optics. Antennas are routinely used to modify the angular emission patterns of radio wave sources. "Optical antennas" translate these principles to visible and infrared wavelengths and have been recently used to modify fluorescence from single quantum dots and single molecules. Understanding the properties of single molecules, however, would be advanced were one able to observe their vibrational spectra through Raman scattering in a very reproducible manner but it is a hugely challenging task, as Raman scattering cross sections are very weak. Here we measure for the first time the highly directional emission patterns of Raman scattering from single molecules in the feed gaps of optical antennas fabricated on a chip. More than a thousand single molecule events are observed, revealing that an unprecedented near-unity fraction of optical antennas have single molecule sensitivity.

  6. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  7. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-01

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  8. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  9. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  10. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R

    2015-05-01

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  11. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  12. Optical interfacing single molecules with atomic vapor

    NASA Astrophysics Data System (ADS)

    Siyushev, Petr; Stein, Guilherme; Wrachtrup, Jörg; Gerhardt, Ilja

    2013-05-01

    Organic molecules at liquid Helium temperatures can constitute high-brightness and narrow-band single photon sources. Thus, they might form an important building block for quantum information processing. A number of quantum optical experiments were conducted with single photon sources based on single molecules. It was shown that it is possible to spectrally detune the molecules, and optical interaction between several molecules could be shown. Another important ingredient for quantum information processing is the implementation of quantum memory. Atomic vapors do not only allow for slowing down light, but also for its storage and can be used as an efficient quantum memory. In the past it was impossible to utilize the high brightness of single molecules in combination with an efficient quantum memory, since the lack of spectral overlap. Here, we present spectral tuning of a single molecule to match the resonance of the sodium D-line. We reach up to 6 ×105 detected 30 MHz narrow-band single photons per second. We are able to slow down near-resonant photons from a single molecule, and simultaneous show its single photon properties. We are further able to explore the properties of atomic vapor for its use as a narrow-band filter for single molecule studies.

  13. Single Molecule as a Local Acoustic Detector for Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Tian, Yuxi; Navarro, Pedro; Orrit, Michel

    2014-09-01

    A single molecule can serve as a nanometer-sized detector of acoustic strain. Such a nanomicrophone has the great advantage that it can be placed very close to acoustic signal sources and high sensitivities can be achieved. We demonstrate this scheme by monitoring the fluorescence intensity of a single dibenzoterrylene molecule in an anthracene crystal attached to an oscillating tuning fork. The characterization of the vibration amplitude and of the detection sensitivity is a first step towards detection and control of nanomechanical oscillators through optical detection and feedback.

  14. Designer Plasmonics Nanostructures Approaching Single Molecule Raman Scattering

    NASA Astrophysics Data System (ADS)

    Gordon, Reuven; Min, Qiao; Andrade, Gustavo F. S.; Brolo, Alexandre G.

    2010-03-01

    Since the early reports of single molecule Raman scattering detection using randomly roughened metal substrates [Phys. Rev. Lett. 78, 1667 - 1670 (1997), Science 21, 275(5303), 1102 - 1106 (1997)], there has been considerable interest in achieving single molecule Raman spectroscopy from fabricated nanostructures that are not random. Such designer plasmonic nanostructures have the advantages of improved control over the near-field enhancement magnitude, deterministic placement of the local-field hot-spots, optimized collection efficiency and greater reproducibility. Previously, we have created a metal nanostructures with measured 20 molecule Raman signal limit of detection [J. Phys. Chem. C 112 (39), 15098-15101, (2008)]. To achieve the desired near-field electric field enhancements, those nanostructures contained familiar elements to the plasmonic community: concentric focusing rings and subwavelength focusing tapers. Here, we will describe improved designs that have enabled us to improve those results by a factor of 6. We will also show polarization dependent studies that clearly demonstrate the plasmonic nature of the subwavelength focusing structures, including experimental polarization-resolved Raman spectroscopy maps. We are beginning statistical analysis experiments to determine if single molecule Raman is present in these nanostructures.

  15. Single-Molecule Studies in Live Cells

    NASA Astrophysics Data System (ADS)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  16. Single molecule nanometry for biological physics

    PubMed Central

    Kim, Hajin; Ha, Taekjip

    2013-01-01

    Precision measurement is a hallmark of physics but the small length scale (~ nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ~ 0.3 nm precision at ~ 1 millisecond time resolution, and how these new tools are providing fundamental insights on how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate movements of multiple components. Finally, we will discuss recent progress in combining angstrom precision optical tweezers with single molecule fluorescent detection, opening new windows for multi-dimensional single molecule nanometry for biological physics. PMID:23249673

  17. Life at the Single Molecule Level

    SciTech Connect

    Xie, Xiaoliang Sunny

    2011-03-04

    In a living cell, gene expression—the transcription of DNA to messenger RNA followed by translation to protein—occurs stochastically, as a consequence of the low copy number of DNA and mRNA molecules involved. Can one monitor these processes in a living cell in real time? How do cells with identical genes exhibit different phenotypes? Recent advances in single-molecule imaging in living bacterial cells allow these questions to be answered at the molecular level in a quantitative manner. It was found that rare events of single molecules can have important biological consequences.

  18. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  19. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection.

    PubMed

    Zheng, Yuanhui; Soeriyadi, Alexander H; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  20. Single-molecule junctions beyond electronic transport.

    PubMed

    Aradhya, Sriharsha V; Venkataraman, Latha

    2013-06-01

    The idea of using individual molecules as active electronic components provided the impetus to develop a variety of experimental platforms to probe their electronic transport properties. Among these, single-molecule junctions in a metal-molecule-metal motif have contributed significantly to our fundamental understanding of the principles required to realize molecular-scale electronic components from resistive wires to reversible switches. The success of these techniques and the growing interest of other disciplines in single-molecule-level characterization are prompting new approaches to investigate metal-molecule-metal junctions with multiple probes. Going beyond electronic transport characterization, these new studies are highlighting both the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the atomic and molecular scales. Furthermore, experimental demonstrations of quantum interference and manipulation of electronic and nuclear spins in single-molecule circuits are heralding new device concepts with no classical analogues. In this Review, we present the emerging methods being used to interrogate multiple properties in single molecule-based devices, detail how these measurements have advanced our understanding of the structure-function relationships in molecular junctions, and discuss the potential for future research and applications.

  1. Relating single-molecule measurements to thermodynamics.

    PubMed

    Keller, David; Swigon, David; Bustamante, Carlos

    2003-02-01

    Measurements made on large ensembles of molecules are routinely interpreted using thermodynamics, but the normal rules of thermodynamics may not apply to measurements made on single molecules. Using a polymer stretching experiment as an example, it is shown that in the limit of a single, short molecule the outcome of experimental measurements may depend on which variables are held fixed and which are allowed to fluctuate. Thus an experiment in which the end-to-end distance of the polymer molecule is fixed and the tension fluctuates yields a different result than an experiment where the force is fixed and the end-to-end distance fluctuates. It is further shown that this difference is due to asymmetry in the distribution of end-to-end distances for a single molecule, and that the difference vanishes in the appropriate thermodynamic limit; that is, as the polymer molecule becomes long compared to its persistence length. Despite these differences, much of the thermodynamic formalism still applies on the single-molecule level if the thermodynamic free energies are replaced with appropriate potentials of mean force. The primary remaining differences are consequences of the fact that unlike the free energies, the potentials of mean force are not in general homogeneous functions of their variables. The basic thermodynamic concepts of an intensive or extensive quantity, and the thermodynamic relationships that follow from them, are therefore less useful for interpreting single-molecule experiments.

  2. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  3. High resolution photoionisation spectroscopy of vibrationally excited Ar · NO

    NASA Astrophysics Data System (ADS)

    Monti, O. L. A.; Cruse, H. A.; Softley, T. P.; Mackenzie, S. R.

    2001-01-01

    Mass-analysed threshold ionisation (MATI) spectra of the Ar · NO complex have been obtained for the first time. These spectra have been used to determine unambiguously the nature of three bands detected by resonance-enhanced multiphoton ionisation (REMPI) spectroscopy via the à state of Ar · NO. The features are shown to originate from vibrationally excited states of Ar · NO in its electronic ground state. The assignment is in agreement with recent theoretical calculations.

  4. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  5. Low-frequency vibrational modes of benzoic acid investigated by terahertz time-domain spectroscopy and theoretical simulations

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Fan, Wen-hui; Zheng, Zhuan-ping

    2011-08-01

    In this paper, the low-frequency vibrational modes of crystalline benzoic acid (BA) have been investigated by terahertz time-domain spectroscopy (THz-TDS) and theoretical simulations based on the linearity combination of atomic orbital within the Density Functional Theory (DFT) as well as ab initio molecular orbital method at second-order Moller-Plesset Perturbation Theory (MP2) level for single molecule and dimer. Experimentally, a series of prominent absorption features of pure benzoic acid relevant to intra- and inter-molecular vibrational modes have been obtained below 4 THz at room temperature. For the theoretical simulations, geometry-optimization results of bond lengths and dihedral angles in both BA monomer and dimer are very close to experimental neutron diffraction measurements. Furthermore, the simulation results demonstrate absorption profile centered at 1.89 THz contains low-frequency modes of Ph-COOH twisting due to intramolecular motion and cogwheel owing to intermolecular motion. All the intra- and inter-molecular vibrational modes measured have also been assigned.

  6. Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy.

    PubMed

    Jafri, S H M; Löfås, H; Fransson, J; Blom, T; Grigoriev, A; Wallner, A; Ahuja, R; Ottosson, H; Leifer, K

    2013-06-01

    Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.

  7. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    PubMed Central

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  8. Do-it-yourself guide: How to use the modern single molecule toolkit

    PubMed Central

    Walter, Nils G.; Huang, Cheng-Yen; Manzo, Anthony J.; Sobhy, Mohamed A.

    2008-01-01

    Single molecule microscopy has evolved into the ultimate-sensitivity toolkit to study systems from small molecules to living cells, with the prospect of revolutionizing the modern biosciences. Here we survey the current state-of-the-art in single molecule tools including fluorescence spectroscopy, tethered particle microscopy, optical and magnetic tweezers, and atomic force microscopy. Our review seeks to guide the biological scientist in choosing the right approach from the available single molecule toolkit for applications ranging as far as structural biology, enzymology, nanotechnology, and systems biology. PMID:18511916

  9. The symmetry of single-molecule conduction.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  10. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  11. Artifacts in single-molecule localization microscopy.

    PubMed

    Burgert, Anne; Letschert, Sebastian; Doose, Sören; Sauer, Markus

    2015-08-01

    Single-molecule localization microscopy provides subdiffraction resolution images with virtually molecular resolution. Through the availability of commercial instruments and open-source reconstruction software, achieving super resolution is now public domain. However, despite its conceptual simplicity, localization microscopy remains prone to user errors. Using direct stochastic optical reconstruction microscopy, we investigate the impact of irradiation intensity, label density and photoswitching behavior on the distribution of membrane proteins in reconstructed super-resolution images. We demonstrate that high emitter densities in combination with inappropriate photoswitching rates give rise to the appearance of artificial membrane clusters. Especially, two-dimensional imaging of intrinsically three-dimensional membrane structures like microvilli, filopodia, overlapping membranes and vesicles with high local emitter densities is prone to generate artifacts. To judge the quality and reliability of super-resolution images, the single-molecule movies recorded to reconstruct the images have to be carefully investigated especially when investigating membrane organization and cluster analysis.

  12. Challenges in quantitative single molecule localization microscopy.

    PubMed

    Shivanandan, A; Deschout, H; Scarselli, M; Radenovic, A

    2014-10-01

    Single molecule localization microscopy (SMLM), which can provide up to an order of magnitude improvement in spatial resolution over conventional fluorescence microscopy, has the potential to be a highly useful tool for quantitative biological experiments. It has already been used for this purpose in varied fields in biology, ranging from molecular biology to neuroscience. In this review article, we briefly review the applications of SMLM in quantitative biology, and also the challenges involved and some of the solutions that have been proposed. Due to its advantages in labeling specificity and the relatively low overcounting caused by photoblinking when photo-activable fluorescent proteins (PA-FPs) are used as labels, we focus specifically on Photo-Activated Localization Microscopy (PALM), even though the ideas presented might be applicable to SMLM in general. Also, we focus on the following three quantitative measurements: single molecule counting, analysis of protein spatial distribution heterogeneity and co-localization analysis.

  13. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  14. Single Molecule Dynamics of Branched DNA Polymers

    NASA Astrophysics Data System (ADS)

    Mai, Danielle; Sing, Charles; Schroeder, Charles

    This work focuses on extending the field of single polymer dynamics to topologically complex polymers. Here, we report the direct observation of DNA-based branched polymers. Recently, we recently demonstrated a two-step synthesis method to generate star, H-shaped, and comb polymers for single molecule visualization. Following synthesis, we use single-color or dual-color single molecule fluorescence microscopy to directly visualize branched polymer dynamics in flow, in particular tracking side branches and backbones independently. In this way, our imaging method allows for characterization of molecular properties, including quantification of polymer contour length and branch distributions. Moving beyond characterization, we use molecular rheology and single molecule techniques to study the dynamics of single branched polymers in flow. Here, we utilize precision microfluidics to directly observe branched DNA polymer conformations during transient stretching, steady-state extension, and relaxation from high stretch. We specifically measure backbone end-to-end distance as a function of time. Experiments and Brownian dynamics simulations show that branched polymer relaxation is a strong function of the number of branches and position of branch points along the main chain backbone.

  15. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  16. Trapping and manipulating single molecules of DNA

    NASA Astrophysics Data System (ADS)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  17. Single-Molecule Imaging of Cellular Signaling

    NASA Astrophysics Data System (ADS)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  18. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of

  19. Vibrational Spectroscopy of HD{sup +} with 2-ppb Accuracy

    SciTech Connect

    Koelemeij, J. C. J.; Roth, B.; Wicht, A.; Ernsting, I.; Schiller, S.

    2007-04-27

    By measurement of the frequency of a vibrational overtone transition in the molecular hydrogen ion HD{sup +}, we demonstrate the first optical spectroscopy of trapped molecular ions with submegahertz accuracy. We use a diode laser, locked to a stable frequency comb, to perform resonance-enhanced multiphoton dissociation spectroscopy on sympathetically cooled HD{sup +} ions at 50 mK. The achieved 2-ppb relative accuracy is a factor of 150 higher than previous results for HD{sup +}, and the measured transition frequency agrees well with recent high-accuracy ab initio calculations, which include high-order quantum electrodynamic effects. We also show that our method bears potential for achieving considerably higher accuracy and may, if combined with slightly improved theoretical calculations, lead to a new and improved determination of the electron-proton mass ratio.

  20. Chemometrics applied to vibrational spectroscopy: overview, challenges and pitfalls

    SciTech Connect

    Haaland, D.M.

    1996-10-01

    Chemometric multivariate calibration methods are rapidly impacting quantitative infrared spectroscopy in many positive ways. The combination of vibrational spectroscopy and chemometrics has been used by industry for quality control and process monitoring. The growth of these methods has been phenomenal in the past decade. Yet, as with any new technology, there are growing pains. The methods are so powerful at finding correlations in the data, that when used without great care they can readily yield results that are not valid for the analysis of future unknown samples. In this paper, the power of the multivariate calibration methods is discussed while pointing out common pitfalls and some remaining challenges that may slow the implementation of chemometrics in research and industry.

  1. Molecular spintronics using single-molecule magnets.

    PubMed

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  2. Single-molecule electrophoresis. Final report

    SciTech Connect

    Castro, A.; Shera, E.B.

    1996-05-22

    A novel method for the detection and identification of single molecules in solution has been devised, computer-simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required by individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed beforehand in order to estimate the experimental feasibility of the method, and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented.

  3. A molecular tuning fork in single-molecule mechanochemical sensing.

    PubMed

    Mandal, Shankar; Koirala, Deepak; Selvam, Sangeetha; Ghimire, Chiran; Mao, Hanbin

    2015-06-22

    The separate arrangement of target recognition and signal transduction in conventional biosensors often compromises the real-time response and can introduce additional noise. To address these issues, we combined analyte recognition and signal reporting by mechanochemical coupling in a single-molecule DNA template. We incorporated a DNA hairpin as a mechanophore in the template, which, under a specific force, undergoes stochastic transitions between folded and unfolded hairpin structures (mechanoescence). Reminiscent of a tuning fork that vibrates at a fixed frequency, the device was classified as a molecular tuning fork (MTF). By monitoring the lifetime of the folded and unfolded hairpins with equal populations, we were able to differentiate between the mono- and bivalent binding modes during individual antibody-antigen binding events. We anticipate these mechanospectroscopic concepts and methods will be instrumental for the development of novel bioanalyses.

  4. VLT-CRIRES: ``Good Vibrations'' Rotational-vibrational molecular spectroscopy in astronomy

    NASA Astrophysics Data System (ADS)

    Käufl, H. U.

    2010-05-01

    Near-Infrared high spectral and spatial resolution spectroscopy offers new and innovative observing opportunities for astronomy. The ``traditional'' benefits of IR-astronomy - strongly reduced extinction and availability of adaptive optics - more than offset for many applications the compared to CCD-based astronomy strongly reduced sensitivity. Especially in high resolution spectroscopy interferences by telluric lines can be minimized. Moreover for abundance studies many important atomic lines can be accessed in the NIR. A novel spectral feature available for quantitative spectroscopy are the molecular rotational-vibrational transitions which allow for fundamentally new studies of condensed objects and atmospheres. This is also an important complement to radio-astronomy, especially with ALMA, where molecules are generally only observed in the vibrational ground state. Rot-vib transitions also allow high precision abundance measurements - including isotopic ratios - fundamental to understand the thermo-nuclear processes in stars beyond the main sequence. Quantitative modeling of atmospheres has progressed such that the unambiguous interpretation of IR-spectra is now well established. In combination with adaptive optics spectro-astrometry is even more powerful and with VLT-CRIRES a spatial resolution of better than one milli-arcsecond has been demonstrated. Some highlights and recent results will be presented: our solar system, extrasolar planets, star- and planet formation, stellar evolution and the formation of galactic bulges.

  5. Structural dynamics in complex liquids studied with multidimensional vibrational spectroscopy

    SciTech Connect

    Tokmakoff, Andrei

    2013-08-31

    The development of new sustainable energy sources is linked to our understanding of the molecular properties of water and aqueous solutions. Energy conversion, storage, and transduction processes, particularly those that occur in biology, fuel cells, and batteries, make use of water for the purpose of moving energy in the form of charges and mediating the redox chemistry that allows this energy to be stored as and released from chemical bonds. To build our fundamental knowledge in this area, this project supports work in the Tokmakoff group to investigate the molecular dynamics of water’s hydrogen bond network, and how these dynamics influence its solutes and the mechanism of proton transport in water. To reach the goals of this grant, we developed experiments to observe molecular dynamics in water as directly as possible, using ultrafast multidimensional vibrational spectroscopy. We excite and probe broad vibrational resonances of water, molecular solutes, and protons in water. By correlating how molecules evolve from an initial excitation frequency to a final frequency, we can describe the underlying molecular dynamics. Theoretical modeling of the data with the help of computational spectroscopy coupled with molecular dynamics simulations provided the atomistic insight in these studies.

  6. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  7. Single Molecule and Single Cell Epigenomics

    PubMed Central

    Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.

    2014-01-01

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781

  8. Single-molecule studies of collagen mechanics

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Rezaei, Naghmeh; Kirkness, Michael

    Collagen is the fundamental structural protein in vertebrates. Its triple helical structure at the molecular level is believed to be strongly related to its mechanical role in connective tissues. However, the mechanics of collagen at the single-molecule level remain contentious. Estimates of its persistence length span an order of magnitude, from 15-180 nm for this biopolymer of 300 nm contour length. How collagen responds to applied force is also controversial, with different single-molecule studies suggesting one of three different responses: extending entropically, overwinding, or unwinding, all at forces below 10 pN. Using atomic force microscopy to image collagens deposited from solution, we find that their flexibility depends strongly on ionic strength and pH. To study force-dependent structural changes, we are performing highly parallelized enzymatic cleavage assays of triple helical collagen in our new compact centrifuge force microscope. Because proteolytic cleavage requires a locally unwound triple helix, these experiments are revealing how local collagen structure changes in response to applied force. Our results can help to resolve long-standing debates about collagen mechanics and structure at the molecular level.

  9. Single molecule and single cell epigenomics.

    PubMed

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells.

  10. Medium Effects in Single Molecule Electronics

    NASA Astrophysics Data System (ADS)

    Higgins, Simon

    2010-03-01

    We use STM-based techniques for measuring the electrical properties of metal|molecule|metal junctions. For a family of molecules HS(CH2)6-Ar-(CH2)6SH (Ar = substituted benzene), we found that the single molecule conductances varied significantly with substituent, being higher for electron-donating substituents [1]. Later, we studied the effect of increasing conjugation on this system by examining oligothiophenes HS(CH2)6-[C4H4S]x-(CH2)6SH (x = 1, 2, 3, 5). We found that the conductances of junctions involving these molecules depended upon the medium in which the measurements were made. In fact, for x = 3, the conductance was two orders of magnitude higher in the presence of water than in anhydrous conditions [2]. This presentation will outline these studies, together with the results of transport calculations that rationalise these unusual findings, and will set the results in the context of existing literature on medium effects in single molecule conductance determinations. In collaboration with Edmund Leary and Richard Nichols, University of Liverpool; Colin Lambert, Iain Grace, and Chris Finch, University of Lancaster; and Wolfgang Haiss, University of Liverpool.

  11. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  12. Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight From Nuclear Resonance Vibrational Spectroscopy

    SciTech Connect

    Paulat, F.; Berto, T.C.; George, S.DeBeer; Goodrich, L.; Praneeth, V.K.K.; Sulok, C.D.; Lehnert, N.

    2009-05-21

    This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to {sup 15}N{sup 18}O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm{sup -1}. Normal coordinate analysis shows that the 437 cm{sup -1} mode corresponds to the Fe-NO stretch, whereas the 563 cm{sup -1} band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.

  13. Synthesis of single-molecule nanocars.

    PubMed

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new

  14. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  15. Surface passivation for single-molecule protein studies.

    PubMed

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  16. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  17. Single-molecule observations of ribosome function.

    PubMed

    Blanchard, Scott C

    2009-02-01

    Single-molecule investigations promise to greatly advance our understanding of basic and regulated ribosome functions during the process of translation. Here, recent progress towards directly imaging the elemental translation elongation steps using fluorescence resonance energy transfer (FRET)-based imaging methods is discussed, which provide striking evidence of the highly dynamic nature of the ribosome. In this view, global rates and fidelities of protein synthesis reactions may be regulated by interactions of the ribosome with mRNA, tRNA, translation factors and potentially many other cellular ligands that modify intrinsic conformational equilibria in the translating particle. Future investigations probing this model must aim to visualize translation processes from multiple structural and kinetic perspectives simultaneously, to provide direct correlations between factor binding and conformational events.

  18. Single-Molecule Microscopy of Nanocatalysis

    NASA Astrophysics Data System (ADS)

    Chen, Peng

    2014-06-01

    Nanoparticles are important catalysts. Understanding their structure-activity correlation is paramount for developing better catalysts, but hampered by their inherent inhomogeneity: individual nanoparticles differ from one to another, and for every nanoparticle, it can change from time to time, especially during catalysis. Furthermore, each nanoparticle presents on its surface various types of sites, which are often unequal in catalytic activity. I will present our work of using single-molecule fluorescence microscopy to overcome these challenges and study single-nanoparticle catalysis at the single-turnover resolution and nanometer precision. I will present how we interrogate the catalytic activity and dynamics of individual metal nanoparticles, map the reactivity of different surface sites, and uncover surprising spatial reactivity patterns within single facets at the nanoscale. This spatiotemporally resolved catalysis mapping also enables us to probe the communication between catalytic reactions at different locations on a single nanocatalyst, in much relation to allosteric effects in enzymes.

  19. Single molecule measurements and biological motors.

    PubMed

    Knight, Alex E; Mashanov, Gregory; Molloy, Justin E

    2005-12-01

    Recent technological advances in lasers and optical detectors have enabled a variety of new, single molecule technologies to be developed. Using intense and highly collimated laser light sources in addition to super-sensitive cameras, the fluorescence of single fluorophores can now be imaged in aqueous solution. Also, laser optical tweezers have enabled the piconewton forces produced by pair of interacting biomolecules to be measured directly. However, for a researcher new to the field to begin to use such techniques in their own research might seem a daunting prospect. Most of the equipment that is in use is custom-built. However, most of the equipment is essence fairly simple and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on those practical aspects which are not particularly well covered in the literature, and aims to provide an overview of the field as a whole with references and web links to more detailed sources elsewhere. Indeed, the opportunity to publish an article such as this on the Internet affords many new opportunities (and more space!) for presenting scientific ideas and information. For example, we have illustrated the nature of optical trap data with an interactive Java simulation; provided links to relevant web sites and technical documents, and included a large number of colour figures and plots. Our group's research focuses on molecular motors, and the bias of this article reflects this. It turns out that molecular motors have been a paradigm (or prototype) for single molecule research and the field has seen a rapid development in the techniques. It is hoped that the methods described here will be broadly applicable to other biological systems.

  20. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  1. Terahertz vibrational absorption spectroscopy using microstrip-line waveguides

    NASA Astrophysics Data System (ADS)

    Byrne, M. B.; Cunningham, J.; Tych, K.; Burnett, A. D.; Stringer, M. R.; Wood, C. D.; Dazhang, L.; Lachab, M.; Linfield, E. H.; Davies, A. G.

    2008-11-01

    We demonstrate that terahertz microstrip-line waveguides can be used to measure absorption spectra of polycrystalline materials with a high frequency resolution (˜2 GHz) and with a spatial resolution that is determined by the microstrip-line dimensions, rather than the free-space wavelength. The evanescent terahertz-bandwidth electric field extending above the microstrip line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. As an example, the terahertz absorption spectrum of polycrystalline lactose monohydrate was investigated; the lowest lying mode was observed at 534(±2) GHz, in excellent agreement with free-space measurements. This microstrip technique offers both a higher spatial and frequency resolution than free-space terahertz time-domain spectroscopy and requires no contact between the waveguide and sample.

  2. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.

    2008-01-01

    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  3. Spectroscopic characterization of Venus at the single molecule level.

    PubMed

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments.

  4. Structural characterization and vibrational spectroscopy of the arsenate mineral wendwilsonite.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria; Xi, Yunfei

    2014-01-24

    In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe(2+), Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)(3-) stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)(3-) clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm(-1) are assigned to ν4 bending modes. Multiple bands in the 350-300 cm(-1) region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm(-1) are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

  5. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    SciTech Connect

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  6. Force-induced tautomerization in a single molecule.

    PubMed

    Ladenthin, Janina N; Frederiksen, Thomas; Persson, Mats; Sharp, John C; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

  7. Force-induced tautomerization in a single molecule.

    PubMed

    Ladenthin, Janina N; Frederiksen, Thomas; Persson, Mats; Sharp, John C; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed. PMID:27657869

  8. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes

    PubMed Central

    Perez-Jimenez, Raul; Inglés-Prieto, Alvaro; Zhao, Zi-Ming; Sanchez-Romero, Inmaculada; Alegre-Cebollada, Jorge; Kosuri, Pallav; Garcia-Manyes, Sergi; Kappock, T. Joseph; Tanokura, Masaru; Holmgren, Arne; Sanchez-Ruiz, Jose M.; Gaucher, Eric A.; Fernandez, Julio M.

    2011-01-01

    A journey back in time is possible at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx), dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32° C more stable than modern enzymes and the oldest show significantly higher activity than extant ones at pH 5. We probed their mechanisms of reduction using single-molecule force spectroscopy. From the force-dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs utilize chemical mechanisms of reduction similar to those of modern enzymes. While Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over a 4 Gyr time span to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth. PMID:21460845

  9. n and p type character of single molecule diodes.

    PubMed

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  10. n and p type character of single molecule diodes

    PubMed Central

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  11. Force-induced tautomerization in a single molecule

    NASA Astrophysics Data System (ADS)

    Ladenthin, Janina N.; Frederiksen, Thomas; Persson, Mats; Sharp, John C.; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

  12. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes.

    PubMed

    Perez-Jimenez, Raul; Inglés-Prieto, Alvaro; Zhao, Zi-Ming; Sanchez-Romero, Inmaculada; Alegre-Cebollada, Jorge; Kosuri, Pallav; Garcia-Manyes, Sergi; Kappock, T Joseph; Tanokura, Masaru; Holmgren, Arne; Sanchez-Ruiz, Jose M; Gaucher, Eric A; Fernandez, Julio M

    2011-05-01

    It is possible to travel back in time at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx) dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32 °C more stable than modern enzymes, and the oldest show markedly higher activity than extant ones at pH 5. We probed the mechanisms of reduction of these enzymes using single-molecule force spectroscopy. From the force dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs use chemical mechanisms of reduction similar to those of modern enzymes. Although Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over 4 Gyr to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth. PMID:21460845

  13. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  14. Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor.

    PubMed

    Lau, Chit Siong; Sadeghi, Hatef; Rogers, Gregory; Sangtarash, Sara; Dallas, Panagiotis; Porfyrakis, Kyriakos; Warner, Jamie; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A

    2016-01-13

    We report transport measurements on a graphene-fullerene single-molecule transistor. The device architecture where a functionalized C60 binds to graphene nanoelectrodes results in strong electron-vibron coupling and weak vibron relaxation. Using a combined approach of transport spectroscopy, Raman spectroscopy, and DFT calculations, we demonstrate center-of-mass oscillations, redox-dependent Franck-Condon blockade, and a transport regime characterized by avalanche tunnelling in a single-molecule transistor.

  15. Detection of Steps in Single Molecule Data

    PubMed Central

    Aggarwal, Tanuj; Materassi, Donatello; Davison, Robert; Hays, Thomas; Salapaka, Murti

    2013-01-01

    Over the past few decades, single molecule investigations employing optical tweezers, AFM and TIRF microscopy have revealed that molecular behaviors are typically characterized by discrete steps or events that follow changes in protein conformation. These events, that manifest as steps or jumps, are short-lived transitions between otherwise more stable molecular states. A major limiting factor in determining the size and timing of the steps is the noise introduced by the measurement system. To address this impediment to the analysis of single molecule behaviors, step detection algorithms incorporate large records of data and provide objective analysis. However, existing algorithms are mostly based on heuristics that are not reliable and lack objectivity. Most of these step detection methods require the user to supply parameters that inform the search for steps. They work well, only when the signal to noise ratio (SNR) is high and stepping speed is low. In this report, we have developed a novel step detection method that performs an objective analysis on the data without input parameters, and based only on the noise statistics. The noise levels and characteristics can be estimated from the data providing reliable results for much smaller SNR and higher stepping speeds. An iterative learning process drives the optimization of step-size distributions for data that has unimodal step-size distribution, and produces extremely low false positive outcomes and high accuracy in finding true steps. Our novel methodology, also uniquely incorporates compensation for the smoothing affects of probe dynamics. A mechanical measurement probe typically takes a finite time to respond to step changes, and when steps occur faster than the probe response time, the sharp step transitions are smoothed out and can obscure the step events. To address probe dynamics we accept a model for the dynamic behavior of the probe and invert it to reveal the steps. No other existing method addresses

  16. Vibrational spectroscopy of a transient species through time-resolved Fourier transform infrared emission spectroscopy: The vinyl radical

    SciTech Connect

    Letendre, Laura; Liu, Dean-Kuo; Pibel, Charles D.; Halpern, Joshua B.; Dai, Hai-Lung

    2000-06-01

    An approach for detecting the vibrational spectrum of transient species is demonstrated on the vinyl radical. Photodissociation of carefully chosen precursors at selected photolysis wavelengths produce highly vibrationally excited radicals. Infrared (IR) emission from these radicals is then measured by time-resolved Fourier transform spectroscopy with nanosecond time resolution. All nine vibrational bands of the vinyl radical, generated from four different precursors, are obtained and reported here for the first time. (c) 2000 American Institute of Physics.

  17. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  18. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  19. Single-molecule strong coupling at room temperature in plasmonic nanocavities.

    PubMed

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J; Scherman, Oren A; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds. PMID:27296227

  20. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  1. Determining the elastic properties of aptamer-ricin single molecule multiple pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ricin and an anti-ricin aptamer showed three stable binding conformations with their special chemomechanical properties. The elastic properties of the ricin-aptamer single-molecule interactions were investigated by the dynamic force spectroscopy (DFS). The worm-like-chain model and Hook’s law were ...

  2. Magnetic cooling at a single molecule level: a spectroscopic investigation of isolated molecules on a surface.

    PubMed

    Corradini, Valdis; Ghirri, Alberto; Candini, Andrea; Biagi, Roberto; del Pennino, Umberto; Dotti, Gianluca; Otero, Edwige; Choueikani, Fadi; Blagg, Robin J; McInnes, Eric J L; Affronte, Marco

    2013-05-28

    A sub-monolayer distribution of isolated molecular Fe14 (bta)6 nanomagnets is deposited intact on a Au(111) surface and investigated by X-ray magnetic circular dichroism spectroscopy. The entropy variation with respect to the applied magnetic field is extracted from the magnetization curves and evidences high magnetocaloric values at the single molecule level.

  3. Vibrational spectroscopy and ab initio MO study of the molecular structure and vibrational spectra of α- and γ-pyrones

    NASA Astrophysics Data System (ADS)

    Fausto, Rui; Quinteiro, Graciete; Breda, Susana

    2001-12-01

    The molecular structures and vibrational spectra of the monomeric forms of α- and γ-pyrones were investigated by ab initio MO calculations, undertaken at the HF/6-31G ∗ level of theory, and vibrational spectroscopy, including matrix-isolation FTIR spectroscopy. A complete assignment of the vibrational spectra of the studied compounds isolated in an argon matrix, at 8 K, or in the condensed phases, at room temperature, is presented and the vibrational data correlated with some important structural parameters. It is shown that the intermolecular interactions in the room temperature condensed phases do not affect the structure and vibrational properties of the studied molecules strongly, though the vibrational results clearly reveal minor changes induced in the carbonyl groups that indirectly affect the electron distribution in the whole pyrone rings, leading to an increase in their π-electron delocalization. For the isolated monomers, both structural and vibrational results point to a relatively weak π-electron delocalization in both α- and γ-pyrone moieties.

  4. Single-molecule electronics: from chemical design to functional devices.

    PubMed

    Sun, Lanlan; Diaz-Fernandez, Yuri A; Gschneidtner, Tina A; Westerlund, Fredrik; Lara-Avila, Samuel; Moth-Poulsen, Kasper

    2014-11-01

    The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

  5. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    PubMed

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored.

  6. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    PubMed

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored. PMID:27444661

  7. 'Single molecule': theory and experiments, an introduction.

    PubMed

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  8. 'Single molecule': theory and experiments, an introduction

    PubMed Central

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins - molecular motors - have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'. PMID:24565227

  9. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  10. Microarray analysis at single molecule resolution

    PubMed Central

    Mureşan, Leila; Jacak, Jarosław; Klement, Erich Peter; Hesse, Jan; Schütz, Gerhard J.

    2010-01-01

    Bioanalytical chip-based assays have been enormously improved in sensitivity in the recent years; detection of trace amounts of substances down to the level of individual fluorescent molecules has become state of the art technology. The impact of such detection methods, however, has yet not fully been exploited, mainly due to a lack in appropriate mathematical tools for robust data analysis. One particular example relates to the analysis of microarray data. While classical microarray analysis works at resolutions of two to 20 micrometers and quantifies the abundance of target molecules by determining average pixel intensities, a novel high resolution approach [1] directly visualizes individual bound molecules as diffraction limited peaks. The now possible quantification via counting is less susceptible to labeling artifacts and background noise. We have developed an approach for the analysis of high-resolution microarray images. It consists first of a single molecule detection step, based on undecimated wavelet transforms, and second, of a spot identification step via spatial statistics approach (corresponding to the segmentation step in the classical microarray analysis). The detection method was tested on simulated images with a concentration range of 0.001 to 0.5 molecules per square micron and signal-to-noise ratio (SNR) between 0.9 and 31.6. For SNR above 15 the false negatives relative error was below 15%. Separation of foreground/background proved reliable, in case foreground density exceeds background by a factor of 2. The method has also been applied to real data from high-resolution microarray measurements. PMID:20123580

  11. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.

    PubMed

    Tan, Ming-Liang; Bizzarri, Anna Rita; Xiao, Yuming; Cannistraro, Salvatore; Ichiye, Toshiko; Manzoni, Cristian; Cerullo, Giulio; Adams, Michael W W; Jenney, Francis E; Cramer, Stephen P

    2007-03-01

    We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.

  12. Structure and mechanics of proteins from single molecules to cells

    NASA Astrophysics Data System (ADS)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  13. Single-Molecule Fluorescence Studies of RNA: A Decade's Progress

    PubMed Central

    Karunatilaka, Krishanthi S.; Rueda, David

    2009-01-01

    Over the past decade, single-molecule fluorescence studies have elucidated the structure-function relationship of RNA molecules. The real-time observation of individual RNAs by single-molecule fluorescence has unveiled the dynamic behavior of complex RNA systems in unprecedented detail, revealing the presence of transient intermediate states and their kinetic pathways. This review provides an overview of how single-molecule fluorescence has been used to explore the dynamics of RNA folding and catalysis. PMID:20161154

  14. Intersystem Crossing Mechanisms and Single Molecule Fluorescence: Terrylene in Anthracene Crystals

    SciTech Connect

    Kol'chenko, M.A.; Nicolet, A.; Orrit, M.; Kozankiewicz, B.

    2005-05-15

    Single molecule spectroscopy requires molecules with low triplet yields and/or short triplet lifetimes. The intersystem crossing (ISC) rate may be dramatically enhanced by the host matrix. Comparing the fluorescence intensity of single terrylene molecules in para-terphenyl, naphthalene, and anthracene crystals, we found a reduction of the saturation intensity by three orders of magnitude in the latter case. The fluorescence autocorrelation function indicates that the bottleneck state is the terrylene triplet. We propose a ping-pong mechanism between host and guest. This intermolecular ISC mechanism, which can open whenever the host triplet lies lower than the guest singlet, was overlooked in previous single molecule investigations.

  15. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  16. High-Pressure Effects in Benzoic Acid Dimers: Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tao, Yuchuan; Dreger, Zbigniew; Gupta, Yogendra

    2013-06-01

    To understand pressure effects on dimer structure stability, Raman and FTIR spectroscopy were used to examine changes in hydrogen bonded dimers of benzoic acid crystals up to 31 GPa. Raman measurements indicated a phase transition around 7-8 GPa. It is proposed that this transition is caused by a rearrangement of molecules within the dimer leading to a symmetry change from C2h to likely C2 or Cs. This change was reversible upon pressure release from 15 GPa. Pressures above 15 GPa, induced gradual changes in luminescence and a color change in the crystal from white to brownish. FTIR measurements at 31 GPa revealed the formation of a new broad band centered around 3250 cm-1, which was attributed to the stretching vibrations of the O -H bond. It is proposed that hydrogen bonded dimers of benzoic acid transform partially to a covalently bonded compound composed of benzoic anhydride-like molecules and H2O. This study demonstrates that application of high pressure can lead to significant changes in the H-bonded dimer structure, including formation of chemical bonding. Work supported by DOE/NNSA and ONR/MURI.

  17. Deciphering the scaling of single-molecule interactions using Jarzynski’s equality

    NASA Astrophysics Data System (ADS)

    Raman, Sangeetha; Utzig, Thomas; Baimpos, Theodoros; Ratna Shrestha, Buddha; Valtiner, Markus

    2014-11-01

    Unravelling the complexity of the macroscopic world relies on understanding the scaling of single-molecule interactions towards integral macroscopic interactions. Here, we demonstrate the scaling of single acid-amine interactions through a synergistic experimental approach combining macroscopic surface forces apparatus experiments and single-molecule force spectroscopy. This experimental framework is ideal for testing the well-renowned Jarzynski’s equality, which relates work performed under non-equilibrium conditions with equilibrium free energy. Macroscopic equilibrium measurements scale linearly with the number density of interfacial bonds, providing acid-amine interaction energies of 10.9±0.2 kT. Irrespective of how far from equilibrium single-molecule experiments are performed, the Jarzynski’s free energy converges to 11±1 kT. Our results validate the applicability of Jarzynski’s equality to unravel the scaling of non-equilibrium single-molecule experiments to scenarios where large numbers of molecules interacts simultaneously in equilibrium. The developed scaling strategy predicts large-scale properties such as adhesion or cell-cell interactions on the basis of single-molecule measurements.

  18. Vibrational Spectroscopy of CO2- Radical Anion in Water

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2016-06-01

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, and methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 wn, attributed to the symmetric CO stretch, which is at 45 wn higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 wn which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 wn band also appears at 742 wn, and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28+/-0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4+/-0.2 measured in this work is consistent with the vibrational properties, bond structure and charge

  19. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis. PMID:27409708

  20. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-07-01

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  1. Electrical, Mechanical and Thermal Properties of Single Molecules

    SciTech Connect

    Tao, Nongjian

    2014-08-20

    The specific aims of the prior DOE grant are to determine the stability of a single molecule bound to two electrodes, study local heating in single molecule junctions due to electron-phonon and electron-electron interactions, measure electron-phonon interactions in single molecule wires; and explore piezoelectric properties of single molecules. We have completed all the major tasks, and also expanded naturally the scope of the project to address several other critical issues in single molecule properties, developed new experimental capabilities, and observed a number of unexpected phenomena. We summarized here some of the findings that are most relevant to the present renewal proposal. More details can be found in the publications resulted from this grant and annual progress reports.

  2. Recording Single Molecule Dynamics and Function using Carbon Nanotube Circuits

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Sims, Patrick; Moody, Issa; Olsen, Tivoli; Corso, Brad L.; Tolga Gul, O.; Weiss, Gregory A.; Collins, Philip G.

    2013-03-01

    Nanoscale electronic devices like field-effect transistors (FETs) have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes (SWNTs) have the requisite sensitivity to detect single molecule events, and have sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring the dynamic, single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of polymerase I. Initial successes in each case indicate the generality and attractiveness of SWNT FETs as a new tool to complement other single molecule techniques. Furthermore, our focused research on transduction mechanisms provides the design rules necessary to further generalize this SWNT FET technique. This presentation will summarize these rules, and demonstrate how the purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule nanocircuits from a wide range of enzymes or proteins.

  3. Coherent Multidimensional Vibrational Spectroscopy of Representative N-Alkanes

    NASA Astrophysics Data System (ADS)

    Mathew, Nathan A.; Rickard, Mark A.; Kornau, Kathryn M.; Pakoulev, Andrei V.; Block, Stephen B.; Yurs, Lena A.; Wright, John C.

    2009-08-01

    Mixed frequency/time domain, two color triply vibrationally enhanced (TRIVE) four wave mixing (FWM) spectroscopy is used to study the methyl and methylene modes in octane and dotriacontane. The experiments involve scanning different combinations of the two excitation frequencies, the monochromator frequency, and the two time delays between the three excitation pulses while the remaining variables are fixed. Two dimensional spectra of the methyl and methylene stretching region have weak, asymmetrical diagonal- and cross-peaks when the excitation pulses are temporally overlapped. As the time delays change, the spectra change as new peaks appear and their peak intensity and position change. Combined two-dimensional scans of the excitation frequency and time delay show the changes are caused by relaxation of the initially excited populations to other states that are coupled to the methyl and methylene stretching modes. Two dimensional time delay scans show that the coherence dephasing rates are very fast so fully coherent TRIVE FWM pathways involving multiple quantum coherences are not possible without shorter excitation pulses. Similar experiments involving the methyl and methylene bend and stretching modes identify cross-peaks between these modes and population transfer processes that create cross-peaks. The asymmetric methylene stretch/Fermi resonance band is observed to contain unresolved states that couple differently with the symmetric methylene stretching and scissor modes as well as with lower lying quantum states that are fed by population transfer. The TRIVE FWM data show that the multidimensional spectra are dominated by rapid population transfer within the methyl and methylene stretching modes and to lower quantum states that are coupled to the stretching modes.

  4. Electron Transport, Energy Transfer, and Optical Response in Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    White, Alexander James

    The last decade has seen incredible growth in the quality of experiments being done on single molecule junctions. Contemporary experimental measurements have expanded far beyond simple electron transport. Measurement of vibronic eects, quantum interference and decoherence eects, molecular optical response (Raman spectroscopy), and molecular spintronics are just some of the continuing areas of research in single molecule junctions. Experimental advancements demand advanced theoretical treatments, which can be used accurately within appropriate physical regimes, in order to understand measured phenomena and predict interesting directions for future study. In this dissertation we will study systems with strong intra-system interactions using a many-body states based approach. We will be focused on three related processes in molecular junctions: electron transport, electronic energy transfer, and molecular excitation. Inelastic electron transport in the regime of strong and nonlinear electron-vibration coupling within and outside of the Born-Oppenheimer regime will be investigated. To understand their appropriateness, we will compare simple semi-classical approximations in molecular redox junctions and electron-counting devices to fully quantum calculations based on many-body system states. The role of coherence and quantum interference in energy and electron transfer in molecular junctions is explored. Experiments that simultaneously measure surface enhanced Raman scattering and electron conduction have revealed a strong interaction between conducting electrons and molecular excitation. We investigate the role of the molecular response to a classical surface plasmon enhanced electric eld considering the back action of the oscillating molecular dipole. Raman scattering is quantum mechanical by nature and involves strong interaction between surface plasmons in the contacts and the molecular excitation. We develop a scheme for treating strong plasmon-molecular excitation

  5. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  6. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  7. Single-molecule detection: applications to ultrasensitive biochemical analysis

    NASA Astrophysics Data System (ADS)

    Castro, Alonso; Shera, E. Brooks

    1995-06-01

    Recent developments in laser-based detection of fluorescent molecules have made possible the implementation of very sensitive techniques for biochemical analysis. We present and discuss our experiments on the applications of our recently developed technique of single-molecule detection to the analysis of molecules of biological interest. These newly developed methods are capable of detecting and identifying biomolecules at the single-molecule level of sensitivity. In one case, identification is based on measuring fluorescence brightness from single molecules. In another, molecules are classified by determining their electrophoretic velocities.

  8. Single-molecule Measurements of DNA Topology and Topoisomerases*

    PubMed Central

    Neuman, Keir C.

    2010-01-01

    Topological properties of DNA influence its mechanical and biochemical interactions. Genomic DNA is maintained in a state of topological homeostasis by topoisomerases and is subjected to mechanical stress arising from replication and segregation. Despite their fundamental roles, the effects of topology and force have been difficult to ascertain. Developments in single-molecule manipulation techniques have enabled precise control and measurement of the topology of individual DNA molecules under tension. This minireview provides an overview of these single-molecule techniques and illustrates their unique capabilities through a number of specific examples of single-molecule measurements of DNA topology and topoisomerase activity. PMID:20382732

  9. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules.

    PubMed

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; Petkiewicz, Shayne; Smith, Jessica M; Ferry, Vivian E; Correia, Ana Luisa; Alivisatos, A Paul; Bissell, Mina J

    2015-07-01

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  10. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules

    DOE PAGES

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; Petkiewicz, Shayne; Smith, Jessica M.; Ferry, Vivian E.; Correia, Ana Luisa; Alivisatos, A. Paul; Bissell, Mina J.

    2015-06-03

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Lastly, such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  11. Single-molecule imaging at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vass, Hugh; Lucas Black, S.; Flors, Cristina; Lloyd, Diarmuid; Bruce Ward, F.; Allen, Rosalind J.

    2013-04-01

    Direct microscopic fluorescence imaging of single molecules can provide a wealth of mechanistic information, but up to now, it has not been possible under high pressure conditions, due to limitations in microscope pressure cell design. We describe a pressure cell window design that makes it possible to image directly single molecules at high hydrostatic pressure. We demonstrate our design by imaging single molecules of Alexa Fluor 647 dye bound to DNA, at 120 and 210 bar, and following their fluorescence photodynamics. We further show that the failure pressure of this type of pressure cell window can be in excess of 1 kbar.

  12. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    SciTech Connect

    Mandal, Aritra; Tokmakoff, Andrei

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.

  13. Approaching the single molecule. Interview by Kristie Nybo.

    PubMed

    Soloway, Paul

    2013-04-01

    Paul Soloway's development of single molecule approaches to study epigenetics caught our attention. Curious to know more, BioTechniques contacted him to find out about the ambition, character, and motivation that led to his success.

  14. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  15. Understanding Enzyme Activity Using Single Molecule Tracking (Poster)

    SciTech Connect

    Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

    2009-06-01

    This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

  16. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved. PMID:26192667

  17. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved.

  18. Electronic transport properties and orientation of individual Mn12 single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Voss, S.; Zander, O.; Fonin, M.; Rüdiger, U.; Burgert, M.; Groth, U.

    2008-10-01

    Individual Mn12 single-molecule magnets have been investigated by means of scanning tunneling spectroscopy at room temperature. Current-voltage characteristics of a Mn12 derivative are studied in detail and compared with simulations. A few-parameter scalar model for ballistic current flow through a single energy level is sufficient to describe the main features observed in scanning tunneling spectra of individual Mn12 molecules and offers a deeper insight into the electronic transport properties of this class of single-molecule magnets. In addition, distance-voltage spectroscopy performed on individual Mn12 molecules reveals a possibility to identify the orientation of the molecular easy axis. The results indicate a preferential orientation of the easy axis of the molecules nearly perpendicular to the surface.

  19. Probing molecular choreography through single-molecule biochemistry.

    PubMed

    van Oijen, Antoine M; Dixon, Nicholas E

    2015-12-01

    Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro-reconstituted systems of increasing complexity.

  20. An Improved Surface Passivation Method for Single-Molecule Studies

    PubMed Central

    Hua, Boyang; Young Han, Kyu; Zhou, Ruobo; Kim, Hajin; Shi, Xinghua; Abeysirigunawardena, Sanjaya C.; Jain, Ankur; Singh, Digvijay; Aggarwal, Vasudha; Woodson, Sarah A.; Ha, Taekjip

    2014-01-01

    We herein report a surface passivation method for in vitro single-molecule studies, which more efficiently prevents non-specific binding of biomolecules as compared to the polyethylene glycol surface. The new surface does not perturb the behavior and activities of tethered biomolecules. It can also be used for single-molecule imaging in the presence of high concentrations of labeled species in solution. Reduction in preparation time and cost is another major advantage. PMID:25306544

  1. 2012 VIBRATIONAL SPECTROSCOPY GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    Geiger, Franz

    2012-08-10

    The Vibrational Spectroscopy conference brings together experimentalists and theoreticians working at the frontiers of modern vibrational spectroscopy, with a special emphasis on spectroscopies that probe the structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear, and multidimensional spectroscopies. The conference highlights both the application of these techniques in chemistry, materials, biology, the environment, and medicine as well as the development of theoretical models that enable one to connect spectroscopic signatures to underlying molecular motions including chemical reaction dynamics. The conference goal is to advance the field of vibrational spectroscopy by bringing together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules, nanomaterials, and environmental systems.

  2. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip; Tinnefeld, Philip

    2012-05-01

    Single-molecule fluorescence spectroscopy and super-resolution microscopy are important elements of the ongoing technical revolution to reveal biochemical and cellular processes in unprecedented clarity and precision. Demands placed on the photophysical properties of the fluorophores are stringent and drive the choice of appropriate probes. Such fluorophores are not simple light bulbs of a certain color and brightness but instead have their own “personalities” regarding spectroscopic parameters, redox properties, size, water solubility, photostability, and several other factors. Here, we review the photophysics of fluorescent probes, both organic fluorophores and fluorescent proteins, used in applications such as particle tracking, single-molecule FRET, stoichiometry determination, and super-resolution imaging. Of particular interest is the thiol-induced blinking of Cy5, a curse for single-molecule biophysical studies that was later overcome using Trolox through a reducing/oxidizing system but a boon for super-resolution imaging owing to the controllable photoswitching. Understanding photophysics is critical in the design and interpretation of single-molecule experiments.

  3. Single-molecule analysis enables free solution hydrodynamic separation using yoctomole levels of DNA.

    PubMed

    Liu, Kelvin J; Rane, Tushar D; Zhang, Yi; Wang, Tza-Huei

    2011-05-11

    Single-molecule free solution hydrodynamic separation (SML-FSHS) cohesively integrates cylindrical illumination confocal spectroscopy with free solution hydrodynamic separation. This technique enables single-molecule analysis of size separated DNA with 100% mass detection efficiency, high sizing resolution and wide dynamic range, surpassing the performance of single molecule capillary electrophoresis. Furthermore, SML-FSHS required only a bare fused silica microcapillary and simple pressure control rather than complex high voltage power supplies, sieving matrices, and wall coatings. The wide dynamic range and high sizing resolution of SML-FSHS was demonstrated by separating both large DNA (23 vs 27 kbp) and small DNA (100 vs 200 bp) under identical conditions. Separations were successfully performed with near zero sample consumption using as little as 5 pL of sample and 240 yoctomoles (∼150 molecules) of DNA. Quantitative accuracy was predominantly limited by molecular shot noise. Furthermore, the ability of this method to analyze of single molecule nanosensors was investigated. SML-FSHS was used to examine the thermodynamic equilibrium between stochastically open molecular beacon and target-bound molecular beacon in the detection of E. coli 16s rRNA targets.

  4. Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic-vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-01

    Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3'-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ˜1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ˜1.5 times more strongly than on the electronic ground state.

  5. Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3′-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ∼1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ∼1.5 times more strongly than on the electronic ground state.

  6. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  7. Vibrational spectroscopy of cluster ions: Two novel methods

    SciTech Connect

    Yeh, L.I.; Okumura, M.; Myers, J.D.; Lee, Y.T.

    1987-07-01

    Two sensitive techniques are discussed for obtaining vibrational spectra of cluster ions. The first approach is to attach a H/sub 2/ molecule to the hydrated hydronium ions. Because the original goal was to study the hydrated hydronium ions, the attached H/sub 2/ is hoped to have only a small effect on the spectrum. After an O-H stretch of the cluster ion has been excited, it vibrationally predissociates, losing the H/sub 2/. By monitoring the dissociation product as a function of laser frequency, the absorption spectra of these H/sub 3/O/sup +/ . (H/sub 2/O)/sub n/ . H/sub 2/ (n = 1,2,3) ions have been found. The second approach is to detect the vibrationally excited H/sub 3/O/sup +/ . (H/sub 2/O)/sub n/ (n = 1,2,3) ions using an infrared multiphoton dissociation process. The procedure is to first excite from v = 0 to v = 1 in the O-H stretch using a tunable ir laser. We then make use of the fact that the density of states near v = 0 and v = 1 are very different, and the vibrationally excited ionic clusters, which contain many low frequency vibrations, are likely to be in the quasicontinuum region for the sequential excitation by a fixed frequency laser. This means that one can distinguish between ground state and vibrationally excited H/sub 3/O/sup +/ . (H/sub 2/O)/sub n/ by using a multiphoton dissociation (MPD) process to selectively dissociate the latter using a CO/sub 2/ laser. Once again, we monitor the dissociation product ion signal as a function of the excitation frequency of the first laser to get the absorption spectra of the H/sub 3/O/sup +/ . (H/sub 2/O)/sub n/ ions. 5 refs.

  8. Hydrogen Bonding and Vibrational Spectroscopy: A Theoretical Study

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2005-01-01

    Effects of hydrogen bonding on vibrational spectra are studied for several hydrogen-bonded complexes, in which hydrogen bonding ranges from weak (<5 kcal/mol) to very strong (>25 kcal/mol). The systems studied include complexes of inorganic acids and salts with water and ammonia, as well as complexes of several organic molecules (nitriles and amino acids) with water. Since anharmonic effects are very strong in hydrogen-bonded systems, anharmonic vibrational frequencies and infrared intensities are computed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. The most common spectral effects induced by hydrogen bonding are red shifts of stretching vibrational frequencies ranging from approx.200/cm to over 2000/cm and significant increases of infrared intensities for those bonds that participate in hydrogen bonding. However, some systems (e.g. nitrile-water complexes) exhibit shifts in the opposite direction (to the blue) upon formation of hydrogen bonds.

  9. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization and Orientation

    SciTech Connect

    Wang, Hongfei; Velarde, Luis; Gan, Wei; Fu, Li

    2015-04-01

    Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecular surface and interface.

  10. Conductance and Surface-Enhanced Raman Scattering of Single Molecules Utilizing Dimers of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dadosh, Tali

    conductance at certain voltage values. The position of peaks in the spectrum was affected by the electrostatic environment, resulting in random gating. In view of the above developments, my thesis focuses on surface-enhanced Raman scattering (SERS) measurement of single molecules. Single-molecule spectroscopy is an emerging field that provides detailed information on molecular response, which is unavailable in measurements performed on an assembly of molecules. The obvious problem, however, in implementing most spectroscopic techniques, such as Raman scattering, is the very weak signal obtained from a single molecule. Interestingly, the Raman signal from a molecule has been shown to increase dramatically when the molecule is adsorbed to metal particles of certain types having sub-wavelength dimensions [1, 2]. This enhancement technique, known as surface-enhanced Raman scattering, can increase the Raman signal by as much as 14--15 orders of magnitude, which has been shown to be sufficient for performing single-molecule spectroscopy successfully. Dimer structures are not only attractive for conductance measurements on single-molecule devices; they could also serve as an efficient antenna system that greatly enhances the electromagnetic field at the center of the dimer, where the molecule resides. Dimers provide a basic experimental model for studying the fundamentals of the SERS enhancement, which are not well understood. Dimers have the advantage of possessing a small gap (on the order of a nanometer) that is beyond the limit of today's sophisticated lithography techniques. By utilizing the dimer structures that contain a Rhodamine 123 molecule, we were able to resolve some fundamental questions regarding the SERS enhancement mechanism. The issue of how the nanoparticles' surface plasmon properties affects the SERS enhancement was addressed both experimentally and by calculations. Moreover, it was predicted by our calculations that when the dimers consist of large

  11. Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid

    NASA Astrophysics Data System (ADS)

    Shaw, Daniel J.; Adamczyk, Katrin; Frederix, Pim W. J. M.; Simpson, Niall; Robb, Kirsty; Greetham, Gregory M.; Towrie, Michael; Parker, Anthony W.; Hoskisson, Paul A.; Hunt, Neil T.

    2015-06-01

    The results of infrared spectroscopic investigations into the band assignments, vibrational relaxation, and solvation dynamics of the common anti-tuberculosis treatment Isoniazid (INH) are reported. INH is known to inhibit InhA, a 2-trans-enoyl-acyl carrier protein reductase enzyme responsible for the maintenance of cell walls in Mycobacterium tuberculosis but as new drug-resistant strains of the bacterium appear, next-generation therapeutics will be essential to combat the rise of the disease. Small molecules such as INH offer the potential for use as a biomolecular marker through which ultrafast multidimensional spectroscopies can probe drug binding and so inform design strategies but a complete characterization of the spectroscopy and dynamics of INH in solution is required to inform such activity. Infrared absorption spectroscopy, in combination with density functional theory calculations, is used to assign the vibrational modes of INH in the 1400-1700 cm-1 region of the infrared spectrum while ultrafast multidimensional spectroscopy measurements determine the vibrational relaxation dynamics and the effects of solvation via spectral diffusion of the carbonyl stretching vibrational mode. These results are discussed in the context of previous linear spectroscopy studies on solid-phase INH and its usefulness as a biomolecular probe.

  12. Quantitative study of single molecule location estimation techniques.

    PubMed

    Abraham, Anish V; Ram, Sripad; Chao, Jerry; Ward, E S; Ober, Raimund J

    2009-12-21

    Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

  13. Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection.

    PubMed

    Wu, Zhen; Zhou, Chuan-Hua; Pan, Liang-Jun; Zeng, Tao; Zhu, Lian; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-09-20

    Single molecule electrochemistry (SME) has gained much progress in fundamental studies, but it is difficult to use in practice due to its less reliability. We have solved the reliability of single molecule electrochemical detection by integration of digital analysis with efficient signal amplification of enzyme-induced metallization (EIM) together with high-throughput parallelism of microelectrode array (MA), establishing a digital single molecule electrochemical detection method (dSMED). Our dSMED has been successfully used for alkaline phosphatase (ALP) detection in the complex sample of liver cancer cells. Compared to direct measurement of the oxidation current of enzyme products, EIM can enhance signals by about 100 times, achieving signal-to-background ratio high enough for single molecule detection. The integration of digital analysis with SME can further decrease the detection limit of ALP to 1 aM relative to original 50 aM, enabling dSMED to be sensitively, specifically and reliably applied in liver cancer cells. The presented dSMED is enormously promising in exploring physical and chemical properties of single molecules, single biomolecular detection, or single-cell analysis.

  14. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. III. Water clustering and vibrational energy transfer.

    PubMed

    Gruenbaum, S M; Skinner, J L

    2013-11-01

    Water clustering and connectivity around lipid bilayers strongly influences the properties of membranes and is important for functions such as proton and ion transport. Vibrational anisotropic pump-probe spectroscopy is a powerful tool for understanding such clustering, as the measured anisotropy depends upon the time-scale and degree of intra- and intermolecular vibrational energy transfer. In this article, we use molecular dynamics simulations and theoretical vibrational spectroscopy to help interpret recent experimental measurements of the anisotropy of water in lipid multi-bilayers as a function of both lipid hydration level and isotopic substitution. Our calculations are in satisfactory agreement with the experiments of Piatkowski, Heij, and Bakker, and from our simulations we can directly probe water clustering and connectivity. We find that at low hydration levels, many water molecules are in fact isolated, although up to 70% of hydration water forms small water clusters or chains. At intermediate hydration levels, water forms a wide range of cluster sizes, while at higher hydration levels, the majority of water molecules are part of a large, percolating water cluster. Therefore, the size, number, and nature of water clusters are strongly dependent on lipid hydration level, and the measured anisotropy reflects this through its dependence on intermolecular energy transfer. PMID:24206336

  15. A Multi-State Single-Molecule Switch Actuated by Rotation of an Encapsulated Cluster within a Fullerene Cage

    SciTech Connect

    Huang, Tian; Zhao, Jin; Feng, Min; Popov, Alexey A.; Yang, Shangfeng; Dunsch, Lothar; Petek, Hrvoje

    2012-11-12

    We demonstrate a single-molecule switch based on tunneling electron-driven rotation of a triangular Sc₃N cluster within an icosahedral C 80 fullerene cage among three pairs of enantiomorphic configura-tions. Scanning tunneling microscopy imaging of switching within single molecules and electronic structure theory identify the conformational isomers and their isomerization pathways. Bias-dependent actionspectra and modeling identify the antisymmetric stretch vibration of Sc 3N cluster to be the gateway for energy transfer from the tunneling electrons to the cluster rotation. Hierarchical switching of conductivity through the internal cluster motion among multiple stationary states while maintaining a constant shape, is advantageous for the integration of endohedral fullerene-based single-molecule memory and logic devices into parallel molecular computing arc.

  16. Microwave spectroscopy of furfural in vibrationally excited states

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Alekseev, E. A.; Dyubko, S. F.

    2007-07-01

    The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.

  17. Vibrational energy flow in photoactive yellow protein revealed by infrared pump-visible probe spectroscopy.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio

    2015-05-14

    Vibrational energy flow in the electronic ground state of photoactive yellow protein (PYP) is studied by ultrafast infrared (IR) pump-visible probe spectroscopy. Vibrational modes of the chromophore and the surrounding protein are excited with a femtosecond IR pump pulse, and the subsequent vibrational dynamics in the chromophore are selectively probed with a visible probe pulse through changes in the absorption spectrum of the chromophore. We thus obtain the vibrational energy flow with four characteristic time constants. The vibrational excitation with an IR pulse at 1340, 1420, 1500, or 1670 cm(-1) results in ultrafast intramolecular vibrational redistribution (IVR) with a time constant of 0.2 ps. The vibrational modes excited through the IVR process relax to the initial ground state with a time constant of 6-8 ps in parallel with vibrational cooling with a time constant of 14 ps. In addition, upon excitation with an IR pulse at 1670 cm(-1), we observe the energy flow from the protein backbone to the chromophore that occurs with a time constant of 4.2 ps. PMID:25896223

  18. Electron Transport, Energy Transfer, and Optical Response in Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    White, Alexander

    2015-03-01

    The field of molecular electronics has grown significantly since the first measurements of single molecule conductance. The single molecule junction, a device in which two conducting leads are spanned by a single molecule, has become a powerful tool for studying charge transfer at the molecular level. While early experiments were focused on elastic electron conductance, today measurements of vibronic effects, molecular optical response, spintronics, thermal conductance, and quantum interference and decoherence effects are prominent areas of research. These new experimental advancements demand improved theoretical treatments which properly account for the interactions between different degrees of freedom: charge, electronic, vibrational, spin, etc.; all in physically relevant parameter ranges. This talk focuses on using a many-body states based approach to investigate the regime of strong interaction between these degrees of freedom, with relatively weak coupling between the molecule and the electric reservoirs created by the conducting leads. We focused on three related processes, electron transfer, electronic energy transfer and molecular excitation. In collaboraton with Boris Fainberg, Faculty of Sciences, Holon Institute of Technology; Sergei Tretiak, Theoretical Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory; and Michael Galperin, Department of Chemistry and Biochemistry, University of California San Diego.

  19. A vibrational spectroscopy study on anserine and its aqueous solutions.

    PubMed

    Akkaya, Y; Balci, K; Goren, Y; Akyuz, S; Stricker, M C; Stover, D D; Ritzhaupt, G; Collier, W B

    2015-01-01

    In this study based on vibrational spectroscopic measurements and Density Functional Theory (DFT), we aimed for a reliable interpretation of the IR and Raman spectra recorded for anserine in the solid phase and water (H2O) and heavy water (D2O) solutions. Initial DFT calculations at the B3LYP/6-31G(d) searched possible conformers of the anserine zwitterion using a systematic conformational search. The corresponding equilibrium geometrical parameters and vibrational spectral data were determined for each of the stable conformers (in water) by the geometry optimization and hessian calculations performed at the same level of theory using the polarized continuum model (PCM). The same calculations were repeated to determine the most energetically preferred dimer structure for the molecule and the associated geometry, force field and vibrational spectral data. The harmonic force constants obtained from these calculations were scaled by the Scaled Quantum Mechanical Force Field (SQM) method and then used in the calculation of the refined wavenumbers, potential energy distributions, IR and Raman intensities. These refined theoretical data, which confirm the zwitterion structure for anserine in the solid phase or aqueous solvents, revealed the remarkable effects of intermolecular hydrogen bonding on the structural properties and observed IR and Raman spectra of this molecule. PMID:25997178

  20. Quantum dots find their stride in single molecule tracking

    PubMed Central

    Bruchez, Marcel P.

    2011-01-01

    Thirteen years after the demonstration of quantum dots as biological imaging agents, and nine years after the initial commercial introduction of bioconjugated quantum dots, the brightness and photostability of the quantum dots has enabled a range of investigations using single molecule tracking. These materials are being routinely utilized by a number of groups to track the dynamics of single molecules in reconstituted biophysical systems and on living cells, and are especially powerful for investigations of single molecules over long timescales with short exposure times and high pointing accuracy. New approaches are emerging where the quantum dots are used as “hard-sphere” probes for intracellular compartments. Innovations in quantum dot surface modification are poised to substantially expand the utility of these materials. PMID:22055494

  1. Single-molecule decoding of combinatorially modified nucleosomes.

    PubMed

    Shema, Efrat; Jones, Daniel; Shoresh, Noam; Donohue, Laura; Ram, Oren; Bernstein, Bradley E

    2016-05-01

    Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation. PMID:27151869

  2. Single-molecule mechanochemical sensing using DNA origami nanostructures.

    PubMed

    Koirala, Deepak; Shrestha, Prakash; Emura, Tomoko; Hidaka, Kumi; Mandal, Shankar; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2014-07-28

    While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

  3. Single-Molecule Experiments in Vitro and in Silico

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Schulten, Klaus

    2007-05-01

    Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: “in silico” (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.

  4. The importance of surfaces in single-molecule bioscience

    PubMed Central

    Visnapuu, Mari-Liis; Duzdevich, Daniel

    2011-01-01

    The last ten years have witnessed an explosion of new techniques that can be used to probe the dynamic behavior of individual biological molecules, leading to discoveries that would not have been possible with more traditional biochemical methods. A common feature among these single-molecule approaches is the need for the biological molecules to be anchored to a solid support surface. This must be done under conditions that minimize nonspecific adsorption without compromising the biological integrity of the sample. In this review we highlight why surface attachments are a critical aspect of many single-molecule studies and we discuss current methods for anchoring biomolecules. Finally, we provide a detailed description of a new method developed by our laboratory for anchoring and organizing hundreds of individual DNA molecules on a surface, allowing “high-throughput” studies of protein–DNA interactions at the single-molecule level. PMID:18414737

  5. Single-molecule junctions with epitaxial graphene nanoelectrodes.

    PubMed

    Ullmann, Konrad; Coto, Pedro B; Leitherer, Susanne; Molina-Ontoria, Agustín; Martín, Nazario; Thoss, Michael; Weber, Heiko B

    2015-05-13

    On the way to ultraflat single-molecule junctions with transparent electrodes, we present a fabrication scheme based on epitaxial graphene nanoelectrodes. As a suitable molecule, we identified a molecular wire with fullerene anchor groups. With these two components, stable electrical characteristics could be recorded. Electrical measurements show that single-molecule junctions with graphene and with gold electrodes display a striking agreement. This motivated a hypothesis that the differential conductance spectra are rather insensitive to the electrode material. It is further corroborated by the assignment of asymmetries and spectral features to internal molecular degrees of freedom. The demonstrated open-access graphene electrodes and the electrode-insensitive molecules provide a model system that will allow for a thorough investigation of an individual single-molecule contact with additional probes.

  6. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  7. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media.

  8. Single-molecule junctions with epitaxial graphene nanoelectrodes.

    PubMed

    Ullmann, Konrad; Coto, Pedro B; Leitherer, Susanne; Molina-Ontoria, Agustín; Martín, Nazario; Thoss, Michael; Weber, Heiko B

    2015-05-13

    On the way to ultraflat single-molecule junctions with transparent electrodes, we present a fabrication scheme based on epitaxial graphene nanoelectrodes. As a suitable molecule, we identified a molecular wire with fullerene anchor groups. With these two components, stable electrical characteristics could be recorded. Electrical measurements show that single-molecule junctions with graphene and with gold electrodes display a striking agreement. This motivated a hypothesis that the differential conductance spectra are rather insensitive to the electrode material. It is further corroborated by the assignment of asymmetries and spectral features to internal molecular degrees of freedom. The demonstrated open-access graphene electrodes and the electrode-insensitive molecules provide a model system that will allow for a thorough investigation of an individual single-molecule contact with additional probes. PMID:25923590

  9. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media. PMID:26488257

  10. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  11. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    ERIC Educational Resources Information Center

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  12. Application of vibrational spectroscopy to the study of mineralized tissues (review).

    PubMed

    Carden, A; Morris, M D

    2000-07-01

    The infrared and Raman spectroscopy of bone and teeth tissues are reviewed. Characteristic spectra are obtained for both the mineral and protein components of these tissues. Vibrational spectroscopy is used to study the mineralization process, to define the chemical structure changes accompanying bone diseases, and to characterize interactions between prosthetic implants and tissues. Microspectroscopy allows acquisition of spatially resolved spectra, with micron scale resolution. Recently developed imaging modalities allow tissue imaging with chemical composition contrast.

  13. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    PubMed

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.

  14. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature

    PubMed Central

    Iwata, Kota; Yamazaki, Shiro; Mutombo, Pingo; Hapala, Prokop; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2015-01-01

    Atomic force microscopy is capable of resolving the chemical structure of a single molecule on a surface. In previous research, such high resolution has only been obtained at low temperatures. Here we demonstrate that the chemical structure of a single molecule can be clearly revealed even at room temperature. 3,4,9,10-perylene tetracarboxylic dianhydride, which is strongly adsorbed onto a corner-hole site of a Si(111)–(7 × 7) surface in a bridge-like configuration is used for demonstration. Force spectroscopy combined with first-principle calculations clarifies that chemical structures can be resolved independent of tip reactivity. We show that the submolecular contrast over a central part of the molecule is achieved in the repulsive regime due to differences in the attractive van der Waals interaction and the Pauli repulsive interaction between different sites of the molecule. PMID:26178193

  15. Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface

    PubMed Central

    Mannini, Matteo; Bertani, Federico; Tudisco, Cristina; Malavolti, Luigi; Poggini, Lorenzo; Misztal, Kasjan; Menozzi, Daniela; Motta, Alessandro; Otero, Edwige; Ohresser, Philippe; Sainctavit, Philippe; Condorelli, Guglielmo G.; Dalcanale, Enrico; Sessoli, Roberta

    2014-01-01

    Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on the spin transport. Going beyond the investigations focused on physisorbed SMMs, in this work the robust grafting of Terbium(III) bis(phthalocyaninato) complexes to silicon surface from a diluted solution is achieved by rational chemical design yielding the formation of a partially oriented monolayer on the conducting substrate. Here, by exploiting the surface sensitivity of X-ray circular magnetic dichroism we evidence an enhancement of the magnetic bistability of this single-molecule magnet, in contrast to the dramatic reduction of the magnetic hysteresis that characterises monolayer deposits evaporated on noble and ferromagnetic metals. Photoelectron spectroscopy investigations and density functional theory analysis suggest a non-innocent role played by the silicon substrate, evidencing the potentiality of this approach for robust integration of bistable magnetic molecules in electronic devices. PMID:25109254

  16. Coherent Interaction of Light and Single Molecules in a Dielectric Nanoguide

    NASA Astrophysics Data System (ADS)

    Faez, Sanli; Türschmann, Pierre; Haakh, Harald R.; Götzinger, Stephan; Sandoghdar, Vahid

    2014-11-01

    Many of the currently pursued experiments in quantum optics would greatly benefit from a strong interaction between light and matter. Here, we present a simple new scheme for the efficient coupling of single molecules and photons. A glass capillary with a diameter of 600 nm filled with an organic crystal tightly guides the excitation light and provides a maximum spontaneous emission coupling factor (β ) of 18% for the dye molecules doped in the organic crystal. A combination of extinction, fluorescence excitation, and resonance fluorescence spectroscopy with microscopy provides high-resolution spatiospectral access to a very large number of single molecules in a linear geometry. We discuss strategies for exploring a range of quantum-optical phenomena, including polaritonic interactions in a mesoscopic ensemble of molecules mediated by a single mode of propagating photons.

  17. Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions.

    PubMed

    Singh, Pradyumna S; Kätelhön, Enno; Mathwig, Klaus; Wolfrum, Bernhard; Lemay, Serge G

    2012-11-27

    Electrochemical detection of single molecules is being actively pursued as an enabler of new fundamental experiments and sensitive analytical capabilities. Most attempts to date have relied on redox cycling in a nanogap, which consists of two parallel electrodes separated by a nanoscale distance. While these initial experiments have demonstrated single-molecule detection at the proof-of-concept level, several fundamental obstacles need to be overcome to transform the technique into a realistic detection tool suitable for use in more complex settings (e.g., studying enzyme dynamics at single catalytic event level, probing neuronal exocytosis, etc.). In particular, it has become clearer that stochasticity--the hallmark of most single-molecule measurements--can become the key limiting factor on the quality of the information that can be obtained from single-molecule electrochemical assays. Here we employ random-walk simulations to show that this stochasticity is a universal feature of all single-molecule experiments in the diffusively coupled regime and emerges due to the inherent properties of brownian motion. We further investigate the intrinsic coupling between stochasticity and detection capability, paying particular attention to the role of the geometry of the detection device and the finite time resolution of measurement systems. We suggest concrete, realizable experimental modifications and approaches to mitigate these limitations. Overall, our theoretical analyses offer a roadmap for optimizing single-molecule electrochemical experiments, which is not only desirable but also indispensable for their wider employment as experimental tools for electrochemical research and as realistic sensing or detection systems. PMID:23106647

  18. Exploring one-state downhill protein folding in single molecules

    PubMed Central

    Liu, Jianwei; Campos, Luis A.; Cerminara, Michele; Wang, Xiang; Ramanathan, Ravishankar; English, Douglas S.; Muñoz, Victor

    2012-01-01

    A one-state downhill protein folding process is barrierless at all conditions, resulting in gradual melting of native structure that permits resolving folding mechanisms step-by-step at atomic resolution. Experimental studies of one-state downhill folding have typically focused on the thermal denaturation of proteins that fold near the speed limit (ca. 106 s-1) at their unfolding temperature, thus being several orders of magnitude too fast for current single-molecule methods, such as single-molecule FRET. An important open question is whether one-state downhill folding kinetics can be slowed down to make them accessible to single-molecule approaches without turning the protein into a conventional activated folder. Here we address this question on the small helical protein BBL, a paradigm of one-state downhill thermal (un)folding. We decreased 200-fold the BBL folding-unfolding rate by combining chemical denaturation and low temperature, and carried out free-diffusion single-molecule FRET experiments with 50-μs resolution and maximal photoprotection using a recently developed Trolox-cysteamine cocktail. These experiments revealed a single conformational ensemble at all denaturing conditions. The chemical unfolding of BBL was then manifested by the gradual change of this unique ensemble, which shifts from high to low FRET efficiency and becomes broader at increasing denaturant. Furthermore, using detailed quantitative analysis, we could rule out the possibility that the BBL single-molecule data are produced by partly overlapping folded and unfolded peaks. Thus, our results demonstrate the one-state downhill folding regime at the single-molecule level and highlight that this folding scenario is not necessarily associated with ultrafast kinetics. PMID:22184219

  19. Lucky imaging: improved localization accuracy for single molecule imaging.

    PubMed

    Cronin, Bríd; de Wet, Ben; Wallace, Mark I

    2009-04-01

    We apply the astronomical data-analysis technique, Lucky imaging, to improve resolution in single molecule fluorescence microscopy. We show that by selectively discarding data points from individual single-molecule trajectories, imaging resolution can be improved by a factor of 1.6 for individual fluorophores and up to 5.6 for more complex images. The method is illustrated using images of fluorescent dye molecules and quantum dots, and the in vivo imaging of fluorescently labeled linker for activation of T cells.

  20. Deciphering Complexity in Molecular Biophysics with Single-Molecule Resolution.

    PubMed

    Deniz, Ashok A

    2016-01-29

    The structural features and dynamics of biological macromolecules underlie the molecular biology and correct functioning of cells. However, heterogeneity and other complexity of these molecules and their interactions often lead to loss of important information in traditional biophysical experiments. Single-molecule methods have dramatically altered the conceptual thinking and experimental tests available for such studies, leveraging their ability to avoid ensemble averaging. Here, I discuss briefly the rise of fluorescence single-molecule methods over the past two decades, a few key applications, and end with a view to challenges and future prospects. PMID:26707199

  1. Structural dynamics of nucleosomes at single molecule resolution

    PubMed Central

    Choy, John S.; Lee, Tae-Hee

    2013-01-01

    The detailed mechanisms of how DNA that is assembled around a histone core can be accessed by DNA-binding proteins for transcription, replication, or repair, remain elusive nearly 40 years after Kornberg's nucleosome model was proposed. Uncovering the structural dynamics of nucleosomes is a crucial step in elucidating the mechanisms regulating genome accessibility. This requires the deconvolultion of multiple structural states within an ensemble. Recent advances in single molecule methods enable unprecedented efficiency in examining subpopulation dynamics. In this review, we summarize studies of nucleosome structure and dynamics from single molecule approaches and how they advance our understanding of the mechanisms that govern DNA transactions. PMID:22831768

  2. An improved surface passivation method for single-molecule studies.

    PubMed

    Hua, Boyang; Han, Kyu Young; Zhou, Ruobo; Kim, Hajin; Shi, Xinghua; Abeysirigunawardena, Sanjaya C; Jain, Ankur; Singh, Digvijay; Aggarwal, Vasudha; Woodson, Sarah A; Ha, Taekjip

    2014-12-01

    We report a surface passivation method based on dichlorodimethylsilane (DDS)-Tween-20 for in vitro single-molecule studies, which, under the conditions tested here, more efficiently prevented nonspecific binding of biomolecules than the standard poly(ethylene glycol) surface. The DDS-Tween-20 surface was simple and inexpensive to prepare and did not perturb the behavior and activities of tethered biomolecules. It can also be used for single-molecule imaging in the presence of high concentrations of labeled species in solution.

  3. Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Schmitz, Joel R.; Dolson, David A.

    2015-06-01

    Many third-year physical chemistry laboratory students in the US analyze the vibration-rotation spectrum of HCl in support of lecture concepts in quantum theory and molecular spectroscopy. Contemporary students in physical chemistry teaching laboratories increasingly have access to FTIR spectrometers with 1/8th wn resolution, which allows for expanded choices of molecules for vibration-rotation spectroscopy. Here we present the case for choosing HBr/DBr for such a study, where the 1/8th wn resolution enables the bromine isotopic lines to be resolved. Vibration-rotation lines from the fundamental and first-overtone bands of four hydrogen bromide isotopomers are combined in a global analysis to determine molecular spectroscopic constants. Sample production, spectral appearance, analysis and results will be presented for various resolutions commonly available in teaching laboratories.

  4. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    PubMed Central

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-01-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578

  5. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  6. Coherent Multidimensional Vibrational Spectroscopy of Biomolecules; Concepts, Simulations and Challenges

    PubMed Central

    Zhuang, Wei; Hayashi, Tomoyuki; Mukamel, Shaul

    2009-01-01

    The response of complex molecules to sequences of femtosecond infrared pulses provides a unique window into their structure, dynamics and fluctuating environments, as projected into the vibrational degrees of freedom. In this review we survey the basic principles of these novel two dimensional infrared (2DIR) analogues of multidimensional NMR. The perturbative approach for computing the nonlinear optical response of coupled localized chromophores is introduced and applied to the amide backbone transitions of protein, liquid water, membrane lipids, and amyloid fibrils. The signals are analyzed using classical MD simulations combined with an effective fluctuating Hamiltonian for coupled localized anharmonic vibrations whose dependence on the local electrostatic environment is parameterized by an ab initio map. Several simulation protocols. Including the Cumulant expansion of Gaussian Fluctuation (CGF), a quasiparticle scattering approach (NEE), the Stochastic Liouville Equations (SLE), and Direct Numerical Propagation are surveyed. These are implemented in a code SPECTRON that interfaces with standard electronic structure and molecular mechanisms MD codes. Chirality-induced techniques which dramatically enhance the resolution are demonstrated. Signatures of conformational and hydrogen bonding fluctuations, protein folding, and chemical exchange processes are discussed. PMID:19415637

  7. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    SciTech Connect

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-06-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2{nu}{sub 1} to 5{nu}{sub 1}) and free-jet action spectra of the second through the fourth overtones (3{nu}{sub 1} to 5{nu}{sub 1}) of the N{endash}H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N{endash}H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with {ital ab initio} calculations of East, Johnson, and Allen [J. Chem. Phys. {bold 98}, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N{endash}H stretching zero-order states are ones with a quantum of N{endash}H stretching excitation ({nu}{sub 1}) replaced by different combinations of N{endash}C{endash}O asymmetric or symmetric stretching excitation ({nu}{sub 2} or {nu}{sub 3}) and {ital trans}-bending excitation ({nu}{sub 4}). The two strongest couplings of the n{nu}{sub 1} state are to the states (n{minus}1){nu}{sub 1}+{nu}{sub 2}+{nu}{sub 4} and (n{minus}1){nu}{sub 1}+{nu}{sub 3}+2{nu}{sub 4}, and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N{endash}H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. {copyright} {ital 1999 American Institute of Physics.}

  8. Single-Molecule Electronic Measurements with Metal Electrodes

    ERIC Educational Resources Information Center

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  9. Effects of fixed pattern noise on single molecule localization microscopy.

    PubMed

    Long, F; Zeng, S Q; Huang, Z L

    2014-10-21

    The newly developed scientific complementary metal oxide semiconductor (sCMOS) cameras are capable of realizing fast single molecule localization microscopy without sacrificing field-of-view, benefiting from their readout speed which is significantly higher than that of conventional charge-coupled device (CCD) cameras. However, the poor image uniformity (suffered from fixed pattern noise, FPN) is a major obstruction for widespread use of sCMOS cameras in single molecule localization microscopy. Here we present a quantitative investigation on the effects of FPN on single molecule localization microscopy via localization precision and localization bias. We found that FPN leads to almost no effect on localization precision, but introduces a certain amount of localization bias. However, for a commercial Hamamatsu Flash 4.0 sCMOS camera, such localization bias is usually <2 nm and thus can be neglected for most localization microscopy experiments. This study addresses the FPN concern which worries researchers, and thus will promote the application of sCMOS cameras in single molecule localization microscopy.

  10. Single-molecule Studies of RNA Polymerase: Motoring Along

    PubMed Central

    Herbert, Kristina M.; Greenleaf, William J.; Block, Steven M.

    2010-01-01

    Single-molecule techniques have advanced our understanding of transcription by RNA polymerase. A new arsenal of approaches, including single-molecule fluorescence, atomic-force microscopy, magnetic tweezers, and optical traps have been employed to probe the many facets of the transcription cycle. These approaches supply fresh insights into the means by which RNA polymerase identifies a promoter; initiates transcription, translocates and pauses along the DNA template, proofreads errors, and ultimately terminates transcription. Results from single-molecule experiments complement knowledge gained from biochemical and genetic assays by facilitating the observation of states that are otherwise obscured by ensemble averaging, such as those resulting from heterogeneity in molecular structure, elongation rate, or pause propensity. Most studies to date have been performed with bacterial RNA polymerase, but work is also being carried out with eukaryotic polymerase (Pol II) and single-subunit polymerases from bacteriophages. We discuss recent progress achieved by single-molecule studies, highlighting some of the unresolved questions and ongoing debates. PMID:18410247

  11. Single Molecule Fluorescence Microscopy on Planar Supported Bilayers

    PubMed Central

    Axmann, Markus; Schütz, Gerhard J.; Huppa, Johannes B.

    2015-01-01

    In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues 1. This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light 2. Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode 3,4. They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment. PMID:26555335

  12. Giant single-molecule anisotropic magnetoresistance at room temperature.

    PubMed

    Li, Ji-Jun; Bai, Mei-Lin; Chen, Zhao-Bin; Zhou, Xiao-Shun; Shi, Zhan; Zhang, Meng; Ding, Song-Yuan; Hou, Shi-Min; Schwarzacher, Walther; Nichols, Richard J; Mao, Bing-Wei

    2015-05-13

    We report an electrochemically assisted jump-to-contact scanning tunneling microscopy (STM) break junction approach to create reproducible and well-defined single-molecule spintronic junctions. The STM break junction is equipped with an external magnetic field either parallel or perpendicular to the electron transport direction. The conductance of Fe-terephthalic acid (TPA)-Fe single-molecule junctions is measured and a giant single-molecule tunneling anisotropic magnetoresistance (T-AMR) up to 53% is observed at room temperature. Theoretical calculations based on first-principles quantum simulations show that the observed AMR of Fe-TPA-Fe junctions originates from electronic coupling at the TPA-Fe interfaces modified by the magnetic orientation of the Fe electrodes with respect to the direction of current flow. The present study highlights new opportunities for obtaining detailed understanding of mechanisms of charge and spin transport in molecular junctions and the role of interfaces in determining the MR of single-molecule junctions. PMID:25894840

  13. Statistics and Related Topics in Single-Molecule Biophysics

    PubMed Central

    Qian, Hong; Kou, S. C.

    2014-01-01

    Since the universal acceptance of atoms and molecules as the fundamental constituents of matter in the early twentieth century, molecular physics, chemistry and molecular biology have all experienced major theoretical breakthroughs. To be able to actually “see” biological macromolecules, one at a time in action, one has to wait until the 1970s. Since then the field of single-molecule biophysics has witnessed extensive growth both in experiments and theory. A distinct feature of single-molecule biophysics is that the motions and interactions of molecules and the transformation of molecular species are necessarily described in the language of stochastic processes, whether one investigates equilibrium or nonequilibrium living behavior. For laboratory measurements following a biological process, if it is sampled over time on individual participating molecules, then the analysis of experimental data naturally calls for the inference of stochastic processes. The theoretical and experimental developments of single-molecule biophysics thus present interesting questions and unique opportunity for applied statisticians and probabilists. In this article, we review some important statistical developments in connection to single-molecule biophysics, emphasizing the application of stochastic-process theory and the statistical questions arising from modeling and analyzing experimental data. PMID:25009825

  14. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  15. Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Lana, Cristiano

    2014-12-10

    The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12·26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990cm(-1) is assigned to the SO4(2-) symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069cm(-1) which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107cm(-1) assigned to the SO4(2-) antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622cm(-1) is assigned to the OH unit stretching vibration and the broad feature at around 3479cm(-1) to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made.

  16. Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Lana, Cristiano

    2014-12-01

    The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12·26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990 cm-1 is assigned to the SO42- symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069 cm-1 which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107 cm-1 assigned to the SO42- antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622 cm-1 is assigned to the OH unit stretching vibration and the broad feature at around 3479 cm-1 to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made.

  17. Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Lana, Cristiano

    2014-12-10

    The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12·26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990cm(-1) is assigned to the SO4(2-) symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069cm(-1) which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107cm(-1) assigned to the SO4(2-) antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622cm(-1) is assigned to the OH unit stretching vibration and the broad feature at around 3479cm(-1) to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made. PMID:24929311

  18. Vibrational spectroscopy and density functional theory study of ninhydrin

    NASA Astrophysics Data System (ADS)

    Li, Ran; Sui, Huimin; Liu, Peipie; Chen, Lei; Cheng, Jianbo; Zhao, Bing

    2015-02-01

    In this paper, ninhydrin was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. Based on the modeling results obtained at the B3LYP/6-311++G** level, all FTIR and Raman bands of the compound obtained experimentally were assigned. Our calculated vibrational frequencies are in good agreement with the experimental values. The molecular electrostatic potential surface calculation was performed and the result suggested that the ninhydrin had two potential hydrogen bond donors and four potential hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311++G** level.

  19. Vibrational spectroscopy and density functional theory study of ninhydrin.

    PubMed

    Li, Ran; Sui, Huimin; Liu, Peipie; Chen, Lei; Cheng, Jianbo; Zhao, Bing

    2015-02-01

    In this paper, ninhydrin was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. Based on the modeling results obtained at the B3LYP/6-311++G** level, all FTIR and Raman bands of the compound obtained experimentally were assigned. Our calculated vibrational frequencies are in good agreement with the experimental values. The molecular electrostatic potential surface calculation was performed and the result suggested that the ninhydrin had two potential hydrogen bond donors and four potential hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311++G** level. PMID:25459727

  20. Cation Far Infrared Vibrational Spectroscopy of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kong, W.; Zhang, J.; Han, F.

    2009-06-01

    The far infrared (FIR) region is crucial for spectroscopic investigations because of the existence of skeletal modes of moderately sized molecules. However, our knowledge of FIR modes is significantly lacking, largely due to the limited availability of light sources and detectors in this spectral region. The technique "pulsed field ionization zero kinetic energy electron spectroscopy" (PFI-ZEKE) is ideal for studies of FIR spectroscopy. This is because the low internal energy of the cation associated with the skeletal modes is particularly beneficial for the stability of the corresponding Rydberg states. In this work, we report our effort in studies of FIR spectroscopy of cationic polycyclic aromatic hydrocarbons (PAH). Using laser desorption, we can vaporize the non-volatile PAH for gas phase spectroscopy. To ensure the particle density and therefore the critical ion density in prolonging the lifetime of Rydberg electrons, we have used a "chamber-in-a-chamber" design and significantly shortened the distance between the desorption region and the detection region. From our studies of catacondensed PAHs, we have observed the emergence of the flexible waving modes with the increasing length of the molecular ribbon. Pericondensed PAHs, on the other hand, have shown significant out of plane IR active transitions. The planarity of the molecular frame is therefore a question of debate. The FIR modes are also interesting for another reason: they are also telltales of the precision of modern computational packages. The combination of experimental and theoretical studies will help with the identification of the chemical composition of the interstellar medium. This effort therefore directly serves the missions of the Spitzer Space Observatory and more importantly, the missions of the Herschel Space Observatory.

  1. Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics.

    PubMed

    Holmstrom, Erik D; Dupuis, Nicholas F; Nesbitt, David J

    2014-01-01

    Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10(-11) liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20-100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (<10 bp) and long (>10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation.

  2. Single-molecule dissection of the high-affinity cohesin–dockerin complex

    PubMed Central

    Stahl, Stefan W.; Nash, Michael A.; Fried, Daniel B.; Slutzki, Michal; Barak, Yoav; Bayer, Edward A.; Gaub, Hermann E.

    2012-01-01

    Cellulose-degrading enzyme systems are of significant interest from both a scientific and technological perspective due to the diversity of cellulase families, their unique assembly and substrate binding mechanisms, and their potential applications in several key industrial sectors, notably cellulose hydrolysis for second-generation biofuel production. Particularly fascinating are cellulosomes, the multimodular extracellular complexes produced by numerous anaerobic bacteria. Using single-molecule force spectroscopy, we analyzed the mechanical stability of the intermolecular interfaces between the cohesin and the dockerin modules responsible for self-assembly of the cellulosomal components into the multienzyme complex. The observed cohesin–dockerin rupture forces (>120 pN) are among the highest reported for a receptor–ligand system to date. Using an atomic force microscope protocol that quantified single-molecule binding activity, we observed force-induced dissociation of calcium ions from the duplicated loop–helix F-hand motif located within the dockerin module, which in the presence of EDTA resulted in loss of affinity to the cohesin partner. A cohesin amino acid mutation (D39A) that eliminated hydrogen bonding with the dockerin’s critically conserved serine residues reduced the observed rupture forces. Consequently, no calcium loss occurred and dockerin activity was maintained throughout multiple forced dissociation events. These results offer insights at the single-molecule level into the stability and folding of an exquisite class of high-affinity protein–protein interactions that dictate fabrication and architecture of cellulose-degrading molecular machines. PMID:23188794

  3. Pulsed IR Heating Studies of Single-Molecule DNA Duplex Dissociation Kinetics and Thermodynamics

    PubMed Central

    Holmstrom, Erik D.; Dupuis, Nicholas F.; Nesbitt, David J.

    2014-01-01

    Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10−11 liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20–100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (<10 bp) and long (>10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation. PMID:24411254

  4. Three-pulse photon echo of finite numbers of molecules: single-molecule traces.

    PubMed

    Dong, Hui; Fleming, Graham R

    2013-09-26

    In conventional bulk nonlinear spectroscopy, the contribution from molecules with different environmental conditions sometimes conceals the properties of interest and prevents the assessment of the heterogeneity of complex systems. This is especially true when exploring mechanisms of coherence loss in multicomponent systems [Ishizaki and Fleming, J. Phys. Chem. B 2011, 115, 6227]. To avoid this drawback of ensemble measurements and evaluate single-molecule behavior, a quantum theory is proposed to study the three-pulse photon echo signal of a two-level system in a bath and reveal the fluctuations inherent to single molecules. The current method takes advantage of the coherent state representation to understand the photon echo experiment in a wave function formalism rather than the reduced density matrix. Information regarding the environmental degrees of freedom (DoF) is explicitly encoded in the initial state of the system plus bath. The thermal fluctuations of the initial states induce variation of the photon echo signal, which is clearly different from the ensemble average echo signal. We use our formalism to demonstrate the recovery of the conventional ensemble response signal from the single-molecule signal.

  5. Single-stranded DNA scanning and deamination with Single molecule resolution

    NASA Astrophysics Data System (ADS)

    Rueda, David

    2012-04-01

    Over the past decade, single-molecule fluorescence resonance energy transfer spectroscopy (smFRET) has become an increasingly popular tool to study the structural dynamics of biopolymers, such as DNA, RNA and proteins. The most attractive aspect of single-molecule experiments is that, unlike ensemble-averaged techniques, they directly reveal the structural dynamics of individual molecules, which would otherwise be hidden in ensemble-averaged experiments. Here, we will present a novel single molecule assay to study, for the first time, scanning of an enzyme (APOBEC3G, involved in the defense against HIV) on single stranded DNA (ssDNA). We have investigated the ssDNA scanning and activity of Apo3G with smFRET. Our data show that Apo3G scans ssDNA randomly and bidirectionally with average excursion lengths of ˜ 10 å and ˜1 s-1 scanning rates. Apo3G quasi-localization is observed on highly reactive motifs located near the one end of the ssDNA. Motif-dependent ssDNA bending is also observed, where the bending is maximal for highly reactive targets located near the DNA end. Interestingly, both the Apo3G scanning and Apo3G-induced ssDNA bending is reduced with lowered ionic strength, indicating that Apo3G motion on ssDNA is facilitated by salt by reducing `electrostatic friction'. Although scanning is random, asymmetric catalytic orientation may be the reason for Apo3G directional activity.

  6. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  7. The potential of vibrational spectroscopy in the early detection of cervical cancer: an exciting emerging field

    NASA Astrophysics Data System (ADS)

    O Faolain, Eoghan; Hunter, Mary B.; Byrne, Joe M.; Kelehan, Peter; Byrne, Hugh J.; Lyng, Fiona M.

    2005-06-01

    The application of vibrational spectroscopy to disease diagnosis is a relatively new, rapidly evolving scientific field. Techniques such as Raman and infrared spectroscopy have shown great promise in this regard over the past number of years. This study directly compared Raman spectroscopy and synchrotron infrared (SR-IR) spectroscopy on parallel cervical cancer samples. Both frozen and dewaxed formalin fixed paraffin preserved tissue sections were examined. Both tissue types produced good quality Raman and SR-IR spectra, although the lesser processed, frozen tissue sections displayed the most detailed spectra. Spectroscopy was shown capable of discriminating between different cell types in normal cervical tissue. Spectra recorded from invasive carcinoma showed a marked difference from those recorded from normal cervical epithelial cells. Spectral differences identified with the onset of carcinogenesis include increased nucleic acid contributions and decreased glycogen levels. These investigations pave the way for an enlarged study into this exciting new diagnostic field.

  8. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  9. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability

    PubMed Central

    Schwartz, Jerrod J.; Stavrakis, Stavros; Quake, Stephen R.

    2014-01-01

    Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K)1, the field has since advanced to include room-temperature observations2, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro3–4 and in vivo5–6. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 μm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime. PMID:20023643

  10. Vibrational spectroscopy for online monitoring of extraction solvent degradation products

    SciTech Connect

    Peterson, J.; Robinson, T.; Bryan, S.A.; Levitskaia, T.G.

    2013-07-01

    In our research, we are exploring the potential of online monitoring of the organic solvents for the flowsheets relevant to the used nuclear fuel reprocessing and tributyl phosphate (TBP)- based extraction processes in particular. Utilization of vibrational spectroscopic techniques permits the discrimination of the degradation products from the primary constituents of the loaded extraction solvent. Multivariate analysis of the spectral data facilitates development of the regression models for their quantification in real time and potentially enables online implementation of a monitoring system. Raman and FTIR spectral databases were created and used to develop the regression partial least squares (PLS) chemometric models for the quantitative prediction of HDBP (dibutyl phosphoric acid) degradation product, TBP, and UO{sub 2}{sup 2+} extraction organic product phase. It was demonstrated that both these spectroscopic techniques are suitable for the quantification of the Purex solvent components in the presence of UO{sub 2}(NO{sub 3}){sub 2}. Developed PLS models successfully predicted HDBP and TBP organic concentrations in simulated Purex solutions.

  11. A gate-tunable single-molecule diode

    NASA Astrophysics Data System (ADS)

    Perrin, Mickael L.; Galán, Elena; Eelkema, Rienk; Thijssen, Joseph M.; Grozema, Ferdinand; van der Zant, Herre S. J.

    2016-04-01

    In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram-Ratner rectifier that exploits the orbital structure of the molecule. The experimental realization of single-molecule rectifiers, however, has proven to be challenging. In this work, we report on the experimental realization of a gate-tunable single-molecule rectifier with rectification ratios as high as 600. The rectification mechanism arises from the molecular structure and relies on the presence of two conjugated sites that are weakly coupled through a saturated linker. The observed gate dependence not only demonstrates tunability of the rectification ratio, it also shows that the proposed rectification mechanism based on the orbital structure is operative in the molecule.In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram-Ratner rectifier that exploits the orbital structure of the molecule. The experimental realization of single-molecule rectifiers, however, has proven to be challenging. In this work, we report on the experimental realization of a gate-tunable single-molecule rectifier with rectification ratios as high as 600. The rectification mechanism arises from the molecular structure and relies on the presence of two conjugated sites that are weakly coupled through a saturated linker. The observed gate dependence not only demonstrates tunability of the rectification ratio, it also shows that the proposed rectification mechanism based on the orbital structure is operative in the molecule. Electronic supplementary information (ESI) available: DFT calculations on the DPE molecule, three-terminal measurements on the DPE molecule, additional analysis

  12. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering

    PubMed Central

    Kneipp, Janina; Kneipp, Harald; Kneipp, Katrin

    2006-01-01

    Two-photon excitation is gaining rapidly in interest and significance in spectroscopy and microscopy. Here we introduce a new approach that suggests versatile optical labels suitable for both one- and two-photon excitation and also two-photon-excited ultrasensitive, nondestructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states called hyper-Raman scattering (HRS). The rather weak effect can be strengthened greatly if HRS takes place in the local optical fields of gold and silver nanostructures. This so-called surface-enhanced HRS (SEHRS) is the two-photon analogue to surface-enhanced Raman scattering (SERS). SEHRS provides structurally sensitive vibrational information complementary to those obtained by SERS. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy and the high-sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy. We infer effective two-photon cross-sections for SEHRS on the order of 10−46 to 10−45 cm4·s, similar to or higher than the best “action” cross-sections (product of the two-photon absorption cross-section and fluorescence quantum yield) for two-photon fluorescence, and we demonstrate HRS on biological structures such as single cells after incubation with gold nanoparticles. PMID:17088534

  13. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry.

    PubMed

    Lee, Joongoo; Boersma, Arnold J; Boudreau, Marc A; Cheley, Stephen; Daltrop, Oliver; Li, Jianwei; Tamagaki, Hiroko; Bayley, Hagan

    2016-09-27

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  14. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    PubMed Central

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  15. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    SciTech Connect

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  16. High thermopower of mechanically stretched single-molecule junctions.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide; Taniguchi, Masateru

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  17. Light Sheet Microscopy for Single Molecule Tracking in Living Tissue

    PubMed Central

    Ritter, Jörg Gerhard; Veith, Roman; Veenendaal, Andreas; Siebrasse, Jan Peter; Kubitscheck, Ulrich

    2010-01-01

    Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 µm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems. PMID:20668517

  18. A Single-Molecule Study of RNA Catalysis and Folding

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaowei; Bartley, Laura E.; Babcock, Hazen P.; Russell, Rick; Ha, Taekjip; Herschlag, Daniel; Chu, Steven

    2000-06-01

    Using fluorescence microscopy, we studied the catalysis by and folding of individual Tetrahymena thermophila ribozyme molecules . The dye-labeled and surface-immobilized ribozymes used were shown to be functionally indistinguishable from the unmodified free ribozyme in solution. A reversible local folding step in which a duplex docks and undocks from the ribozyme core was observed directly in single-molecule time trajectories, allowing the determination of the rate constants and characterization of the transition state. A rarely populated docked state, not measurable by ensemble methods, was observed. In the overall folding process, intermediate folding states and multiple folding pathways were observed. In addition to observing previously established folding pathways, a pathway with an observed folding rate constant of 1 per second was discovered. These results establish single-molecule fluorescence as a powerful tool for examining RNA folding.

  19. Single-Molecule Observation of Prokaryotic DNA Replication

    PubMed Central

    Tanner, Nathan A.; van Oijen, Antoine M.

    2010-01-01

    Recent advances in optical imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and study the dynamic properties of processes that are challenging to elucidate using ensemble-averaging techniques. The use of single-molecule approaches has proven to be particularly successful in the study of the dynamic interactions between the components at the replication fork. In this section, we describe the methods necessary for in vitro single-molecule studies of prokaryotic replication systems. Through these experiments, accurate information can be obtained on the rates and processivities of DNA unwinding and polymerization. The ability to monitor in real time the progress of a single replication fork allows for the detection of short-lived, intermediate states that would be difficult to visualize in bulk-phase assays. PMID:19563119

  20. Single molecule insights on conformational selection and induced fit mechanism.

    PubMed

    Hatzakis, Nikos S

    2014-02-01

    Biomolecular interactions regulate a plethora of vital cellular processes, including signal transduction, metabolism, catalysis and gene regulation. Regulation is encoded in the molecular properties of the constituent proteins; distinct conformations correspond to different functional outcomes. To describe the molecular basis of this behavior, two main mechanisms have been advanced: 'induced fit' and 'conformational selection'. Our understanding of these models relies primarily on NMR, computational studies and kinetic measurements. These techniques report the average behavior of a large ensemble of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition. PMID:24342874

  1. Controlling single-molecule junction conductance by molecular interactions

    PubMed Central

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  2. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    NASA Astrophysics Data System (ADS)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  3. High thermopower of mechanically stretched single-molecule junctions

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  4. Controlling single-molecule junction conductance by molecular interactions

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-07-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment.

  5. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R.; Hildenbrand, Heiko; Engel, Volker

    2015-07-01

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  6. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion.

    PubMed

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  7. Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy.

    PubMed

    Han, Dongjia; Xue, Bing; Du, Juan; Kobayashi, Takayoshi; Miyatake, Tomohiro; Tamiaki, Hitoshi; Xing, Xin; Yuan, Wei; Li, Yanyan; Leng, Yuxin

    2016-09-21

    Quantum coherences between excitonic states are believed to have a substantial impact on excitation energy transfer in photosynthetic systems. Here, the excitonic and vibrational coherence relaxation dynamics of artificially synthetic chlorosomes are studied by a sub 7 fs negative-time-delay laser spectroscopy at room temperature. The results provide direct evidence for the quantum coherence of the excitonic dephasing time of 23 ± 1 fs at physiologically relevant temperatures, which is significant in the initial step of energy transfer in chlorosome or chlorosome-like photosynthetic systems. Meanwhile, coherent molecular vibrations in the excited state are also detected without the effect of wave-packet motion in the ground state, which shows that the excited state wave-packet motion contributes greatly to the vibrational modes of ∼150 and ∼1340 cm(-1) in artificial chlorosome systems. PMID:27531576

  8. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker; Gomez, Sandra; Sola, Ignacio R.

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  9. Density Functional Theory with Dissipation: Transport through Single Molecules

    SciTech Connect

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  10. Single molecule imaging of NGF axonal transport in microfluidic devices

    PubMed Central

    Zhang, Kai; Osakada, Yasuko; Vrljic, Marija; Chen, Liang; Mudrakola, Harsha V.

    2010-01-01

    Nerve growth factor (NGF) signaling begins at the nerve terminal, where it binds and activates membrane receptors and subsequently carries the cell-survival signal to the cell body through the axon. A recent study revealed that the majority of endosomes contain a single NGF molecule, which makes single molecule imaging an essential tool for NGF studies. Despite being an increasingly popular technique, single molecule imaging in live cells is often limited by background fluorescence. Here, we employed a microfluidic culture platform to achieve background reduction for single molecule imaging in live neurons. Microfluidic devices guide the growth of neurons and allow separately-controlled microenvironment for cell bodies or axon termini. Designs of microfluidic devices were optimized and a three-compartment device successfully achieved direct observation of axonal transport of single NGF when quantum dot labeled NGF (Qdot-NGF) was applied only to the distal-axon compartment while imaging was carried out exclusively in the cell-body compartment. Qdot-NGF was shown to move exclusively toward the cell body with a characteristic stop-and-go pattern of movements. Measurements at various temperatures show that the rate of NGF retrograde transport decreased exponentially over the range of 36–14°C. A 10°C decrease in temperature resulted in a threefold decrease in the rate of NGF retrograde transport. Our successful measurements of NGF transport suggest that the microfluidic device can serve as a unique platform for single molecule imaging of molecular processes in neurons. PMID:20623041

  11. Single molecule conductance: Role of electrode morphology at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ravi, Divakar; Karthika, C. P.; Sen, Arijit

    2013-02-01

    We investigate the effect of nanoelectrode morphology on the charge transport in σ-saturated molecular junctions. Single-molecule conductance through coaxial gold nanowires turns out to be about three times higher than that through hollow gold nanotubes with similar chirality. However, the device conductance remains the same for molecular junctions with electrodes comprising planar and tubular gold nanowires, respectively. Manipulation of nanoelectrodes could thus open up new possibilities for more flexible yet stable nanoelectronic devices.

  12. Origin of discrete current fluctuations in a single molecule junction.

    PubMed

    Xiang, Dong; Lee, Takhee; Kim, Youngsang; Mei, Tingting; Wang, Qingling

    2014-11-21

    A series of fresh molecular junctions at a single molecule level were created and the current fluctuations were studied as electrons passed through them. Our results indicate that telegraph-like current fluctuations at room temperature neither originate from electron trapping/detrapping processes nor from molecule re-conformation. Our results will be helpful in better understanding the mechanism of current fluctuations. PMID:25271483

  13. Vibrational Spectroscopy of Transient Dipolar Radicals via Autodetachment of Dipole-Bound States of Cold Anions

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Dau, Phuong Diem; Wang, Lai-Sheng

    2014-06-01

    High-resolution vibrational spectroscopy of transient species is important for determining their molecular structures and understanding their chemical reactivity. However, the low abundance and high reactivity of molecular radicals pose major challenges to conventional absorption spectroscopic methods. The observation of dipole-bound states (DBS) in anions extend autodetachment spectroscopy to molecular anions whose corresponding neutral radicals possess a large enough dipole moment (>2.5 D).1,2 However, due to the difficulty of assigning the congested spectra at room temperature, there have been only a limited number of autodetachment spectra via DBS reported. Recently, we have built an improved version of a cold trap3 coupled with high-resolution photoelectron imaging.4 The first observation of mode-specific auotodetachment of DBS of cold phenoxide have shown that not only vibrational hot bands were completely suppressed, but also rotational profile was observed.5 The vibrational frequencies of the DBS were found to be the same as those of the neutral radical, suggesting that vibrational structures of dipolar radicals can be probed via DBS.5 More significantly, the DBS resonances allowed a number of vibrational modes with very weak Frank-Condon factors to be "lightened" up via vibrational autodetachment.5 Recently, our first high-resolution vibrational spectroscopy of the dehydrogenated uracil radical, with partial rotational resolution, via autodetachment from DBS of cold deprotonated uracil anions have been reported.6 Rich vibrational information is obtained for this important radical species. The resolved rotational profiles also allow us to characterize the rotational temperature of the trapped anions for the first time.6 1 K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, and W. C. Lineberger, J. Chem. Phys. 87, 6842 (1987). 2 D. M. Wetzel, and J. I. Brauman, J. Chem. Phys. 90, 68 (1989). 3 P. D. Dau, H. T. Liu, D. L. Huang, and L. S. Wang, J. Chem. Phys

  14. Microwave Spectroscopy of the Excited Vibrational States of Methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John; Daly, Adam M.; Bermúdez, Celina

    2015-06-01

    Methanol is the simplest molecule with a three-fold internal rotation and the observation of its νb{8} band served the primary catalyst for the development of internal rotation theory(a,b). The 75 subsequent years of investigation into the νb{8} band region have yielded a large number assignments, numerous high precision energy levels and a great deal of insight into the coupling of νb{t}=3 & 4 with νb{8}, νb{7}, νb{11} and other nearby states(c). In spite of this progress numerous assignment mysteries persist, the origin of almost half the far infrared laser lines remain unknown and all attempts to model the region quantum mechanically have had very limited success. The C3V internal rotation Hamiltonian has successfully modeled the νb{t}=0,1 & 2 states of methanol and other internal rotors(d). However, successful modeling of the coupling between torsional bath states and excited small amplitude motion remains problematic and coupling of multiple interacting excited small amplitude vibrations featuring large amplitude motions remains almost completely unexplored. Before such modeling can be attempted, identifying the remaining low lying levels of νb{7} and νb{11} is necessary. We present an investigation into the microwave spectrum of νb{7}, νb{8} and νb{11} along with the underlying torsional bath states in νb{t}=3 and νb{t}= 4. (a) A. Borden, E.F. Barker J. Chem. Phys., 6, 553 (1938). (b) J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). (c) R. M. Lees, Li-Hong Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, J. Mol. Spectrosc. 243, 168 (2007). (d) L.-H. Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman J. Mol. Spectrosc., 251, 305 (2008).

  15. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    PubMed

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  16. Predicting single-molecule conductance through machine learning

    NASA Astrophysics Data System (ADS)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-10-01

    We present a robust machine learning model that is trained on the experimentally determined electrical conductance values of approximately 120 single-molecule junctions used in scanning tunnelling microscope molecular break junction (STM-MBJ) experiments. Quantum mechanical, chemical, and topological descriptors are used to correlate each molecular structure with a conductance value, and the resulting machine-learning model can predict the corresponding value of conductance with correlation coefficients of r 2 = 0.95 for the training set and r 2 = 0.78 for a blind testing set. While neglecting entirely the effects of the metal contacts, this work demonstrates that single molecule conductance can be qualitatively correlated with a number of molecular descriptors through a suitably trained machine learning model. The dominant features in the machine learning model include those based on the electronic wavefunction, the geometry/topology of the molecule as well as the surface chemistry of the molecule. This model can be used to identify promising molecular structures for use in single-molecule electronic circuits and can guide synthesis and experiments in the future.

  17. Single-molecule sensing electrode embedded in-plane nanopore

    PubMed Central

    Tsutsui, Makusu; Rahong, Sakon; Iizumi, Yoko; Okazaki, Toshiya; Taniguchi, Masateru; Kawai, Tomoji

    2011-01-01

    Electrode-embedded nanopore is considered as a promising device structure for label-free single-molecule sequencing, the principle of which is based on nucleotide identification via transverse electron tunnelling current flowing through a DNA translocating through the pore. Yet, fabrication of a molecular-scale electrode-nanopore detector has been a formidable task that requires atomic-level alignment of a few nanometer sized pore and an electrode gap. Here, we report single-molecule detection using a nucleotide-sized sensing electrode embedded in-plane nanopore. We developed a self-alignment technique to form a nanopore-nanoelectrode solid-state device consisting of a sub-nanometer scale electrode gap in a 15 nm-sized SiO2 pore. We demonstrate single-molecule counting of nucleotide-sized metal-encapsulated fullerenes in a liquid using the electrode-integrated nanopore sensor. We also performed electrical identification of nucleobases in a DNA oligomer, thereby suggesting the potential use of this synthetic electrode-in-nanopore as a platform for electrical DNA sequencing. PMID:22355565

  18. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    NASA Astrophysics Data System (ADS)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  19. Viruses and Tetraspanins: Lessons from Single Molecule Approaches

    PubMed Central

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-01-01

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed. PMID:24800676

  20. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. PMID:27653486

  1. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique.

  2. Automated multidimensional single molecule fluorescence microscopy feature detection and tracking.

    PubMed

    Rolfe, Daniel J; McLachlan, Charles I; Hirsch, Michael; Needham, Sarah R; Tynan, Christopher J; Webb, Stephen E D; Martin-Fernandez, Marisa L; Hobson, Michael P

    2011-10-01

    Characterisation of multi-protein interactions in cellular networks can be achieved by optical microscopy using multidimensional single molecule fluorescence imaging. Proteins of different species, individually labelled with a single fluorophore, can be imaged as isolated spots (features) of different colour light in different channels, and their diffusive behaviour in cells directly measured through time. Challenges in data analysis have, however, thus far hindered its application in biology. A set of methods for the automated analysis of multidimensional single molecule microscopy data from cells is presented, incorporating Bayesian segmentation-based feature detection, image registration and particle tracking. Single molecules of different colours can be simultaneously detected in noisy, high background data with an arbitrary number of channels, acquired simultaneously or time-multiplexed, and then tracked through time. The resulting traces can be further analysed, for example to detect intensity steps, count discrete intensity levels, measure fluorescence resonance energy transfer (FRET) or changes in polarisation. Examples are shown illustrating the use of the algorithms in investigations of the epidermal growth factor receptor (EGFR) signalling network, a key target for cancer therapeutics, and with simulated data.

  3. Application of Recognition Tunneling in Single Molecule Identification

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan

    Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate of a conventional Scanning Tunneling Microscope with recognition molecules ("tethered molecule-pair" configuration), analyte molecules trapped in the gap that is formed by probe and substrate will bond with the reagent molecules. The stochastic bond formation/breakage fluctuations give insight into the nature of the intermolecular bonding at a single molecule-pair level. The distinct time domain and frequency domain features of tunneling signals were extracted from raw signals of analytes such as amino acids and their enantiomers. The Support Vector Machine (a machine-learning method) was used to do classification and predication based on the signal features generated by analytes, giving over 90% accuracy of separation of up to seven analytes. This opens up a new interface between chemistry and electronics with immediate implications for rapid Peptide/DNA sequencing and molecule identification at single molecule level.

  4. Semisynthetic protein nanoreactor for single-molecule chemistry

    PubMed Central

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203

  5. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  6. Single-molecule observation of prokaryotic DNA replication.

    PubMed

    Geertsema, Hylkje J; Duderstadt, Karl E; van Oijen, Antoine M

    2015-01-01

    Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems.

  7. Modular stitching to image single-molecule DNA transport.

    PubMed

    Guan, Juan; Wang, Bo; Bae, Sung Chul; Granick, Steve

    2013-04-24

    For study of time-dependent conformation, all previous single-molecule imaging studies of polymer transport involve fluorescence labeling uniformly along the chain, which suffers from limited resolution due to the diffraction limit. Here we demonstrate the concept of submolecular single-molecule imaging with DNA chains assembled from DNA fragments such that a chain is labeled at designated spots with covalently attached fluorescent dyes and the chain backbone with dyes of different color. High density of dyes ensures good signal-to-noise ratio to localize the designated spots in real time with nanometer precision and prevents significant photobleaching for long-time tracking purposes. To demonstrate usefulness of this approach, we image electrophoretic transport of λ-DNA through agarose gels. The unexpected pattern is observed that one end of each molecule tends to stretch out in the electric field while the other end remains quiescent for some time before it snaps forward and the stretch-recoil cycle repeats. These features are neither predicted by prevailing theories of electrophoresis mechanism nor detectable by conventional whole-chain labeling methods, which demonstrate pragmatically the usefulness of modular stitching to reveal internal chain dynamics of single molecules.

  8. Single-molecule imaging studies of protein dynamics

    NASA Astrophysics Data System (ADS)

    Zareh, Shannon Kian G.

    2011-12-01

    Single-molecule fluorescence imaging is a powerful method for studying biological events. The work of this thesis primarily focuses on single molecule studies of the dynamics of Green Fluorescent Protein (GFP) and other fluorescent-labeled proteins by utilizing Total Internal Reflection Fluorescence (TIRF) microscopy and imaging. The single molecule experiments of this thesis covered three broad topics. First, the adsorption mechanisms of proteins onto hydrophobic and hydrophilic fused silica surfaces were imaged and reversible and irreversible adsorption mechanisms were observed. The second topic covered a new technique for measuring the diffusion coefficient of Brownian diffusing proteins, in particular GFP, in solution via a single image. The corresponding experiments showed a relationship between the intensity profile width and the diffusion coefficient of the diffusing molecules. The third topic covered an in vivo experiment involving imaging and quantifying prokaryotic cell metabolism protein dynamics inside the Bacillus subtilis bacteria, in which a helical diffusion pattern for the protein was observed. These topics are presented in the chronological order of the experiments conducted.

  9. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  10. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure. PMID:26052177

  11. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    PubMed

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. PMID:23257343

  12. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W. W.; , Francis E. Jenney, Jr.; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2013-12-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  13. Observation of Fe-H/D modes by nuclear resonant vibrational spectroscopy.

    PubMed

    Bergmann, Uwe; Sturhahn, Wolfgang; Linn, Donald E; Jenney, Francis E; Adams, Michael W W; Rupnik, Kresimir; Hales, Brian J; Alp, Ercan E; Mayse, Aaron; Cramer, Stephen P

    2003-04-01

    Metal-hydrogen bonding is important in chemistry and catalysis, but H atoms are often difficult to observe, especially in metalloproteins. In this work we show that Fe-H interactions can be probed by nuclear resonance vibrational spectroscopy at the 14.4 keV 57Fe nuclear resonance. An important advantage of this method, compared to Raman and IR spectroscopy, is the selectivity for modes that involve 57Fe motion. We present data on the FeS4 site in rubredoxin and the [FeH(D)6]2- ion. Prospects for studying more complex systems are discussed.

  14. Observation of Fe-H/D Modes by Nuclear Resonant Vibrational Spectroscopy

    SciTech Connect

    Bergman, U B; Sturhahn, W; Linn, D E; Jenny, F E; Adams, M W. W.; Rupnik, K; Hales, B J; Alp, E E; Mayse, A; Cramer, S P; XFD,

    2003-04-01

    Metal-hydrogen bonding is important in chemistry and catalysis, but H atoms are often difficult to observe, especially in metalloproteins. In this work we show that Fe-H interactions can be probed by nuclear resonance vibrational spectroscopy at the 14.4 keV 57Fe nuclear resonance. An important advantage of this method, compared to Raman and IR spectroscopy, is the selectivity for modes that involve {sup 57}Fe motion. We present data on the FeS{sub 4} site in rubredoxin and the [FeH(D){sub 6}]{sup 2-} ion. Prospects for studying more complex systems are discussed.

  15. Surface vibrational modes of alpha-quartz(0001) probed by sum-frequency spectroscopy.

    PubMed

    Liu, Wei-Tao; Shen, Y R

    2008-07-01

    Infrared-visible sum-frequency spectroscopy was used to probe surface vibrations of alpha-quartz(0001) under ambient conditions. Two modes at 880 and 980 cm(-1) were observed and identified as arising from Si-O-Si and Si-OH structures of the surface. Heat treatment and hydroxylation could convert Si-OH to Si-O-Si and vice versa. The technique is generally applicable to studies of surface phonons of other oxides, semiconductors, and insulators. PMID:18764125

  16. Vibrational spectrum of γ-HNIW investigated using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Lantao; Hu, Ying; Zhang, Yan; Zhang, Cunlin; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    Experimental and theoretical investigations of the vibration spectrum of γ-Hexanitrohexaazaisowurtzitane in the region of 0.2-2.5 terahertz are presented for the first time. The refraction index, absorption coefficient, and complex dielectric function of this sample are measured by terahertz time-domain spectroscopy. The simulated spectrum using density functional theory (DFT) is in agreement with the experimental data. The observed spectra features are assigned based on DFT calculation.

  17. Vibrational spectrum of gamma-HNIW investigated using terahertz time-domain spectroscopy.

    PubMed

    Guo, Lantao; Hu, Ying; Zhang, Yan; Zhang, Cunlin; Chen, Yunqing; Zhang, X-C

    2006-04-17

    Experimental and theoretical investigations of the vibration spectrum of gamma-Hexanitrohexaazaisowurtzitane in the region of 0.2-2.5 terahertz are presented for the first time. The refraction index, absorption coefficient, and complex dielectric function of this sample are measured by terahertz time-domain spectroscopy. The simulated spectrum using density functional theory (DFT) is in agreement with the experimental data. The observed spectra features are assigned based on DFT calculation.

  18. Phthalocyanine adsorption to graphene on Ir(111): Evidence for decoupling from vibrational spectroscopy

    SciTech Connect

    Endlich, M. Gozdzik, S.; Néel, N.; Kröger, J.; Rosa, A. L. da; Frauenheim, T.; Wehling, T. O.

    2014-11-14

    Phthalocyanine molecules have been adsorbed to Ir(111) and to graphene on Ir(111). From a comparison of scanning tunneling microscopy images of individual molecules adsorbed to the different surfaces alone it is difficult to discern potential differences in the molecular adsorption geometry. In contrast, vibrational spectroscopy using inelastic electron scattering unequivocally hints at strong molecule deformations on Ir(111) and at a planar adsorption geometry on graphene. The spectroscopic evidence for the different adsorption configurations is supported by density functional calculations.

  19. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  20. Single-molecule studies of unconventional motor protein myosin VI

    NASA Astrophysics Data System (ADS)

    Kim, HyeongJun

    Myosin VI is one of the myosin superfamily members that are actin-based molecular motors. It has received special attention due to its distinct features as compared to other myosins, such as its opposite directionality and a much larger step size than expected given the length of its "leg". This dissertation presents the author.s graduate work of several single-molecule studies on myosin VI. Special attention was paid to some of myosin VI.s tail domains that consist of proximal tail (PT), medial tail (MT), distal tail (DT) domains and cargo-binding domain (CBD). The functional form of myosin VI in cells is still under debate. Although full length myosin VI proteins in cytosolic extracts of cells were monomers from earlier studies, there are several reasons why it is now believed that myosin VI could exist as a dimer. If this is true and dimerization occurs, the next logical question would be which parts of myosin VI are dimerization regions? One model claimed that the CBD is the sole dimerization region. A competing model claimed that there must be another region that could be involved in dimerization, based on their observation that a construct without the CBD could still dimerize. Our single-molecule experiment with progressively truncated myosin VI constructs showed that the MT domain is a dimerization region, supporting the latter model. Additional single-molecule experiments and molecular dynamics (MD) simulation done with our collaborators suggest that electrostatic salt bridges formed between positive and negative amino acid residues are mainly responsible for the MT domain dimerization. After resolving this, we are left with another important question which is how myosin VI can take such a large step. Recent crystal structure showed that one of the tail domains preceding the MT domain, called the PT domain, is a three-helix bundle. The most easily conceivable way might be an unfolding of the three-helix bundle upon dimerization, allowing the protein to

  1. Vibrational spectroscopy studies of formalin-fixed cervix tissues.

    PubMed

    Krishna, C M; Sockalingum, G D; Vadhiraja, B M; Maheedhar, K; Rao, A C K; Rao, L; Venteo, L; Pluot, M; Fernandes, D J; Vidyasagar, M S; Kartha, V B; Manfait, M

    2007-02-15

    Optical histopathology is fast emerging as a potential tool in cancer diagnosis. Fresh tissues in saline are ideal samples for optical histopathology. However, evaluation of suitability of ex vivo handled tissues is necessitated because of severe constraints in sample procurement, handling, and other associated problems with fresh tissues. Among these methods, formalin-fixed samples are shown to be suitable for optical histopathology. However, it is necessary to further evaluate this method from the point of view discriminating tissues with minute biochemical variations. A pilot Raman and Fourier transform infrared (FTIR) microspectroscopic studies of formalin-fixed tissues normal, malignant, and after-2-fractions of radiotherapy from the same malignant cervix subjects were carried out, with an aim to explore the feasibility of discriminating these tissues, especially the tissues after-2-fractions of radiotherapy from other two groups. Raman and FTIR spectra exhibit large differences for normal and malignant tissues and subtle differences are seen between malignant and after-2-fractions of radiotherapy tissues. Spectral data were analyzed by principal component analysis (PCA) and it provided good discrimination of normal and malignant tissues. PCA of data of three tissues, normal, malignant, and 2-fractions after radiotherapy, gave two clusters corresponding to normal and malignant + after-2-fractions of radiotherapy tissues. A second step of PCA was required to achieve discrimination between malignant and after-2-fractions of radiotherapy tissues. Hence, this study not only further supports the use of formalin-fixed tissues in optical histopathology, especially from Raman spectroscopy point of view, it also indicates feasibility of discriminating tissues with minute biochemical differences such as malignant and after-2-fractions of radiotherapy.

  2. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  3. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGES

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  4. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  5. Investigations of the low frequency modes of ferric cytochrome c using vibrational coherence spectroscopy.

    PubMed

    Karunakaran, Venugopal; Sun, Yuhan; Benabbas, Abdelkrim; Champion, Paul M

    2014-06-12

    Femtosecond vibrational coherence spectroscopy is used to investigate the low frequency vibrational dynamics of the electron transfer heme protein, cytochrome c (cyt c). The vibrational coherence spectra of ferric cyt c have been measured as a function of excitation wavelength within the Soret band. Vibrational coherence spectra obtained with excitation between 412 and 421 nm display a strong mode at ~44 cm(-1) that has been assigned to have a significant contribution from heme ruffling motion in the electronic ground state. This assignment is based partially on the presence of a large heme ruffling distortion in the normal coordinate structural decomposition (NSD) analysis of the X-ray crystal structures. When the excitation wavelength is moved into the ~421-435 nm region, the transient absorption increases along with the relative intensity of two modes near ~55 and 30 cm(-1). The intensity of the mode near 44 cm(-1) appears to minimize in this region and then recover (but with an opposite phase compared to the blue excitation) when the laser is tuned to 443 nm. These observations are consistent with the superposition of both ground and excited state coherence in the 421-435 nm region due to the excitation of a weak porphyrin-to-iron charge transfer (CT) state, which has a lifetime long enough to observe vibrational coherence. The mode near 55 cm(-1) is suggested to arise from ruffling in a transient CT state that has a less ruffled heme due to its iron d(6) configuration.

  6. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    PubMed

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility. PMID:27399057

  7. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    PubMed

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.

  8. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    SciTech Connect

    Cahoon, James Francis

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  9. Promising anchoring groups for single-molecule conductance measurements.

    PubMed

    Kaliginedi, Veerabhadrarao; Rudnev, Alexander V; Moreno-García, Pavel; Baghernejad, Masoud; Huang, Cancan; Hong, Wenjing; Wandlowski, Thomas

    2014-11-21

    The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction conductance by employing two complementary techniques, namely scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques, based on the studies published in the literature and important results from our own work. We compared conductance studies for conventional anchoring groups described earlier with the molecular junctions formed through π-interactions with the electrode surface (Au, Pt, Ag) and we also summarized recent developments in the formation of highly conducting covalent Au-C σ-bonds using oligophenyleneethynylene (OPE) and an alkane molecular backbone. Specifically, we focus on the electron transport properties of diaryloligoyne, oligophenyleneethynylene (OPE) and/or alkane molecular junctions composed of several traditional anchoring groups, (dihydrobenzo[b]thiophene (BT), 5-benzothienyl analogue (BTh), thiol (SH), pyridyl (PY), amine (NH2), cyano (CN), methyl sulphide (SMe), nitro (NO2)) and other anchoring groups at the solid/liquid interface. The qualitative and quantitative comparison of the results obtained with different anchoring groups reveals structural and mechanistic details of the different types of single molecular junctions. The results reported in this prospective may serve as a guideline for the design and synthesis of molecular systems to be used in molecule-based electronic devices.

  10. Single-molecule studies of kinesin family motor proteins

    NASA Astrophysics Data System (ADS)

    Fordyce, Polly

    Kinesin family motor proteins drive many essential cellular processes, including cargo transport and mitotic spindle assembly and regulation. They accomplish these tasks by converting the chemical energy released from the hydrolysis of adenosine triphosphate (ATP) directly into mechanical motion along microtubules in cells. Optical traps allow us to track and apply force to individual motor proteins, and have already revealed many details of the movement of conventional kinesin, although the precise mechanism by which chemical energy is converted into mechanical motion is unclear. Other kinesin family members remain largely uncharacterized. This dissertation details the use of a novel optical-trapping assay to study Eg5, a Kinesin-5 family member involved in both spindle assembly and pole separation during mitosis. We demonstrate that individual Eg5 dimers are relatively slow and force-insensitive motors that take about 8 steps, on average, before detaching from the microtubule. Key differences in processivity and force-response between Eg5 and conventional kinesin suggest ways in which the two motors might have evolved to perform very different tasks in cells. This dissertation also details efforts to unravel how chemical energy is converted into mechanical motion by simultaneously measuring mechanical transitions (with an optical trap) and nucleotide binding and release (with single-molecule fluorescence) for individual conventional kinesin motors. We constructed a combined instrument, demonstrated its capabilities by unzipping fluorescently-labeled DNA duplexes, and used this instrument to record the motion of individual conventional kinesin motors powered by the hydrolysis of fluorescent nucleotides. Preliminary data reveal the challenges inherent in such measurements and guide proposals for future experimental approaches. Finally, this dissertation includes several chapters intended to serve as practical guides to understanding, constructing, and maintaining

  11. Analytical tools for single-molecule fluorescence imaging in cellulo.

    PubMed

    Leake, M C

    2014-07-01

    Recent technological advances in cutting-edge ultrasensitive fluorescence microscopy have allowed single-molecule imaging experiments in living cells across all three domains of life to become commonplace. Single-molecule live-cell data is typically obtained in a low signal-to-noise ratio (SNR) regime sometimes only marginally in excess of 1, in which a combination of detector shot noise, sub-optimal probe photophysics, native cell autofluorescence and intrinsically underlying stochasticity of molecules result in highly noisy datasets for which underlying true molecular behaviour is non-trivial to discern. The ability to elucidate real molecular phenomena is essential in relating experimental single-molecule observations to both the biological system under study as well as offering insight into the fine details of the physical and chemical environments of the living cell. To confront this problem of faithful signal extraction and analysis in a noise-dominated regime, the 'needle in a haystack' challenge, such experiments benefit enormously from a suite of objective, automated, high-throughput analysis tools that can home in on the underlying 'molecular signature' and generate meaningful statistics across a large population of individual cells and molecules. Here, I discuss the development and application of several analytical methods applied to real case studies, including objective methods of segmenting cellular images from light microscopy data, tools to robustly localize and track single fluorescently-labelled molecules, algorithms to objectively interpret molecular mobility, analysis protocols to reliably estimate molecular stoichiometry and turnover, and methods to objectively render distributions of molecular parameters.

  12. Memory effects and oscillations in single-molecule kinetics.

    PubMed

    Vlad, Marcel O; Moran, Federico; Schneider, Friedemann W; Ross, John

    2002-10-01

    An exactly solvable model for single-molecule kinetics is suggested, based on the following assumptions: (i) A single molecule can exist in different chemical states and the random transitions from one chemical state to another can be described by a local master equation with time-dependent transition rates. (ii) Because of conformational and other intramolecular fluctuations the rate coefficients in the master equation are random functions of time; their stochastic properties are represented in terms of a set of control parameters. We assume that the fluctuating rate coefficients fulfill a separability condition, that is, they are made up of the multiplicative contributions of two factors: (a) a universal factor, which depends on the vector of control parameters and is the same for all chemical transformation processes and (b) process-dependent factors, which depend on the initial and final chemical states of the molecule but are independent of the control parameters. For systems with two chemical states the condition of separability is automatically fulfilled. We introduce an intrinsic time scale, which makes it possible to compute theoretically various experimental observables, such as the correlation functions of the fluorescent signal. We analyze the connections between the condition of separability and detailed balance, and discuss the possible cause of chemical oscillations in single molecule kinetics. We show that the intrinsic dynamics of the molecule, expressed by the fluctuations of the control parameters, may lead to damped oscillations of the correlation functions of the fluorescent signal. The influence of the random fluctuations on the control parameters may be described by a renormalized master equation with nonfluctuating apparent rate coefficients. The apparent rate coefficients do not have to obey a condition of detailed balance, even though the real rate coefficients do obey such a condition. It follows that the renormalized master equation may

  13. Characterizing 3D RNA structure by single molecule FRET.

    PubMed

    Stephenson, James D; Kenyon, Julia C; Symmons, Martyn F; Lever, Andrew M L

    2016-07-01

    The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.

  14. Single molecule studies of RNA polymerase II transcription in vitro.

    PubMed

    Horn, Abigail E; Goodrich, James A; Kugel, Jennifer F

    2014-01-01

    Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.

  15. Detection of pathogenic DNA at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Yahiatène, Idir; Klamp, Tobias; Schüttpelz, Mark; Sauer, Markus

    2011-03-01

    We demonstrate ultrasensitive detection of pathogenic DNA in a homogeneous assay at the single-molecule level applying two-color coincidence analysis. The target molecule we quantify is a 100 nucleotide long synthetic single-stranded oligonucleotide adapted from Streptococcus pneumoniae, a bacterium causing lower respiratory tract infections. Using spontaneous hybridization of two differently fluorescing Molecular Beacons we demonstrate a detection sensitivity of 100 fM (10-13M) in 30 seconds applying a simple microfluidic device with a 100 μm channel and confocal two-color fluorescence microscopy.

  16. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies. PMID:27371121

  17. DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Dunning, James E.; Huang, Albert P.-H.; Nyamwanda, Jacqueline A.; Branton, Daniel

    2004-09-01

    Broad-spectrum analysis of DNA and RNA samples is of increasing importance in the growing field of biotechnology. We show that nanopore measurements may be used to assess the purity, phosphorylation state, and chemical integrity of nucleic acid preparations. In contrast with gel electrophoresis and mass spectrometry, an unprecedented dynamic range of DNA sizes and concentrations can be evaluated in a single data acquisition process that spans minutes. Because the molecule information is quantized and digitally recorded with single-molecule resolution, the sensitivity of the system can be adjusted in real time to detect trace amounts of a particular DNA species.

  18. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies.

  19. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  20. Recent developments in single-molecule DNA mechanics

    PubMed Central

    Bryant, Zev; Oberstrass, Florian C.; Basu, Aakash

    2013-01-01

    Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology. PMID:22658779