Science.gov

Sample records for single-particle foucault oscillator

  1. Change of the plane of oscillation of a Foucault pendulum from simple pictures

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas F.; Maps, J.

    2010-11-01

    The change of the plane of oscillation of a Foucault pendulum is calculated without using equations of motion, the Gauss-Bonnet theorem, parallel transport, or assumptions that are difficult to explain.

  2. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    NASA Astrophysics Data System (ADS)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    , WINDOWS 7, LINUX. RAM: 256 Mb (depending on nmax). Swap file: 4Gb (depending on nmax) Classification: 17.7. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSK_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 634 Nature of problem: The Single particle energies and the single particle wave functions are calculated from one-body Hamiltonian including a central field of Woods-Saxon type, a spin-orbit interaction, and the Coulomb potential for the protons. We consider only ellipsoidal (triaxial) shapes. The deformation of the nuclear shape is fixed by the usual Bohr parameters (β,γ). Solution method: The representative matrix of the Hamiltonian is built by means of the Cartesian basis of the anisotropic harmonic oscillator, and then diagonalized by a set of subroutines of the EISPACK library. Two quadrature methods of Gauss are employed to calculate respectively the integrals of the matrix elements of the Hamiltonian, and the integral defining the Coulomb potential. Two quantum numbers are conserved: the parity and the signature. Due to the Kramers degeneracy, only positive signature is considered. Therefore, calculations are made for positive and negative parity separately (with positive signature only). Reasons for new version: Now, there are several ways to obtain the eigenvalues and the eigenfunctions. The eigenvalues can be obtained from the subroutine ‘eigvals’ or from the array ‘energies’ or also from the formatted files ‘valuu.dat’, ‘eigenvalo.dat’, ‘eigenva.dat’ or better from the unformatted file ‘eigenvaunf.dat’. The eigenfunctions can be obtained straightforwardly in configuration space from the subroutine ‘eigfunc’ or by their components on the oscillator basis from the subroutine ‘compnts’. The latter are also recorded on a formatted file ‘componento.dat’ or on an unformatted file ‘componentounf.dat’. Summary of revisions: This version is

  3. Foucault Pendulum without Driving

    NASA Astrophysics Data System (ADS)

    Yamashita, Yoshifumi

    2016-06-01

    Foucault pendulums are two-dimensional harmonic oscillators to which the Coriolis force is applied. The Foucault parameter ΩF is the ideal rate of rotation of the plane of oscillation due to the Coriolis force. Kamerlingh Onnes pointed out that the actual behavior of Foucault pendulums can be understood only by taking into account the unavoidable mechanical asymmetry, i.e., the difference between the frequency in the X-direction and that in the Y-direction, which is called the asymmetry parameter δ. Our equations of motion for Foucault pendulums are linear and their solutions are easily obtained. We are interested in slowly varying rotations of the plane of oscillation, where the angle of rotation is denoted by φ. The motion of the bob consists of rapid simple oscillations and the slow rotations mentioned above. Eliminating the rapid oscillations, we obtain an analytic expression for tan 2φ, which is a periodic function with period π /√{Ω F2 + δ 2} . The graphs of the rotation φ versus time t have two distinct appearances. Under the condition ΩF ≥ δ|cos(2θ)| (θ is the initial value of φ), φ decreases monotonically, which is the behavior expected for Foucault pendulums. Otherwise φ repeatedly increases and decreases, which is the behavior of pendulums describing Lissajous figures. The vertical component of angular momentum is also calculated analytically.

  4. A single particle energies

    SciTech Connect

    Bodmer, A.R. |; Usmani, Q.N.; Sami, M.

    1993-09-01

    We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.

  5. A Foucault's pendulum design

    NASA Astrophysics Data System (ADS)

    Salva, Horacio R.; Benavides, Rubén E.; Perez, Julio C.; Cuscueta, Diego J.

    2010-11-01

    In this article we explain our design and their performance, of a Foucault pendulum capable of continuous operation with a following system of the oscillation plane. We have built two pendulums, one of 2.835 m length and other of 4.975 m length. The oscillation amplitudes in either case were 1.8 and 1 deg, respectively. In our latitude the precession speed (9.89 deg/h counterclockwise) can be measured within 0.5 and 0.2 deg/h. The arrangement detected some earthquakes of medium intensity that took place as far as 765 km.

  6. A New Model of the Foucault Pendulum.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1979-01-01

    Describes an elastic Foucault pendulum designed to demonstrate how the rotation of the plane of oscillation depends on geographical latitude, and shows that this rotation vanishes at the equator. (GA)

  7. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  8. {Lambda} single-particle energies

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1995-08-01

    We are continuing our work on the {Lambda} hyperon single-particle (s.p.) energies and their interpretation in terms of the basic {Lambda}-nuclear interactions. In particular we are interpreting the results obtained by S.C. Pieper, A. Usmani and Q.N. Usmani. We obtain about 30 MeV for the repulsive contribution of the three-body {Lambda}NN forces in nuclear matter. We are able to exclude purely {open_quotes}dispersive{close_quotes} {Lambda}NN forces. We are investigating the mix of dispersive and two-pion-exchange {Lambda}NN forces which provide a fit to the s.p. data. For interactions, which provide a fit to the s.p. data, the {Lambda} binding energy as a function of the nuclear matter density shows characteristic saturation features with a maximum at a density not very different from that of normal nuclear matter. We obtain a more precise measure of the space-exchange part of the {Lambda}-nuclear force than was previously available, corresponding to an exchange parameter {approx_equal} 0.32. The space-exchange force is rather directly related to the effective mass of a {Lambda} in the nuclear medium and turns out to be about 70% of its free mass. As a result, we also obtain a much better value for the p-state {Lambda}-nucleus potential which is about 40% of the s-state potential. The A binding to nuclear matter is determined to be {approx_equal} 28 MeV.

  9. [Foucault's relevance for psychology].

    PubMed

    Pastor, Juan

    2009-11-01

    In this article, we will attempt to address one of the most outstanding and influential thinkers of the past century: Michel Foucault, Philosopher, Psychologist, and above all (university) Professor. Michel Foucault is certainly versatile: Historian (of madness, clinical practice, imprisonment and sexuality), Archaeologist (of knowledge), Analyst (of discourse and power relations), Psychologist (genealogy of subjectivity) and Philosopher (of power and the subject). With this article, we eventually expect to offer some clues to be able to use the work of Michel Foucault for the problematization of Psychology.

  10. Who can resist Foucault?

    PubMed

    Bleakley, Alan; Bligh, John

    2009-08-01

    Michel Foucault's analysis of "the birth of the clinic" describes the genesis of a unified discourse that, in retrospect, has shaped western medicine for two centuries. However, in looking prospectively toward a 21st century medicine, Foucault's analysis is necessary but not sufficient. To better critically address medicine and medical education in the era of simulation, we could draw on frameworks developed by futurists such as Jean Baudrillard. Foucault's analysis does not account for contemporary, complex developments of the clinical gaze as the gaze is distributed across practitioners in increasing use of sophisticated, representational diagnostic imaging. Further, Foucault's antihumanist rhetoric sometimes strays into the antihumane, and this is disturbing for those who support the development of patient-centered medicine. Yet we are increasingly teaching aspects of medicine, such as communication, in simulated learning environments in which complex reality is absent, perhaps inadvertently creating an "inhumanity" in medical education.

  11. Foucault and physiotherapy.

    PubMed

    Nicholls, David A

    2012-08-01

    For nearly 40 years, researchers have been coming to terms with the impact of Michel Foucault's philosophical work. In fields as diverse as medical sociology, health policy, architecture, urban geography, history, and sport, scholars have made use of Foucault's notions of discourse, knowledge, truth, and power. With a few exceptions, however, Foucault's writings have yet to permeate physiotherapy. Foucault's ideas represent powerful, and highly useful analytical strategies for analyzing our past, present, and future, and his writings provide us with a set of conceptual, methodological, and philosophical approaches to help us unpack the cultural, historical, and social context in which we operate as a profession. In this paper, I attempt to introduce the reader to some of Foucault's radical ideas and show how these might be applied to physiotherapy practice. Drawing on Foucault's writings on the functions of discourse to illustrate how something as benign as a physiotherapist's treatment bed can be understood as something more than a piece of necessary medical technology, I show that by approaching seemingly obvious, everyday objects, practices, systems, and structures, we can learn much about physiotherapy's past, present, and future and apply this knowledge to think in new ways about the profession.

  12. Single particle sources and quantum heat fluctuations

    NASA Astrophysics Data System (ADS)

    Battista, F.

    2014-10-01

    The miniaturisation of electronic devices has been a well-known trend in engineering over almost 50 years. The technological advancement in the field can now provide an astonishing control of charge transport in mesoscopic structures. Single particle pumping, namely the control in time and space of the flow of an arbitrarily small number of electrons or holes, has been realised in various kind of structure with, in some cases, very high accuracies. The first half of the manuscript provides a brief overview of different experimental realisations of single particle sources. Though these devices allow to minimise charge fluctuations in the charge current, because of Heisenberg's uncertainty principle, the emitted particles are characterised by energy fluctuations. The consequences of it are of great relevance and presented in the second part of the paper.

  13. Single-particle states in transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  14. Efficiency of single-particle engines

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian

    2015-09-01

    We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

  15. Single-particle study of protein assembly

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2001-10-01

    A study of protein assembly in solution with single-particle imaging and reconstruction techniques using cryoelectron microscopy is reported. The human glutamine synthetase enzyme, important in brain metabolism, and previously assumed to be assembled into a homogeneous quaternary structure, is found to be heterogeneous, with three oligomeric states that co-exist at room temperature. This result corrects an old structural and kinetic model determined by ensemble averaging techniques that assumed a homogeneous system. Unexpectedly fast protein dissociation kinetics results from a stabilized transition state.

  16. Hydrodynamic trap for single particles and cells

    PubMed Central

    Tanyeri, Melikhan; Johnson-Chavarria, Eric M.; Schroeder, Charles M.

    2010-01-01

    Trapping and manipulation of microscale and nanoscale particles is demonstrated using the sole action of hydrodynamic forces. We developed an automated particle trap based on a stagnation point flow generated in a microfluidic device. The hydrodynamic trap enables confinement and manipulation of single particles in low viscosity (1–10 cP) aqueous solution. Using this method, we trapped microscale and nanoscale particles (100 nm–15 μm) for long time scales (minutes to hours). We demonstrate particle confinement to within 1 μm of the trap center, corresponding to a trap stiffness of ∼10−5–10−4 pN∕nm. PMID:20585593

  17. Carnot process with a single particle

    NASA Astrophysics Data System (ADS)

    Hoppenau, J.; Niemann, M.; Engel, A.

    2013-06-01

    We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. BJPCBFK1520-610610.1021/jp0455428 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.

  18. Nanoscale three-dimensional single particle tracking

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélie; Lamb, Don C.

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for

  19. Single Particle Tomography in EMAN2

    PubMed Central

    Galaz-Montoya, Jesús G.; Flanagan, John; Schmid, Michael F.; Ludtke, Steven J.

    2015-01-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. PMID:25956334

  20. Twin-Foucault imaging method

    NASA Astrophysics Data System (ADS)

    Harada, Ken

    2012-02-01

    A method of Lorentz electron microscopy, which enables observation two Foucault images simultaneously by using an electron biprism instead of an objective aperture, was developed. The electron biprism is installed between two electron beams deflected by 180° magnetic domains. Potential applied to the biprism deflects the two electron beams further, and two Foucault images with reversed contrast are then obtained in one visual field. The twin Foucault images are able to extract the magnetic domain structures and to reconstruct an ordinary electron micrograph. The developed Foucault method was demonstrated with a 180° domain structure of manganite La0.825Sr0.175MnO3.

  1. Foucault pendulum and sub-Riemannian geometry

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.; Monroy-Pérez, F.

    2010-08-01

    The well known Foucault nonsymmetrical pendulum is studied as a problem of sub-Riemannian geometry on nilpotent Lie groups. It is shown that in a rotating frame a sub-Riemannian structure can be naturally introduced. For small oscillations, three dimensional horizontal trajectories are computed and displayed in detail. The fiber bundle structure is explicitly shown. The underlying Lie structure is described together with the corresponding holonomy group, which turns out to be given by the center of the Heisenberg group. Other related physical problems that can be treated in a similar way are also mentioned.

  2. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  3. Single particle raster image analysis of diffusion.

    PubMed

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS.

  4. School Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Lacsny, Boris; Štubna, Igor; Teleki, Aba

    2014-11-01

    A Foucault pendulum was assembled for a university/high-school physics course. The pendulum is 2.85 m long and the mass of the bob is 4.70 kg. A new technique based on the spark burned points on a sheet of paper was used to register the pendulum’s motion. A Ruhmkorff induction coil was used as a high-voltage source. Plots of the elliptical trajectories (except the first trajectory, which is a straight line) can be created and the angles between the major axes of the ellipses can be determined after assigning the coordinates to the burned points.

  5. [Plato psychiatrist, Foucault platonic].

    PubMed

    Mathov, Nicolás

    2016-05-01

    This work explores the links between the concepts of "soul", "law" and "word" in Plato's work, in order to highlight the importance and the centrality of the philosophical-therapeutic dimension in the Greek philosopher's thought. In that way, this work pretends to show that "contemporary" problems usually discussed within "Human Sciences" in general, and Psychiatry in particular, should confront their knowledge with Plato's work, mainly due to the profound influence his ideas have had in our Greco-Christian culture. In that sense, and with that objective, this work also explores Michel Foucault's lucid and controversial interpretation of Plato.

  6. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    SciTech Connect

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  7. Single-particle stochastic heat engine.

    PubMed

    Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  8. Single-particle machine for quantum thermalization

    SciTech Connect

    Liao Jieqiao; Dong, H.; Sun, C. P.

    2010-05-15

    The long time accumulation of the random actions of a single particle 'reservoir' on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and 'coherently heated' as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.

  9. Single-particle stochastic heat engine

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  10. Controlling High-Frequency Collective Electron Dynamics via Single-Particle Complexity

    NASA Astrophysics Data System (ADS)

    Alexeeva, N.; Greenaway, M. T.; Balanov, A. G.; Makarovsky, O.; Patanè, A.; Gaifullin, M. B.; Kusmartsev, F.; Fromhold, T. M.

    2012-07-01

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  11. Controlling high-frequency collective electron dynamics via single-particle complexity.

    PubMed

    Alexeeva, N; Greenaway, M T; Balanov, A G; Makarovsky, O; Patanè, A; Gaifullin, M B; Kusmartsev, F; Fromhold, T M

    2012-07-13

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  12. Foucault on targets.

    PubMed

    Lynch, John

    2004-01-01

    This paper seeks to gain an insight into the behavior of a large NHS trust, in its attempt to meet a 90 percent patient access target, in a week long national audit in March 2003. Why did individuals act in dramatically different ways to their norm over this period. The work of Michel Foucault is used to explore these issues. The discourses of power, knowledge, discipline and governmentality are identified as key foucaudian themes that offer an alternative interpretation of how individuals behave in their place of work. The importance of the historical context of discourse within the NHS cannot be underestimated in shaping the behavior of individuals and groups today. Power and knowledge permeate NHS organizations through disciplinary practices and dressage. Governmentality seeks to maintain the status quo through disciplinary processes such as national healthcare targets. The natural response of NHS organizations is therefore, to seek order and conformity rather than disorder and conflict.

  13. Single particle states in the heaviest elements

    SciTech Connect

    Ahmad, I.; Chasman, R.R.

    1995-08-01

    The search for superheavy elements was a major theme of nuclear structure research for the past twenty years. Theoretical predictions of the stability of superheavy elements depend crucially on the single-particle energy level spacings in the vicinity of 114 protons and 184 neutrons. The approach that we are taking is to learn as much as possible about these levels from spectroscopic studies of nuclides in the A = 250 region. This is possible because there are members of the relevant spherical multiplets that drop rapidly in energy with increasing deformation, and are fairly close to ground in the strongly deformed nuclides near A = 250. The orbitals that are important for fixing the shell corrections near N = 184 are the h{sub 11/2}, j{sub 13/2} and k{sub 17/2} spherical states. For each of these spherical orbitals, there is a corresponding deformed orbital whose energy in the A = 250 region is quite sensitive to one of these spherical states, e. g. the 1/2-[761] orbital was already identified in {sup 251}Cf is quite sensitive to the spherical j{sub 13/2} orbital. The position of the 1/2+[880] deformed orbital is very sensitive to the k{sub 17/2} spherical state. According to our calculations, this state should be found at {approximately}1500 KeV in {sup 251}Cf and should be populated in a one-nucleon transfer reaction using an ({alpha},{sup 3}He) reaction. We calculated signatures for the low-lying states in {sup 251}Cf and the calculated energies and signatures are in good agreement with the experimentally observed (d,p) spectrum. We expect to see the high-j states in an ({alpha},{sup 3}He) study. Our analysis of low-lying states in {sup 251}Cf was published. The ({alpha},{sup 3}He) experiment was approved, and is waiting on the preparation of a target.

  14. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  15. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  16. Automated data collection in single particle electron microscopy.

    PubMed

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S; Carragher, Bridget

    2016-02-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed.

  17. The domestication of Foucault

    PubMed Central

    Goddard, Roy

    2014-01-01

    Though Foucault was intrigued by the possibilities of radical social transformation, he resolutely resisted the idea that such transformation could escape the effects of power and expressed caution when it came to the question of revolution. In this article we argue that in one particularly influential line of development of Foucault’s work his exemplary caution has been exaggerated in a way that weakens the political aspirations of post-Foucaldian scholarship. The site of this reduction is a complex debate over the role of normativity in Foucaldian research, where it has been claimed that Foucault’s genealogical approach is unable to answer the question ‘Why fight?’ The terms of this debate (on the neo-Foucaldian side) are limited by a dominant though selective interpretation of Foucault’s analytics of power, where power is understood primarily in terms of government, rather than struggle. In response we suggest that if we reconfigure power-as-government to power-as-war, this adjusts the central concern. ‘Why fight?’ becomes replaced by the more immediate question, ‘How fight?’ Without denying the obvious benefits of cautious scholarly work, we argue that a reconfiguration of Foucault’s analytics of power might help Foucaldian research to transcend the self-imposed ethic of political quietism that currently dominates the field. PMID:26273130

  18. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  19. The Statement: Foundation of Foucault's Historical Criticism.

    ERIC Educational Resources Information Center

    Blair, Carole

    1987-01-01

    Presents an overview of Michel Foucault's approach to the study of historical systems of thought, arguing that Foucault's view of historical criticism and language-in-use have much to offer rhetorical theory and criticism. Discusses the nature of discourse for Foucault and examines the characteristics of the fundamental discursive datum, the…

  20. Michel Foucault's Theory of Rhetoric as Epistemic.

    ERIC Educational Resources Information Center

    Foss, Sandra K.; Gill, Ann

    1987-01-01

    Formulates a middle-level theory that explains the process by which rhetroic is epistemic, using Foucault's notion of the discursive formation as a starting point. Discusses five theoretical units derived from Foucault--discursive practices, rules, roles, power, and knowledge--and relationships among them. Analyzes Disneyland, using Foucault's…

  1. Principles of cryo-EM single-particle image processing

    PubMed Central

    Sigworth, Fred J.

    2016-01-01

    Single-particle reconstruction is the process by which 3D density maps are obtained from a set of low-dose cryo-EM images of individual macromolecules. This review considers the fundamental principles of this process and the steps in the overall workflow for single-particle image processing. Also considered are the limits that image signal-to-noise ratio places on resolution and the distinguishing of heterogeneous particle populations. PMID:26705325

  2. Foucault's pendulum, a classical analog for the electron spin state

    NASA Astrophysics Data System (ADS)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  3. Single particle structure and shapes of exotic Sr isotopes

    NASA Astrophysics Data System (ADS)

    Cruz, Steffen; S1389 Team

    2016-09-01

    States within a nucleus that have different shapes that are close in energy are referred to as shape coexisting. A dramatic occurrence of shape coexisting states is observed in nuclei in the vicinity of Z=40, N=60, which is the subject of substantial current experimental and theoretical effort. An important aspect in this context is the evolution of single particle structure for N < 60 leading up to the shape transition region, which can be calculated with modern large scale shell model calculations using a 78Ni core or Beyond Mean Field Models. One-neutron transfer reactions are a proven tool to study single-particle energies as well as occupation numbers. Here we report on the study of the single-particle structure in 96Sr via (d,p) one-neutron transfer reaction in inverse kinematics. The experiment presented was performed in the ISAC facility using the TIGRESS gamma-ray spectrometer in conjunction with the SHARC charged-particle detector. A thorough analysis of single particle states will improve our understanding of the onset of these unique structures, encouraging the ongoing theoretical discussions. Results discussed in the context of the evolution of single-particle structure will be presented. Work supported by the National Research Council of Canada, the Science and Technology Facilities Council of the United Kingdom, the Natural Sciences and the Engineering Research Council of Canada and the National Science Foundation, USA.

  4. Single particle density of trapped interacting quantum gases

    SciTech Connect

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  5. Single Particle Orientation and Rotational Tracking (SPORT) in biopysical studies

    SciTech Connect

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-08-02

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  6. Foucault's Pendulum, Analog for an Electron Spin State

    NASA Astrophysics Data System (ADS)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  7. Foucault, Biopolitics and the Birth of Neoliberalism

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2007-01-01

    In his governmentality studies in the late 1970s Foucault held a course at the College de France on the major forms of neoliberalism, examining the three theoretical schools of German ordoliberalism, the Austrian school characterized by Hayek, and American neoliberalism in the form of the Chicago school. Among Foucault's great insights in his work…

  8. Leon Foucault: His Life, Times and Achievements

    ERIC Educational Resources Information Center

    Aczel, Amir D.

    2004-01-01

    Leon Foucault's dramatic demonstration of the rotation of the Earth using a freely-rotating pendulum in 1850 shocked the world of science. Scientists were stunned that such a simple proof of our planet's rotation had to wait so long to be developed. Foucault's public demonstration, which was repeated at many locations around the world, put an end…

  9. Single-particle mechanism of magnetostriction in magnetoactive elastomers

    NASA Astrophysics Data System (ADS)

    Kalita, Viktor M.; Snarskii, Andrei A.; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  10. Single-particle mechanism of magnetostriction in magnetoactive elastomers.

    PubMed

    Kalita, Viktor M; Snarskii, Andrei A; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  11. A Primer to Single-Particle Cryo-Electron Microscopy

    PubMed Central

    Cheng, Yifan; Grigorieff, Nikolaus; Penczek, Pawel A.; Walz, Thomas

    2015-01-01

    Summary Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners. PMID:25910204

  12. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  13. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph; Flounders, Albert W.; Hughes, Robert C.; Ricco, Antonio J.; Wally, Karl; Kravitz, Stanley H.; Janek, Richard P.

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  14. Generalized single-particle cryo-EM--a historical perspective.

    PubMed

    Frank, Joachim

    2016-02-01

    This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.

  15. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  16. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.

    PubMed

    Quan, Qimin; Floyd, Daniel L; Burgess, Ian B; Deotare, Parag B; Frank, Ian W; Tang, Sindy K Y; Ilic, Rob; Loncar, Marko

    2013-12-30

    We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

  17. Stereoscopy of dust density waves under microgravity: Velocity distributions and phase-resolved single-particle analysis

    SciTech Connect

    Himpel, Michael Killer, Carsten; Melzer, André; Bockwoldt, Tim; Piel, Alexander; Ole Menzel, Kristoffer

    2014-03-15

    Experiments on dust-density waves have been performed in dusty plasmas under the microgravity conditions of parabolic flights. Three-dimensional measurements of a dust density wave on a single particle level are presented. The dust particles have been tracked for many oscillation periods. A Hilbert analysis is applied to obtain trajectory parameters such as oscillation amplitude and three-dimensional velocity amplitude. While the transverse motion is found to be thermal, the velocity distribution in wave propagation direction can be explained by harmonic oscillations with added Gaussian (thermal) noise. Additionally, it is shown that the wave properties can be reconstructed by means of a pseudo-stroboscopic approach. Finally, the energy dissipation mechanism from the kinetic oscillation energy to thermal motion is discussed and presented using phase-resolved analysis.

  18. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  19. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels

    PubMed Central

    2016-01-01

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement. PMID:27960495

  20. Interplay between plasmon and single-particle excitations in a metal nanocluster

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-01

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. This study provides guidance on improving plasmonic applications.

  1. Interplay between plasmon and single-particle excitations in a metal nanocluster

    DOE PAGES

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-17

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be convertedmore » into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. Ultimately, this study provides guidance on improving plasmonic applications.« less

  2. Interplay between plasmon and single-particle excitations in a metal nanocluster

    SciTech Connect

    Ma, Jie; Wang, Zhi; Wang, Lin-Wang

    2015-12-17

    Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. Ultimately, this study provides guidance on improving plasmonic applications.

  3. Foucault and the politics of our selves.

    PubMed

    Allen, Amy

    2011-01-01

    Exploring the apparent tension between Foucault's analyses of technologies of domination -- the ways in which the subject is constituted by power-knowledge relations -- and of technologies of the self -- the ways in which individuals constitute themselves through practices of freedom -- this article endeavors to make two points: first, the interpretive claim that Foucault's own attempts to analyse both aspects of the politics of our selves are neither contradictory nor incoherent; and second, the constructive claim that Foucault's analysis of the politics of our selves, though not entirely satisfactory as it stands, provides important resources for the project of critical social theory.

  4. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  5. Nature of single-particle states in disordered graphene

    NASA Astrophysics Data System (ADS)

    Nag, Sabyasachi; Garg, Arti; Ramakrishnan, T. V.

    2016-06-01

    We analyze the nature of the single-particle states, away from the Dirac point in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. For a disorder potential V (r ⃗) =V0exp(-| r ⃗-r⃗imp|2/ξ2) , we demonstrate that not only the Dirac state but all the single-particle states remain extended for weak-enough disorder. Based on our numerical calculations of inverse participation ratio, dc conductivity, diffusion coefficient, and the localization length from time evolution dynamics of the wave packet, we show that the threshold Vth required to localize a single-particle state of energy E (k ⃗) is minimum for the states near the band edge and is maximum for states near the band center, implying a mobility edge starting from the band edge for weak disorder and moving towards the band center as the disorder strength increases. This can be explained in terms of the low-energy Hamiltonian at any point k ⃗ which has the same nature as that at the Dirac point. From the nature of the eigenfunctions, it follows that a weak long-range impurity will cause weak antilocalization effects, which can be suppressed, giving localization if the strength of impurities is sufficiently large to cause intervalley scattering. The intervalley spacing 2 | k ⃗| increases as one moves in from the band edge towards the band center, which is reflected in the behavior of Vth and the mobility edge.

  6. Microswimmers - From Single Particle Motion to Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gompper, Gerhard; Bechinger, Clemens; Herminghaus, Stephan; Isele-Holder, Rolf; Kaupp, U. Benjamin; Löwen, Hartmut; Stark, Holger; Winkler, Roland G.

    2016-11-01

    Locomotion of autonomous microswimmers is a fascinating field at the cutting edge of science. It combines the biophysics of self-propulsion via motor proteins, artificial propulsion mechanisms, swimming strategies at low Reynolds numbers, the hydrodynamic interaction of swimmers, and the collective motion and synchronisation of large numbers of agents. The articles of this Special Issue are based on the lecture notes of an international summer school, which was organized by the DFG Priority Programme 1726 "Microswimmers - From Single Particle Motion to Collective Behaviour" in the fall of 2015. The minireviews provide a broad overview of the field, covering both elementary and advanced material, as well as selected areas from current research.

  7. Stability and single-particle properties of bosonized Fermi liquids

    NASA Astrophysics Data System (ADS)

    Houghton, A.; Kwon, H.-J.; Marston, J. B.

    1994-07-01

    We study the stability and single-particle properties of Fermi liquids in spatial dimensions greater than one via bosonization. For smooth nonsingular Fermi-liquid interactions we obtain Shankar's renormalization-group flows to second order in the BCS coupling and reproduce well-known results for quasiparticle lifetimes. We demonstrate by explicit calculation that spin-charge separation does not occur when the Fermi-liquid interactions are regular. We also explore the relationship between quantized bosonic excitations and zero-sound modes and present a concise derivation of both the spin and the charge collective-mode equations. Finally we discuss some aspects of singular Fermi-liquid interactions.

  8. Single-particle hydrodynamics in DPD: A new formulation

    NASA Astrophysics Data System (ADS)

    Pan, W.; Pivkin, I. V.; Karniadakis, G. E.

    2008-10-01

    We present a new formulation of dissipative particle dynamics (DPD) that leads to correct hydrodynamics in flows around bluff bodies represented by a single particle. In particular, we introduce a shear drag coefficient and a corresponding term in the dissipative force, which along with the angular momentum incorporate non-central shear forces between particles and preserve angular momentum. We consider several prototype flows to verify the performance of the proposed formulation with comparisons against theoretical and continuum-based simulation results. Our method is similar to the Fluid Particle Method (FPM) of Espanol (Phys. Rev. E, 57 (1998) 2930) and it has the computational and implementation simplicity of the standard DPD approach.

  9. Single-particle cryo-EM at crystallographic resolution

    PubMed Central

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  10. Tracking single particle rotation: Probing dynamics in four dimensions

    DOE PAGES

    Anthony, Stephen Michael; Yu, Yan

    2015-04-29

    Direct visualization and tracking of small particles at high spatial and temporal resolution provides a powerful approach to probing complex dynamics and interactions in chemical and biological processes. Analysis of the rotational dynamics of particles adds a new dimension of information that is otherwise impossible to obtain with conventional 3-D particle tracking. In this review, we survey recent advances in single-particle rotational tracking, with highlights on the rotational tracking of optically anisotropic Janus particles. Furthermore, strengths and weaknesses of the various particle tracking methods, and their applications are discussed.

  11. Relativistic symmetries in nuclear single-particle spectra

    NASA Astrophysics Data System (ADS)

    Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui

    Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.

  12. Quantum heat fluctuations of single-particle sources.

    PubMed

    Battista, F; Moskalets, M; Albert, M; Samuelsson, P

    2013-03-22

    Optimal single electron sources emit regular streams of particles, displaying no low-frequency charge current noise. Because of the wave packet nature of the emitted particles, the energy is, however, fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single-particle wave function properties and display strong nonclassical features.

  13. A Short Foucault Pendulum for Corridor Display.

    ERIC Educational Resources Information Center

    Leonard, Byron E.

    1981-01-01

    Describes the construction and operation of a short Foucault pendulum, which indicates earth's rotation with less than 2 percent error. The pendulum is suitable for display either in a classroom or hallway. (SK)

  14. Single particle maximum likelihood reconstruction from superresolution microscopy images.

    PubMed

    Verdier, Timothée; Gunzenhauser, Julia; Manley, Suliana; Castelnovo, Martin

    2017-01-01

    Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation.

  15. New instrument for tribocharge measurement due to single particle impacts

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  16. New instrument for tribocharge measurement due to single particle impacts

    SciTech Connect

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.

    2007-02-15

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as {approx}100 {mu}m impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  17. New instrument for tribocharge measurement due to single particle impacts.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  18. Computational modeling of single particle scattering over large distances

    NASA Astrophysics Data System (ADS)

    Rapp, Rebecca; Plumley, Rajan; McCracken, Michael

    2016-09-01

    We present a Monte Carlo simulation of the propagation of a single particle through a large three-dimensional volume under the influence of individual scattering events. In such systems, short paths can be quickly and accurately simulated using random walks defined by individual scattering parameters, but the simulation time greatly increases as the size of the space grows. We present a method for reducing the overall simulation time by restricting the simulation to a cube of unit length; each `cell' is characterized by a set of parameters which dictate the distributions of allowable step lengths and polar scattering angles. We model propagation over large distances by constructing a lattice of cells with physical parameters that depend on position, such that the full set would represent a space within the entire volume available to the particle. With these, we propose the use of Markov chains to determine a probable path for the particle, thereby removing the need to simulate every step in the particle's path. For a single particle with constant velocity, we can use the step statistics to determine the travel time of the particle. We investigate the effect of scattering parameters such as average step distance and possible scattering angles on the probabilities of a cell.

  19. A clock referenced to the rest mass of a single particle

    NASA Astrophysics Data System (ADS)

    Yu, Chenghui; Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; English, Damon; Brown, Justin; Hohensee, Michael; Müller, Holger

    2013-05-01

    We demonstrate the operation of a Compton clock, one whose frequency is referenced to the mass of a single particle. Though it is well known that the wave function of a massive particle accumulates phase at the Compton frequency ω0 = mc2 / ℏ in its rest frame, such oscillations are too fast to directly detect (3 ×1025 Hz for 133Cs). We use an optical frequency comb and a Ramsey-Bordé matter-wave interferometer to stabilize an oscillator to a chosen subharmonic of ω0 with a precision of 4 parts per billion (at 6 hours timescale). Although this is far below the precision of modern frequency standards, its precision is sufficient, in combination with the spheres constructed by the Avogadro Project, to calibrate macroscopic masses with an accuracy of 30 ppb, in terms of the second. This clock may be useful for testing fundamental physics by demonstrating that its frequency redshifts in a gravitational potential in the same way that conventional frequency standards do. Implementation of a clock referenced to the mass of an elementary particle, such as an electron or positron, could also enable new experimental tests of Lorentz and CPT symmetry.

  20. Modeling Single Particle Transport in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hudson, Ben; Fiksel, Gennady; Prager, Stewart

    2001-10-01

    Single particle transport in a stochastic magnetic field is simulated via code ION and RIO. Developed in collaboration with a group in Novosibirsk, Russia, they simulate both single ion and multiple ion trajectories in a stochastic magnetic field. A sharp decrease in the relative diffusion of ions to magnetic field lines is seen in two gyro-radii regimes. One is explainable from the unbroken flux surfaces near the edge of the plasma. The other is thought to be due to a "gyro-averaging" effect that occurs when the gyro-radius exceeds the radial correlation length of the field lines. The simulations indicate a decrease in expected transport, most strongly as a function of gyro-radius, which will be tested experimentally with the MST neutral beam injector.

  1. Single particle behaviour at (and away from) stability

    NASA Astrophysics Data System (ADS)

    Duflo, J.; Zuker, A. P.

    1998-12-01

    Short of proposing a full microscopic mass formula, we outline the steps that should make it possible. The construction rests on defining the nuclear monopole Hamiltonian, Hm that has to be extracted phenomenologically because of the bad saturation properties of the realistic forces. We propose a preliminary form of Hm that makes clear the origin of shell effects, and with only three paraters, reproduces the known spectra of particle and hole states on doubly magic cores to within 300 keV. Predictions are made for the yet unobserved levels around 132Sn, and those associated to 22O, 34,42Si, 68,78Ni, 100Sn and for the particle-hole gaps in these nuclei. Finally we analyze the single particle gaps for the N=50 and 82 isotones, to conclude that the major closures are likely to persist away from stability.

  2. Single-particle mapping of nonequilibrium nanocrystal transformations

    NASA Astrophysics Data System (ADS)

    Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; Chen, Qian; Powers, Alexander S.; Ercius, Peter; Dunn, Gabriel; Rotskoff, Grant M.; Nguyen, Son C.; Adiga, Vivekananda P.; Zettl, Alex; Rabani, Eran; Geissler, Phillip L.; Alivisatos, A. Paul

    2016-11-01

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.

  3. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  4. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  5. Magnetophoretic circuits for digital control of single particles and cells

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  6. Towards single particle imaging of human chromosomes at SACLA

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-12-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.

  7. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  8. Holding forces of single-particle dielectrophoretic traps.

    PubMed Central

    Voldman, J; Braff, R A; Toner, M; Gray, M L; Schmidt, M A

    2001-01-01

    We present experimental results and modeling on the efficacy of dielectrophoresis-based single-particle traps. Dielectrophoretic forces, caused by the interaction of nonuniform electric fields with objects, have been used to make planar quadrupole traps that can trap single beads. A simple experimental protocol was then used to measure how well the traps could hold beads against destabilizing fluid flows. These were compared with predictions from modeling and found to be in close agreement, allowing the determination of sub-piconewton forces. This not only validates our ability to model dielectrophoretic forces in these traps but also gives insight into the physical behavior of particles in dielectrophoresis-based traps. Anomalous frequency effects, not explainable by dielectrophoretic forces alone, were also encountered and attributed to electrohydrodynamic flows. Such knowledge can now be used to design traps for cell-based applications. PMID:11159423

  9. Hierarchical Ag mesostructures for single particle SERS substrate

    NASA Astrophysics Data System (ADS)

    Xu, Minwei; Zhang, Yin

    2017-01-01

    Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250-500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 106.

  10. Magnetophoretic circuits for digital control of single particles and cells.

    PubMed

    Lim, Byeonghwa; Reddy, Venu; Hu, XingHao; Kim, KunWoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B; Kim, CheolGi

    2014-05-14

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  11. Simultaneous Single-Particle Superlocalization and Rotational Tracking

    SciTech Connect

    Gu, Yan; Wang, Gufeng; Fang, Ning

    2013-01-30

    Superlocalization of single molecules and nanoparticles has become an essential procedure to bring new insights into nanoscale structures and dynamics of biological systems. In the present study, superlocalization is combined with the newly introduced differential interference contrast (DIC) microscopy-based single-particle orientation and rotational tracking. The new technique overcomes the difficulty in localization of the antisymmetric DIC point spread function by using a dual-modality microscope configuration for simultaneous rotational tracking and localization of single gold nanorods with nanometer-scale precision. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment. This technique has great potential in the study of biological processes where both localization and rotational information are required.

  12. Single particle friction tests with cellulose acetate sphere samples

    SciTech Connect

    Tuezen, U.

    1989-05-31

    This reporter represents a detailed account of all the experimental work carried out for LLNL using the ''single particle shear cell'' in the department of Chemical Process Engineering of Surrey University, Guildford, United Kingdom. Experimental work with two spheres in contact was performed. Particles were positioned into the specially made sample holders by the micro screws. The contact centres were lined up under the magnifying glass. The behavior of the interparticle contact region between the two spheres was examined by performing the following series of tests: (i) normal force versus normal displacement test, (ii) tangential force limit at gross sliding with increased normal load and decreasing normal load, (iii) tangential force versus micro displacement during initial loading to friction limit and during unloading from friction limit. Work was also performed on single sphere against a flat wall surface. Results are discussed. 34 figs.

  13. Single-particle mapping of nonequilibrium nanocrystal transformations.

    PubMed

    Ye, Xingchen; Jones, Matthew R; Frechette, Layne B; Chen, Qian; Powers, Alexander S; Ercius, Peter; Dunn, Gabriel; Rotskoff, Grant M; Nguyen, Son C; Adiga, Vivekananda P; Zettl, Alex; Rabani, Eran; Geissler, Phillip L; Alivisatos, A Paul

    2016-11-18

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.

  14. Foucault on methadone: beyond biopower.

    PubMed

    Keane, Helen

    2009-09-01

    This essay reviews four texts which critically analyse methadone maintenance therapy using Foucault as a key theoretical framework: [Friedman, J., & Alicea, M. (2001). Surviving heroin: Interviews with women in methadone clinics. Florida: University Press of Florida], [Bourgois, P. (2000). Disciplining addictions: The bio-politics of methadone and heroin in the United States. Culture Medicine and Psychiatry, 24, 165-195], [Bull, M. (2008). Governing the heroin trade: From treaties to treatment. Ashgate: Aldershot], and [Fraser, S., & valentine, k. (2008). Substance & substitution: Methadone subjects in liberal societies. New York: Palgrave Macmillan]. Taken together these works demonstrate one trajectory in the development of critical drug studies over the past decade. While all four view MMT as a regulatory technology which aims to create productive and obedient subjects, their understandings of the power relations of the clinic are quite distinct. The first two texts emphasise the social control of drug users, the third, issues of governmentality and liberal political practice, while the fourth engages with ontological questions about substances themselves. Thus while Foucauldian analysis has become familiar in social studies of drugs and alcohol, new uses for its conceptual tools continue to emerge.

  15. The domestication of Foucault: Government, critique, war.

    PubMed

    Allen, Ansgar; Goddard, Roy

    2014-12-01

    Though Foucault was intrigued by the possibilities of radical social transformation, he resolutely resisted the idea that such transformation could escape the effects of power and expressed caution when it came to the question of revolution. In this article we argue that in one particularly influential line of development of Foucault's work his exemplary caution has been exaggerated in a way that weakens the political aspirations of post-Foucaldian scholarship. The site of this reduction is a complex debate over the role of normativity in Foucaldian research, where it has been claimed that Foucault's genealogical approach is unable to answer the question 'Why fight?' The terms of this debate (on the neo-Foucaldian side) are limited by a dominant though selective interpretation of Foucault's analytics of power, where power is understood primarily in terms of government, rather than struggle. In response we suggest that if we reconfigure power-as-government to power-as-war, this adjusts the central concern. 'Why fight?' becomes replaced by the more immediate question, 'How fight?' Without denying the obvious benefits of cautious scholarly work, we argue that a reconfiguration of Foucault's analytics of power might help Foucaldian research to transcend the self-imposed ethic of political quietism that currently dominates the field.

  16. Foucault and Marxism: Rewriting the Theory of Historical Materialism

    ERIC Educational Resources Information Center

    Olssen, Mark

    2004-01-01

    This article explores the relationship of Foucault to Marxism. Although he was often critical of Marxism, Foucault's own approach bears striking parallels to Marxism, as a form of method, as an account of history, and as an analysis of social structure. Like Marxism, Foucault represents social practices as transitory and all knowledge and…

  17. "Finding Foucault": Orders of Discourse and Cultures of the Self

    ERIC Educational Resources Information Center

    Besley, A. C.

    2015-01-01

    The idea of finding Foucault first looks at the many influences on Foucault, including his Nietzschean acclamations. It examines Foucault's critical history of thought, his work on the orders of discourse with his emphasis on being a pluralist: the problem he says that he has set himself is that of the individualization of discourses. Finally, it…

  18. Manipulation and Confinement of Single Particles using Fluid Flow

    PubMed Central

    Tanyeri, Melikhan; Schroeder, Charles M.

    2013-01-01

    High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2-D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research. PMID:23682823

  19. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  20. Optical microresonators as single-particle absorption spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.; Thakkar, Niket; Horak, Erik H.; Quillin, Steven C.; Cherqui, Charles; Knapper, Kassandra A.; Masiello, David J.; Goldsmith, Randall H.

    2016-12-01

    Optical measurements of nanoscale objects offer major insights into fundamental biological, material and photonic properties. In absorption spectroscopy, sensitivity limits applications at the nanoscale. Here, we present a new single-particle double-modulation photothermal absorption spectroscopy method that employs on-chip optical whispering-gallery-mode (WGM) microresonators as ultrasensitive thermometers. Optical excitation of a nanoscale object on the microresonator produces increased local temperatures that are proportional to the absorption cross-section of the object. We resolve photothermal shifts in the resonance frequency of the microresonator that are smaller than 100 Hz, orders of magnitude smaller than previous WGM sensing schemes. The application of our new technique to single gold nanorods reveals a dense array of sharp Fano resonances arising from the coupling between the localized surface plasmon of the gold nanorod and the WGMs of the resonator, allowing for the exploration of plasmonic-photonic hybridization. In terms of the wider applicability, our approach adds label-free spectroscopic identification to microresonator-based detection schemes.

  1. Automated single particle detection and tracking for large microscopy datasets

    PubMed Central

    Wilson, Rhodri S.; Yang, Lei; Dun, Alison; Smyth, Annya M.; Duncan, Rory R.; Rickman, Colin

    2016-01-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates. PMID:27293801

  2. Single particle fluorescence burst analysis of epsin induced membrane fission.

    PubMed

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  3. Manipulation and confinement of single particles using fluid flow.

    PubMed

    Tanyeri, Melikhan; Schroeder, Charles M

    2013-06-12

    High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional (2D) manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research.

  4. Single-particle and collective excitations in Ni62

    DOE PAGES

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; ...

    2016-09-01

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf7/2 and νg9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg(48Ca,2α4nγ)62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. As a result, two collectivemore » bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7/2 protons and g9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  5. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  6. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.

  7. Drift correction of the dissolved signal in single particle ICPMS.

    PubMed

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  8. Foucault and the Turn to Narrative Therapy.

    ERIC Educational Resources Information Center

    Besley, A. C. (Tina)

    2002-01-01

    The pioneering authors of narrative therapy, White and Epston, state clearly that they have been influenced by the work of the French theorist Michel Foucault. This paper briefly outlines some features of narrative therapy, examines the Foucauldian themes in White and Epston's theory, and explores narrative therapy's poststructuralist challenge to…

  9. Praxis and Agency in Foucault's Historiography

    ERIC Educational Resources Information Center

    Fendler, Lynn

    2004-01-01

    This paper examines the consequences for agency that Foucault's historiographical approach constructs. The analysis begins by explaining the difference between "legislative history" and "exemplary history," drawing parallels to similar theoretical distinctions offered in the works of Max Weber, J.L. Austin, and Zygmunt Bauman. The analysis…

  10. Pushing the limits of the Foucault Test

    NASA Astrophysics Data System (ADS)

    Swanepoel, Johann

    2010-12-01

    The processes involved in the shaping and testing of two fast 20-inch diameter thin Pyrex mirrors are briefly described. Some improvements to extend the usefulness and accuracy of the age old Foucault knife-edge test, making use of affordable and easily available modern technology, are described in some detail.

  11. "Safeguarding" Sports Coaching: Foucault, Genealogy and Critique

    ERIC Educational Resources Information Center

    Garratt, Dean; Piper, Heather; Taylor, Bill

    2013-01-01

    This paper offers a genealogical account of safeguarding in sport. Drawing specifically on Foucault's work, it examines the "politics of touch" in relation to the social and historical formation of child protection policy in sports coaching. While the analysis has some resonance with the context of coaching as a whole, for illustrative…

  12. Foucault, Counselling and the Aesthetics of Existence

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2005-01-01

    Michel Foucault was drawn late in life to study the "arts of the self" in Greco-Roman culture as a basis, following Nietzsche, for what he called an "aesthetics of existence." By this, he meant a set of creative and experimental processes and techniques by which an individual turns him- or herself into a work of art. For Nietzsche, it was above…

  13. Proton Single-Particle States In The Heaviest Actinide Nuclei

    SciTech Connect

    Ahmad, I.; Kondev, F.G.; Moore, E.F.; Chasman, R.R.; Carpenter, M.P.; Greene, J.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Hoff, R.W.; Evans, J.E.; Lougheed, R.W.; Porter, C.E.; Felker, L.K.

    2005-04-05

    The level structure of 249Bk has been investigated by measuring the {gamma}-ray spectra following the {alpha} decay of a chemically and isotopically pure 253Es sample. Alpha-gamma coincidence measurement was performed using a Si detector for {alpha} particles and a 25% Ge detector for {gamma} rays. A gamma-gamma coincidence measurement was performed with the Gammasphere spectrometer. The Es sample was obtained by extracting the 253Es which grew in a 253Cf source material produced in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Additional information on the 249Bk levels was obtained from the study of {gamma} rays produced in the {beta}- decay of 249Cm. The 249Cm sample was produced by neutron irradiation of 248Cm. Using the results of the present study and the results of previous 248Cm({alpha},t) and 248Cm(3He,d) reaction spectra, the following single-particle states have been identified in 249Bk: 7/2+[633], 0.0 keV; 3/2-[521], 8.78 keV; 1/2+[400], 377.55 keV: 5/2+[642], 389.17 keV; 1/2-[530], 569.19 keV; 1/2-[521], 643.0 keV; 5/2-[523], 672.8 keV; 9/2+[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7 and 1223.0 keV with tentative assignments of {l_brace}7/2+[633]x1-{r_brace}9/2-, {l_brace}7/2+[633]x0-{r_brace}7/2-, {l_brace}7/2+[633]x1-{r_brace}5/2- and {l_brace}7/2+[633]x0+{r_brace}7/2+, respectively.

  14. A microfluidic-based hydrodynamic trap for single particles.

    PubMed

    Johnson-Chavarria, Eric M; Tanyeri, Melikhan; Schroeder, Charles M

    2011-01-21

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  15. Multi-party quantum summation without a trusted third party based on single particles

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen; Huang, Qiong; Yang, Pingle

    We propose multi-party quantum summation protocols based on single particles, in which participants are allowed to compute the summation of their inputs without the help of a trusted third party and preserve the privacy of their inputs. Only one participant who generates the source particles needs to perform unitary operations and only single particles are needed in the beginning of the protocols.

  16. Seismic shear waves as Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  17. Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji

    2015-04-01

    By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.

  18. Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods

    PubMed Central

    Watanabe, Tomonobu M.; Fujii, Fumihiko; Jin, Takashi; Umemoto, Eiji; Miyasaka, Masayuki; Fujita, Hideaki; Yanagida, Toshio

    2013-01-01

    Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees. PMID:23931303

  19. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  20. Working Model of a Foucault Pendulum at Intermediate Latitudes

    ERIC Educational Resources Information Center

    Sears, Francis W.

    1969-01-01

    Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)

  1. Beyond Subjection: Notes on the Later Foucault and Education

    ERIC Educational Resources Information Center

    Leask, Ian

    2012-01-01

    This article argues against the doxa that Foucault's analysis of education inevitably undermines self-originating ethical intention on the part of teachers or students. By attending to Foucault's lesser known, later work--in particular, the notion of "biopower" and the deepened level of materiality it entails--the article shows how the earlier…

  2. Foucault's Toolbox: Critical Insights for Education and Technology Researchers

    ERIC Educational Resources Information Center

    Hope, Andrew

    2015-01-01

    Despite having been a prolific academic, whose work exerts considerable cross-discipline influence, the ideas of Foucault are largely neglected in educational technology scholarship. Having provided an initial brief overview of the sparse use of Foucault's work in this sub-field, this paper then seeks to generate new understandings, arguing that…

  3. Capacity-Communication-Power: Foucault on Contemporary Education

    ERIC Educational Resources Information Center

    Deacon, Roger

    2005-01-01

    This article explores the implications of Michel Foucault's specific references to contemporary education. Foucault developed a model for educational institutions which emphasises human capacities, communication and power relations, and which can be applied both to schools and to universities. Though he paid the closest attention to the role of…

  4. Foucault Dissipation in a Rolling Cylinder: A Webcam Quantitative Study

    ERIC Educational Resources Information Center

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-01-01

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…

  5. Transgression or Stasis? Challenging Foucault in LIS Theory

    ERIC Educational Resources Information Center

    Buschman, John

    2007-01-01

    Michel Foucault (1926-84) is a primary thinker informing the construction of a critical theory of library and information science (LIS), or librarianship. He is widely cited and is adapted in various ways that focus on LIS forms of power, discourse, and so on. Others have addressed Foucault's topics, but he remains central. Librarianship has taken…

  6. Foucault, Educational Research and the Issue of Autonomy

    ERIC Educational Resources Information Center

    Olssen, Mark

    2005-01-01

    This article seeks to demonstrate a particular application of Foucault's philosophical approach to a particular issue in education: that of personal autonomy. The paper surveys and extends the approach taken by James Marshall in his book "Michel Foucault: Personal Autonomy and Education." After surveying Marshall's writing on the issue I extend…

  7. Using Single-Particle Motion Simulation to Optimize Coil Parameters for Inducing Autoresonant Heating in the PFRC

    NASA Astrophysics Data System (ADS)

    Liu, Jackey; Cohen, Samuel; Glasser, Alan H.; Barth, Ido; PFRC Team

    2015-11-01

    The heating of ions confined in a field-reversed configuration (FRC) equilibrium magnetic geometry subject to a small-amplitude, odd-parity rotating magnetic field (RMF) has previously been observed in single-particle Hamiltonian simulations. We consider a form of the autoresonance method to provide added heating capabilities. Two coils encircling the FRC were added near the X-points of the FRC, co-axial with the major axis; these may be used to add oscillating components, primarily to the axial field, stiffening or relaxing the field, shortening or lengthening the x-point distance. Various parameters of the simulations were modified, including the positions of the coils along the axis, the amplitude and frequency of the oscillations, as well as other FRC parameters to determine whether autoresonant heating is a feasible method for increasing ion heating. This work was support, in part, by DOE contract DE-AC02-09CH11466 and the Princeton Environmental Institute. This work is supported by the department of energy contract DE-AC02-09CH11466 as well as the Princeton Environmental Institute.

  8. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5 by single particle aerosol mass spectrometry.

    PubMed

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-03-24

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (dva) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles.

  9. Enhanced single-particle brightness and photostability of semiconductor polymer dots by enzymatic oxygen scavenging system

    NASA Astrophysics Data System (ADS)

    Liu, Zhihe; Yang, Yingkun; Sun, Zezhou; Wu, Changfeng

    2016-12-01

    Semiconductor polymer dots (Pdots) are emerging as an excellent fluorescent probe in biology and medicine. However, the photostability of Pdots can't meet the requirements of long term single-particle imaging and tracking applications. Here we describe the enhanced single-particle brightness and photostability of Pdots by using an efficient enzymatic oxygen scavenging system (OSS). Pdots with particle diameters of 21 nm and 43 nm (PFBT21 and PFBT43) were prepared by a nanoprecipitation method. Single-particle imaging and photobleaching were performed to investigate the effect of OSS on the per-particle brightness and photostability of Pdots. Our results indicate that the single-particle brightness of the PFBT21 Pdots in OSS was enhanced nearly two times as compare to the PFBT21 Pdots in water. The photobleaching percentages of PFBT21 and PFBT43 in OSS were determined to be 29% and 33%, respectively. These values are decreased by 2-3 times as compared to those of the same Pdots in water, indicating the significantly improved photostability of Pdots by OSS. This study provides a promising approach for enhancing photostability of Pdots in long term single-particle tracking.

  10. [The birth of acknowledgement: Michel Foucault and Werner Leibbrand].

    PubMed

    Mildenberger, Florian

    2006-01-01

    In 1964, Werner Leibbrand (1896-1974) was the first German medical historian to present, in Sudhoffs Archiv, a review of the work of Michel Foucault (1926-1984). This paper examines some of the reasons leading to the fact that Leibbrand's own generation refused to acknowledge the importance of Foucault's ideas, while, later on, younger German medical historians, although impressed with Foucault's writings, failed to acknowledge, first, the close relationship between Leibbrand's and Foucault's world views, and, second, Leibbrand's attempts at introducing Foucault to German medical historians. Leibbrand with his Jewish wife had survived the Nazi period partly in hiding. His attempts at clearing post-war German psychiatry and medical historiography of NS-sympathizers isolated him among his colleagues, many of whom had begun their career during the Third Reich. Leibbrand enjoyed the support by the Swiss medical historian and avowed Communist Erwin Ackerknecht (1906-1988), but later turned against him, possibly because Acknerknecht had called Leibbrand's writings "unscientific". Leibbrand was unable to overcome his antagonisms with his contemporaries. At the same time, opposition to Ackerknecht made him appear a respresentative of the past in the eyes of the younger generation. Thus, when Foucault was accepted by the latter, they were not prepared to examine the work of Leibbrand and realize how close some of the ideas developed by Leibbrand and Foucault had been.

  11. Progress report of the single particle irradiation system to cell (SPICE)

    NASA Astrophysics Data System (ADS)

    Imaseki, Hitoshi; Ishikawa, Takahiro; Iso, Hiroyuki; Konishi, Teruaki; Suya, Noriyoshi; Hamano, Takeshi; Wang, Xufei; Yasuda, Nakahiro; Yukawa, Masae

    2007-07-01

    At the National Institute of Radiological Sciences (NIRS), we constructed a microbeam system in 2003, the single particle irradiation to cell, SPICE. From the beginning of 2005, we redesigned it to improve the stability of the optical alignment of the system, and obtained an reduction of the beam size proportional to the vertical dimension of the object slits. As a result, SPICE is now capable of producing a beam size of approximately 10 μm diameter, and the particle numbers controllable to an intensity as low as single particles per second, and therefore a single particle irradiation facility has been successfully implemented. Moreover, these conditions can be easily reproduced with a employing a routine procedure. We describe in detail the modifications of the beam line and results, demonstrating the improvements. In addition, results from our first biological experiments are shown.

  12. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K.; Yeh, H.-C.

    2015-10-01

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  13. Fabs enable single particle cryoEM studies of small proteins.

    PubMed

    Wu, Shenping; Avila-Sakar, Agustin; Kim, JungMin; Booth, David S; Greenberg, Charles H; Rossi, Andrea; Liao, Maofu; Li, Xueming; Alian, Akram; Griner, Sarah L; Juge, Narinobu; Yu, Yadong; Mergel, Claudia M; Chaparro-Riggers, Javier; Strop, Pavel; Tampé, Robert; Edwards, Robert H; Stroud, Robert M; Craik, Charles S; Cheng, Yifan

    2012-04-04

    In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM.

  14. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  15. Analysis of proton single-particle properties of zinc and germanium isotopes

    SciTech Connect

    Bespalova, O. V. Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2014-12-15

    Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.

  16. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    SciTech Connect

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K. E-mail: tim.yeh@austin.utexas.edu; Yeh, H.-C. E-mail: tim.yeh@austin.utexas.edu

    2015-10-12

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  17. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  18. Foucault's notion of problematization: a methodological discussion of the application of Foucault's later work to nursing research.

    PubMed

    Frederiksen, Kirsten; Lomborg, Kirsten; Beedholm, Kirsten

    2015-09-01

    This study takes its point of departure in an oft-voiced critique that the French philosopher Michel Foucault gives discourse priority over practice, thereby being deterministic and leaving little space for the individual to act as an agent. Based on an interpretation of the latter part of Foucault's oeuvre, we argue against this critique and provide a methodological discussion of the perception that Foucault's method constitutes, primarily, discourse analysis. We argue that it is possible to overcome this critique of Foucault's work by the application of methodological tools adapted from Foucault's later writings and his diagnosis of his own work as studies of forms of problematization. To shed light on the possibilities that this approach offers to the researcher, we present a reading of aspects of Foucault's work, with a focus on his notion of forms of problematization. Furthermore, we elaborate on concepts from his so-called genealogical period, namely 'the dispositive', strategy and tactics. Our interpretation is supported by examples from a study of the emergence of Danish nursing education, which is based on an analytical framework that we developed in the light of an interpretation of aspects of Foucault's work.

  19. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  20. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  1. The magic nature of 132Sn explored through the single-particle states of 133Sn

    SciTech Connect

    Jones, K. L.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Harlin, Christopher W; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian; Nesaraja, Caroline D; Nunes, F. M.; Pain, S. D.; Patterson, N. P.; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.

    2010-05-01

    Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lies outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.

  2. Single-particle electron microscopy in the study of membrane protein structure.

    PubMed

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date.

  3. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.

    PubMed

    Rakcheev, Denis; Philippe, Allan; Schaumann, Gabriele E

    2013-11-19

    Studying the environmental fate of engineered or natural colloids requires efficient methods for measuring their size and quantifying them in the environment. For example, an ideal method should maintain its correctness, accuracy, reproducibility, and robustness when applied to samples contained in complex matrixes and distinguish the target particles from the natural colloidal background signals. Since it is expected that a large portion of nanoparticles will form homo- or heteroagglomerates when released into environmental media, it is necessary to differentiate agglomerates from primary particles. At present, most sizing techniques do not fulfill these requirements. In this study, we used online coupling of two promising complementary sizing techniques: hydrodynamic chromatography (HDC) and single-particle ICPMS analysis to analyze gold nanoparticles agglomerated under controlled conditions. We used the single-particle mode of the ICPMS detector to detect single particles eluted from an HDC-column and determine a mass and an effective diameter for each particle using a double calibration approach. The average agglomerate relative density and fractal dimension were calculated using these data and used to follow the morphological evolution of agglomerates over time during the agglomeration process. The results demonstrate the ability of HDC coupled to single-particle analysis to identify and characterize nanoparticle homoagglomerates and is a very promising technique for the analysis of colloids in complex media.

  4. [The history of the psychiatry not told by Foucault].

    PubMed

    Freitas, Fernando Ferreira Pinto de

    2004-01-01

    The article proposes a revision of the approach to madness and the birth of the psychiatric institution taken by Foucault in History of Madness. The hypothesis is that the origins of modern Psychiatry revolutionize the approach to madness by proposing it is possible to dialogue with the insane, because the madman is not someone who has lost his reason . It is hoped that this critique of Foucault's book will be a contribution to the process of psychiatric reform currently underway in Brazil.

  5. Foucault test: a quantitative evaluation method.

    PubMed

    Rodríguez, Gustavo; Villa, Jesús; Ivanov, Rumen; González, Efrén; Martínez, Geminiano

    2016-08-01

    Reliable and accurate testing methods are essential to guiding the polishing process during the figuring of optical telescope mirrors. With the natural advancement of technology, the procedures and instruments used to carry out this delicate task have consistently increased in sensitivity, but also in complexity and cost. Fortunately, throughout history, the Foucault knife-edge test has shown the potential to measure transverse aberrations in the order of the wavelength, mainly when described in terms of physical theory, which allows a quantitative interpretation of its characteristic shadowmaps. Our previous publication on this topic derived a closed mathematical formulation that directly relates the knife-edge position with the observed irradiance pattern. The present work addresses the quite unexplored problem of the wavefront's gradient estimation from experimental captures of the test, which is achieved by means of an optimization algorithm featuring a proposed ad hoc cost function. The partial derivatives thereby calculated are then integrated by means of a Fourier-based algorithm to retrieve the mirror's actual surface profile. To date and to the best of our knowledge, this is the very first time that a complete mathematical-grounded treatment of this optical phenomenon is presented, complemented by an image-processing algorithm which allows a quantitative calculation of the corresponding slope at any given point of the mirror's surface, so that it becomes possible to accurately estimate the aberrations present in the analyzed concave device just through its associated foucaultgrams.

  6. Digital atom interferometer with single particle control on a discretized space-time geometry.

    PubMed

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  7. Estimation of variance in single-particle reconstruction using the bootstrap technique.

    PubMed

    Penczek, Pawel A; Yang, Chao; Frank, Joachim; Spahn, Christian M T

    2006-05-01

    Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) variance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and accuracy of the method under conditions encountered in practical circumstances.

  8. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    SciTech Connect

    Yang, Shuolong; Sobota, J. A.; Leuenberger, D.; He, Y.; Hashimoto, M.; Lu, D. H.; Eisaki, H.; Kirchmann, P. S.; Shen, Z. -X.

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  9. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  10. Single particle electron cryo-microscopy of a mammalian ion channel

    PubMed Central

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2014-01-01

    The transient receptor potential (TRP) ion channel family is large and functionally diverse, second only to potassium channels. Despite their prominence within the animal kingdom, TRP channels have resisted crystallization and structural determination for many years. This barrier was recently broken when the three-dimensional structure of the vanilloid receptor 1 (TRPV1) was determined by single particle electron cryo-microscopy (cryo-EM). Moreover, this is the first example in which the near atomic resolution structure of an integral membrane protein was elucidated by this technique and in a manner not requiring crystals, demonstrating the transformative power of single particle cryo-EM for revealing high-resolution structures of integral membrane proteins, particularly those of mammalian origin. Here we summarize technical advances, in both biochemistry and cryo-EM, that led to this major breakthrough. PMID:24681231

  11. Single-particle parity-nonconserving matrix elements in {sup 207}Pb

    SciTech Connect

    Komives, A.; Knott, J.E.; Leuschner, M.; Szymanski, J.J.; Bowman, J.D.; Jamrisk, D.

    1993-10-01

    Measurements of the helicity dependence of neutron scattering off of heavy nuclei by the TRIPLE collaboration have yielded multiple parity-nonconserving asymmetries. The asymmetries are predominantly positive, in contradiction to the zero average asymmetry predicted by the statistical model of neutron- nucleus scattering. Theoretical calculations that explain the non-zero average asymmetry require single-particle parity- nonconserving matrix elements 10-100 times larger than those predicted by meson exchange models. We are determining the single-particle parity non-conserving mixing in {sup 207}Pb by measuring the circular polarization of the 1.064 MeV {gamma} ray. The experiment uses a transmission polarimeter and a fast data acquisition system. Initial results are presented.

  12. Detecting gamma-ray bursts with the pierre auger observatory using the single particle technique

    SciTech Connect

    Allard, Denis; Parizot, E.; Bertou, Xavier; Beatty, J.; Vernois, M.Du; Nitz, D.; Rodriguez, G.

    2005-08-01

    During the past ten years, gamma-ray Bursts (GRB) have been extensively studied in the keV-MeV energy range but the higher energy emission still remains mysterious. Ground based observatories have the possibility to investigate energy range around one GeV using the ''single particle technique''. The aim of the present study is to investigate the capability of the Pierre Auger Observatory to detect the high energy emission of GRBs with such a technique. According to the detector response to photon showers around one GeV, and making reasonable assumptions about the high energy emission of GRBs, we show that the Pierre Auger Observatory is a competitive instrument for this technique, and that water tanks are very promising detectors for the single particle technique.

  13. Cryo-EM single particle analysis with the Volta phase plate

    PubMed Central

    Danev, Radostin; Baumeister, Wolfgang

    2016-01-01

    We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach. DOI: http://dx.doi.org/10.7554/eLife.13046.001 PMID:26949259

  14. Expectation values of single-particle operators in the random phase approximation ground state

    NASA Astrophysics Data System (ADS)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  15. NA49 Results on Single Particle and Correlation Measurements in Central PB+PB Collisions

    SciTech Connect

    Wang, F.

    1998-12-01

    Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.

  16. Expectation values of single-particle operators in the random phase approximation ground state.

    PubMed

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  17. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    PubMed

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  18. Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals.

    PubMed

    Cai, Y; Peng, W P; Kuo, S J; Lee, Y T; Chang, H C

    2002-01-01

    High-resolution mass spectra of single submicrometer-sized particles are obtained using an electrospray ionization source in combination with an audio frequency quadrupole ion-trap mass spectrometer. Distinct from conventional methods, light scattering from a continuous Ar-ion laser is detected for particles ejected out of the ion trap. Typically, 10 particles are being trapped and interrogated in each measurement. With the audio frequency ion trap operated in a mass-selective instability mode, analysis of the particles reveals that they all differ in mass-to-charge ratio (m/z), and the individual peak in the observed mass spectrum is essentially derived from one single particle. A histogram of the spectra acquired in 10(2) repetitions of the experiment is equivalent to the single spectrum that would be observed when an ion ensemble of 10(3) particles is analyzed simultaneously using the single-particle mass spectrometer (SPMS). To calibrate such single-particle mass spectra, secular frequencies of the oscillatory motions of the individual particle within the trap are measured, and the trap parameter qz at the point of ejection is determined. A mass resolution exceeding 10(4) can readily be achieved in the absence of ion ensemble effect. We demonstrate in this work that the SPMS not only allows investigations of monodisperse polystyrene microspheres, but also is capable of detecting diamond nanoparticles with a nominal diameter of 100 nm, as well.

  19. Phonon-particle coupling effects in the single-particle energies of semi-magic nuclei

    NASA Astrophysics Data System (ADS)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2016-11-01

    A method is presented to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei. In such nuclei, always there is a collective low-lying 2+ phonon, and a strong mixture of single-particle and particle-phonon states often occurs. As in magic nuclei the so-called g L 2 approximation, where g L is the vertex of the L-phonon creation, can be used for finding the PC correction δΣPC(ɛ) to the initial mass operator Σ0. In addition to the usual pole diagram, the phonon "tadpole" diagram is also taken into account. In semi-magic nuclei, the perturbation theory in δΣPC(ɛ) with respect to Σ0 is often invalid for finding the PC-corrected single-particle energies. Instead, the Dyson equation with the mass operator Σ(ɛ) = Σ0 + δΣPC(ɛ) is solved directly, without any use of the perturbation theory. Results for a chain of semi-magic Pb isotopes are presented.

  20. Discrimination between spheres and spheroids in a detection system for single particles based on polarization characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Zhai, Mengran; Sun, Jinlu; Zhou, Ye; Jia, Dagong; Liu, Tiegen; Zhang, Yimo

    2017-01-01

    The polarization characteristics of light scattered by particles are sensitive to the morphology of the scatterers. In this study, we employed the finite element method (FEM) with a finite element software (COMSOL multiphysics) to retain the potentiality to extend the theoretical study of scattering in this work to single particles with more complex morphology and arbitrary orientation. The angular distribution profiles of the scattering field components perpendicular and parallel to the incident polarization direction are obtained for spherical and spheroidal particles. By comparison with the spheres' preservation of the polarization, cross-polarization effects for differently oriented spheroidal particles are revealed. The question how to experimentally discriminate the particles with smooth surface moving freely in the detected area at single-particle level according to polarization is addressed. To this end, polarizing devices are inserted into an interference particle imaging (IPI) system. By detecting the orthogonally polarized components of the light, the preservation of the polarization state after scattering by spheres and the occurrence of cross-polarization effects after scattering by spheroids are verified experimentally with the fringes in the IPI system as a reference. A feasible method for distinguishing a spheroidal from a spherical shape at the single-particle level based on the existence of a cross-polarized component of the scattered light is proposed.

  1. Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging

    PubMed Central

    Bharat, Tanmay A.M.; Russo, Christopher J.; Löwe, Jan; Passmore, Lori A.; Scheres, Sjors H.W.

    2015-01-01

    Summary Recent innovations in specimen preparation, data collection, and image processing have led to improved structure determination using single-particle electron cryomicroscopy (cryo-EM). Here we explore some of these advances to improve structures determined using electron cryotomography (cryo-ET) and sub-tomogram averaging. We implement a new three-dimensional model for the contrast transfer function, and use this in a regularized likelihood optimization algorithm as implemented in the RELION program. Using direct electron detector data, we apply both single-particle analysis and sub-tomogram averaging to analyze radiation-induced movements of the specimen. As in single-particle cryo-EM, we find that significant sample movements occur during tomographic data acquisition, and that these movements are substantially reduced through the use of ultrastable gold substrates. We obtain a sub-nanometer resolution structure of the hepatitis B capsid, and show that reducing radiation-induced specimen movement may be central to attempts at further improving tomogram quality and resolution. PMID:26256537

  2. Electron Cryomicroscopy of Membrane Proteins: Specimen Preparation for Two-Dimensional Crystals and Single Particles

    PubMed Central

    Schmidt-Krey, Ingeborg; Rubinstein, John L.

    2010-01-01

    Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed. PMID:20678942

  3. Scientia sexualis versus ars erotica: Foucault, van Gulik, Needham.

    PubMed

    Rocha, Leon Antonio

    2011-09-01

    This paper begins with a discussion of the scientia sexualis/ars erotica distinction, which Foucault first advances in History of Sexuality Vol. 1, and which has been employed by many scholars to do a variety of analytical work. Though Foucault has expressed his doubts regarding his conceptualization of the differences between Western and Eastern discourses of desire, he never entirely disowns the distinction. In fact, Foucault remains convinced that China must have an ars erotica. I will explore Foucault's sources of authority. To this end, I introduce the work of famous Dutch sinologist Robert Hans van Gulik, who published the tremendously influential Sexual Life in Ancient China in 1961, and also explore Joseph Needham's view on Chinese sex. I argue that, Foucault, in his fierce polemic against the "Repressive Hypothesis", himself imagined a utopian Other where pleasure and desire were organised differently. I end on a discuss on Orientalism and the project of "Sinography" of comparative literature scholars Haun Saussy, Eric Hayot and others.

  4. Errant life, molecular biology, and biopower: Canguilhem, Jacob, and Foucault.

    PubMed

    Talcott, Samuel

    2014-01-01

    This paper considers the theoretical circumstances that urged Michel Foucault to analyse modern societies in terms of biopower. Georges Canguilhem's account of the relations between science and the living forms an essential starting point for Foucault's own later explorations, though the challenges posed by the molecular revolution in biology and François Jacob's history of it allowed Foucault to extend and transform Canguilhem's philosophy of error. Using archival research into his 1955-1956 course on "Science and Error," I show that, for Canguilhem, it is inauthentic to treat a living being as an error, even if living things are capable of making errors in the domain of knowledge. The emergent molecular biology in the 1960s posed a grave challenge, however, since it suggested that individuals could indeed be errors of genetic reproduction. The paper discusses how Canguilhem and Foucault each responded to this by examining, among other texts, their respective reviews of Jacob's The Logic of the Living. For Canguilhem this was an opportunity to reaffirm the creativity of life in the living individual, which is not a thing to be evaluated, but the source of values. For Foucault, drawing on Jacob's work, this was the opportunity to develop a transformed account of valuation by posing biopower as the DNA of society. Despite their disagreements, the paper examines these three authors as different iterations of a historical epistemology attuned to errancy, error, and experimentation.

  5. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    PubMed

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  6. Foucault imaging by using non-dedicated transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  7. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles.

    PubMed

    Elmlund, Dominika; Elmlund, Hans

    2012-12-01

    The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction algorithm is tailored to asymmetrical and structurally heterogeneous single-particles. Its basis is global optimization with the use of Fourier common lines. The advance that enables ab initio reconstruction and heterogeneity analysis is the separation of the tasks of in-plane alignment and projection direction determination via bijective orientation search - a new concept in common lines-based strategies. Bijective orientation search divides the configuration space into two groups of paired parameters that are optimized separately. The first group consists of the rotations and shifts in the plane of the projection; the second group consists of the projection directions and state assignments. In SIMPLE, ab initio reconstruction is feasible because the 3D in-plane alignment is approximated using reference-free 2D rotational alignment. The subsequent common lines-based search hence searches projection directions and states only. Thousands of class averages are analyzed simultaneously in a matter of hours. Novice SIMPLE users get a head start via the well documented front-end. The structured, object-oriented back-end invites advanced users to develop new alignment and reconstruction algorithms. An overview of the package is presented together with benchmarks on simulated data. Executable binaries, source code, and documentation are available at http://simple.stanford.edu.

  8. Two-Particle Nonlocal Aharonov-Bohm Effect from Two Single-Particle Emitters

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Janine

    2010-03-01

    High-frequency single-particle emitters have been realized experimentally in the integer quantum Hall effect regime [1]: the particles are injected into edge states, operating as wave guides, and encounter splitters realized by quantum point contacts. These tools allow for the implementation of complex interferometers in mesoscopic systems showing two-particle interference effects. An example for tunable two-particle correlations is manifest in the electronic analogue of the Hong-Ou-Mandel interferometer [2], where a noise suppression is found due to the Pauli principle. In the work presented here we explore the entanglement production from two uncorrelated sources. We therefore propose a mesoscopic circuit in the quantum Hall effect regime comprising two independent single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes. This and the tunability of the single-particle sources allow in a controllable way to produce orbitally entangled electrons [3]. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. While the current in this setup is insensitive to the magnetic flux, the two-particle correlations manifest themselves as an Aharonov-Bohm effect in the noise. In an appropriate time-interval the concurrence reaches a maximum and a Bell inequality is violated, proving the existence of time-bin entanglement.[4pt] [1] G. Fève, A. Mah'e, J.-M. Berroir, T. Kontos, B. Placais, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, Science 316, 1169 (2007).[0pt] [2] S. Ol'Khovskaya, J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett. 101, 166802 (2008).[0pt] [3] J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett.103, 076804 (2009).

  9. Search for d3/2 single particle strength in 15N in Unbound Levels

    NASA Astrophysics Data System (ADS)

    Mertin, C. E.; Caussyn, D. D.; Crisp, A. M.; Keeley, N.; Kemper, K. W.; Momotyuk, O.; Roeder, B. T.; Volya, A.

    2013-10-01

    The population of states in the nucleus 15N provides the opportunity to investigate both single particle and cluster structures in the 1p and 2s1d shells. Single, two, three and four particle transfer reactions selectively excite states in 15N thus providing a way to explore current nuclear structure models. Narrow structures are observed in the various transfer reactions up to at least 20 MeV in excitation well above the neutron (10.8 MeV) and proton (10.2 MeV) separation energies. In the present work new results for the reaction 14N(d,p) are presented that explore possible single particle strengths up to 18 MeV in excitation. The beam energies used in the present work were between 10.5 and 16 MeV. An early work with a beam energy of 8 MeV clearly populated strong sharp levels at 10.07 and 11.23 MeV and the present work confirms their existence. In addition, very weak broader levels are populated at 12.13 and 12.5 MeV but no other structures are found experimentally at higher excitation energies. The results of shell model calculations that include the 1p and 2s1d shells will be presented. The centroid energies for the 1d5/2 and 2s1/2 single particle strength have been obtained through comparison with FRESCO calculations. This work was supported by the NSF, DOE and Florida State University.

  10. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  11. Single-particle cryo-EM data acquisition by using direct electron detection camera

    PubMed Central

    Wu, Shenping; Armache, Jean-Paul; Cheng, Yifan

    2016-01-01

    Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as ‘movies’ made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired. PMID:26546989

  12. FAST WAVELET-BASED SINGLE-PARTICLE RECONSTRUCTION IN CRYO-EM.

    PubMed

    Vonesch, Cédric; Wang, Lanhui; Shkolnisky, Yoel; Singer, Amit

    2011-06-09

    This paper presents a novel algorithm for the 3D tomographic inversion problem that arises in single-particle electron cryo-microscopy (Cryo-EM). It is based on two key components: 1) a variational formulation that promotes sparsity in the wavelet domain and 2) the Toeplitz structure of the combined projection/back-projection operator. The first idea has proven to be very effective for the recovery of piecewise-smooth signals, which is confirmed by our numerical experiments. The second idea allows for a computationally efficient implementation of the reconstruction procedure, using only one circulant convolution per iteration.

  13. Advances in the field of single-particle cryo-electron microscopy over the last decade.

    PubMed

    Frank, Joachim

    2017-02-01

    In single-particle cryo-electron microscopy (cryo-EM), molecules suspended in a thin aqueous layer are rapidly frozen and imaged at cryogenic temperature in the transmission electron microscope. From the random projection views, a three-dimensional image is reconstructed, enabling the structure of the molecule to be obtained. In this article I discuss technological progress over the past decade, which has, in my own field of study, culminated in the determination of ribosome structure at 2.5-Å resolution. I also discuss likely future improvements in methodology.

  14. Carbon Nanotube-Quantum Dot Nanohybrids: Coupling with Single-Particle Control in Aqueous Solution.

    PubMed

    Attanzio, Antonio; Sapelkin, Andrei; Gesuele, Felice; van der Zande, Arend; Gillin, William P; Zheng, Ming; Palma, Matteo

    2017-02-10

    A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.

  15. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs

    PubMed Central

    Shaikh, Tanvir R; Gao, Haixiao; Baxter, William T; Asturias, Francisco J; Boisset, Nicolas; Leith, Ardean; Frank, Joachim

    2009-01-01

    This protocol describes the reconstruction of biological molecules from the electron micrographs of single particles. Computation here is performed using the image-processing software SPIDER and can be managed using a graphical user interface, termed the SPIDER Reconstruction Engine. Two approaches are described to obtain an initial reconstruction: random-conical tilt and common lines. Once an existing model is available, reference-based alignment can be used, a procedure that can be iterated. Also described is supervised classification, a method to look for homogeneous subsets when multiple known conformations of the molecule may coexist. PMID:19180078

  16. Using the Volta phase plate with defocus for cryo-EM single particle analysis

    PubMed Central

    Danev, Radostin; Tegunov, Dimitry; Baumeister, Wolfgang

    2017-01-01

    Previously, we reported an in-focus data acquisition method for cryo-EM single-particle analysis with the Volta phase plate (Danev and Baumeister, 2016). Here, we extend the technique to include a small amount of defocus which enables contrast transfer function measurement and correction. This hybrid approach simplifies the experiment and increases the data acquisition speed. It also removes the resolution limit inherent to the in-focus method thus allowing 3D reconstructions with resolutions better than 3 Å. DOI: http://dx.doi.org/10.7554/eLife.23006.001 PMID:28109158

  17. A single particle plasmon resonance study of 3D conical nanoantennas.

    PubMed

    Schäfer, Christian; Gollmer, Dominik A; Horrer, Andreas; Fulmes, Julia; Weber-Bargioni, Alexander; Cabrini, Stefano; Schuck, P James; Kern, Dieter P; Fleischer, Monika

    2013-09-07

    Metallic nanocones are well-suited optical antennas for near-field microscopy and spectroscopy, exhibiting a number of different plasmonic modes. A major challenge in using nanocones for many applications is maximizing the signal at the tip while minimizing the background from the base. It is shown that nanocone plasmon resonance properties can be shifted over a wide range of wavelengths by variation of the substrate, material, size and shape, enabling potential control over specific modes and field distributions. The individual resonances are identified and studied by correlated single particle dark field scattering and scanning electron microscopy in combination with numerical simulations.

  18. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters.

    PubMed

    Splettstoesser, Janine; Moskalets, Michael; Büttiker, Markus

    2009-08-14

    We propose a mesoscopic circuit in the quantum Hall effect regime comprising two uncorrelated single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes, which allows us in a controllable way to produce orbitally entangled electrons. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. The two-particle correlations manifest themselves as an Aharonov-Bohm effect in noise, while the current is insensitive to magnetic fluxes. In an appropriate time interval the concurrence reaches a maximum and a Bell inequality is violated.

  19. Wigglers and single-particle dynamics in the NLC damping rings

    SciTech Connect

    Venturini, Marco; Wolski, Andrzej; Dragt, Alex

    2003-05-06

    Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits.

  20. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    SciTech Connect

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  1. The Pleasures of Learning at Work: Foucault and Phenomenology Compared

    ERIC Educational Resources Information Center

    Hughes, Christina

    2007-01-01

    This paper provides a comparative account of two conceptualisations of pleasure. The first draws on Foucault's analysis of bio-power. The second provides a phenomenological account where pleasure is viewed as an aspect of our immediate consciousness. These conceptualisations are illuminated through an analysis of employees' accounts of learning at…

  2. A Critical Theory of the Self: Wittgenstein, Nietzsche, Foucault.

    ERIC Educational Resources Information Center

    Marshall, James D.

    2001-01-01

    Argues for a Foucauldean position on the self to extend critical theory. Discusses several philosophical accounts of the self, including the work of such philosophers as Descartes, Hume, Locke, Rousseau, Schopenhauer, Wittgenstein, and Nietzsche. Concludes that Foucault's philosophy provides a powerful critical conception of the self for critical…

  3. Optical Foucault Pendulum: photons and the Coriolis effect

    NASA Astrophysics Data System (ADS)

    Rogers, Charles; Selvaggi, Richard

    2012-10-01

    Consider the motion of photons within a rotating photon clock. Will light behave as a particle as it reflects back and forth between two parallel mirrors rotating in a manner similar to the motion of a Foucault pendulum? An experiment to measure the trajectory of light in a rotating cavity is presented. Implementation details for this experiment and initial data collected are also reported.

  4. What Makes the Foucault Pendulum Move among the Stars?

    ERIC Educational Resources Information Center

    Phillips, Norman

    2004-01-01

    Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with…

  5. Putting Foucault to Work: Understanding Power in a Rural School

    ERIC Educational Resources Information Center

    Freie, Carrie; Eppley, Karen

    2014-01-01

    This case study uses the work of Michel Foucault to challenge the normalization of the principal's role and to examine the complex power relations of a rural school and community in the midst of a closure/consolidation and subsequent reopening as a charter school. In so doing, we move beyond analysis of best practices and toward a more theoretical…

  6. Beyond Intimaphobia: Object Lessons from Foucault and Sade

    ERIC Educational Resources Information Center

    Greteman, Adam Joseph

    2014-01-01

    In this study I suggest ways of thinking through issues of intimacy that have emerged in the late twentieth and early twenty-first centuries in the USA. I propose a state of intimaphobia in education. However, I move beyond exposing this state of intimaphobia to offer particular readings of two philosophers of intimacy: Michel Foucault and the…

  7. Foucault at School: Discipline, Education and Agency in "Harry Potter"

    ERIC Educational Resources Information Center

    Wolosky, Shira

    2014-01-01

    The formative power of children's literature is both great and suspicious. As a resource of socialization, the construction and experience of children's literature can be seen as modes of disciplinary coercion such as Michel Foucault has anatomized. "Harry Potter", as a "craze" phenomenon, has attracted particular…

  8. Applying Foucault's "Archaeology" to the Education of School Counselors

    ERIC Educational Resources Information Center

    Shenker, Susan S.

    2008-01-01

    Counselor educators can utilize the ideas of philosopher Michel Foucault in preparing preservice school counselors for their work with K-12 students in public schools. The Foucaultian ideas of "governmentality," "technologies of domination," "received truths," "power/knowledge," "discontinuity," and "archaeology" can contribute to students'…

  9. Foucault on Camp: What Does His Work Offer Outdoor Education?

    ERIC Educational Resources Information Center

    Zink, Robyn; Burrows, Lisette

    2006-01-01

    In this paper we examine aspects of French social theorist, Michel Foucault's work and the contributions these can make to understanding practices in outdoor education. We look specifically at his notions of practice, discourse, power and the self and the lines of questioning that these concepts make possible in relation to outdoor education. We…

  10. Maskiton: Interactive, Web-based Classification of Single-Particle Electron Microscopy Images

    PubMed Central

    Yoshioka, Craig; Lyumkis, Dmitry; Carragher, Bridget; Potter, Clinton S.

    2013-01-01

    Electron microscopy (EM) is an important tool for determining the composition, arrangement and structure of biological macromolecules. When studying structurally heterogeneous samples using EM, classification is a critical step toward achieving higher resolution and identifying biologically significant conformations. We have developed an interactive, web-based tool, called Maskiton, for creating custom masks and performing 2D classifications on aligned single-particle EM images. The Maskiton interface makes it considerably easier and faster to explore the significance of heterogeneity in single-particle datasets. Maskiton features include: resumable uploads to facilitate transfer of large datasets to the server, custom mask creation in the browser, continual progress updates, and interactive viewing of classification results. To demonstrate the value of this tool, we provide examples of its use on several experimental datasets and include analyses of the independent terminus mobility within the Ltn1 E3 ubiquitin ligase, the in-vitro assembly of 30S ribosomal subunits, and classification complexity reduction within Immunoglobulin M. This work also serves as a proof-of-concept for the development of future cross-platform, interactive user interfaces for electron microscopy data processing. PMID:23428431

  11. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  12. Revealing nonergodic dynamics in living cells from a single particle trajectory

    NASA Astrophysics Data System (ADS)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  13. Maskiton: Interactive, web-based classification of single-particle electron microscopy images.

    PubMed

    Yoshioka, Craig; Lyumkis, Dmitry; Carragher, Bridget; Potter, Clinton S

    2013-05-01

    Electron microscopy (EM) is an important tool for determining the composition, arrangement and structure of biological macromolecules. When studying structurally heterogeneous samples using EM, classification is a critical step toward achieving higher resolution and identifying biologically significant conformations. We have developed an interactive, web-based tool, called Maskiton, for creating custom masks and performing 2D classifications on aligned single-particle EM images. The Maskiton interface makes it considerably easier and faster to explore the significance of heterogeneity in single-particle datasets. Maskiton features include: resumable uploads to facilitate transfer of large datasets to the server, custom mask creation in the browser, continual progress updates, and interactive viewing of classification results. To demonstrate the value of this tool, we provide examples of its use on several experimental datasets and include analyses of the independent terminus mobility within the Ltn1 E3 ubiquitin ligase, the in vitro assembly of 30S ribosomal subunits, and classification complexity reduction within Immunoglobulin M. This work also serves as a proof-of-concept for the development of future cross-platform, interactive user interfaces for electron microscopy data processing.

  14. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  15. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    DOE PAGES

    Zhu, Feng; Men, Long; Guo, Yijun; ...

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively highermore » photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.« less

  16. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    SciTech Connect

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  17. Laboratory and Ambient Studies Using an Automated Semi-Continuous Single-Particle Aerosol Raman Spectrometer

    NASA Astrophysics Data System (ADS)

    Doughty, D., III; Hill, S. C.

    2015-12-01

    Single-particle Raman spectra can yield extensive information about in-situ ambient particulate composition. However, Raman spectral measurements of individual aerosol particles typically require collection of samples in the field followed by offline Raman spectral measurements in a laboratory. The process requires considerable operator time. We report results obtained with an automated, single-particle Aerosol Raman Spectrometer built by Battelle, which is the core of Battelle's Resource Effective Bioidentification System (REBS). This instrument collects aerosol particles onto a metallized polymer tape and simultaneously measures Raman spectra of particles obtained during the previous collection period. At the end of each collection period (typically 15 minutes), the tape is advanced and the next collection and measurement period is begun. In this way, particles are semi-continuously sampled and their Raman spectra are measured. We show laboratory data from different sizes of polystyrene latex spheres. We also show results from calcium sulfate particles, vehicular emission soot, and other particles. We discuss the influence of imaging time on the quality of the Raman spectra measured and on the ability of the instrument to resolve aerosol particles. Finally, we present results from an outdoor sampling period during the summer of 2015 where the instrument ran unattended for more than one week collecting particles and measuring their Raman spectra. We suggest that the routine use of such an automated particle-sampling instrument should increase our understanding of inorganic and organic aerosols including biological aerosols and sources and fates of these particles.

  18. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  19. Fourier transforms of single-particle wave functions in cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Rizea, M.; Carjan, N.

    2016-12-01

    A formalism and the corresponding numerical procedures that calculate the Fourier transform of a single-particle wave function defined on a grid of cylindrical (ρ, z) coordinates is presented. Single-particle states in spherical and deformed nuclei have been chosen in view of future applications in the field of nuclear reactions. Bidimensional plots of the probability that the nucleon's momentum has a given value K=√{k_{ρ}2+kz2} are produced and from them the K -distributions are deduced. Three potentials have been investigated: a) a sharp surface spherical well ( i.e., of constant depth), b) a spherical Woods-Saxon potential i.e., diffuse surface) and c) a deformed potential of Woods-Saxon type. In the first case the momenta are as well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities plots. In the second case the diffuseness allows very low momenta to be always populated thus creating tails towards the origin ( K = 0). The peaks are still present but not well separated. In the third case the deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along them. As a consequence the K-distributions have only one broad peak.

  20. Single-particle spectral function for the classical one-component plasma

    NASA Astrophysics Data System (ADS)

    Fortmann, C.

    2009-01-01

    The spectral function for an electron one-component plasma is calculated self-consistently using the GW(0) approximation for the single-particle self-energy. In this way, correlation effects that go beyond the mean-field description of the plasma are contained, i.e., the collisional damping of single-particle states, the dynamical screening of the interaction, and the appearance of collective plasma modes. Second, a nonperturbative analytic solution for the on-shell GW(0) self-energy as a function of momentum is presented. It reproduces the numerical data for the spectral function with a relative error of less than 10% in the regime where the Debye screening parameter is smaller than the inverse Bohr radius, κ<1aB-1 . In the limit of low density, the nonperturbative self-energy behaves as n1/4 , whereas a perturbation expansion leads to the unphysical result of a density-independent self-energy [Fennel and Wilfer, Ann. Phys. (Leipzig) 32, 265 (1974)]. The derived expression will greatly facilitate the calculation of observables in correlated plasmas (transport properties, equation of state) that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential, which is computed from the analytical formulas and compared to the GW(0) result. At a plasma temperature of 100eV and densities below 1021cm-3 , the two approaches deviate by less than 10% from each other.

  1. A Single Particle Soot Photometer for the Measurement of Aerosol Black Carbon

    NASA Astrophysics Data System (ADS)

    Kok, G. L.; Baumgardner, D.; Spuler, S.

    2002-12-01

    A Single Particle Soot Photometer (SP2) has been developed for the measurement of black carbon mass in single particles. The analytical technique is the incandescence of light absorbing particles. An aerosol stream is directed intra-cavity across the beam of a Nd:YAG laser where the laser intensity is in excess of 1 MW/cm2. Non-light absorbing particles only scatter light but particles containing black carbon absorb sufficient energy to heat and incandesce as they vaporize. Four optical detectors are used to measure the scattered and incandescence radiation from the particles. One measures the scattered, 1064 nm radiation while the other three detectors measure the light of incandescence over different wavelength regions. The ratio of intensities at the different wavelengths yields the temperature at which the particle incandesced whereas the absolute intensity is proportional to the carbon mass. The minimum size of non-incandescing particles that can be measured is approximately 100 nm and for incandescing particles it is 80 nm. Data will be presented on the operation of the instrumentation and examples of ambient measurements of black carbon.

  2. Cryo-electron microscopy single particle reconstruction of virus particles using compressed sensing theory

    NASA Astrophysics Data System (ADS)

    Kim, Min Woo; Choi, Jiyoung; Yu, Liu; Lee, Kyung Eun; Han, Sung-Sik; Ye, Jong Chul

    2007-02-01

    Sparse object supports are often encountered in many imaging problems. For such sparse objects, recent theory of compressed sensing tells us that accurate reconstruction of objects are possible even from highly limited number of measurements drastically smaller than the Nyquist sampling limit by solving L I minimization problem. This paper employs the compressed sensing theory for cryo-electron microscopy (cryo-EM) single particle reconstruction of virus particles. Cryo-EM single particle reconstruction is a nice application of the compressed sensing theory because of the following reasons: 1) in some cases, due to the difficulty in sample collection, each experiment can obtain micrographs with limited number of virus samples, providing undersampled projection data, and 2) the nucleic acid of a viron is enclosed within capsid composed of a few proteins; hence the support of capsid in 3-D real space is quite sparse. In order to minimize the L I cost function derived from compressed sensing, we develop a novel L I minimization method based on the sliding mode control theory. Experimental results using synthetic and real virus data confirm that the our algorithm provides superior reconstructions of 3-D viral structures compared to the conventional reconstruction algorithms.

  3. Sensitive sandwich immunoassay based on single particle mode inductively coupled plasma mass spectrometry detection.

    PubMed

    Liu, Rui; Xing, Zhi; Lv, Yi; Zhang, Sichun; Zhang, Xinrong

    2010-11-15

    A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions ((197)Au(+)) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3 σ) of 0.1 ng mL(-1) was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL(-1) and a RSD of 8.1% (2.0 ng mL(-1)). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.

  4. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:26913144

  5. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen; Serysheva, Irina I.

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:25844145

  6. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments

    NASA Astrophysics Data System (ADS)

    Kepten, Eldad; Bronshtein, Irena; Garini, Yuval

    2013-05-01

    The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

  7. Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

    PubMed

    Geng, Hong; Ryu, Jiyeon; Jung, Hae-Jin; Chung, Hyeok; Ahn, Kang-Ho; Ro, Chul-Un

    2010-04-01

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.

  8. Study of the comminution characteristics of coal by single particle breakage test device

    SciTech Connect

    Sahoo, R.

    2005-09-01

    Single-particle breakage tests of South Blackwater and Ensham coal from the Bowen Basin area in Queensland were conducted by a computer-monitored twin-pendulum device to measure the energy utilization pattern of the breakage particles. Three particle sizes (-16.0+13.2mm, -13.2+11.2mm, -11.2+9.5mm) of each coal were tested by a pendulum device at five input energy levels to measure the specific comminution energy. When particles were tested at constant input energy, the variation of comminution energy between the same size broken particles of Ensham coal was minimal, because Ensham coal is a softer and higher friability coal, which absorbs more input energy than harder coal during breakage tests. For different particle sizes, the specific comminution energy increases linearly with the input energy and the fineness of the breakage products increases with the specific comminution energy. The size distribution graphs are curved but approach linearity in the finer region. At a constant input energy, the twin pendulum breakage product results show that the fineness of the products increases with decrease in particle size and South Blackwater coal produced finer products than the Ensham coal. The t-curves are the family of size distribution curves, which can describe the product size distribution of the breakage particles during single-particle breakage tests.

  9. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry.

    PubMed

    Degueldre, C; Favarger, P-Y

    2004-04-19

    Thorium colloid analysis in water has been carried out by a single particle mode using inductively coupled plasma mass spectrometry (ICP-MS). The flash of ions due to the ionisation of a thorium colloidal particle in the plasma torch can be detected and measured in a time scan for (232)Th (+ ) or (248)[ThO] (+ ) according to the sensitivity required by the mass spectrometer. The peaks of the recorded intensity of the MS signal can be analysed as a function of the particle size or fraction of the studied element in the colloid phase. The frequency of the flashes is directly proportional to the concentration of particles in the colloidal suspension. After discussing Th colloid detection, on the basis of the intensity of the ion flashes generated in the plasma torch, tests were performed on thorium dioxide colloidal particles. This feasibility study also describes the experimental conditions and the limitation of the plasma design to detect thorium colloids in a single particle analysis mode down to about 10fg.

  10. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    PubMed

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series.

  11. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation

    NASA Astrophysics Data System (ADS)

    Hapke, Bruce

    2012-11-01

    The measured volume-average single particle angular scattering functions of a large number of types of particle of interest for planetary regoliths in the visible-near-IR wavelength region can be represented to a reasonable approximation by two-parameter, double Henyey-Greenstein functions. When the two parameters of this function are plotted against one another they are found to be inversely correlated and lie within a restricted zone shaped like a hockey stick within the parameter space. The centroid of the zone is a curve that can be represented by a simple empirical equation. The wide variety of types of particles used to construct the plot implies that this equation may represent most of the particles found in regoliths. This means that when modeling the bidirectional reflectance of a regolith it may be possible to reduce the number of parameters necessary to specify the reflectance, and also to characterize the entire single particle phase function from observations at phase angles less than 90°. Even if the hockey stick relation has a finite width, rather than being a line, it restricts the parameter space that must be searched when fitting data. The curve should also be useful for forward modeling particle phase functions.

  12. Protein Secondary Structure Determination by Constrained Single-Particle Cryo-Electron Tomography

    PubMed Central

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-01-01

    SUMMARY Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose “constrained single-particle tomography” as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ~8 Å starting from low-dose tomographic tilt series. PMID:23217682

  13. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    SciTech Connect

    Lerma H, S.

    2010-07-15

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  14. Single-Particle Composition Measured in an Alpine Valley: Wood Smoke, EC and BC

    NASA Astrophysics Data System (ADS)

    Liepmann, C.; Gross, D. S.; Benzaid, S.; Christensen, J.; Turetsky, E.; Musicant, D.; Sandradewi, J.; Prevot, A.; Baltensperger, U.

    2007-12-01

    Particulate pollution is an issue of concern in today's society. Current regulations focus on the mass of particulate matter (PM) per volume of air, and not the source or chemical composition of the PM. Here we will present results from the AEROWOOD campaign in Roveredo, Switzerland where we investigated the PM composition measured using a single-particle mass spectrometer (TSI 3800 ATOFMS) to identify the sources of ambient particles. The goal was to differentiate wood smoke particles from diesel emissions. Roveredo is located in a deep alpine valley with strong wintertime thermal inversions, trapping the emissions. Local homes are predominantly heated by wood fires, and the village is located along a motorway that crosses the Swiss alps, providing two distinct particle sources. The particles sampled with the ATOFMS have been analyzed in a variety of ways with a focus on the temporal trends of the different particle types identified. Of particular interest is the distinction made between elemental carbon (EC) and black carbon (BC). During AEROWOOD, EC was measured chemically using real- time thermo/optical methods. BC was recorded directly by absorption, using an aethalometer. Regression models have been constructed to predict the EC and BC values using the single-particle mass spectra, providing chemical insight into the differences in these quantities. Additionally, comparing the timeline plots of EC, BC and the particle types found from the ATOFMS data should provide an idea as to the sources of EC and BC in this location.

  15. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  16. Geometric Phase of a Transported Oscillator

    SciTech Connect

    Dittirich, W.

    2004-02-25

    An oscillator constrained to a plane that is transported along some surface will rotate by an angle dependent only on the path and the surface, not on the speed at which it is transported. This is thus an example of a geometric phase. We analyze this phase using the methods of parallel transport. This concept plays a key role in General Relativity, but it can also be applied in classical mechanics. The Foucault pendulum can be seen as an application of this analysis, where the surface is a sphere and the curve is a line of constant latitude. In view of some considerable confusion and erroneous treatments in the recent literature, we here present a rather simple way for visualizing the motion of the Foucault pendulum using concepts that are based on Frenet's formulae and the methods of parallel displacement.

  17. [Foucault's concept of gouvernmentality: an instrument to analyse nursing science].

    PubMed

    Friesacher, Heiner

    2004-12-01

    The following article will present the concept of gouvernmentality by the French philosopher Michel Foucault (1926-1984). I will point out in which way his idea could be applied to nursing science. The notion gouvernmentality goes back to the late works of Michel Foucault. The idea of gouvernmentality continues, broadens and shifts the stress of his influential work on the analysis of power. The strategic concept of power is not sufficient to investigate from a consistent analytical perspective into the complex problems of the state and subjectivity. Only Foucault's findings of the notion and the concept of gouvernmentality has come up to an adequate analytical method. Relations of power are investigated from the point of view and hereby social technologies and self-technologies can be analysed in relation to each other The analysis of neo-liberal gouvernmentality finally succeeds by using this broadening of perspective. A new definition of state and economy can be revealed: the market turns into a regulating principle and economics grasps all kinds of human actions and proceedings. Apart from a few exceptions the hitherto Foucault-reception in nursing science does not follow the late works of Foucault and limits its research possibilities. In this article I will analyse examples of the quality discourse and the problems of an interpretation of needs. It will be shown how both areas might shape patients as well as nurses in the sense of neo-liberal subject formation and how finally the act and art of nursing will be transformed into an act of economics.

  18. Galilean covariant harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    A Galilean covariant approach to classical mechanics of a single particle is described. Within the proposed formalism, all non-covariant force laws defining acting forces which become to be defined covariantly by some differential equations are rejected. Such an approach leads out of the standard classical mechanics and gives an example of non-Newtonian mechanics. It is shown that the exactly solvable linear system of differential equations defining forces contains the Galilean covariant description of harmonic oscillator as its particular case. Additionally, it is demonstrated that in Galilean covariant classical mechanics the validity of the second Newton law of dynamics implies the Hooke law and vice versa. It is shown that the kinetic and total energies transform differently with respect to the Galilean transformations.

  19. A new coincidence model for single particle counters, Part II: Advances and applications.

    PubMed

    Knapp, J Z; Lieberman, A; Abramson, L R

    1994-01-01

    Accuracy, acceptance limits and methods for U.S.P. (788) contaminating particle assays published in the XXII Revision are refined in U.S.P. XXIII. In both Revisions, although different numerical values and methods are employed, particle contamination limits remain constants for all S.V.I. container volumes. The effect of this quality standard is high particle concentration acceptance limits in the smallest S.V.I. container sizes. The effect of these high concentrations is to introduce both undercount errors and false counts into U.S.P. (788) SVI contaminating particle assays. There is general agreement that the count of high concentrations of particles by a single particle light extinction counter result in an increase of the average size of the distribution of particles reported and a decrease in their total number. The error mechanism is termed "signal coincidence." Understanding and control of both these problems is unified with the introduction of the count efficiency parameter. Part I of this paper makes available two core concepts with which evaluation and control of coincidence error in single particle counters can be accurately quantified. These two core concepts are the "Particle Triggered Poisson Model," a new more accurate statistical model of the particle counting process and a concentration measure that includes the effect of particle size on the counting capability of a detector. Use of these concepts make it possible to evaluate particle detector count efficiency capability from experimental data of the coincidence effect. This is an application paper. It combines the theory in the Part I paper with the replicability of particle counters into a simple test protocol. The test results can be used to calculate a contour of particle size and count within which both undercount errors and the introduction of false counts into U.S.P. (788) particle assays are controlled. From the data analyzed it can be seen that any single particle size test cannot

  20. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol

    DOE PAGES

    Xu, Ping; Kang, Leilei; Mack, Nathan H.; ...

    2013-10-21

    We investigate surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4'-dimercaptoazobenzene (DMAB) by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from surface plasmon resonance to 4ATP, where O2 (as an electron acceptor) is essential and H2O (as a base) can accelerate the reaction. In contrast, hot electron (from surface plasmon decay) induction drives the reverse reaction of DMAB to 4ATP, where H2O (or H2) acts as the hydrogen source. Moremore » interestingly, the cyclic redox between 4ATP and DMAB by SPAC approach has been demonstrated. Finally, this SPAC methodology presents a unique platform for studying chemical reactions that are not possible under standard synthetic conditions.« less

  1. Fast Three-Dimensional Single-Particle Tracking in Natural Brain Tissue

    PubMed Central

    Sokoll, Stefan; Prokazov, Yury; Hanses, Magnus; Biermann, Barbara; Tönnies, Klaus; Heine, Martin

    2015-01-01

    Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures. PMID:26445447

  2. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

    PubMed Central

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-01-01

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707

  3. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    PubMed

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  4. Single-particle and collective motion in nuclear open quantum systems

    NASA Astrophysics Data System (ADS)

    Fossez, Kevin

    2017-01-01

    The properties of drip-line nuclei are profoundly affected by the environment of continuum states and the presence of decay channels. Their description requires the development of realistic theoretical approaches rooted in the open quantum system framework. However this formidable task presents many challenges and calls for closer collaborations between theorists and experimentalists. In this presentation a brief introduction to the problem of the description of weakly bound and unbound nuclei will be given with an emphasis on the relationship between nuclear structure and reactions. This will be illustrated by two recent investigations on the nuclei 11Be and 39Mg, where the role of the interplay between the collectivity and the continuum on single-particle structure has been studied. Finally the question of the existence of a nuclear system in the continuum is discussed for the case of the four-neutron system.

  5. Dragonfly: an implementation of the expand–maximize–compress algorithm for single-particle imaging1

    PubMed Central

    Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N. Duane

    2016-01-01

    Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand–maximize–compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA. PMID:27504078

  6. Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging.

    PubMed

    Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N Duane

    2016-08-01

    Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand-maximize-compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA.

  7. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    NASA Technical Reports Server (NTRS)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  8. Single-particle cryo-electron microscopy of Rift Valley fever virus

    PubMed Central

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit-vaccines. PMID:19304307

  9. Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2014-01-01

    Single Particle Reconstruction (SPR) for Cryogenic Electron Microscopy (cryo-EM) aligns and averages the images extracted from micrographs to improve the Signal-to-Noise ratio (SNR). Outliers compromise the fidelity of the averaging. We propose a robust cross-correlation-like w-estimator for combating the effect of outliers on the average images in cryo-EM. The estimator accounts for the natural variation of signal contrast among the images and eliminates the need for a threshold for outlier rejection. We show that the influence function of our estimator is asymptotically bounded. Evaluations of the estimator on simulated and real cryo-EM images show good performance in the presence of outliers.

  10. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments

    SciTech Connect

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; Hahn, Robert von; Klinkhamer, Vincent; Vogel, Stephen; Wolf, Andreas; Krantz, Claude; Novotný, Oldřich; Schippers, Stefan

    2015-02-15

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK’s Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  11. Neutron single particle structure in 131Sn and the r-process

    SciTech Connect

    Kozub, R. L.; Bardayan, Daniel W; Adekola, Aderemi S; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2009-01-01

    Recent calculations suggest that, at late times in the r-process, the rate of neutron capture by {sup 130}Sn has a significant impact on nucleosynthesis. Direct capture into low-lying bound states is likely the dominant reaction in the r-process near the N=82 closed shell, so reaction rates are strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, we have acquired (d,p) reaction data in the A{approx}132 region in inverse kinematics using {approx}630 MeV beams (4.85 MeV/u for {sup 130}Sn) and CD{sub 2} targets. An array of Si strip detectors, including SIDAR and an early implementation of the new Oak Ridge Rutgers University Barrel Array (ORRUBA), was used to detect reaction products. Preliminary results for the {sup 130}Sn(d,p){sup 131}Sn experiment are reported.

  12. Quantitative study of polymer conformation and dynamics by single-particle tracking.

    PubMed Central

    Qian, H; Elson, E L

    1999-01-01

    We present a new method for analyzing the dynamics of conformational fluctuations of individual flexible polymer molecules. In single-particle tracking (SPT), one end of the polymer molecule is tethered to an immobile substratum. A microsphere attached to the other end serves as an optical marker. The conformational fluctuations of the polymer molecule can be measured by optical microscopy via the motion of the microsphere. The bead-and-spring theory for polymer dynamics is further developed to account for the microsphere, and together the measurement and the theory yield quantitative information about molecular conformations and dynamics under nonperturbing conditions. Applying the method to measurements carried out on DNA molecules provides information complementary to recent studies of single DNA molecules under extensional force. Combining high precision measurements with the theoretical analysis presented here creates a powerful tool for studying conformational dynamics of biological and synthetic macromolecules at the single-molecule level. PMID:10049340

  13. Interplay between single-particle and collective excitations in argon isotopes populated by transfer reactions

    SciTech Connect

    Szilner, S.; Jelavic-Malenica, D.; Soic, N.; Corradi, L.; Fioretto, E.; Sahin, E.; Silvestri, R.; Stefanini, A. M.; Valiente-Dobon, J. J.; Haas, F.; Lebhertz, D.; Bouhelal, M.; Caurier, E.; Courtin, S.; Goasduff, A.; Nowacki, F.; Ur, C. A.; Beghini, S.; Farnea, E.

    2011-07-15

    New {gamma} transitions have been identified in argon isotopes in {sup 40}Ar + {sup 208}Pb multiple transfer reactions by exploiting, in a fragment-{gamma} measurement, the new generation of magnetic spectrometers based on trajectory reconstruction coupled to large {gamma} arrays. The coupling of single-particle degrees of freedom to nuclear vibration quanta was discussed. The interpretation of the newly observed states within a particle-phonon coupling picture was used to consistently follow, via their excitation energies, the evolution of collectivity in odd Ar isotopes. The proposed level schemes are supported by the results of sd-pf shell-model calculations, which have been also employed to evaluate the strength functions of the populated states.

  14. Femtosecond laser fabrication of silver plasmonic structures for application as single particle SERS detectors

    NASA Astrophysics Data System (ADS)

    Huang, H.; Hu, A.; Sivayoganathan, M.; Duley, W. W.; Huang, Z. H.; Zhou, Y.

    2014-04-01

    This work demonstrates the feasibility of fabricating silver nanoparticles (NPs) into sub-micron and micron-sized core-satellite structures by exposure to femtosecond laser radiation. We find that the size and shape of these structures can be tailored by adjusting laser fluence (1.8-10.5 J cm-2) and irradiation time (20-60 min), along with the concentration of NPs in aqueous solution (0.01-0.05 mM). Raman measurements of adenine molecules adsorbed on these sub-micron substrates indicate that core-satellite structures having complex shapes are effective as sensitive surface enhanced Raman spectroscopy (SERS) substrates. The sensitivity is such that these structures are potentially useful as single particle SERS substrates for bio-sensing. Finite difference time domain (FDTD) simulation results indicate that these structures can be generated by the joining of NPs in response to localized surface plasmon induced hotspots.

  15. Quantitative link between single-particle dynamics and static structure of supercooled liquids.

    PubMed

    Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M

    2006-09-21

    We present evidence via molecular simulation that the supercooled fluid states of SPC/E water as well as the "repulsive" and "attractive" supercooled fluid states of a recently introduced model for colloids with short-ranged attractions are characterized by the same functional relationship between self-diffusivity and the pair correlation function. We discuss how this simple relationship connects to an earlier finding that the temperature dependency of a supercooled fluid's single-particle dynamics tracks that of its excess entropy (relative to ideal gas). The generality of this observed structure-property relationship is supported by its ability to successfully describe the nontrivial behaviors of these very different types of model systems.

  16. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  17. Applications of differential algebra to single-particle dynamics in storage rings

    SciTech Connect

    Yan, Y.

    1991-09-01

    Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps.

  18. JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles.

    PubMed

    Zhang, Junjie; Nakamura, Natsuko; Shimizu, Yuko; Liang, Nathan; Liu, Xiangan; Jakana, Joanita; Marsh, Michael P; Booth, Christopher R; Shinkawa, Takao; Nakata, Munetaka; Chiu, Wah

    2009-01-01

    The JEOL Automated Data Acquisition System (JADAS) is a software system built for the latest generation of the JEOL Transmission Electron Microscopes. It is designed to partially or fully automate image acquisition for ice-embedded single particles under low dose conditions. Its built-in flexibility permits users to customize the order of various imaging operations. In this paper, we describe how JADAS is used to accurately locate and image suitable specimen areas on a grid of ice-embedded particles. We also demonstrate the utility of JADAS by imaging the epsilon 15 bacteriophage with the JEM3200FSC electron cryo-microscope, showing that sufficient images can be collected in a single 8h session to yield a subnanometer resolution structure which agrees with the previously determined structure.

  19. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol

    PubMed Central

    Xu, Ping; Kang, Leilei; Mack, Nathan H.; Schanze, Kirk S.; Han, Xijiang; Wang, Hsing-Lin

    2013-01-01

    Surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4′-dimercaptoazobenzene (DMAB) have been investigated by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from surface plasmon resonance to 4ATP, where O2 (as an electron acceptor) is essential and H2O (as a base) can accelerate the reaction. In contrast, hot electron (from surface plasmon decay) induction drives the reverse reaction of DMAB to 4ATP, where H2O (or H2) acts as the hydrogen source. More interestingly, the cyclic redox between 4ATP and DMAB by SPAC approach has been demonstrated. This SPAC methodology presents a unique platform for studying chemical reactions that are not possible under standard synthetic conditions. PMID:24141289

  20. Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model

    NASA Astrophysics Data System (ADS)

    Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi

    2016-12-01

    Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.

  1. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  2. Operational characteristics of single-particle heat engines and refrigerators with time-asymmetric protocol

    NASA Astrophysics Data System (ADS)

    Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2016-09-01

    We have studied the single-particle heat engine and refrigerator driven by time-asymmetric protocol of finite duration. Our system consists of a particle in a harmonic trap with time-periodic strength that drives the particle cyclically between two baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. The system works in irreversible mode of operation even in the quasistatic regime. This is indicated by finite entropy production even in the large cycle time limit. Consequently, Carnot efficiency for heat engine or Carnot coefficient of performance (COP) for refrigerators is not achievable. We further analyzed the phase diagram of heat engines and refrigerators. They are sensitive to time-asymmetry of the protocol. Phase diagram shows several interesting features, often counterintuitive. The distribution of stochastic efficiency and COP is broad and exhibits power-law tails.

  3. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-06-13

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  4. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  5. Optimization of probe-laser focal offsets for single-particle tracking.

    PubMed

    Chang, Ai-Tang; Chang, Yi-Ren; Chi, Sien; Hsu, Long

    2012-08-10

    In optical tweezers applications, tracking a trapped particle is essential for force measurement. One of the most popular techniques for single-particle tracking is achieved by analyzing the forward and backward light pattern, scattered by the target particle trapped by a trap laser beam, of an additional probe-laser beam with different wavelength whose focus is slightly apart from the trapping center. However, the optimized focal offset has never been discussed. In this paper, we investigate the tracking range and sensitivity as a function of the focal offset between the trapping and the probe-laser beams. As a result, the optimized focal offsets are a 3.3-fold radius ahead and a 2.0-fold radius behind the trapping laser focus in the forward tracking and the backward tracking, respectively. The experimental result agrees well with a theoretical prediction using the Mie scattering theory.

  6. Exponential orthogonality catastrophe in single-particle and many-body localized systems

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Pixley, J. H.; Li, Xiaopeng; Das Sarma, S.

    2015-12-01

    We investigate the statistical orthogonality catastrophe (STOC) in single-particle and many-body localized systems by studying the response of the many-body ground state to a local quench. Using scaling arguments and exact numerical calculations, we establish that the STOC gives rise to a wave function overlap between the pre- and postquench ground states that has an exponential decay with the system size, in sharp contrast to the well-known power law Anderson orthogonality catastrophe in metallic systems. This exponential decay arises from a statistical charge transfer process where a particle can be effectively "transported" to an arbitrary lattice site. In a many-body localized phase, this nonlocal transport and the associated exponential STOC phenomenon persist in the presence of interactions. We study the possible experimental consequences of the exponential STOC on the Loschmidt echo and spectral function, establishing that this phenomenon might be observable in cold atomic experiments through Ramsey interference and radio-frequency spectroscopy.

  7. A single particle model to simulate the dynamics of entangled polymer melts

    NASA Astrophysics Data System (ADS)

    Kindt, P.; Briels, W. J.

    2007-10-01

    We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.

  8. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  9. In-situ imaging of reacting single-particle zeolites by non-linear optical microscopy

    NASA Astrophysics Data System (ADS)

    Wrzesinski, Paul J.; Slipchenko, Mikhail N.; Zaman, Taslima A.; Rioux, Robert M.; Gord, James R.; Roy, Sukesh

    2015-03-01

    Zeolite catalysis has been exploited by the petrochemical industry since the 1940's for catalytic cracking reactions of long chain hydrocarbons. The selectivity of zeolites strongly depends on a pore size, which is controlled by the chosen structure-directing agent (SDA) and by the SDA decomposition/removal process. Although zeolites are composed of micron-sized crystals, studies of zeolite materials typically focus on bulk (i.e., ensemble) measurements to elucidate structure-function information or to optimize catalysts and/or process parameters. To examine these phenomena on the microscale, non-linear optical microscopy is used to provide real-time imaging of chemical reactions in zeolites at temperatures exceeding 400°C. The template decomposition mechanism is studied, as elucidation of the mechanism is critical to understanding the relationship between the decomposition chemistry and the nanoscale features of the zeolite (topology, Si/Al ratio, added dopants). Forward stimulated Raman scattering (SRS), forward coherent anti-Stokes Raman scattering (CARS) and epi two-photon fluorescence (TPF) modalities are acquired simultaneously providing video-rate structural and chemical information. A high-temperature cell with gas inlet system is used for the study of reactions under various temperatures and gas environments. Examining the decomposition process with single-particle resolution enables access to ensemble-level and spatially-resolved behavior. Parallel experiments on bulk zeolite powders are conducted to enable comparison of ensemble and single-particle behavior during template decomposition. Our multi-technique approach has high potential for gaining insight into the link between nanoscale structure and catalytic activity and selectivity of zeolitic materials.

  10. Estimating the contribution of point sources to atmospheric metals using single-particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Snyder, David C.; Schauer, James J.; Gross, Deborah S.; Turner, Jay R.

    Single-particle mass spectra were collected using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) during December of 2003 and February of 2004 at an industrially impacted location in East St. Louis, IL. Hourly integrated peak areas for twenty ions were evaluated for their suitability in representing metals/metalloids, particularly those reported in the US EPA Toxic Release Inventory (TRI). Of the initial twenty ions examined, six (Al, As, Cu, Hg, Ti, and V) were found to be unsuitable due to strong isobaric interferences with commonly observed organic fragments, and one (Be) was found to have no significant signal. The usability of three ions (Co, Cr, and Mn) was limited due to suspected isobaric interferences based on temporal comparisons with commonly observed organic fragments. The identity of the remaining ions (Sb, Ba, Cd, Ca, Fe, Ni, Pb, K, Se, and Zn) was substantiated by comparing their signals with the integrated hourly signals of one or more isotope ions. When compared with one-in-six day integrated elemental data as determined by X-ray fluorescence spectroscopy (XRF), the daily integrated ATOFMS signal for several metal ions revealed a semi-quantitative relationship between ATOFMS peak area and XRF concentrations, although in some cases comparison of these measurements were poor at low elemental concentrations/ion signals due to isobaric interferences. A method of estimating the impact of local point sources was developed using hourly integrated ATOFMS peak areas, and this method attributed as much as 85% of the concentration of individual metals observed at the study site to local point sources. Hourly surface wind data were used in conjunction with TRI facility emissions data to reveal likely point sources impacting metal concentrations at the study site and to illustrate the utility of using single-particle mass spectral data to characterize atmospheric metals and identify point sources.

  11. Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Pixley, J. H.; Deng, Dong-Ling; Ganeshan, Sriram; Das Sarma, S.

    2016-05-01

    We study the many-body localization aspects of single-particle mobility edges in fermionic systems. We investigate incommensurate lattices and random disorder Anderson models. Many-body localization and quantum nonergodic properties are studied by comparing entanglement and thermal entropy, and by calculating the scaling of subsystem particle-number fluctuations, respectively. We establish a nonergodic extended phase as a generic intermediate phase (between purely ergodic extended and nonergodic localized phases) for the many-body localization transition of noninteracting fermions where the entanglement entropy manifests a volume law (hence, "extended"), but there are large fluctuations in the subsystem particle numbers (hence, "nonergodic"). Based on the numerical results, we expect such an intermediate phase scenario may continue to hold even for the many-body localization in the presence of interactions as well. We find for many-body fermionic states in noninteracting one-dimensional Aubry-André and three-dimensional Anderson models that the entanglement entropy density and the normalized particle-number fluctuation have discontinuous jumps at the localization transition where the entanglement entropy is subthermal but obeys the "volume law." In the vicinity of the localization transition, we find that both the entanglement entropy and the particle-number fluctuations obey a single parameter scaling based on the diverging localization length. We argue using numerical and theoretical results that such a critical scaling behavior should persist for the interacting many-body localization problem with important observable consequences. Our work provides persuasive evidence in favor of there being two transitions in many-body systems with single-particle mobility edges, the first one indicating a transition from the purely localized nonergodic many-body localized phase to a nonergodic extended many-body metallic phase, and the second one being a transition

  12. The single-particle structure around ^132Sn explored through the (d,p) reaction

    NASA Astrophysics Data System (ADS)

    Jones, Kate

    2007-04-01

    The nuclear shell model^1, originally developed by Maria Geoppert Mayer in 1949 (Nobel Prize 1963) has been used extensively to explain the structure of nuclei. The atomic shell model describes the increased stability observed when an electron shell is filled. Correspondingly, nuclei with magic numbers of protons or neutrons (2, 8, 20, 28, 50, 82, 126) display additional stability. Only ten nuclei to date have been observed which have these standard magic numbers for both neutrons and protons, of these, half are stable or very long-lived. Many changes have been observed in nuclei as we move away from the valley of stability and it is important, both to nuclear structure physics and to understanding the synthesis of nuclei in the cosmos, to understand how these changes affect single-particle states.One exotic doubly-magic nucleus which can be produced with sufficient intensity to perform reactions on it is ^132Sn. Recent calculations^2 have shown that the structure around ^132Sn may affect the freeze out of the rapid neutron capture (r-)process, believed to occur in supernovae, which is responsible for the production of about half the nuclear species heavier than iron. By adding a neutron to a beam of ^132Sn via a transfer reaction, it is possible to study single-particle states beyond the double-shell closure. I will present results from a recent measurement of ^133Sn via the ^132Sn(d,p) reaction in inverse kinematics. [1] Maria Goeppert Mayer, Science 145 999 (1964). [2] R. Surman and J. Engel, Phys. Rev. C 64, 035801 (2001).

  13. Time irreversibility of the statistics of a single particle in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Frishman, Anna; Falkovich, Gregory

    2015-04-01

    We investigate time irreversibility from the point of view of a single particle in Burgers turbulence. Inspired by the recent work for incompressible flows [Xu et al., Proc. Natl. Acad. Sci. USA 111, 7558 (2014), 10.1073/pnas.1321682111], we analyze the evolution of the kinetic energy for fluid markers and use the fluctuations of the instantaneous power as a measure of time irreversibility. For short times, starting from a uniform distribution of markers, we find the scaling <[E(t ) -E (0 ) ] n>∝t and ∝Ren -1 for the power as a function of the Reynolds number. Both observations can be explained using the "flight-crash" model, suggested by Xu et al. Furthermore, we use a simple model for shocks that reproduces the moments of the energy difference, including the pre-factor for . To complete the single-particle picture for Burgers we compute the moments of the Lagrangian velocity difference and show that they are bifractal. This arises in a similar manner to the bifractality of Eulerian velocity differences. In the above setting, time irreversibility is directly manifest as particles eventually end up in shocks. We additionally investigate time irreversibility in the long-time limit when all particles are located inside shocks and the Lagrangian velocity statistics are stationary. We find the same scalings for the power and energy differences as at short times and argue that this is also a consequence of rare "flight-crash" events related to shock collisions.

  14. Single-particle dynamics near the glass transition of a metallic glass

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Wang, W. H.

    2016-12-01

    The single-particle dynamics of the glass-forming C u50Z r50 alloy, from the supercooled liquid well above the glass-transition temperature, Tg to the glassy state, is studied by using the molecular dynamics simulations. When the liquid is cooled below 1.2 Tg , the dynamics heterogeneity characterized by the cage-jump motion becomes increasingly pronounced. The analyses based on the continuous time random walk method indicate that the liquid falls out of equilibrium in the present simulation time scale when it is cooled into the regime below 1.02 Tg . However, we find that the jump length and the jump rate do not display the non-equilibrium behaviors even in the glassy state below Tg, which allows us to study the intrinsic dynamic characteristics through Tg. The mean waiting time between two successive jumps has a rapid growth following the Vogel-Fulcher-Tammann law as the non-equilibrium regime is approached, in analogy with the temperature behaviors of transport properties for fragile supercooled liquids. In contrast, the jump rate maintains the Arrhenius decay and the jump length has even a weaker temperature dependence when the liquid is cooled into glassy state. We find that a pronounced enhancement of the spatial correlation of jumps occurs accompanied by the glass transition: the string-like cooperative jumps dominate the fast motion instead of the uncorrelated and individual jumps. Our work offers an insight into the equilibrium effect of the single-particle dynamics in glass transition.

  15. ClusterSculptor: Software for Expert-Steered Classification of Single Particle Mass Spectra

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Nam, Eun Ju; Han, Yiping; Mueller, Klaus

    2008-08-01

    To take full advantage of the vast amount of highly detailed data acquired by single particle mass spectrometers requires that the data be organized according to some rules that have the potential to be insightful. Most commonly statistical tools are used to cluster the individual particle mass spectra on the basis of their similarity. Cluster analysis is a powerful strategy for the exploration of high-dimensional data in the absence of a-priori hypotheses or data classification models, and the results of cluster analysis can then be used to form such models. More often than not, when examining the data clustering results we find that many clusters contain particles of different types and that many particles of one type end up in a number of separate clusters. Our experience with cluster analysis shows that we have a vast amount of non-compiled knowledge and intuition that should be brought to bear in this effort. We will present new software we call ClusterSculptor that provides comprehensive and intuitive framework to aid scientists in data classification. ClusterSculptor uses k-means as the overall clustering engine, but allows tuning its parameters interactively, based on a non-distorted compact visual presentation of the inherent characteristics of the data in high-dimensional space. ClusterSculptor provides all the tools necessary for a high-dimensional activity we call cluster sculpting. ClusterSculptor is designed to be coupled to SpectraMiner, our data mining and visualization software package. The data are first visualized with SpectraMiner and identified problems are exported to ClusterSculptor, where the user steers the reclassification and recombination of clusters of tens of thousands particle mass spectra in real-time. The resulting sculpted clusters can be then imported back into SpectraMiner. Here we will greatly improved single particle chemical speciation in an example of application of this new tool to a number of particle types of atmospheric

  16. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  17. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  18. Between exclusion and emancipation: Foucault's ethics and disability.

    PubMed

    Pezdek, Krzysztof; Rasiński, Lotar

    2017-04-01

    The aim of the study was to demonstrate how Foucault's ethics, which we understand as a tension between exclusion and emancipation, helps both critically reassess two disability models that prevail in the contemporary literature concerning disability, that is the medical model and the social one, and support and inspire an ethical project of including people with disabilities in spheres of life from which they have been excluded by various power/knowledge regimes. We claim, following Foucault, that such a project should be informed by critical reflection on exclusion-generating forms of knowledge about people with disabilities and focused on individual ethical actions fostering self-realization and emancipation of people with disability.

  19. Wavefront-error evaluation by mathematical analysis of experimental Foucault-test data

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.

    1975-01-01

    The diffraction theory of the Foucault test provides an integral formula expressing the complex amplitude and irradiance distribution in the Foucault pattern of a test mirror (lens) as a function of wavefront error. Recent literature presents methods of inverting this formula to express wavefront error in terms of irradiance in the Foucault pattern. The present paper describes a study in which the inversion formulation was applied to photometric Foucault-test measurements on a nearly diffraction-limited mirror to determine wavefront errors for direct comparison with ones determined from scatter-plate interferometer measurements. The results affirm the practicability of the Foucault test for quantitative wavefront analysis of very small errors, and they reveal the fallacy of the prevalent belief that the test is limited to qualitative use only. Implications of the results with regard to optical testing and the potential use of the Foucault test for wavefront analysis in orbital space telescopes are discussed.

  20. Foucault and the 'Anti-Oedipus movement': psychoanalysis as disciplinary power.

    PubMed

    Basaure, Mauro

    2009-09-01

    What psychiatry was for the anti-psychiatry movement, psychoanalysis was for the French 'Anti-Oedipus movement' represented by Robert Castel, Gilles Deleuze and Felix Guattari. Until now, the contribution of Foucault to this critical movement has been little known. In this paper I reconstruct in a systematic and exhaustive way Foucault's critique of psychoanalysis and, in particular, of the Oedipus-complex theory. I demonstrate that this critique presupposes a very specific epistemology and social theory. On an epistemological level, Foucault focuses on the power effects of psychoanalysis as a discourse of subjectivity. On a social-theoretical level, Foucault assumes a functionalist conception of society. These two aspects of Foucault's critique of psychoanalysis have not been adequately recognized in the discussion about his relationship to psychoanalysis (Derrida, Miller, Whitebook, among others). I argue that a fruitful dialogue between a Foucault-inspired critical social theory and psychoanalysis can take place only if these two distinct aspects are taken into account.

  1. Testing of flat optical surfaces by the quantitative Foucault method.

    PubMed

    Simon, M C; Simon, J M

    1978-01-01

    The complete theory of measurement of optical flat mirrors of circular or elliptical shape using the quantitative Foucault method is described here. It has been used in Córdoba since 1939 in a partially intuitive but correct form. The surface, not yet flat and, at times, astigmatic, is assimilated to the sum of a spherical plus a cylindrical dome. The errors of the three possible ways of reckoning are calculated.

  2. [Sexuality according to Michel Foucault: a contribution to nursing].

    PubMed

    Ribeiro, M O

    1999-12-01

    The author develops a reflexion about Foucault conception in relation to the "sexuality dispositive" that has been presented in the book "Microfísica do Poder". She tries to rescue, through this classic literature, a historic and social point of view in the practice of nursing, without missing the actual concepts that deppreciate the affection of the personal relations to overvalue the masculine virility, converting the pleasure a consumer goods and a goal in itself.

  3. Research on technique of wavefront retrieval based on Foucault test

    NASA Astrophysics Data System (ADS)

    Yuan, Lvjun; Wu, Zhonghua

    2010-05-01

    During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.

  4. The power behind empowerment for staff nurses: using Foucault's concepts.

    PubMed

    Udod, Sonia A

    2008-01-01

    The concept of staff nurse empowerment is often evoked in dialogue concerning the nature of nurses' practice in improving their work environments. Nurse empowerment has been the subject of vigorous discussion in healthcare settings, and has been researched largely through an organizational perspective. In this paper, nurse empowerment is analyzed by drawing upon a critical science approach as an alternative theoretical lens. Power is integral to empowerment, and occurs in the context of relations of power. The author uses the ideas of Michel Foucault to address the different ways in which power relations shape nurses' experiences in the workplace. Foucault conceptualizes power as a form of power that envelops staff nurses and nurse managers and, more specifically, as a set of disciplinary techniques. Rather than discussing power solely as a repressive force, Foucault identifies the productive aspects of power. His analysis of where power resides suggests a thought-provoking approach to staff nurse empowerment that has the potential to change nurses' practice through points of resistance, and thus has implications for improving the quality of nurses' work life.

  5. [Michel Foucault and the persistence of psychiatric power].

    PubMed

    Caponi, Sandra

    2009-01-01

    This article aims studying the course held by Michel Foucault at the Collège de France in 1973-1974. The records of this course were published in 2003 under the name ' Psychiatric power' . The objective was to compare the different ways in which Foucault analyzes the question of madness in ' Psychiatric power' and in ' History of Madness in the Classical Age' (1961). It is a comparative study about the different ways of analyzing madness developed by Michel Foucault during the archeological and genealogic periods of his work. The absence of the body; binary diagnosis; the description of the surface of symptoms; the classification of diseases more similar to the botanical classification than to pathology; the process of cure directly linked to restitution of behaviors and moral values; as well as the over-power of the psychiatrist, seem to speak about the persistence of an old model of power, a pre-modern and pre-capitalist model, a residue of the old sovereign power.

  6. Assignment of single particle configurations in odd-A nuclei near A~100 with angular correlation measurements

    NASA Astrophysics Data System (ADS)

    Ramayya, A. V.; Hamilton, J. H.; Hwang, J. K.; Liu, S. H.; Daniel, A. V.; Goodin, C.; Luo, Y. X.; Rasmussen, J. O.; Stone, N. J.; Zhu, S. J.; Li, K.

    2011-01-01

    The multipole mixing ratios of ΔI = 1 transitions between levels in rotational bands built on single-particle states in odd neutron nuclei are dependent on the configurations of the states. In particular, the mixing ratio can be used to distinguish between several possible single-particle configurations if interpreted with the particle plus axial-rotor model (PRM). This work features the first determination of the ground-state configurations of 109,111Ru. The single-particle structures of the ground states of 101Zr and 103,105,107Mo as well as excited states in 103,107Mo are also investigated, with a new result found in 107Mo.

  7. Single Particle Source Profiles of Gasoline and Diesel Powered Vehicles, Biomass Burning and Coal Combustion Exhaust Emissions

    NASA Astrophysics Data System (ADS)

    Suess, D. T.; Prather, K. A.; Schauer, J.; Cass, G. R.

    2001-12-01

    Vehicular exhaust, biomass burning, and coal combustion are three significant aerosol sources that have local to global impacts on the earth's atmosphere. They may also contribute to health effects as they can emit carcinogenic species such as polycyclic aromatic hydrocarbons (PAH) and trace metals including beryllium and vanadium. In these source characterization studies, combustion products were diluted to near ambient temperature and pressure using a two stage dilution source sampler. Diluted exhaust emissions were analyzed with an aerosol time-of-flight mass spectrometer (ATOFMS) obtaining real-time measurements of single particle size and chemical composition. In addition, samples were collected using a micro-orifice uniform deposit impactor (MOUDI), which was operated in a manner compatible with advanced chemical analysis techniques, for size segregated mass concentrations. Due to the importance of these particle sources to the atmosphere, differentiating these emissions from each other and other particle sources is essential. Since ATOFMS is a relatively new single particle analysis technique, source characterization experiments are needed to determine qualitative signatures of specific particulate sources for their ambient identification. ATOFMS single particle mass spectra will be discussed introducing chemically distinct single particle types emitted from these combustion sources. Numerous particle types are emitted from each source, as indicated by distinct chemical associations on the single particle level. Examples include, the chemical associations of vanadium with organic carbon (OC) in gasoline powered vehicle emissions, calcium with black carbon (BC) in diesel powered vehicle emissions, beryllium and boron with BC in coal combustion emissions, and potassium with OC from biomass burning emissions. Most importantly, the overall particle type distributions from each source differ significantly. Finally, complementary MOUDI mass distribution data will

  8. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    SciTech Connect

    Li, Jun; Calo, Victor M.

    2013-09-15

    We present a single-particle Lennard–Jones (L-J) model for CO{sub 2} and N{sub 2}. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO{sub 2} and N{sub 2} agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH{sub 4}, CO{sub 2} and N{sub 2} are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available.

  9. Neutrino Oscillations in Dense Matter

    NASA Astrophysics Data System (ADS)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  10. [On Michel Foucault's unpublished lectures on Ludwig Binswanger's existential analysis (Lille 1953-54)].

    PubMed

    Basso, Elisabetta

    2016-12-01

    This paper aims to analyze Michel Foucault's position toward phenomenological psychology and psychopathology during the 1950s, in light of the new documentary sources available today. Our investigation is especially focused on one of the courses given by Foucault at the University of Lille between 1952 and 1954, namely, the course on "Binswanger and phenomenology" (1953-54). The analysis of this course, which was conceived by Foucault within the context of a philosophical reflection on the anthropological problem of psychopathology, will finally allow us to re-ascribe Foucault the place he deserves in the field of "philosophy of psychiatry".

  11. Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Gysel, M.; Laborde, M.; Corbin, J. C.; Mensah, A. A.; Keller, A.; Kim, J.; Petzold, A.; Sierau, B.

    2012-07-01

    The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL). It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2. Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5-10 nm). It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total particle mass

  12. Online single particle measurements of black carbon coatings, structure and optical properties

    NASA Astrophysics Data System (ADS)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  13. Characterization of individual fine and ultrafine particles with a real-time single particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Reinard, Melissa S.

    2008-10-01

    Designed to analyze aerosols in ambient settings, the Real-Time Single Particle Mass Spectrometer (RSMS) provides a highly time-resolved measurement of the physical and chemical properties of individual fine (<2.5 mum dia.) and ultrafine (<0.1 mum dia.) particles. Understanding aerosols within this size range is crucial as these particles greatly impact both human health and the environment. Data collected by RSMS can be used identify particle sources and atmospheric processes. RSMS was deployed to Wilmington, DE during 2005-2006 as part of E-DATAS (Enhanced Delaware Air Toxics Assessment Study), a collaboration with the Delaware Department of Natural Resources (DNREC), the Environmental Protection Agency (EPA) and Duke University. Mass spectra acquired by RSMS were compared to a Scanning Mobility Particle Sizer (SMPS) to give a quantitative estimate of the chemical composition of PM1.0 (particulate matter <1.0 mum dia.) impacting the city. A method to collect and analyze particles directly from emission stacks of industrial facilities was developed to help identify sources of PM. Single particle mass spectrometry, in general, has remained primarily a qualitative technique due to several instrumental limitations which affect the data. First, the shot-to-shot variation in the laser pulse caused inconsistencies between the mass spectra of particles with the same composition. To determine whether this variation was systematic or random, the covariance between ions was calculated for laboratory generated aerosols. Second, RSMS was found to be highly sensitive to specific chemical species such as ammonium nitrate and transition/alkali metals. When these compounds are present in a particle they dominate the mass spectra and dwarf other the signal from other components to the baseline. To explore this bias, data collected by RSMS in Wilmington, DE was compared to data also collected in Wilmington by the quantitative NanoAerosol Mass Spectrometer (NAMS). Finally, a light

  14. Classification of the PALMS single particle mass spectral data from Atlanta by regression tree analysis

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Murphy, D. M.; Lee, S.; Lee, S.; Lee, S.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    During the Atlanta Supersites project in August 1999, the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument collected over 500,000 individual particle spectra. The Atlanta data were originally analyzed by examining combinations of peaks and relative peak areas [Lee et al., 2001a,b], and a wide range of particle components such as sulfate, nitrate, mineral species, metals, organic species, and elemental carbon were detected. To further study the dataset, a classification program using regression tree analysis was developed and applied. Spectral data were compressed into a lower resolution spectrum (every 0.25 mass units) of the raw data and a list of peak areas (every mass unit). Each spectrum started as a normalized classification vector by itself. If the dot product of two classification vectors was within a certain threshold, they were combined into a new classification. The new classification vector was a normalized running average of the classifications being combined. In subsequent steps, the threshold for combining classifications was continuously lowered until a reasonable number of classifications remained. After the final iteration, each spectrum was compared individually with the entire set of classification vectors. Classifications were also combined manually. The classification results from the Atlanta data are generally consistent with those determined by peak identification. However, the classification program identified specific patterns in the mass spectra that were not found by peak identification and generated new particle types. Furthermore, rare particle types that may affect human health were studied in more detail. A description of the classification program as well as the results for the Atlanta data will be presented. Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook, Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the Atlanta Supersites Project

  15. Foucault's points of resistance. Women in science: 1620--2000

    NASA Astrophysics Data System (ADS)

    Vitale, Cindy Gail

    In his unique method of historical research, Michel Foucault was concerned with how institutional power relations are both established and maintained through discourse, in its broadest sense. Foucault found that the character of the discourse of any given period of history serves as the foundation of knowledge which is then transformed into power by those who "appropriate," "bound," then use it as "technologies of discipline." This power operates transparently and serves to "construct" individuals to meet institutional expectations. Important for this study is that Foucault believed that where there is power there is resistance, and that "points of resistance" operate everywhere in "power networks." This study has two parts. The first is a description and an extension of Foucault's notion of resistance as it operates within institutional power relations. The second, using the extended version of Foucault's resistance, is a deconstruction of the discourse of science education in the United States. The deconstruction focused on resistance operating within the male/female power relations network. The deconstruction revealed three overlapping yet distinct historical periods in which the dominant discourse was characterized by one of Foucault's three general technologies of discipline. During the first period, 1620--1790, women were generally not allowed access to formal (institutional) education. This disciplinary technology, which Foucault called "dividing practices," was justified by the commonly accepted religious view of the period that females were both mentally and morally inferior beings. Women were, so to speak, "barred at the schoolhouse gate." In the second period, 1790--1920, female resistance to these dividing practices was parallel to their limited access to formal education. Women were "admitted at the schoolhouse gate," and the appearance of successful resistance occurred as women began to enroll in science classes. Unlike their male counterparts

  16. Three-dimensional single-particle tracking in live cells: news from the third dimension

    NASA Astrophysics Data System (ADS)

    Dupont, A.; Gorelashvili, M.; Schüller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D.

    2013-07-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased.

  17. Evidence for the intramolecular pleating model of fibrillin microfibril organisation from single particle image analysis.

    PubMed

    Lu, Yinhui; Holmes, David F; Baldock, Clair

    2005-05-27

    Fibrillin microfibrils endow mammalian connective tissues with elasticity and are fundamental for the deposition of elastin. The microfibrils are 57nm periodic supramolecular protein polymers with a mass of 2.4MDa per repeat. The detailed structure and organisation of most matrix assemblies is poorly understood due to their large size and complexity and it has proved a major challenge to define their structural organisation. Therefore, we have used low dose electron microscopy and single particle image analysis to study the structure of fibrillin microfibrils. Three novel features were detected: a globular feature that bridges the "arm" region, a double band of density crossing the microfibril and stain penetrating holes present in the interbead region, possibly produced by the removal of microfibril associated proteins in the purification procedure. Fine filaments of approximately 2.4nm diameter are resolved in the interbead region, which correspond to the reported diameter of the fibrillin molecule. Comparison of the stain exclusion pattern of microfibrils with the theoretical stain exclusion pattern of fibrillin packing models indicates that the intramolecular pleating model, where each fibrillin molecule is pleated within one microfibril period allowing extensibility by unpleating, has the best fit to the data.

  18. Dynamic wetting: status and prospective of single particle based experiments and simulations.

    PubMed

    Cappelli, S; Xie, Q; Harting, J; de Jong, A M; Prins, M W J

    2015-09-25

    The fundamental molecular and microscopic properties of materials leading to dynamic wetting and relaxation effects have been subject to numerous studies in the past decades, but a thorough understanding is still missing. While most previous experiments utilize fluids deposited on planar substrates, this article focuses on an attractive alternative based on single colloidal particles: colloidal particles have the ability to strongly interact with fluid-fluid interfaces and the behavior strongly depends on the surface properties of the particles and the fluids used. Recent progress in the manipulation and synthesis of colloidal particles with well-defined surface properties and shapes makes them ideal candidates to probe the fundamental surface properties leading to dynamic wetting effects. In this paper we review and discuss the status of experimental and numerical techniques to characterize the dynamic wetting of single particles at fluid-fluid interfaces, with the aim to assist scientists and engineers in the design of new experimental techniques and particle-based (bio)analytical tools.

  19. Single-particle spectral function of the Λ hyperon in finite nuclei

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac

    2017-02-01

    The spectral function of the Λ hyperon in finite nuclei is calculated from the corresponding Λ self-energy, which is constructed within a perturbative many-body approach using some of the hyperon-nucleon interactions of the Jülich and Nijmegen groups. Binding energies, wave functions and disoccupation numbers of different single-particle states are obtained for various hypernuclei from He5Λ to Pb209Λ. The agreement between the calculated binding energies and experimental data is qualitatively good. The small spin-orbit splitting of the p- , d- , f- and g-wave states is confirmed. The discrete and the continuum contributions of the single-Λ spectral function are computed. Their appearance is qualitatively similar to that of the nucleons. The Z-factor, that measures the importance of correlations, is also calculated. Our results show that its value is relatively large, indicating that the Λ hyperon is less correlated than nucleons. This is in agreement with the results obtained by other authors for the correlations of the Λ in infinite nuclear matter. The disoccupation numbers are obtained by integrating the spectral function over the energy. Our results show that the discrete contribution to the disoccupation number decreases when increasing the momentum of the Λ. This indicates that, in the production reactions of hypernuclei, the Λ hyperon is mostly formed in a quasi-free state.

  20. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  1. Image processing for electron microscopy single-particle analysis using XMIPP

    PubMed Central

    Scheres, Sjors H W; Núñez-Ramírez, Rafael; Sorzano, Carlos O S; Carazo, José María; Marabini, Roberto

    2009-01-01

    We describe a collection of standardized image processing protocols for electron microscopy single-particle analysis using the XMIPP software package. These protocols allow performing the entire processing workflow starting from digitized micrographs up to the final refinement and evaluation of 3D models. A particular emphasis has been placed on the treatment of structurally heterogeneous data through maximum-likelihood refinements and self-organizing maps as well as the generation of initial 3D models for such data sets through random conical tilt reconstruction methods. All protocols presented have been implemented as stand-alone, executable python scripts, for which a dedicated graphical user interface has been developed. Thereby, they may provide novice users with a convenient tool to quickly obtain useful results with minimum efforts in learning about the details of this comprehensive package. Examples of applications are presented for a negative stain random conical tilt data set on the hexameric helicase G40P and for a structurally heterogeneous data set on 70S Escherichia coli ribosomes embedded in vitrified ice. PMID:18536645

  2. Effects of macromolecular crowding on intracellular diffusion from a single particle perspective

    PubMed Central

    Hoshino, Masaru

    2010-01-01

    Compared to biochemical reactions taking place in relatively well-defined aqueous solutions in vitro, the corresponding reactions happening in vivo occur in extremely complex environments containing only 60–70% water by volume, with the remainder consisting of an undefined array of bio-molecules. In a biological setting, such extremely complex and volume-occupied solution environments are termed ‘crowded’. Through a range of intermolecular forces and pseudo-forces, this complex background environment may cause biochemical reactions to behave differently to their in vitro counterparts. In this review, we seek to highlight how the complex background environment of the cell can affect the diffusion of substances within it. Engaging the subject from the perspective of a single particle’s motion, we place the focus of our review on two areas: (1) experimental procedures for conducting single particle tracking experiments within cells along with methods for extracting information from these experiments; (2) theoretical factors affecting the translational diffusion of single molecules within crowded two-dimensional membrane and three-dimensional solution environments. We conclude by discussing a number of recent publications relating to intracellular diffusion in light of the reviewed material. PMID:21088688

  3. Ab initio Approach to Effective Single-Particle Energies in Doubly Closed Shell Nuclei

    SciTech Connect

    Duguet, T.

    2012-01-01

    The present work discusses, from an ab initio standpoint, the definition, the meaning, and the usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon systems and illustrate the necessity of extracting ESPEs through the diagonalization of the centroid matrix, as originally argued by Baranger. For the purpose of illustration, we analyze the impact of correlations on observable one-nucleon separation energies and nonobservable ESPEs in selected closed-shell oxygen and calcium isotopes. We then state and illustrate the nonobservability of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute necessity of employing consistent structure and reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion from experimental data.

  4. The effect of model fidelity on prediction of char burnout for single-particle coal combustion

    SciTech Connect

    McConnell, Josh; Sutherland, James C.

    2016-07-09

    In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase. The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.

  5. Emission angle dependence of fission fragment spin: Effects of single particle spin and tilting mode

    NASA Astrophysics Data System (ADS)

    Datta, T.; Naik, H.; Dange, S. P.

    1995-06-01

    The high-spin yield fraction (HSF) for the fission product 132Im,g has been measured as a function of fragment emission angle (90° >=Θ>=10°) in the 237Np(α29 MeV,f) system. It was seen that the HSF for 132I or corresponding fragment (~=134I) spin initially decreases as emission angle decreases from 90° to ~=45° and then steadily increases at lower angles (Θ<45°). Contrary to the present observation in odd-Z 241Am fission, earlier we had observed that fragment spin continuously decreases to a limit with decrease in emission angle from 90° to 20° in even-even 242Pu fission. These data have been analyzed in the framework of the collective mode model invoking the effect of single particle spin. It is seen that for an odd-Z or A fissioning nucleus, angular variation of fragment spin could be accounted for on the basis of coupling between the odd nucleon spin (j>=k~=4ħ) projections and spin due to the collective rotational (tilting) degrees. Collective rotational degrees govern fragment spin for even-even fissioning nucleus.

  6. Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase.

    PubMed

    Lyumkis, Dmitry; Doamekpor, Selom K; Bengtson, Mario H; Lee, Joong-Won; Toro, Tasha B; Petroski, Matthew D; Lima, Christopher D; Potter, Clinton S; Carragher, Bridget; Joazeiro, Claudio A P

    2013-01-29

    Ltn1 is a 180-kDa E3 ubiquitin ligase that associates with ribosomes and marks certain aberrant, translationally arrested nascent polypeptide chains for proteasomal degradation. In addition to its evolutionarily conserved large size, Ltn1 is characterized by the presence of a conserved N terminus, HEAT/ARM repeats predicted to comprise the majority of the protein, and a C-terminal catalytic RING domain, although the protein's exact structure is unknown. We used numerous single-particle EM strategies to characterize Ltn1's structure based on negative stain and vitreous ice data. Two-dimensional classifications and subsequent 3D reconstructions of electron density maps show that Ltn1 has an elongated form and presents a continuum of conformational states about two flexible hinge regions, whereas its overall architecture is reminiscent of multisubunit cullin-RING ubiquitin ligase complexes. We propose a model of Ltn1 function based on its conformational variability and flexibility that describes how these features may play a role in cotranslational protein quality control.

  7. Analysis of the ideal phase-Doppler System: Limitations imposed by the single-particle constraint

    SciTech Connect

    Edwards, C.F.; Marx, K.D.

    1991-06-01

    This paper explores the effects of particles statistics on the ability of a phase-Doppler system (or any single-particle diagnostic) to make accurate measurements of complex particle flows. This is accomplished by analyzing the response of an ideal phase-Doppler system to a postulated particle flux. The ideal system defined here senses particles of all sizes and velocities with perfect accuracy, but is subject to one constraint: in order for a measurement to be considered valid there must be only one particle in the probe volume at a time. A consequence of this constraint is that the measured flux of particles is similar to the true flux, but reduced by passage through two stages of filters. The first rejects particles for insufficient spacing and is controlled by a spatial Poisson process, while the second rejects particles for excessive residence time and is driven by a temporal Poisson process. The key filter parameters are the expected values of the number of particles in the probe volume and the number of particles entering the probe region during the residence time of a previous particle. Only if these values are kept below order 10{sup {minus}2} can the measured joint distribution function, flux rate, and derived quantities, be assumed to reflect the true nature of the flow. 8 refs., 30 figs., 2 tabs.

  8. Coarse-grained single-particle dynamics in two-dimensional solids and liquids.

    PubMed

    Silbermann, Jörg R; Schoen, Martin; Klapp, Sabine H L

    2008-07-01

    We consider the dynamics of a single tagged particle in a two-dimensional system governed by Lennard-Jones interactions. Previous work based on the Mori-Zwanzig projection operator formalism has shown that the single-particles dynamics can be described via a generalized Langevin equation (GLE) which is exact within the harmonic approximation, that is, for a low-temperature solid [J. M. Deutch and R. Silbey, Phys. Rev. A 3, 2049 (1971)]. In the present work we explore to what an extent the GLE reproduces the effective dynamics under thermodynamic conditions where the harmonic approximation is no longer justified. To this end we compute characteristic time autocorrelation functions for the tagged particle in molecular dynamics simulations of the full system and compare these functions with those obtained from solving the GLE. At low temperatures we find excellent agreement between both data sets. Deviations emerge at higher temperatures which are, however, surprisingly small even in the high-temperature liquid phase.

  9. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    NASA Astrophysics Data System (ADS)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  10. Development of atomic layer deposition-activated microchannel plates for single particle detection at cryogenic temperatures

    SciTech Connect

    Gorelikov, Dmitry Sullivan, Neal; Rouffignac, Philippe de; Li, Huazhi; Narayanamoorthy, Jayasri; Tremsin, Anton S.

    2014-03-15

    Atomic layer deposition (ALD) technology is used to nanoengineer functional films inside the pores of microchannel plate (MCP) electron multipliers, enabling a novel MCP manufacturing technology that substantially improves performance and opens novel applications. The authors have developed custom tools and recipes for the growth of conformal films, with optimized conductance and secondary electron emission inside very long channels (∼6–20 μm diameter and >600 μm length, with tens of millions of channels per single MCP) by ALD. The unique ability to tune the characteristics of these ALD films enables their optimization to applications where time-resolved single particle imaging can be performed in extreme conditions, such as high counting rates at cryogenic temperatures. Adhesion of the conductive and emissive nanofilms to the 20 μm pore MCP glass substrates and their mechanical stability over a very wide range of temperatures (10–700 K) were confirmed experimentally. Resistance of ALD MCPs was reproducible during multiple cool-down cycles with no film degradation observed. Optimizing resistance of novel MCPs for operation at cryogenic temperature should enable high count rate event detection at temperatures below 20 K.

  11. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy.

    PubMed

    Milazzo, Anna-Clare; Cheng, Anchi; Moeller, Arne; Lyumkis, Dmitry; Jacovetty, Erica; Polukas, James; Ellisman, Mark H; Xuong, Nguyen-Huu; Carragher, Bridget; Potter, Clinton S

    2011-12-01

    We report on initial results of using a new direct detection device (DDD) for single particle reconstruction of vitreous ice embedded specimens. Images were acquired on a Tecnai F20 at 200keV and a nominal magnification of 29,000×. This camera has a significantly improved signal to noise ratio and modulation transfer function (MTF) at 200keV compared to a standard CCD camera installed on the same microscope. Control of the DDD has been integrated into Leginon, an automated data collection system. Using GroEL as a test specimen, we obtained images of ∼30K particles with the CCD and the DDD from the same specimen sample using essentially identical imaging conditions. Comparison of the maps reconstructed from the CCD images and the DDD images demonstrates the improved performance of the DDD. We also obtained a 3D reconstruction from ∼70K GroEL particles acquired using the DDD; the quality of the density map demonstrates the potential of this new recording device for cryoEM data acquisition.

  12. Orbital Single Particle Tracking on a commercial confocal microscope using piezoelectric stage feedback

    PubMed Central

    Lanzanò, Luca; Gratton, Enrico

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. PMID:25419461

  13. Single Particle Transport Through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Govidan, T. R.

    1999-01-01

    The ability to manipulate carbon nanotubes with increasing precision has enabled a large number of successful electron transport experiments. These studies have primarily focussed on characterizing transport through both metallic and semiconducting wires. Tans et al. demonstrated ballistic transport in single-wall nanotubes for the first time, although the experimental configuration incurred large contact resistance. Subsequently, methods of producing low contact resistances have been developed and two terminal conductances smaller than 50 k-ohms have been repeatably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes, Frank et al. demonstrated a resistance of approximately h/2e(exp 2) in a configuration where the outermost layer made contact to a liquid metal. This was followed by the work of de Pablo et al. where a resistance of h(bar)/27e(exp 2) (approximately 478 ohms) was measured in a configuration where electrical contact was made to many layers of a multi-wall nanotube. Frank et al. and Pablo et al. note that each conducting layer contributes a conductance of only 2e(exp 2)/h, instead of the 4e(exp 2)/h that a single particle mode counting picture yields. These small resistances have been obtained in microns long nanotubes, making them the best conducting molecular wires to date. The large conductance of nanotube wires stems from the fact that the crossing bands of nanotubes are robust to defect scattering.

  14. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  15. Numerical analysis of single particle impact in the context of Cold Spray: a new adhesion model

    NASA Astrophysics Data System (ADS)

    Profizi, P.; Combescure, A.; Ogawa, K.

    2016-03-01

    A new adhesion model for numerical simulation of single particle impact in the context of Cold Spray is introduced. As in other studies, cohesive forces are put between the particle and substrate to account for adhesion. In this study however, the forces are put only when a local physical criterion is met. The physical phenomenon most often attributed to Cold Spray adhesion is a shear stress instability. The Johnson-Cook material law is used with a shear damage softening law to enable strong localization at the interface without the need for an extremely fine mesh. This localization is then detected as a drop in local yield stress value by the algorithm, which then implements a local cohesive force. The evolution of this cohesive force is defined by an energy dissipative cohesive model, using a surface adhesion energy as a material parameter. Each cohesive link is broken once all its associated surface energy is dissipated. A criterion on the damage value is also used to break a cohesive bond prematurely, to account for the effect of erosion at higher speeds. This model is found to reproduce the Cold Spray-like adhesion behavior with observed critical and maximum speeds.

  16. Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis

    PubMed Central

    Wang, Chun-Yan; Zhang, Qin-Fen; Gao, Yuan-Zhu; Xie, Li; Li, Hong-Mei; Hong, Jian; Zhang, Chuan-Xi

    2015-01-01

    Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit. PMID:26442593

  17. Melting of stripe phases and its signature in the single-particle spectral function

    NASA Astrophysics Data System (ADS)

    Raczkowski, Marcin; Assaad, Fakher F.

    2010-12-01

    Motivated by the recent experimental data [J. Fink, E. Schierle, E. Weschke, J. Geck, D. Hawthorn, V. Soltwisch, H. Wadati, H.-H. Wu, H. A. Dürr, N. Wizent, B. Büchner, and G. A. Sawatzky, Phys. Rev. B 79, 100502 (2009)10.1103/PhysRevB.79.100502] indicating the existence of a pure stripe charge order over unprecedently wide temperature range in La1.8-xEu0.2SrxCuO4 , we investigate the temperature-induced melting of the metallic stripe phase. In spite of taking into account local dynamic correlations within a real-space dynamical mean-field theory of the Hubbard model, we observe a mean-field-like melting of the stripe order irrespective of the choice of the next-nearest-neighbor hopping. The temperature dependence of the single-particle spectral function shows the stripe induced formation of a flat band around the antinodal points accompanied by the opening a gap in the nodal direction.

  18. Single particle refuse-derived fuel devolatilization: Experimental measurements of reaction products

    SciTech Connect

    Lai, Weichuan; Krieger-Brockett, B. . Dept. of Chemical Engineering)

    1993-11-01

    The authors present experimentally measured devolatilization product yields from single particles of refuse-derived fuel (RDF), a more uniform, transportable municipal solid waste. Disposal costs and environmental concerns have stimulated interest in thermochemical conversion of this material to chemicals and fuels. The composition, reaction conditions, and particle properties were systematically varied over the range found in practice to develop quantitative measures that rank the process controllables' influence on altering the product slate. Specialized regression methods and experimental designs enhanced the accuracy in view of the feed heterogeneity and offer a general method to extract real effects from experimental and sample noise''. The results have been verified successfully using actual commercial RDF and fabricated compositions that surpass those normally found in municipal waste to anticipate the influence of trends in recycling. The results show that the reaction conditions have a greater influence on altering fuel utilization and the relative yields of char, condensibles, and gases than does the composition over the range found in MSW and RDF.

  19. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways

    NASA Astrophysics Data System (ADS)

    Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valérie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K.; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna

    2016-12-01

    Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands—folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.

  20. Speciation of chromium and sulfur in aerosols by rapid single-particle mass spectrometry

    SciTech Connect

    Neubauer, K.R.; Johnston, M.V.; Wexler, A.S.

    1994-12-31

    Two elements commonly found in industrial emissions are chromium and sulfur. In the atmosphere each element exists in two oxidation states which exhibit different health effects and/or reactivities. Cr(III) is an essential nutrient while Cr(VI) is corrosive and carcinogenic; as a result inhalation of Cr(VI) can cause lung cancer as well as erosion of the nasal septum. Sulfur(VI) in the form of methanesulfonic acid (MSA) is an important component of the global warming cycle while sulfur(IV) and other forms of S(VI) are important to acid deposition. Therefore the need exists to differentiate Cr(III) and Cr(VI) as well as S(IV) and S(VI) in the particulate phase. With conventional analytical techniques, aerosol particles must be collected over time and then prepared for analysis. These steps allow an opportunity for chemical transformation and oxidation state interconversions to occur. To overcome this problem, the authors use rapid single-particle mass spectrometry (RSMS).

  1. Neutron single particle structure in 131Sn and direct neutron capture cross sections

    SciTech Connect

    Kozub, R. L.; Arbanas, Goran; Adekola, A. S.; Bardayan, Daniel W; Blackmon, Jeffery C; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Hix, William Raphael; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Z.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2012-01-01

    Recent calculations suggest that the rate of neutron capture by 130Sn has a significant impact on late-time nucleosynthesis in the r-process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r- process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d, p) reaction has been studied in inverse kinematics using a 630 MeV beam of 130Sn (4.8 MeV/u) and a (CD2)n target. An array of Si strip detectors, including SIDAR and an early implementation of the ORRUBA, was used to detect reaction products. Results for the 130Sn(d, p)131Sn reaction are found to be very similar to those from the previously reported 132Sn(d, p)133Sn reaction. Direct-semidirect (n, ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  2. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  3. Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy

    PubMed Central

    Park, Wooram; Madden, Dean R.; Rockmore, Daniel N.; Chirikjian, Gregory S.

    2010-01-01

    This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method. PMID:20221416

  4. High Precision Density Measurements of Single Particles: The Density of Metastable Phases

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Chieffo, Logan; Imre, Dan G.

    2005-10-01

    We describe a system designed to measure the size, composition and density of individual particles in real-time. It uses a DMA to select a monodisperse particle population and the single particle mass spectrometer to measure individual particle mass spectrometer to measure individual particle aerodynamic diameter and composition. Mobility and aerodynamic diameters are used to extract particle density. The addition of individual particle density to the mass spectrum is intended to improve the data classification process. In the present paper we demonstrate that the system has the requisite accuracy and resolution to make this approach practicable. We also present a high precision variant that uses an internal calibrant to remove any of the systematic errors and significantly improves the measurement quality. The high precision scheme is most suitable for laboratory studies making it possible to follow slight changes in particle density. An application of the system to measure the density of hygroscopic particles of atmospheric importance in metastable phases near zero relative humidity is presented. The density data are consistent with conclusions reached in a number of other studies that some particle systems of atmospheric significance once deliquesced persist as droplets down to near zero relative humidity.

  5. The single-particle density matrix of a quantum bright soliton from the coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Ayet, Alex; Brand, Joachim

    2017-02-01

    We present a novel approach for computing reduced density matrices for superpositions of eigenstates of a Bethe-ansatz solvable model by direct integration of the wave function in coordinate representation. A diagrammatic approach is developed to keep track of relevant terms and identify symmetries, which helps to reduce the number of terms that have to be evaluated numerically. As a first application we compute with modest numerical resources the single-particle density matrix and its eigenvalues including the condensate fraction for a quantum bright soliton with up to N  =  10 bosons. The latter are constructed as superpositions of string-type Bethe-ansatz eigenstates of nonrelativistic bosons in one spatial dimension with attractive contact interaction. Upon delocalising the superposition in momentum space we find that the condensate fraction reaches maximum values larger than 97% with weak particle-number dependence in the range of particles studied. The presented approach is suitable for studying time-dependent problems and generalises to higher-order correlation functions.

  6. Infinite single-particle bandwidth of a Mott-Hubbard insulator

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Cohn, J. R.; van Dongen, P. G. J.; Krishnamurthy, H. R.

    2016-03-01

    The conventional viewpoint of the strongly correlated electron metal-insulator transition is that a single band splits into two upper and lower Hubbard bands at the transition. Much work has investigated whether this transition is continuous or discontinuous. Here we focus on another aspect and ask the question of whether there are additional upper and lower Hubbard bands, which stretch all the way out to infinity — leading to an infinite single-particle bandwidth (or spectral range) for the Mott insulator. While we are not able to provide a rigorous proof of this result, we use exact diagonalization studies on small clusters to motivate the existence of these additional bands, and we discuss some different methods that might be utilized to provide such a proof. Even though the extra upper and lower Hubbard bands have very low total spectral weight, those states are expected to have extremely long lifetimes, leading to a nontrivial contribution to the transport density of states for dc transport and modifying the high temperature limit for the electrical resistivity.

  7. Achieving Size Independent Hit-Rate in Single Particle Mass Spectrometry

    SciTech Connect

    Zelenyuk, Alla; Yang, Juan; Imre, Dan G.; Choi, Eric Y.

    2009-04-01

    Recent improvements in single particle mass spectrometers make it possible to optically detect, size, and characterize the compositions of individual particles with diameters larger than a micron and smaller than 100 nm. Based on particle detection in two stages of optical detection these instruments generate a precisely timed trigger pulse, which is used to fire the ion generation laser or lasers. Practical experience shows that the wide size range results in small, but significant differences in laser trigger timing between small and large particles. If not treated, the instrument hit-rate becomes size dependent and instrument operator is forced to optimize the instrument for the desired size range, while having to contend with a lower hit-rate for the other. The present paper presents an analysis of the problem, demonstrating that size dependence of laser trigger timing stems from the differences in the particle position within the detection laser beam at the instant of detection. It shows that it is possible to compensate for these differences by generation a laser trigger delay coefficient for individual particles as a function of particle time of flight, i.e. its size. The study also shows that a single function can be used to characterize particles with a wide range of densities.

  8. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS

    PubMed Central

    Navratilova, Jana; Praetorius, Antonia; Gondikas, Andreas; Fabienke, Willi; von der Kammer, Frank; Hofmann, Thilo

    2015-01-01

    Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs) into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS) has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted. PMID:26690460

  9. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol

    SciTech Connect

    Xu, Ping; Kang, Leilei; Mack, Nathan H.; Schanze, Kirk S.; Han, Xijiang; Wang, Hsing-Lin

    2013-10-21

    We investigate surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4'-dimercaptoazobenzene (DMAB) by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from surface plasmon resonance to 4ATP, where O2 (as an electron acceptor) is essential and H2O (as a base) can accelerate the reaction. In contrast, hot electron (from surface plasmon decay) induction drives the reverse reaction of DMAB to 4ATP, where H2O (or H2) acts as the hydrogen source. More interestingly, the cyclic redox between 4ATP and DMAB by SPAC approach has been demonstrated. Finally, this SPAC methodology presents a unique platform for studying chemical reactions that are not possible under standard synthetic conditions.

  10. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction.

    PubMed

    Miao, Jianwei; Hodgson, Keith O; Ishikawa, Tetsuya; Larabell, Carolyn A; LeGros, Mark A; Nishino, Yoshinori

    2003-01-07

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 A. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  11. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS.

    PubMed

    Navratilova, Jana; Praetorius, Antonia; Gondikas, Andreas; Fabienke, Willi; von der Kammer, Frank; Hofmann, Thilo

    2015-12-10

    Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs) into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS) has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted.

  12. Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix

    NASA Astrophysics Data System (ADS)

    Faraone, Antonio; Liu, Kao-Hsiang; Mou, Chung-Yuan; Zhang, Yang; Chen, Sow-Hsin

    2009-04-01

    The single particle dynamics of water confined in a hydrophobically modified MCM-41-S sample has been studied using three high resolution quasielastic neutron scattering spectrometers in the temperature range from 300 to 210 K. A careful modeling of the dynamics allowed us to obtain good agreement among the results obtained with the three instruments, which have very different energy resolutions. The picture arising from the data is that, because of the heterogenous environment experienced by the water molecules, the dynamics show a broad distribution of relaxation times. However, the Fickian diffusive behavior is retained. In the investigated temperature range we found no evidence of the dynamic crossover, from a non-Arrhenius to an Arrhenius behavior, which was detected for water confined in hydrophilic MCM-41-S. This finding is in agreement with what was reported by Chu et al. [Phys. Rev. E 76, 021505 (2007)] for water confined in other hydrophobic confining media that the dynamic crossover takes place at a much lower temperature. The results reported in the paper help clarify the role that the chemical interaction between the water molecules and the walls of the confining host plays in determining the characteristics of the water dynamics, as compared to purely geometric constraints such as the size and shape of the pores.

  13. Accelerators for critical experiments involving single-particle upset in solid-state microcircuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1985-01-01

    Charged-particle interactions in microelectronic circuit chips (integrated circuits) present a particularly insidious problem for solid-state electronic systems due to the generation of soft errors or single-particle event upset (SEU) by either cosmic rays or other radiation sources. Particle accelerators are used to provide both light and heavy ions in order to assess the propensity of integrated circuit chips for SEU. Critical aspects of this assessment involve the ability to analytically model SEU for the prediction of error rates in known radiation environments. In order to accurately model SEU, the measurement and prediction of energy deposition in the form of an electron-hole plasma generated along an ion track is of paramount importance. This requires the use of accelerators which allow for ease in both energy control (change of energy) and change of ion species. This and other aspects of ion-beam control and diagnostics (e.g., uniformity and flux) are of critical concern for the experimental verification of theoretical SEU models.

  14. Quantum dot-loaded monofunctionalized DNA Icosahedra for single particle tracking of endocytic pathways

    PubMed Central

    Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valerie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K.; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna

    2016-01-01

    Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be achieved by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real time imaging of three different endocytic ligands - folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single particle tracking of Gal3 or STxB-functionalized, QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs that bear a unique stoichiometry of endocytic ligands represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics. PMID:27548358

  15. Canonical form of three-fermion pure-states with six single particle states

    SciTech Connect

    Chen, Lin; Ž Ðoković, Dragomir; Grassl, Markus; Zeng, Bei

    2014-08-01

    We construct a canonical form for pure states in Λ³(C⁶), the three-fermion system with six single particle states, under local unitary (LU) transformations, i.e., the unitary group U(6). We also construct a minimal set of generators of the algebra of polynomial U(6)-invariants on Λ³(C⁶). It turns out that this algebra is isomorphic to the algebra of polynomial LU-invariants of three-qubits which are additionally invariant under qubit permutations. As a consequence of this surprising fact, we deduce that there is a one-to-one correspondence between the U(6)-orbits of pure three-fermion states in Λ³(C⁶) and the LU orbits of pure three-qubit states when qubit permutations are allowed. As an important byproduct, we obtain a new canonical form for pure three-qubit states under LU transformations U(2) × U(2) × U(2) (no qubit permutations allowed)

  16. Effect of Wiggler insertions on the single-particle dynamics of the NLC main damping rings

    SciTech Connect

    Venturini, Marco

    2003-07-30

    As they are expected to occupy a large portion of the lattice, wiggler insert ions will introduce significant linear and nonlinear perturbations to the single-particle dynamics in the NLC Main Damping Rings (MDR). The nonlinearities are of particular concern as a sufficiently large Dynamic Aperture (DA) is required for high injection efficiency. The main content of this report is a study of the wigglers impact on the DA of the NLC-MDR latest lattice design. The particle dynamics is modeled by transfer maps calculated by integration through the wiggler fields. For field representation we employed a 3D multipole expansion derived from the field data that were obtained with the aid of a magnet design code. Additional contents of this paper include an investigation of a simplified model of wiggler consisting of a sequence of standard magnet elements (where thin octupoles are used to represent the dominant nonlinearities) and the suggestion of a possible correction scheme to compensate the wiggler nonlinearities.

  17. A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy.

    PubMed

    Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S

    2010-03-01

    Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a "toolbox" of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map.

  18. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways.

    PubMed

    Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valérie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna

    2016-12-01

    Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.

  19. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    PubMed

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated.

  20. Electromagnetic strength of neutron and proton single-particle halo nuclei

    NASA Astrophysics Data System (ADS)

    Typel, S.; Baur, G.

    2005-09-01

    Electromagnetic strength functions of halo nuclei exhibit universal features that can be described in terms of characteristic scale parameters. For a nucleus with nucleon + core structure the reduced transition probability, as determined, e.g., by Coulomb dissociation experiments, shows a typical shape that depends on the nucleon separation energy and the orbital angular momenta in the initial and final states. The sensitivity to the final-state interaction (FSI) between the nucleon and the core can be studied systematically by varying the strength of the interaction in the continuum. In the case of neutron + core nuclei analytical results for the reduced transition probabilities are obtained by introducing the effective-range expansion. The scaling with the relevant parameters is found explicitly. General trends are observed by studying several examples of neutron + core and proton + core nuclei in a single-particle model assuming Woods-Saxon potentials. Many important features of the neutron halo case can be obtained from a square-well model. Rather simple analytical formulas are found. The nucleon-core interaction in the continuum affects the determination of astrophysical S factors at zero energy in the method of asymptotic normalisation coefficients (ANC). It is also relevant for the extrapolation of radiative capture cross sections to low energies.

  1. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  2. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.

    PubMed

    Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Jiang, Hongyuan

    2016-12-06

    We propose a simple, inexpensive microfluidic chip for large-scale trapping of single particles and cells based on induced-charge electroosmosis in a rotating electric field (ROT-ICEO). A central floating electrode array, was placed in the center of the gap between four driving electrodes with a quadrature configuration and used to immobilize single particles or cells. Cells were trapped on the electrode array by the interaction between ROT-ICEO flow and buoyancy flow. We experimentally optimized the efficiency of trapping single particles by investigating important parameters like particle or cell density and electric potential. Experimental and numerical results showed good agreement. The operation of the chip was verified by trapping single polystyrene (PS) microspheres with diameters of 5 and 20 μm and single yeast cells. The highest single particle occupancy of 73% was obtained using a floating electrode array with a diameter of 20 μm with an amplitude voltage of 5 V and frequency of 10 kHz for PS microbeads with a 5-μm diameter and density of 800 particles/μL. The ROT-ICEO flow could hold cells against fluid flows with a rate of less than 0.45 μL/min. This novel, simple, robust method to trap single cells has enormous potential in genetic and metabolic engineering.

  3. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  4. Problematizing the "Taken for Granted" in Educational Issues: Karl Marx, Antonio Gramsci, and Michel Foucault.

    ERIC Educational Resources Information Center

    Qi, Jie

    This paper explores how educators would raise different questions about educational issues by using Karl Marx's framework, Antonio Gramsci's conception, and Michel Foucault's notions, respectively. First, the paper compares the historical perspectives of Marx and Foucault. Marx concludes that history is a progressive linear production and that…

  5. Foucault as Complexity Theorist: Overcoming the Problems of Classical Philosophical Analysis

    ERIC Educational Resources Information Center

    Olssen, Mark

    2008-01-01

    This article explores the affinities and parallels between Foucault's Nietzschean view of history and models of complexity developed in the physical sciences in the twentieth century. It claims that Foucault's rejection of structuralism and Marxism can be explained as a consequence of his own approach which posits a radical ontology whereby the…

  6. Social Education and Mental Hygiene: Foucault, Disciplinary Technologies and the Moral Constitution of Youth

    ERIC Educational Resources Information Center

    Besley, Tina

    2002-01-01

    This paper utilises some of Foucault's notions to explore the use of the "disciplinary technologies" of film/video in social guidance programmes in schools to shape, constitute and control the morality of youth. As the first section elaborates, for Foucault, "technology" is the actual practice of power that involves "the government of individuals,…

  7. Discourse, Complexity, Normativity: Tracing the Elaboration of Foucault's Materialist Concept of Discourse

    ERIC Educational Resources Information Center

    Olssen, Mark

    2014-01-01

    In this article, I want to suggest that it is through the elaboration of the concept of discourse that the differences between Foucault and thinkers like Habermas, Hegel and Marx can best be understood. Foucault progressively develops a conception of discourse as a purely historical category that resists all reference to transcendental principles…

  8. The Rhetoric of Revelation: The Case of Biographical Representations of Michel Foucault.

    ERIC Educational Resources Information Center

    Nash, Susan Smith

    Scholars and educators concerned with the work of Michel Foucault should approach James Miller's biography "The Passion of Michel Foucault" with a fair degree of skepticism because the author's motives for writing the book call into question his findings. According to Miller's own preface, he enters his project with his agenda already…

  9. Structuralism, Post-Structuralism, and Neo-Liberalism: Assessing Foucault's Legacy.

    ERIC Educational Resources Information Center

    Olssen, Mark

    2003-01-01

    Traces Foucault's distinctive commitment to "post-structuralism." Argues that under the influence of Nietzsche, Foucault's approach marks a distinct break with structuralism in several crucial aspects. What results is a materialist post-structuralism that is also distinctively different from the post-structuralism of Derrida, Lyotard,…

  10. The Product of Text and "Other" Statements: Discourse Analysis and the Critical Use of Foucault

    ERIC Educational Resources Information Center

    Graham, Linda J.

    2011-01-01

    Much has been written on Michel Foucault's reluctance to clearly delineate a research method, particularly with respect to genealogy (Harwood, 2000; Meadmore, Hatcher & McWilliam, 2000; Tamboukou, 1999). Foucault (1994, p. 288) himself disliked prescription stating, "I take care not to dictate how things should be" and wrote provocatively to…

  11. Education and/or Displacement? A Pedagogical Inquiry into Foucault's "Limit-Experience"

    ERIC Educational Resources Information Center

    Thompson, Christiane

    2010-01-01

    This paper is concerned with the educational-philosophical implications of Michel Foucault's work: It poses the question whether Michel Foucault's remarks surrounding "limit-experience" can be placed in an educational context and provide an alternative view regarding the relationship that we maintain to ourselves. As a first step, the significance…

  12. Foucault, Governmentality, Neoliberalism and Adult Education--Perspective on the Normalization of Social Risks

    ERIC Educational Resources Information Center

    Kopecký, Martin

    2011-01-01

    The article deals with the relevance of the work of Foucault to critical analysis of the political concept of lifelong learning that currently dominates. This concept relates to the field of adult education and learning. The article makes reference to the relatively late incorporation of Foucault's work within andragogy. It shows the…

  13. Principles and biophysical applications of single particle super-localization and rotational tracking

    NASA Astrophysics Data System (ADS)

    Gu, Yan

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  14. Principles and biophysical applications of single particle super-localization and rotational tracking

    SciTech Connect

    Gu, Yan

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  15. Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Reimann, B.; Nillius, B.; Jaenicke, R.; Bingemer, H.

    2010-02-01

    In this work we present the setup and first tests of our new BIO IN detector. This detector was constructed to classify atmospheric ice nuclei (IN) for their biological content. It is designed to be coupled to the Fast Ice Nucleus CHamber FINCH. If one particle acts as an ice nucleus, it will be at least partly covered with ice at the end of the development section of the FINCH chamber. The device combines an auto-fluorescence detector and a circular depolarization detector for simultaneous detection of biological material and discrimination between water droplets, ice crystals and non activated large aerosol particles. The excitation of biological material with UV light and analysis of auto-fluorescence is a common principle used for flow cytometry, fluorescence microscopy, spectroscopy and imaging. The detection of auto-fluorescence of airborne single particles demands some more experimental effort. However, expensive commercial sensors are available for special purposes, e.g. size distribution measurements. But these sensors will not fit the specifications needed for the FINCH IN counter (e.g. high sample flow of up 10 LPM). The newly developed -low cost- BIO IN sensor uses a single high-power UV LED for the electronic excitation instead of much more expensive UV lasers. Other key advantages of the new sensor are the low weight, compact size, and the little effect on the aerosol sample, which allows it to be coupled with other instruments for further analysis. The instrument will be flown on one of the first missions of the new German research aircraft "HALO" (High Altitude and LOng range).

  16. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution.

  17. Wavelength resolved polarized elastic scatter measurements from micron-sized single particles

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Czege, Jozsef; Eversole, Jay D.

    2013-05-01

    The goal of this project is to investigate correlations of polarimetric angular scattering patterns from individual aerosol particles with the particles' physical structure and composition. Such signature patterns may be able to provide particle classification capability, such as, for example, discrimination between man-made and naturally occurring aerosols. If successful, this effort could improve current detection methods for biological warfare (BW) agent aerosols. So far, we have demonstrated an experimental arrangement to measure polarization-state resolved, multi-angle, scattering intensities from single aerosol particles on-the-fly. Our novel approach is a radical departure from conventional polarimetric measurement methods, and a key factor is the use of a multiple-order retarder to prepare different polarization states, depending on the wavelength of the incident light. This novel experimental technique uses a supercontinuum light source, an array of optical fibers, an imaging spectrometer and an EMCCD camera to simultaneously acquire wavelength and angle dependent particle light scattering data as a two-dimensional snapshot. Mueller matrix elements were initially measured from individual particles held in an optical trap (at 405 nm). Since particles can be stably trapped for long periods (hours), we were able to change the optical configuration to acquire multiple Mueller matrix element measurements on a single particle. We have computationally modeled these measurements at specific angles, and the comparison with experimental measurements shows good agreement. Similar measurements have also been made on slowly falling particles, and our current efforts are focused on improving experimental technique sufficiently to make such measurements on flowing particles.

  18. Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Han, Bingxue; Bi, Xinhui; Dai, Shouhui; Huang, Wei; Chen, Duohong; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Zhou, Zhen

    2015-02-01

    Continuous ambient measurement of atmospheric aerosols was performed with a single particle aerosol mass spectrometer (SPAMS) in Guangzhou during summer of 2012. The aerosols mainly consisted of carbonaceous particles as major compositions in submicrometer range, including K-rich (29.8%), internally mixed organics and elemental carbon (ECOC, 13.5%), organic carbon-rich (OC, 18.5%), elemental carbon (EC, 12.3%) and high molecular OC (HMOC, 3.2%), and inorganic types (e.g., Na-rich Na-K, Fe-rich, V-rich, and Cu-rich) as major ones in supermicrometer range. Results show that carbonaceous particles were commonly internally mixed with sulfate and nitrate through atmospheric processing, in particular, with sulfate; inorganic types were dominantly internally mixed with nitrate rather than sulfate, indicative of different evolution processes for carbonaceous and inorganic particles in the atmosphere. It was observed that variations of these particle types were significantly influenced by air mass back trajectories (BTs). Under the influence of continental BTs, carbonaceous types were prevalent, while Na-K and Na-rich types considerably increased when the BTs originated from south marine regions. Number fraction of carbonaceous types exhibited obvious diurnal variation throughout the sampling period, which reflects their relatively stable emission and atmospheric processes. Two EC particle types LC-EC and NaK-EC showed different diurnal distributions, suggesting their different origins. The obtained information on the mixing state and the temporal variation of particle types is essential for developing an understanding on the origin and evolution processes of atmospheric aerosols.

  19. TrackMate: An open and extensible platform for single-particle tracking.

    PubMed

    Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W

    2017-02-15

    We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells.

  20. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.

    PubMed

    Mitrano, Denise M; Lesher, Emily K; Bednar, Anthony; Monserud, Jon; Higgins, Christopher P; Ranville, James F

    2012-01-01

    The environmental prevalence of engineered nanomaterials, particularly nanoparticulate silver (AgNP), is expected to increase substantially. The ubiquitous use of commercial products containing AgNP may result in their release to the environment, and the potential for ecological effects is unknown. Detecting engineered nanomaterials is one of the greatest challenges in quantifying their risks. Thus, it is imperative to develop techniques capable of measuring and characterizing exposures, while dealing with the innate difficulties of nanomaterial detection in environmental samples, such as low-engineered nanomaterial concentrations, aggregation, and complex matrices. Here the authors demonstrate the use of inductively coupled plasma-mass spectrometry, operated in a single-particle counting mode (SP-ICP-MS), to detect and quantify AgNP. In the present study, two AgNP products were measured by SP-ICP-MS, including one of precisely manufactured size and shape, as well as a commercial AgNP-containing health food product. Serial dilutions, filtration, and acidification were applied to confirm that the method detected particles. Differentiation of dissolved and particulate silver (Ag) is a feature of the technique. Analysis of two wastewater samples demonstrated the applicability of SP-ICP-MS at nanograms per liter Ag concentrations. In this pilot study, AgNP was found at 100 to 200 ng/L in the presence of 50 to 500 ng/L dissolved Ag. The method provides the analytical capability to monitor Ag and other metal and metal oxide nanoparticles in fate, transport, stability, and toxicity studies using a commonly available laboratory instrument. Rapid throughput and element specificity are additional benefits of SP-ICP-MS as a measurement tool for metal and metal oxide engineered nanoparticles.

  1. Probing Black Carbon-containing Particle Microphysics with the Single-Particle Soot Photometer (SP2)

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lewis, E. R.; Onasch, T. B.; Lambe, A. T.; Davidovits, P.; Kleinman, L. I.

    2012-12-01

    Knowledge of the structure and mixing state of black-carbon containing particles is important for calculating their radiative forcing and provides insight into their source and life cycle. Recently analysis of black carbon-containing particles has demonstrated that for a fraction of such particles, the black carbon may reside on or near the surface of the particle as opposed to the traditional core-shell configuration typically assumed in which the black carbon core is surrounded by a shell of non-refractory material. During the DOE-sponsored Aerosol Lifecycle field campaign held in summer, 2011 at Brookhaven National Laboratory on Long Island, NY, episodes were encountered in which a high fraction of particles containing black carbon had such configurations, and these episodes corresponded to air masses that contained biomass burning plumes (Sedlacek et al., 2012). Subsequent analysis found other episodes in field campaigns in Colorado and California in which high fractions this configuration corresponded to biomass burning plumes. In an effort to evaluate this interpretation and explore formation mechanisms, a series of laboratory-based experiments examining the coagulation of regal black (surrogate for collapsed soot) with model non-refractory coatings [dioctyl sebacate (surrogate for organic aerosols with liquid-like character) and deliquesced ammonium sulfate (solid)] were carried out. The results of these experiments and their potential implications on black carbon radiative forcing will be discussed. Sedlacek, III, Arthur, E. R. Lewis, L. I. Kleinman, J. Xu and Q. Zhang (2012), Determination of and Evidence for Non-core-shell structure of particles containing black carbon using the single particle soot photometer (SP2). Geophys. Res. Lett., 39 L06802, doi:10.1029/2012GL050905

  2. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    PubMed

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  3. The effect of model fidelity on prediction of char burnout for single-particle coal combustion

    DOE PAGES

    McConnell, Josh; Sutherland, James C.

    2016-07-09

    In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less

  4. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    NASA Astrophysics Data System (ADS)

    Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.

    2016-05-01

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  5. Single particle image reconstruction of the human recombinant Kv2.1 channel.

    PubMed

    Adair, Brian; Nunn, Rashmi; Lewis, Shannon; Dukes, Iain; Philipson, Louis; Yeager, Mark

    2008-03-15

    Kv2.1 channels are widely expressed in neuronal and endocrine cells and generate slowly activating K+ currents, which contribute to repolarization in these cells. Kv2.1 is expressed at high levels in the mammalian brain and is a major component of the delayed rectifier current in the hippocampus. In addition, Kv2.1 channels have been implicated in the regulation of membrane repolarization, cytoplasmic calcium levels, and insulin secretion in pancreatic beta-cells. They are therefore an important drug target for the treatment of Type II diabetes mellitus. We used electron microscopy and single particle image analysis to derive a three-dimensional density map of recombinant human Kv2.1. The tetrameric channel is egg-shaped with a diameter of approximately 80 A and a long axis of approximately 120 A. Comparison to known crystal structures of homologous domains allowed us to infer the location of the cytoplasmic and transmembrane assemblies. There is a very good fit of the Kv1.2 crystal structure to the assigned transmembrane assembly of Kv2.1. In other low-resolution maps of K+ channels, the cytoplasmic N-terminal and transmembrane domains form separate rings of density. In contrast, Kv2.1 displays contiguous density that connects the rings, such that there are no large windows between the channel interior and the cytoplasmic space. The crystal structure of KcsA is thought to be in a closed conformation, and the good fit of the KcsA crystal structure to the Kv2.1 map suggests that our preparations of Kv2.1 may also represent a closed conformation. Substantial cytoplasmic density is closely associated with the T1 tetramerization domain and is ascribed to the approximately 184 kDa C-terminal regulatory domains within each tetramer.

  6. Single Particle Image Reconstruction of the Human Recombinant Kv2.1 Channel

    PubMed Central

    Adair, Brian; Nunn, Rashmi; Lewis, Shannon; Dukes, Iain; Philipson, Louis; Yeager, Mark

    2008-01-01

    Kv2.1 channels are widely expressed in neuronal and endocrine cells and generate slowly activating K+ currents, which contribute to repolarization in these cells. Kv2.1 is expressed at high levels in the mammalian brain and is a major component of the delayed rectifier current in the hippocampus. In addition, Kv2.1 channels have been implicated in the regulation of membrane repolarization, cytoplasmic calcium levels, and insulin secretion in pancreatic β-cells. They are therefore an important drug target for the treatment of Type II diabetes mellitus. We used electron microscopy and single particle image analysis to derive a three-dimensional density map of recombinant human Kv2.1. The tetrameric channel is egg-shaped with a diameter of ∼80 Å and a long axis of ∼120 Å. Comparison to known crystal structures of homologous domains allowed us to infer the location of the cytoplasmic and transmembrane assemblies. There is a very good fit of the Kv1.2 crystal structure to the assigned transmembrane assembly of Kv2.1. In other low-resolution maps of K+ channels, the cytoplasmic N-terminal and transmembrane domains form separate rings of density. In contrast, Kv2.1 displays contiguous density that connects the rings, such that there are no large windows between the channel interior and the cytoplasmic space. The crystal structure of KcsA is thought to be in a closed conformation, and the good fit of the KcsA crystal structure to the Kv2.1 map suggests that our preparations of Kv2.1 may also represent a closed conformation. Substantial cytoplasmic density is closely associated with the T1 tetramerization domain and is ascribed to the ∼184 kDa C-terminal regulatory domains within each tetramer. PMID:18212012

  7. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS.

    PubMed

    Ramos, K; Gómez-Gómez, M M; Cámara, C; Ramos, L

    2016-05-01

    Silver migration from a commercial baby feeding bottle and a food box containing AgNPs, as confirmed by SEM-EDX analysis, was evaluated using food simulant solutions [i.e., water, 3% (v/v) acetic acid, and 10% and 90% (v/v) ethanol]. Silver release was investigated at temperatures in the 20-70°C range using contact times of up to 10 days. Migration of silver from the food box was in all cases 2 to 3 orders of magnitude higher than that observed for the baby bottle, although the total silver content in the original box material was half of that found in the baby bottle. As expected, for both food containers, silver migration depended on both the nature of the tested solution and the applied conditions. The highest release was observed for 3% acetic acid at 70°C for 2h, corresponding to 62ngdm(2) and 1887ngdm(-2) of silver for the baby bottle and the food box, respectively. Single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) was used to characterise and quantify AgNPs in the food simulants extracts. Sample preparation was optimized to preserve AgNPs integrity. The experimental parameters affecting AgNPs detection, sizing and quantification by SP-ICPMS were also optimised. Analyses of water and acidic extracts revealed the presence of both dissolved silver and AgNPs. Small AgNPs (in the 18-30nm range) and particle number concentrations within the 4-1510 10(6)L(-1) range were detected, corresponding to only 0.1-8.6% of the total silver released from these materials. The only exception was AgNPs migrated into water at 40°C and 70°C from the food box, which accounted for as much as 34% and 69% of the total silver content, respectively.

  8. Single-particle and collective motion in unbound deformed 39Mg

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Rotureau, J.; Michel, N.; Liu, Quan; Nazarewicz, W.

    2016-11-01

    Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound f p -shell nucleus 39Mg is an ideal candidate to study this interplay. Purpose: In this work, we predict the properties of low-lying resonant states of 39Mg, using a suite of realistic theoretical approaches rooted in the open quantum system framework. Method: To describe the spectrum and decay modes of 39Mg we use the conventional shell model, Gamow shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic particle-plus-rotor model formulated in the Berggren basis. Results: The unbound ground state of 39Mg is predicted to be either a Jπ=7/2 - state or a 3/2 - state. A narrow Jπ=7/2 - ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron halo neighbor 37Mg, which is dominated by the f7 /2 partial wave at short distances and a p3 /2 component at large distances. A Jπ=3/2 - ground-state candidate is favored by the large deformation of the system. It can be associated with the 1/2 -[321 ] Nilsson orbital dominated by the ℓ =1 wave; hence its predicted width is large. The excited Jπ=1/2 - and 5 /2- states are expected to be broad resonances, while the Jπ=9/2 - and 11/2 - members of the ground-state rotational band are predicted to have very small neutron decay widths. Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line.

  9. Note: A 1-m Foucault pendulum rolling on a ball

    NASA Astrophysics Data System (ADS)

    Salva, H. R.; Benavides, R. E.; Venturino, J. A.; Cuscueta, D. J.; Ghilarducci, A. A.

    2013-10-01

    We have built a short Foucault pendulum of 1-m length. The aim of this work was to increase the sensitivity to elliptical trajectories from other longer pendula. The design was a semi-rigid pendulum that rolls over a small ball. The measurements of the movements (azimuth and elliptical trajectory) were done by an optical method. The resulting pendulum works in a medium satisfactory way due to problems of the correct choice of the mass of the bob together with the diameter of the supporting ball. It is also important to keep the rolling surface very clean.

  10. Two often disregarded aspects of Foucaultʼs pendulum

    NASA Astrophysics Data System (ADS)

    Pérez, José-Philippe; Pujol, Olivier

    2015-01-01

    This paper revisits the famous Foucault's pendulum by highlighting two often-disregarded aspects in mechanics courses. The first one concerns the existence of a local accelerated reference frame to express the law of dynamics without the Coriolis force. The second aspect deals with the geometrical phase that appears in pendulum dynamics. This last point, which could appear banal, should be related to analogous consideration in quantum physics. It is also linked to vectorial parallel transport of the pendulum angular momentum eigenvector. Numerical simulations with MATLAB are proposed.

  11. Note: A 1-m Foucault pendulum rolling on a ball.

    PubMed

    Salva, H R; Benavides, R E; Venturino, J A; Cuscueta, D J; Ghilarducci, A A

    2013-10-01

    We have built a short Foucault pendulum of 1-m length. The aim of this work was to increase the sensitivity to elliptical trajectories from other longer pendula. The design was a semi-rigid pendulum that rolls over a small ball. The measurements of the movements (azimuth and elliptical trajectory) were done by an optical method. The resulting pendulum works in a medium satisfactory way due to problems of the correct choice of the mass of the bob together with the diameter of the supporting ball. It is also important to keep the rolling surface very clean.

  12. Individual perception and cultural development: Foucault's 1954 approach to mental illness and its history.

    PubMed

    Joranger, Line

    2016-02-01

    In his 1954 book Mental Illness and Personality Foucault combines the subjective experience of the mentally ill person with a sociocultural historical approach to mental illness and suggests that there exists a reciprocal connection between individual perception and sociocultural development. This article examines the ramifications of these connections in Foucault's 1954 works and the connection with his later historical works. The article also examines the similarities between Foucault's 1954 thoughts and contemporary intellectual thought, such as those outlined in Maurice Merleau-Ponty's existential phenomenology and in Gaston Bachelard and Georges Canguilhem's historical epistemology. In sum, my study shows that Foucault's historical analysis began long before his 1961 dissertation History of Madness. It also shows that, more than announcing the "death" of the subject, Foucault's historical analysis may have contributed to saving it.

  13. Foucault dissipation in a rolling cylinder: a webcam quantitative study

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-03-01

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault 'eddy' currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis done by means of software tools freely available within Windows operating system (Paint and Movie Maker). The proposed method allows us to experimentally discern the contribution to dissipation due to the velocity-independent rolling friction from that owed to the viscous-like friction emerging from complex electrodynamic interactions among eddy currents and the external magnetic field. In this way a microdissipation of some tens of µW is measured. The easily reproducible experimental setup, the simple implementation of data analysis and the discussion on various experimental approaches and strategies make the proposed activity highly significant for university undergraduates, since involved crucial skills can be efficiently strengthened.

  14. Power and knowledge in nursing practice: the contribution of Foucault.

    PubMed

    Henderson, A

    1994-11-01

    This paper explores the implications of Michel Foucault's philosophical analyses for understanding nursing practice. Foucault describes power within a given society as unfolding not through large-scale events but rather through a complex 'micro-physics'. Power operates upon the human body. With the increasing use of observation, in understanding both the natural and social world, the body has become the subject of the 'gaze'. The body as object, however, is neither a universal belief nor truth but a product of ways of perceiving and examining it. In relation to nursing, the subjection of the body to the 'gaze' and the practices of the institutional environment of the hospital are important for understanding the knowledge formulated. The power of practice is in the generation of knowledge. The nature and form of knowledge is instrumental in establishing the quality of nurse-patient relationships. This paper explores, through the particular exemplar of the patient in intensive care, the power of present practices to shape knowledge, and thereby dictate and limit the quality of the nurse-patient relationship.

  15. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648

  16. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  17. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2012-05-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were already discussed (Dall'Osto et al., 2009a,b; Harrison et al., 2012). In this manuscript the origins and properties of four unreported particle types postulated to be due to locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings although it could not unambiguously associated with a specific source or atmospheric process. The fourth class (Secondary Organic Aerosols - Polycyclic Aromatic Hydrocarbon; SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary aerosol production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. A comparison of ATOFMS particle class data is then made with factors obtained by Positive Matrix Factorization and PAH signatures obtained from Aerosol Mass Spectrometer (AMS) data (Allan et al., 2010). Both the Ca-EC and OC particle types correlate with primary Hydrocarbon-like Organic Aerosol (HOA, R2 = 0.65 and 0.50 respectively), and Na-EC-OC correlates weakly with the AMS

  18. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2011-02-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were accompanied by Aerosol Mass Spectrometer (AMS) quantitative aerosol mass loading measurements (Dall'Osto et al., 2009a, b). In this manuscript the origins and properties of four particle types associated with locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species, and contains both primary and secondary components. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings. The fourth class (SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. Finally, a comparison of ATOFMS particle class data is made with factors obtained by Positive Matrix Factorization from AMS data.. Both the Ca-EC and OC particle types correlate with the AMS HOA primary organic fraction (R2 = 0.65 and 0.50 respectively), and Na-EC-OC, but not SOA-PAH, which correlates weakly with the AMS OOA secondary organic aerosol factor (R2 = 0.35). A detailed analysis was conducted to identify ATOFMS particle type(s) representative

  19. Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas; Flynn, Michael J.; Taylor, Jonathan W.; Allan, James D.; Coe, Hugh

    2016-12-01

    Single-particle mass spectrometry (SPMS) is a useful tool for the online study of aerosols with the ability to measure size-resolved chemical composition with a temporal resolution relevant to atmospheric processes. In SPMS, optical particle detection is used for the effective temporal alignment of an ablation laser pulse with the presence of a particle in the ion source, and it gives the option of aerodynamic sizing by measuring the offset of particle arrival times between two detection stages. The efficiency of the optical detection stage has a strong influence on the overall instrument performance. A custom detection laser system consisting of a high-powered fibre-coupled Nd:YAG solid-state laser with a collimated beam was implemented in the detection stage of a laser ablation aerosol particle time-of-flight (LAAP-TOF) single-particle mass spectrometer without major modifications to instrument geometry. The use of a collimated laser beam permitted the construction of a numerical model that predicts the effects of detection laser wavelength, output power, beam focussing characteristics, light collection angle, particle size, and refractive index on the effective detection radius (R) of the detection laser beam. We compare the model predictions with an ambient data set acquired during the Ice in Clouds Experiment - Dust (ICE-D) project. The new laser system resulted in an order-of-magnitude improvement in instrument sensitivity to spherical particles in the size range 500-800 nm compared to a focussed 405 nm laser diode system. The model demonstrates that the limit of detection in terms of particle size is determined by the scattering cross section (Csca) as predicted by Mie theory. In addition, if light is collected over a narrow collection angle, oscillations in the magnitude of Csca with respect to particle diameter result in a variation in R, resulting in large particle-size-dependent variation in detection efficiency across the particle transmission range

  20. Calculated fission properties of the heaviest elements: Vol. 2, Calculated single-particle levels in heavy nuclei

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    The decay properties of nuclei in many cases depend strongly on the quantum numbers of the single-particle levels in the vicinity of the Fermi surface. A striking illustration is the prolonged fission half-lives of odd nuclei relative to their even neighbors. The hindrance factor depends on the spin of unpaired odd particle and increases with increasing spin of the odd particle. The effect has been studied theoretically. For /sup 257/Fm the hindrance factor is almost ten orders of magnitude. The computer code for calculating nuclear masses calculates single-particle levels at the deformations considered as one step in the calculations. This code has been run for all nuclei considered in the 1981 mass study and the calculated single-particle levels were stored on permanent mass storage. This is actually point (I.D.1) in the research plan ('UNIFIED MODEL ...'). A computer code has been constructed for extracting levels of nuclei that are specified to the program and plotting them. Four such plots are included in this report as figs. 1-4. The levels are plotted relative to the Fermi surface of each nucleus. It is clear from the pictures that for /sup 257/Fm the calculations predict the N = 157 neutron orbital to have spin 9/2+ as is also found experimentally. The high spin is the reason for the large hindrance factor for fission of /sup 257/Fm. Figures of the type included here may be used to quickly survey larger regions of nuclei for candidates for special properties, such as unusually large hindrance factors in fission. More detailed calculations are usually required to determine the magnitude of the effects. We also include tables of the plotted single-particle levels since it is not always possible to determine the spin from an inspection of the plots, when levels are overlapping. 4 figs.

  1. Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei

    SciTech Connect

    Litvinova, E. V.; Afanasjev, A. V.

    2011-07-15

    The impact of particle-vibration coupling and polarization effects due to deformation and time-odd mean fields on single-particle spectra is studied systematically in doubly magic nuclei from low-mass {sup 56}Ni up to superheavy ones. Particle-vibration coupling is treated fully self-consistently within the framework of the relativistic particle-vibration coupling model. Polarization effects due to deformation and time-odd mean field induced by odd particle are computed within covariant density functional theory. It has been found that among these contributions the coupling to vibrations makes a major impact on the single-particle structure. The impact of particle-vibration coupling and polarization effects on calculated single-particle spectra, the size of the shell gaps, the spin-orbit splittings and the energy splittings in pseudospin doublets is discussed in detail; these physical observables are compared with experiment. Particle-vibration coupling has to be taken into account when model calculations are compared with experiment since this coupling is responsible for observed fragmentation of experimental levels; experimental spectroscopic factors are reasonably well described in model calculations.

  2. Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge.

    PubMed

    Li, Xiaopeng; Ganeshan, Sriram; Pixley, J H; Das Sarma, S

    2015-10-30

    We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.

  3. Spin, charge, and single-particle spectral functions of the one-dimensional quarter filled Holstein model

    NASA Astrophysics Data System (ADS)

    Assaad, F. F.

    2008-10-01

    We use a recently developed extension of the weak-coupling diagrammatic determinantal quantum Monte Carlo method to investigate the spin, charge, and single-particle spectral functions of the one-dimensional quarter filled Holstein model with phonon frequency ω0=0.1t . As a function of the dimensionless electron-phonon coupling we observe a transition from a Luttinger to a Luther-Emery liquid with dominant 2kf charge fluctuations. Emphasis is placed on the temperature dependence of the single-particle spectral function. At high temperatures and in both phases it is well accounted for within a self-consistent Born approximation. In the low-temperature Luttinger liquid phase we observe features that compare favorably with a bosonization approach retaining only forward scattering. In the Luther-Emery phase, the spectral function at low temperatures shows a quasiparticle gap that matches half the spin gap, whereas at temperatures above which this quasiparticle gap closes characteristic features of the Luttinger liquid model are apparent. Our results are based on lattice simulations on chains up to L=20 for two-particle properties and on cluster dynamical mean-field theory calculations with clusters up to 12 sites for the single-particle spectral function.

  4. A tilt-pair based method for assigning the projection directions of randomly oriented single-particle molecules.

    PubMed

    Ueno, Yutaka; Mine, Shouhei; Kawasaki, Kazunori

    2015-04-01

    In this article, we describe an improved method to assign the projection angle for averaged images using tilt-pair images for three-dimensional reconstructions from randomly oriented single-particle molecular images. Our study addressed the so-called 'initial volume problem' in the single-particle reconstruction, which involves estimation of projection angles of the particle images. The projected images of the particles in different tilt observations were mixed and averaged for the characteristic views. After the ranking of these group average images in terms of reliable tilt angle information, mutual tilt angles between images are assigned from the constituent tilt-pair information. Then, multiples of the conical tilt series are made and merged to construct a network graph of the particle images in terms of projection angles, which are optimized for the three-dimensional reconstruction. We developed the method with images of a synthetic object and applied it to a single-particle image data set of the purified deacetylase from archaea. With the introduction of low-angle tilt observations to minimize unfavorable imaging conditions due to tilting, the results demonstrated reasonable reconstruction models without imposing symmetry to the structure. This method also guides its users to discriminate particle images of different conformational state of the molecule.

  5. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    PubMed

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components.

  6. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  7. [Foucault, Derrida, and the history of madness: notes on a controversy].

    PubMed

    Pereira Neto, A F

    1998-01-01

    The publication of the book Folie et Déraison. Histoire de la Folie à l'Age Classique (1961), by Michel Foucault, sparked a debate between the author and philosopher Jacques Derrida during the 1960s and 70s. Derrida criticized the methodological proposal and organization of the History of Madness presented by Foucault in the foreword to the first edition. The controversy appears to have motivated the author to withdraw this same foreword from the second edition. The purpose of this article is to analyze some current points in this controversy. It also presents a research agenda for an understanding of the reasons leading Foucault to take this stance.

  8. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  9. Determination of single particle mass spectral signatures from light-duty vehicle emissions.

    PubMed

    Sodeman, David A; Toner, Stephen M; Prather, Kimberly A

    2005-06-15

    In this study, 28 light-duty gasoline vehicles (LDV) were operated on a chassis dynamometer at the California Air Resources Board Haagen-Smit Facility in El Monte, CA. The mass spectra of individual particles emitted from these vehicles were measured using aerosol time-of-flight mass spectrometry (ATOFMS). A primary goal of this study involves determining representative size-resolved single particle mass spectral signatures that can be used in future ambient particulate matter source apportionment studies. Different cycles were used to simulate urban driving conditions including the federal testing procedure (FTP), unified cycle (UC), and the correction cycle (CC). The vehicles were selected to span a range of catalytic converter (three-way, oxidation, and no catalysts) and engine technologies (vehicles models from 1953 to 2003). Exhaust particles were sampled directly from a dilution and residence chamber system using particle sizing instruments and an ATOFMS equipped with an aerodynamic lens (UF-ATOFMS) analyzing particles between 50 and 300 nm. On the basis of chemical composition, 10 unique chemical types describe the majority of the particles with distinct size and temporal characteristics. In the ultrafine size range (between 50 and 100 nm), three elemental carbon (EC) particle types dominated, all showing distinct EC signatures combined with Ca, phosphate, sulfate, and a lower abundance of organic carbon (OC). The relative fraction of EC particle types decreased as particle size increased with OC particles becoming more prevalent above 100 nm. Depending on the vehicle and cycle, several distinct OC particle types produced distinct ion patterns, including substituted aromatic compounds and polycyclic aromatic hydrocarbons (PAH), coupled with other chemical species including ammonium, EC, nitrate, sulfate, phosphate, V, and Ca. The most likely source of the Ca and phosphate in the particles is attributed to the lubricating oil. Significant variability was

  10. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect

    Sun, Wei

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  11. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  12. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOEpatents

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  13. Doing Foucault: inquiring into nursing knowledge with Foucauldian discourse analysis.

    PubMed

    Springer, Rusla Anne; Clinton, Michael E

    2015-04-01

    Foucauldian discourse analysis (FDA) is a methodology that is well suited to inquiring into nursing knowledge and its organization. It is a critical analytic approach derived from Foucault's histories of science, madness, medicine, incarceration and sexuality, all of which serve to exteriorize or make visible the 'positive unconscious of knowledge' penetrating bodies and minds. Foucauldian discourse analysis (FDA) holds the potential to reveal who we are today as nurses and as a profession of nursing by facilitating our ability to identify and trace the effects of the discourses that determine the conditions of possibility for nursing practice that are continuously shaping and (re)shaping the knowledge of nursing and the profession of nursing as we know it. In making visible the chain of knowledge that orders the spaces nurses occupy, no less than their subjectivities, FDA is a powerful methodology for inquiring into nursing knowledge based on its provocation of deep critical reflection on the normalizing power of discourse.

  14. Ethics, government and sexual health: insights from Foucault.

    PubMed

    Winch, Sarah

    2005-03-01

    The work of Michel Foucault, the French philosopher who was interested in power relationships, has resonated with many nurses who seek a radically analytical view of nursing practice. The purpose of this article is to explore 'ethics' through a Foucauldian lens, in a conceptual and methodological sense. The intention is to provide a useful framework that will help researchers critically to explore aspects of nursing practice that relate to the construction of the self, morality and identity, be that nurse or patient related. The fundamentals of the research method of genealogy and the methods of ethics are reviewed. Using an example taken from the sexual health practice area, advice is given on how to structure data collection, incorporate interview data, avoid discourse determinism and measure resistance.

  15. [Madness in Foucault: art and madness, madness and unreason].

    PubMed

    Providello, Guilherme Gonzaga Duarte; Yasui, Silvio

    2013-10-01

    After presenting the ideas on madness and its interface with art as expressed in the writings of Michel Foucault, Peter Pál Pelbart, and Gilles Deleuze, the article explores how these authors question the relationship between art and madness. It begins with the notion that madness does not tell the truth about art, and vice versa, but that there are links between both that must be delved into if we are to engage in deeper reflection on the topic. The text problematizes the statement that madness is the absence of an oeuvre and examines how this impacts the possibility of achieving an artistic oeuvre. It further problematizes the idea of madness as excluded language, that is, the idea that madness implies not only the exclusion of the body but also the disqualification of discourse.

  16. Interrogating discourse: the application of Foucault's methodological discussion to specific inquiry.

    PubMed

    Fadyl, Joanna K; Nicholls, David A; McPherson, Kathryn M

    2013-09-01

    Discourse analysis following the work of Michel Foucault has become a valuable methodology in the critical analysis of a broad range of topics relating to health. However, it can be a daunting task, in that there seems to be both a huge number of possible approaches to carrying out this type of project, and an abundance of different, often conflicting, opinions about what counts as 'Foucauldian'. This article takes the position that methodological design should be informed by ongoing discussion and applied as appropriate to a particular area of inquiry. The discussion given offers an interpretation and application of Foucault's methodological principles, integrating a reading of Foucault with applications of his work by other authors, showing how this is then applied to interrogate the practice of vocational rehabilitation. It is intended as a contribution to methodological discussion in this area, offering an interpretation of various methodological elements described by Foucault, alongside specific application of these aspects.

  17. A testimony to Muzil: Hervé Guibert, Foucault, and the medical gaze.

    PubMed

    Rendell, Joanne

    2004-01-01

    Testimony to Muzil: Hervé Guibert, Michel Foucault, and the "Medical Gaze" examines the fictional/autobiographical AIDS writings of the French writer Hervé Guibert. Locating Guibert's writings alongside the work of his friend Michel Foucault, the article explores how they echo Foucault's evolving notions of the "medical gaze." The article also explores how Guilbert's narrators and Guibert himself (as writer) resist and challenge the medical gaze; a gaze which particularly in the era of AIDS has subjected, objectified, and even sometimes punished the body of the gay man. It is argued that these resistances to the gaze offer a literary extension to Foucault's later work on power and resistance strategies.

  18. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    NASA Astrophysics Data System (ADS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-09-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle-cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  19. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  20. Oscillations of a spring-magnet system damped by a conductive plate

    NASA Astrophysics Data System (ADS)

    Ladera, C. L.; Donoso, G.

    2013-09-01

    We study the motion of a spring-magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level.

  1. Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice.

    PubMed

    Henderson, Richard; McMullan, Greg

    2013-02-01

    Theoretical considerations together with simulations of single-particle electron cryomicroscopy images of biological assemblies in ice demonstrate that atomic structures should be obtainable from images of a few thousand asymmetric units, provided the molecular weight of the whole assembly being studied is greater than the minimum needed for accurate position and orientation determination. However, with present methods of specimen preparation and current microscope and detector technologies, many more particles are needed, and the alignment of smaller assemblies is difficult or impossible. Only larger structures, with enough signal to allow good orientation determination and with enough images to allow averaging of many hundreds of thousands or even millions of asymmetric units, have successfully produced high-resolution maps. In this review, we compare the contrast of experimental electron cryomicroscopy images of two smaller molecular assemblies, namely apoferritin and beta-galactosidase, with that expected from perfect simulated images calculated from their known X-ray structures. We show that the contrast and signal-to-noise ratio of experimental images still require significant improvement before it will be possible to realize the full potential of single-particle electron cryomicroscopy. In particular, although reasonably good orientations can be obtained for beta-galactosidase, we have been unable to obtain reliable orientation determination from experimental images of apoferritin. Simulations suggest that at least 2-fold improvement of the contrast in experimental images at ~10 Å resolution is needed and should be possible.

  2. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    PubMed Central

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-01-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design. PMID:27109208

  3. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    SciTech Connect

    Martin, Audrey Noreen

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  4. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    SciTech Connect

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-04-25

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  5. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE PAGES

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; ...

    2016-04-25

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  6. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish.

    PubMed

    Kilin, Vasyl N; Anton, Halina; Anton, Nicolas; Steed, Emily; Vermot, Julien; Vandamme, Thierry F; Mely, Yves; Klymchenko, Andrey S

    2014-06-01

    Superior brightness of fluorescent nanoparticles places them far ahead of the classical fluorescent dyes in the field of biological imaging. However, for in vivo applications, inorganic nanoparticles, such as quantum dots, are limited due to the lack of biodegradability. Nano-emulsions encapsulating high concentrations of organic dyes are an attractive alternative, but classical fluorescent dyes are inconvenient due to their poor solubility in the oil and their tendency to form non-fluorescent aggregates. This problem was solved here for a cationic cyanine dye (DiI) by substituting its perchlorate counterion for a bulky and hydrophobic tetraphenylborate. This new dye salt, due to its exceptional oil solubility, could be loaded at 8 wt% concentration into nano-droplets of controlled size in the range 30-90 nm. Our 90 nm droplets, which contained >10,000 cyanine molecules, were >100-fold brighter than quantum dots. This extreme brightness allowed, for the first time, single-particle tracking in the blood flow of live zebrafish embryo, revealing both the slow and fast phases of the cardiac cycle. These nano-droplets showed minimal cytotoxicity in cell culture and in the zebrafish embryo. The concept of counterion-based dye loading provides a new effective route to ultra-bright lipid nanoparticles, which enables tracking single particles in live animals, a new dimension of in vivo imaging.

  7. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    NASA Astrophysics Data System (ADS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core.

  8. Direct Reactions at Relativistic Energies: A New Insight into the Single-Particle Structure of Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Cortina-Gil, Dolores

    Direct reactions proceed in a single step, allowing to disentangle structural properties of nuclei from the reaction mechanism. The availability of radioactive beams gives rise to a renewed activity in this field enlarging the opportunities to explore the single-particle properties of exotic nuclei. Different kinds of direct reactions have been employed in different energy regimes. At high energies, the removal of one(two)-nucleon(s) (referred to as nucleon knockout in this text) from a fast exotic projectile has been extensively investigated, exploring the nuclear structure of the peripheral tail of wave functions and providing a direct insight into the single-particle properties. More than 25 years of experimental and theoretical work will be reviewed in this lecture. This exploration has recently been rejuvenated with the possibility of quasi-free scattering applied to rare isotopes. This method will be a substantial part of the program of future experimental facilities, with the results of pilot experiments now coming to light. Quasi-free scattering will complement the information gained with nucleon knockout studies, exploring deeper regions in the wave function and allowing the determination of spectral functions for both weakly and deeply bound nucleons. This lecture provides a general overview of the experimental achievements reached so far using both complementary techniques. A brief introduction to the reaction mechanisms and a simplified interpretation of the observables obtained will be presented.

  9. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser.

    PubMed

    Yoon, Chun Hong; Yurkov, Mikhail V; Schneidmiller, Evgeny A; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N Duane; Tschentscher, Thomas; Mancuso, Adrian P

    2016-04-25

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  10. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. Mobilizing Foucault: history, subjectivity and autonomous learners in nurse education.

    PubMed

    Darbyshire, Chris; Fleming, Valerie E M

    2008-12-01

    In the past 20, years the impact of progressive educational theories have become influential in nurse education particularly in relation to partnership and empowerment between lecturers and students and the development of student autonomy. The introduction of these progressive theories was in response to the criticisms that nurse education was characterized by hierarchical and asymmetrical power relationships between lecturers and students that encouraged rote learning and stifled student autonomy. This article explores how the work of Michel Foucault can be mobilized to think about autonomy in three different yet overlapping ways: as a historical event; as a discursive practice; and as part of an overall strategy to produce a specific student subject position. The implications for educational practice are that, rather than a site where students are empowered, nurse education is both a factory and a laboratory where new subjectivities are continually being constructed. This suggests that empowering practices and disciplinary practices uneasily co-exist. Critical reflection needs to be directed not only at structural dimensions of power but also on ourselves as students and lecturers by asking a Foucauldian question: How are you interested in autonomy?

  12. (Re)considering Foucault for science education research: considerations of truth, power and governance

    NASA Astrophysics Data System (ADS)

    Bazzul, Jesse; Carter, Lyn

    2017-03-01

    This article is a response to Anna Danielsonn, Maria Berge, and Malena Lidar's paper, "Knowledge and power in the technology classroom: a framework for studying teachers and students in action", and an appeal to science educators of all epistemological orientations to (re)consider the work of Michel Foucault for research in science education. Although this essay does not come close to outlining the importance of Foucault's work for science education, it does present a lesser-known side of Foucault as an anti-polemical, realist, modern philosopher interested in the way objective knowledge is entangled with governance in modernity. This latter point is important for science educators, as it is the intersection of objective knowledge and institutional imperatives that characterizes the field(s) of science education. Considering the lack of engagement with philosophy and social theory in science education, this paper offers one of many possible readings of Foucault (we as authors have also published different readings of Foucault) in order to engage crucial questions related to truth, power, governance, discourse, ethics and education.

  13. Foucault's and Arendt's "insider view" of biopolitics: a critique of Agamben.

    PubMed

    Blencowe, Claire

    2010-01-01

    This article revisits Arendt's and Foucault's converging accounts of modern (bio)politics and the entry of biological life into politics. Agamben's influential account of these ideas is rejected as a misrepresentation both because it de-historicizes biological/organic life and because it occludes the positivity of that life and thus the discursive appeal and performative force of biopolitics. Through attention to the genealogy of Arendt's and Foucault's own ideas we will see that the major point of convergence in their thinking is their insistence upon understanding biological thinking from the inside, in terms of its positivity. Agamben's assessment of modern politics is closer to Arendt's than it is to Foucault's and this marks a fascinating point of disagreement between Arendt and Foucault. Whereas Arendt sees the normalizing force of modern society as being in total opposition to individuality, Foucault posits totalization and individuation as processes of normation, which casts a light upon the relative import they place upon politics and ethics.

  14. Cell Locating with the Image Analysis System of the CAS-LIBB Single-Particle Microbeam Facility

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Wang, Shaohu; Yu, Zengliang

    2005-06-01

    A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects; after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.

  15. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions

    NASA Astrophysics Data System (ADS)

    Cordes, Thorben; Blum, Suzanne A.

    2013-12-01

    In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.

  16. Neutron single-particle strengths at N =40 , 42: Neutron knockout from Ni,7068 ground and isomeric states

    NASA Astrophysics Data System (ADS)

    Recchia, F.; Weisshaar, D.; Gade, A.; Tostevin, J. A.; Janssens, R. V. F.; Albers, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Chiara, C. J.; Crawford, H. L.; Hoffman, C. R.; Kondev, F. G.; Korichi, A.; Langer, C.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.; Zhu, S.

    2016-11-01

    The distribution of single-particle strength in Ni,6967 was characterized with one-neutron knockout reactions from intermediate-energy Ni,7068 secondary beams, selectively populating neutron-hole configurations at N =39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ -ray decays, are used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well with shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. These results suggest that our understanding of the low-lying states in the neutron-rich, semimagic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.

  17. Single-particle detection of products from atomic and molecular reactions in a cryogenic ion storage ring

    NASA Astrophysics Data System (ADS)

    Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.

    2017-04-01

    We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.

  18. Spectral distribution and wave function of electrons emitted from a single-particle source in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Battista, F.; Samuelsson, P.

    2012-02-01

    We investigate theoretically a scheme for spectroscopy of electrons emitted by an on-demand single-particle source. The total system, with an electron turnstile source and a single-level quantum dot spectrometer, is implemented with edge states in a conductor in the quantum Hall regime. Employing a Floquet scattering approach, the source and the spectrometer are analyzed within a single theoretical framework. The nonequilibrium distribution of the emitted electrons is analyzed via the direct current at the dot spectrometer. In the adiabatic and intermediate source frequency regimes, the distribution is found to be strongly peaked around the active resonant level of the turnstile. At high frequencies the distribution is split up into a set of fringes, resulting from the interplay of resonant transport through the turnstile and absorption or emission of individual Floquet quanta. For ideal source operation, with exactly one electron emitted per cycle, an expression for the single-electron wave function is derived.

  19. Comment on ‘The effect of single-particle charge limits on charge distributions in dusty plasmas’

    NASA Astrophysics Data System (ADS)

    Heijmans, L. C. J.; van de Wetering, F. M. J. H.; Nijdam, S.

    2016-09-01

    It was recently suggested that the electron affinity may pose an additional upper limit on the charge of a single particle in a plasma, in addition to the electron field emission limit. Here we will, however, show that these two limits both rely on the same physical process and that the limit is only relevant for small particles, because it relies on electron tunneling. Plasma-produced particles of only several nanometres (≲ 10~\\text{nm} ) in size are actively studied, for example in the application of quantum dots and the implications of the proposed charge limit are certainly significant there. However, care must be taken to extend the results to larger particles, which are also actively studied in the field of dusty plasma physics, where typically the limit can be neglected, as we will also show.

  20. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions.

    PubMed

    Cordes, Thorben; Blum, Suzanne A

    2013-12-01

    In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.

  1. Neutron single-particle strengths at N=40 , 42: Neutron knockout from Ni68,70 ground and isomeric states

    DOE PAGES

    Recchia, F.; Weisshaar, D.; Gade, A.; ...

    2016-11-28

    The distribution of single-particle strength in 67,69Ni was characterized with one-neutron knockout reactions from intermediate-energy 68,70Ni secondary beams, selectively populating neutron-hole configurations at N = 39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ-ray decays, is used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well to shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. Furthermore, these results suggest that our understanding of the low-lyingmore » states in the neutron-rich, semi-magic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.« less

  2. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  3. Graphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS.

    PubMed

    Yim, DaBin; Kang, Homan; Jeon, Su-Ji; Kim, Hye-In; Yang, Jin-Kyoung; Kang, Tae Wook; Lee, Sangyeop; Choo, Jaebum; Lee, Yoon-Sik; Kim, Jin Woong; Kim, Jong-Ho

    2015-05-21

    Developing ultrasensitive Raman nanoprobes is one of the emerging interests in the field of biosensing and bioimaging. Herein, we constructed a new type of surface-enhanced resonance Raman scattering nanoprobe composed of an Ag nanoshell as a surface-enhanced Raman scattering-active nanostructure, which was encapsulated with 4,7,10-trioxa-1,13-tridecanediamine-functionalized graphene oxide as an ultrasensitive Raman reporter exhibiting strong resonance Raman scattering including distinct D and G modes. The designed nanoprobe was able to produce much more intense and simpler Raman signals even at a single particle level than the Ag nanoshell bearing a well-known Raman reporter, which is beneficial for the sensitive detection of a target in a complex biological system. Finally, this ultrasensitive nanoprobe successfully demonstrated its potential for bioimaging of cancer cells using Raman spectroscopy.

  4. Single-Particle Properties of Λ and Ks0 from 19 GeV/c Proton-Proton Interactions

    NASA Astrophysics Data System (ADS)

    Scandinavian Bubble Chamber Collaboration; Aahlin, P.; Alpgård, K.; Frodesen, A. G.; Hagman, V.-M.; Hulth, P.-O.; Villanen, P.; Yamdagni, N.

    1980-01-01

    Single-particle properties for Λ and Ks0 from 2V0 events have been compared with corresponding properties of inclusively produced Λ and Ks0. By comparison of the inclusive production of Λ with the properties of Λ observed together with Ks0 we have separated the reactions pp → ΛK+[+]X+ and pp → ΛK0 + X++. We show that these reactions are significantly different, the former reaction producing a more "peripheral" Λ than the latter. A comparison with a peripheral phase space model shows that the Ks0Ks0 and ΛKs0 events are well described by this model when the "average" final states are taken to be NNKbar K4π and ΛNK4π, respectively.

  5. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes.

    PubMed

    Chen, Kuangcai; Lin, Chia-Cheng; Vela, Javier; Fang, Ning

    2015-04-21

    Three-layer core-shell plasmonic nanorods (Au/Ag/SiO2-NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.

  6. Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation

    PubMed Central

    2016-01-01

    We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet. PMID:26871607

  7. Expansion-maximization-compression algorithm with spherical harmonics for single particle imaging with x-ray lasers

    NASA Astrophysics Data System (ADS)

    Flamant, Julien; Le Bihan, Nicolas; Martin, Andrew V.; Manton, Jonathan H.

    2016-05-01

    In three-dimensional (3D) single particle imaging with x-ray free-electron lasers, particle orientation is not recorded during measurement but is instead recovered as a necessary step in the reconstruction of a 3D image from the diffraction data. Here we use harmonic analysis on the sphere to cleanly separate the angular and radial degrees of freedom of this problem, providing new opportunities to efficiently use data and computational resources. We develop the expansion-maximization-compression algorithm into a shell-by-shell approach and implement an angular bandwidth limit that can be gradually raised during the reconstruction. We study the minimum number of patterns and minimum rotation sampling required for a desired angular and radial resolution. These extensions provide new avenues to improve computational efficiency and speed of convergence, which are critically important considering the very large datasets expected from experiment.

  8. ORBXYZ: A 3D single-particle orbit code for following charged particle trajectories in equilibrium magnetic fields

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Cohen, R. H.; Ferguson, J. R.; Johnston, B. M.; Sharp, C. B.; Willmann, P. A.

    1981-06-01

    The single particle orbit code, TIBRO, was modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications.

  9. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-07-01

    Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.

  10. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Shang, Li; Nienhaus, G. Ulrich

    2016-03-01

    By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis.By combining super-resolution photoactivation localization microscopy with single particle tracking, we have visualized the endocytic process in the live-cell environment with nanoparticles (NPs) of different size and surface functionalization. This allowed us to analyze the dynamics of NPs interacting with cells with high spatial and temporal resolution. We identified two distinctly different types of pathways by which NPs are internalized via clathrin-coated pits (CCPs). Predominantly, NPs first bind to the membrane and, subsequently, CCPs form at this site. However, there are also instances where a NP diffuses on the membrane and utilizes a preformed CCP. Moreover, we have applied this new method to further explore the effects of size and surface functionalization on the NP dynamics on the plasma membrane and the ensuing endocytosis. Electronic supplementary information (ESI) available: Experimental section, supporting figures and videos. See DOI: 10.1039/c6nr01495j

  11. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  12. Characterization of the single particle mixing state of individual ship plume events measured at the Port of Los Angeles.

    PubMed

    Ault, Andrew P; Gaston, Cassandra I; Wang, Ying; Dominguez, Gerardo; Thiemens, Mark H; Prather, Kimberly A

    2010-03-15

    Ship emissions contribute significantly to gaseous and particulate pollution worldwide. To better understand the impact of ship emissions on air quality, measurements of the size-resolved chemistry of individual particles in ship emissions were made at the Port of Los Angeles using real-time, single-particle mass spectrometry. Ship plumes were identified through a combination of ship position information and measurements of gases and aerosol particles at a site 500 m from the center of the main shipping channel at the Port of Los Angeles. Single particles containing mixtures of organic carbon, vanadium, and sulfate (OC-V-sulfate) resulted from residual fuel combustion (i.e., bunker fuel), whereas high quantities of fresh soot particles (when OC-V-sulfate particles were not present) represented distinct markers for plumes from distillate fuel combustion (i.e., diesel fuel) from ships as well as trucks in the port area. DC-V-sulfate particles from residual fuel combustion contained significantly higher levels of sulfate and sulfuric acid than plume particles containing no vanadium. These associations may be due to vanadium (or other metals such as iron) in the fuel catalyzing the oxidation of S0(2) to produce sulfate and sulfuric acid on these particles. Enhanced sulfate production on OC-V-sulfate ship emission particles would help explain some of the higher than expected sulfate levels measured in California compared to models based on emissions inventories and typical sulfate production pathways. Understanding the overall impact of ships emissions is critical for controlling regional air quality in the many populated coastal regions of the world.

  13. Cooper pairs in the Borromean nuclei 6He and 11Li using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.

    2017-03-01

    A Borromean nucleus is a bound three-body system which is pairwise unbound because none of the two-body subsystem interactions are strong enough to bind them in pairs. As a consequence, the single-particle spectrum of a neutron in the core of a Borromean nucleus is purely continuum, similarly to the spectrum of a free neutron, but two valence neutrons are bound up in such a core. Most of the usual approaches do not use the true continuum to solve the three-body problem but use a discrete basis, like for example, wave functions in a finite box. In this paper the proper continuum is used to solve the pairing Hamiltonian in the continuum spectrum of energy by using the single particle level density devoid of the free gas. It is shown that the density defined in this way modulates the pairing in the continuum. The partial-wave occupation probabilities for the Borromean nuclei 6He and 11Li are calculated as a function of the pairing strength. While at the threshold strength the (s1/2) 2 and (p3/2) 2 configurations are equally important in 6He, the (s1/2) 2 configuration is the main one in 11Li. For very small strength the (s1/2) 2 configuration becomes the dominant in both Borromean nuclei. At the physical strength, the calculated wave function amplitudes show a good agreement with other methods and experimental data which indicates that this simple model grasps the essence of the pairing in the continuum.

  14. Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

    2013-08-01

    A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

  15. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    NASA Astrophysics Data System (ADS)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  16. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    PubMed

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques.

  17. Transformation of a Foucault shadowgram into the geometrical model of a shear interferogram by means of isophotometry

    NASA Astrophysics Data System (ADS)

    Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.

    2014-06-01

    The principles of transformation of a Foucault shadowgram into a quantitative map of wave-front deformation based on creation of a system of isophotes are unveiled. The presented studies and their results prove that there is a high degree of correspondence between a Foucault shadowgram and the geometrical model of a shear interferogram with respect to displaying wave-front deformations.

  18. Foucault and the Imperatives of Education: Critique and Self-Creation in a Non-Foundational World

    ERIC Educational Resources Information Center

    Olssen, Mark

    2006-01-01

    This article outlines Foucault's conception of critique in relation to his writings on Kant. In that Kant saw Enlightenment as a process of release from the status of immaturity in that we accept someone else's authority to lead us in areas where the use of reason is called for, it is claimed in this article that Foucault's notion of critique…

  19. Rotational friction of dipolar colloids measured by driven torsional oscillations

    PubMed Central

    Steinbach, Gabi; Gemming, Sibylle; Erbe, Artur

    2016-01-01

    Despite its prominent role in the dynamics of soft materials, rotational friction remains a quantity that is difficult to determine for many micron-sized objects. Here, we demonstrate how the Stokes coefficient of rotational friction can be obtained from the driven torsional oscillations of single particles in a highly viscous environment. The idea is that the oscillation amplitude of a dipolar particle under combined static and oscillating fields provides a measure for the Stokes friction. From numerical studies we derive a semi-empirical analytic expression for the amplitude of the oscillation, which cannot be calculated analytically from the equation of motion. We additionally demonstrate that this expression can be used to experimentally determine the rotational friction coefficient of single particles. Here, we record the amplitudes of a field-driven dipolar Janus microsphere with optical microscopy. The presented method distinguishes itself in its experimental and conceptual simplicity. The magnetic torque leaves the local environment unchanged, which contrasts with other approaches where, for example, additional mechanical (frictional) or thermal contributions have to be regarded. PMID:27680399

  20. Neutron single-particle states above the N=164 subshell in {sub 98}{sup 251}Cf and {sub 96}{sup 249}Cm studied by neutron transfer reactions

    SciTech Connect

    Ahmad, I.; Chasman, R. R.

    2009-12-15

    Single-particle state assignments in {sup 251}Cf and {sup 249}Cm at {approx}1 MeV excitation have been deduced from cross sections previously measured for the {sup 250}Cf(d,p){sup 251}Cf and {sup 248}Cm({sup 4}He,{sup 3}He){sup 249}Cm reactions. The assignments are supported by observed cross-section signatures and intraband level spacings. The observed energies of these single-particle states, after pairing effects are removed, are in good agreement with values calculated using a Woods-Saxon single-particle potential. Neutron level diagrams, showing level spacings as a function of {nu}{sub 2},{nu}{sub 4}, and {nu}{sub 6}, are extended to include neutron orbitals above N=164.

  1. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    SciTech Connect

    Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  2. Replacing the Singlet Spinor of the EPR-B Experiment in the Configuration Space with Two Single-Particle Spinors in Physical Space

    NASA Astrophysics Data System (ADS)

    Gondran, Michel; Gondran, Alexandre

    2016-09-01

    Recently, for spinless non-relativistic particles, Norsen (Found Phys 40:1858-1884, 2010) and Norsen et al. (Synthese 192:3125-3151, 2015) show that in the de Broglie-Bohm interpretation it is possible to replace the wave function in the configuration space by single-particle wave functions in physical space. In this paper, we show that this replacment of the wave function in the configuration space by single-particle functions in the 3D-space is also possible for particles with spin, in particular for the particles of the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen experiment.

  3. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    NASA Astrophysics Data System (ADS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.; Gallego, Luis J.; Varela, Luis M.

    2015-09-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3]- and [PF6]- anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca2+ cations. No qualitative difference with

  4. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    SciTech Connect

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Lynden-Bell, Ruth M.

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  5. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.

    PubMed

    Kushwaha, Manvir S

    2011-09-28

    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices

  6. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  7. STABILIZED OSCILLATOR

    DOEpatents

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  8. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  9. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance.

    PubMed

    Lee, Alex K Y; Ling, T Y; Chan, Chak K

    2008-01-01

    Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.

  10. Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Bouchaud, Jean-Philippe

    2008-08-01

    We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.

  11. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid.

    PubMed

    Sanamrad, Arash; Persson, Fredrik; Lundius, Ebba G; Fange, David; Gynnå, Arvid H; Elf, Johan

    2014-08-05

    Biochemical and genetic data show that ribosomes closely follow RNA polymerases that are transcribing protein-coding genes in bacteria. At the same time, electron and fluorescence microscopy have revealed that ribosomes are excluded from the Escherichia coli nucleoid, which seems to be inconsistent with fast translation initiation on nascent mRNA transcripts. The apparent paradox can be reconciled if translation of nascent mRNAs can start throughout the nucleoid before they relocate to the periphery. However, this mechanism requires that free ribosomal subunits are not excluded from the nucleoid. Here, we use single-particle tracking in living E. coli cells to determine the fractions of free ribosomal subunits, classify individual subunits as free or mRNA-bound, and quantify the degree of exclusion of bound and free subunits separately. We show that free subunits are not excluded from the nucleoid. This finding strongly suggests that translation of nascent mRNAs can start throughout the nucleoid, which reconciles the spatial separation of DNA and ribosomes with cotranscriptional translation. We also show that, after translation inhibition, free subunit precursors are partially excluded from the compacted nucleoid. This finding indicates that it is active translation that normally allows ribosomal subunits to assemble on nascent mRNAs throughout the nucleoid and that the effects of translation inhibitors are enhanced by the limited access of ribosomal subunits to nascent mRNAs in the compacted nucleoid.

  12. How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study

    PubMed Central

    de Lima Bernardo, Bertúlio; Canabarro, Askery; Azevedo, Sérgio

    2017-01-01

    The concept of wave-particle duality, which is a key element of quantum theory, has been remarkably found to manifest itself in several experimental realizations as in the famous double-slit experiment. In this specific case, a single particle seems to travel through two separated slits simultaneously. Nevertheless, it is never possible to measure it in both slits, which naturally appears as a manifestation of the collapse postulate. In this respect, one could as well ask if it is possible to “perceive” the presence of the particle at the two slits simultaneously, once its collapse could be avoided. In this article, we use the recently proposed entanglement mediation protocol to provide a positive answer to this question. It is shown that a photon which behaves like a wave, i.e., which seems to be present in two distant locations at the same time, can modify two existing physical realities in these locations. Calculations of the “weak trace” left by such photon also enforce the validity of the present argumentation. PMID:28045059

  13. Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model

    NASA Astrophysics Data System (ADS)

    Baba, Naoki; Yoshida, Hiroaki; Nagaoka, Makoto; Okuda, Chikaaki; Kawauchi, Shigehiro

    2014-04-01

    To understand the thermal behavior of lithium-ion secondary batteries, distributed information related to local heat generation across the entire electrode plane, which is caused by the electrochemical reaction that results from lithium-ion intercalation or deintercalation, is required. To accomplish this, we first developed an enhanced single particle (ESP) model for lithium-ion batteries that provides a cost effective, timely, and accurate method for estimating the local heat generation rates without excessive computation costs. This model accounts for all the physical processes, including the solution phase limitation. Next, a two-way electrochemical-thermal coupled simulation method was established. In this method, the three dimensional (3D) thermal solver is coupled with the quasi-3D porous electrode solver that is applied to the unrolled plane of spirally wound electrodes, which allows both thermal and electrochemical behaviors to be reproduced simultaneously at every computational time-step. The quasi-3D porous electrode solver implements the ESP model. This two-way coupled simulation method was applied to a thermal behavior analysis of 18650-type lithium-ion cells where it was found that temperature estimates of the electrode interior and on the cell can wall obtained via the ESP model were in good agreement with actual experimental measurements.

  14. EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer.

    PubMed

    Willows, R D; Hansson, A; Birch, D; Al-Karadaghi, S; Hansson, M

    2004-01-01

    BchI, belonging to the AAA+ -protein family, forms the enzyme magnesium chelatase together with BchD and BchH. This enzyme catalyses the insertion of Mg2+ into protoporphyrin IX upon ATP hydrolysis. Previous studies have indicated that BchI forms ATP-dependent complexes and it is a member of the AAA+ -protein family (ATPases associated with various cellular activities) and it was suggested based on structural homology that the BchI formed hexameric complexes. AAA+ -proteins are Mg2+ -dependent ATPases that normally form oligomeric ring complexes in the presence of ATP. Single particle analysis of fully formed ring complexes of BchI observed by negative staining EM indicate that the BchI has strong 6- and 2-fold rotational symmetries and a weaker 4-fold rotational symmetry which are reminiscent of DNA helicase. A 2D average of the fully formed BchI-ATP ring complex is presented here from images of the complex obtained from negative staining EM. Other complexes are also observed in the EM micrographs and the class averages of these are indicative of the fragility and dynamic nature of the BchI complex which has been reported and they are suggestive of partially circular complexes with six or less protomers per particle. The resolution of the average circular complex is estimated at approximately 30A and it is similar in shape and size to an atomic resolution hexameric model of BchI rendered at 30A.

  15. Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Järvinen, Samu T.; Saarela, Jaakko; Toivonen, Juha

    2013-08-01

    A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.

  16. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    PubMed Central

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-01-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on. PMID:26634992

  17. Particle-verification for single-particle, reference-based reconstruction using multivariate data analysis and classification.

    PubMed

    Shaikh, Tanvir R; Trujillo, Ramon; LeBarron, Jamie S; Baxter, William T; Frank, Joachim

    2008-10-01

    As collection of electron microscopy data for single-particle reconstruction becomes more efficient, due to electronic image capture, one of the principal limiting steps in a reconstruction remains particle-verification, which is especially costly in terms of user input. Recently, some algorithms have been developed to window particles automatically, but the resulting particle sets typically need to be verified manually. Here we describe a procedure to speed up verification of windowed particles using multivariate data analysis and classification. In this procedure, the particle set is subjected to multi-reference alignment before the verification. The aligned particles are first binned according to orientation and are binned further by K-means classification. Rather than selection of particles individually, an entire class of particles can be selected, with an option to remove outliers. Since particles in the same class present the same view, distinction between good and bad images becomes more straightforward. We have also developed a graphical interface, written in Python/Tkinter, to facilitate this implementation of particle-verification. For the demonstration of the particle-verification scheme presented here, electron micrographs of ribosomes are used.

  18. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  19. Single particle optical extinction and scattering allows real time quantitative characterization of drug payload and degradation of polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Potenza, M. A. C.; Sanvito, T.; Argentiere, S.; Cella, C.; Paroli, B.; Lenardi, C.; Milani, P.

    2015-12-01

    The behavior of nanoparticles in biological systems is determined by their dimensions, size distribution, shape, surface chemistry, density, drug loading and stability; the characterization of these parameters in realistic conditions and the possibility to follow their evolution in vitro and in vivo are, in most of the cases, far from the capabilities of the standard characterization technologies. Optical techniques such as dynamic light scattering (DLS) are, in principle, well suited for in line characterization of nanoparticle, however their fail in characterizing the evolution of nanoparticle in solution where change in particle dimension and density is present. Here we present an in-line optical technique based on single particle extinction and scattering (SPES) overcoming the limitations typical of DLS and allowing for the efficient characterization of nanoparticle polydispersity, index of refraction and degradation dynamics in solution. Using SPES, we characterized the evolution of PLGA nanoparticles with different structures and drug payloads in solution and we compared the results with DLS. Our results suggest that SPES could be used as a process analytical technology for pharmaceutical nanoparticle production.

  20. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  1. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins.

    PubMed

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-12-04

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe(3+) among other metal ions, including K(+), Na(+), Mg(2+), Hg(2+), Co(2+), Cu(2+), Pb(2+) and Al(3+). We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.

  2. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  3. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B.

    2016-08-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy.

  4. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella.

    PubMed

    Harris, J Aaron; Liu, Yi; Yang, Pinfen; Kner, Peter; Lechtreck, Karl F

    2016-01-15

    The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein-tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia.

  5. How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study

    NASA Astrophysics Data System (ADS)

    de Lima Bernardo, Bertúlio; Canabarro, Askery; Azevedo, Sérgio

    2017-01-01

    The concept of wave-particle duality, which is a key element of quantum theory, has been remarkably found to manifest itself in several experimental realizations as in the famous double-slit experiment. In this specific case, a single particle seems to travel through two separated slits simultaneously. Nevertheless, it is never possible to measure it in both slits, which naturally appears as a manifestation of the collapse postulate. In this respect, one could as well ask if it is possible to “perceive” the presence of the particle at the two slits simultaneously, once its collapse could be avoided. In this article, we use the recently proposed entanglement mediation protocol to provide a positive answer to this question. It is shown that a photon which behaves like a wave, i.e., which seems to be present in two distant locations at the same time, can modify two existing physical realities in these locations. Calculations of the “weak trace” left by such photon also enforce the validity of the present argumentation.

  6. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy

    PubMed Central

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B.

    2016-01-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy. PMID:27481537

  7. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    NASA Astrophysics Data System (ADS)

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-12-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.

  8. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells.

    PubMed

    Liang, Le; Li, Jiang; Li, Qian; Huang, Qing; Shi, Jiye; Yan, Hao; Fan, Chunhai

    2014-07-21

    DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single-particle tracking. We found that the TDNs were rapidly internalized by a caveolin-dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule-dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA-nanostructure-based drug delivery nanocarriers for targeted therapy.

  9. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    NASA Astrophysics Data System (ADS)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  10. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    PubMed Central

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  11. Cryptanalysis and Improvement for the Quantum Private Comparison Protocol Based on Triplet Entangled State and Single-Particle Measurement

    NASA Astrophysics Data System (ADS)

    Ting, Xu; Tian-Yu, Ye

    2017-03-01

    Quantum private comparison (QPC) aims to accomplish the equality comparison of secret inputs from two users on the basis of not leaking their contents out. Recently, Chen et al. proposed the QPC protocol based on triplet GHZ state and single-particle measurement (Optics Communications 283, 1561-1565 (2010)). In this paper, they suggested the standard model of a semi-honest third party (TP) for the first time, and declared that their protocol is secure. Subsequently, Lin et al. pointed out that in Chen et al.'s protocol, one user can extract the other user's secret without being discovered by performing the intercept-resend attack, and suggested two corresponding improvements (Optics Communications 284, 2412-2414 (2011)). However, Yang et al. first pointed out that the model of TP adopted by both Chen et al.'s protocol and Lin et al.'s improved protocols is unreasonable, and thought that a practical TP may also try any possible means to steal the users' secrets except being corrupted by the adversary including the dishonest user (Quantum Inf Process 12, 877-885 (2013). In this paper, after taking the possible attacks from TP into account, we propose the eavesdropping strategy of TP toward Lin et al.'s improved protocols and suggest two feasible solutions accordingly.

  12. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking

    PubMed Central

    Rose, Markus; Hirmiz, Nehad; Moran-Mirabal, Jose M.; Fradin, Cécile

    2015-01-01

    Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of DFCS ~ 3 μm2 · s−1 and DSPT ~ 2 μm2 · s−1, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: D ≳ 1 μm2 · s−1 for FCS and D ≲ 5 μm2 · s−1 for SPT (with standard imaging conditions). In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes. PMID:26610279

  13. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybridmore » nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  14. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    PubMed Central

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes. PMID:26861908

  15. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE PAGES

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; ...

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  16. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    SciTech Connect

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.

  17. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.

    PubMed

    Zhang, Taishi; Gao, Nengyue; Li, Shuang; Lang, Matthew J; Xu, Qing-Hua

    2015-06-04

    Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement.

  18. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells

    PubMed Central

    Jose, Joyce; Tang, Jinghua; Taylor, Aaron B.; Baker, Timothy S.; Kuhn, Richard J.

    2015-01-01

    Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions. PMID:26633461

  19. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water.

  20. Human Science for Human Freedom? Piaget's Developmental Research and Foucault's Ethical Truth Games

    ERIC Educational Resources Information Center

    Zhao, Guoping

    2012-01-01

    The construction of the modern subject and the pursuit of human freedom and autonomy, as well as the practice of human science has been pivotal in the development of modern education. But for Foucault, the subject is only the effect of discourses and power-knowledge arrangements, and modern human science is part of the very arrangement that has…

  1. Marx and Foucault: Subjectivity, Employability and the Crisis of Youth Unemployment in the Great Global Recession

    ERIC Educational Resources Information Center

    Peters, Michael A.; Besley, Tina

    2013-01-01

    This article explores the different approaches taken to the concepts of work or labour by Marx and Foucault, examining in particular the question of subjectivity in relation to youth unemployment and the current crisis of youth unemployment as part of the aftermath of the global recession of 2008.

  2. Foucault and the Architecture of Surveillance: Creating Regimes of Power in Schools, Shrines, and Society

    ERIC Educational Resources Information Center

    Piro, Joseph M.

    2008-01-01

    Michel Foucault's critical studies concerning regimes of power are of special interest when applied to architecture. In particular, he warned of the hazards of building surveillance into architectural structures for the purpose of monitoring people and took as his historical exemplar English philosopher Jeremy Bentham's "Panopticon," a structure…

  3. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  4. Jane Elliot Meets Foucault: The Formation of Ethical Identities in the Classroom.

    ERIC Educational Resources Information Center

    Infinito, Justen

    2003-01-01

    Examines Jane Elliot's "Blue Eyed, Brown-Eyed" activity. Evaluates this activity as a moral education tool using Michel Foucault's theories of ethical self-formation and care of the self. Argues that creating a moral self requires ongoing judgments about how one responds to the condition of others. (CAJ)

  5. Implementation of a quantitative Foucault knife-edge method by means of isophotometry

    NASA Astrophysics Data System (ADS)

    Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.

    2014-06-01

    Detailed description of stages of computer processing of the shadowgrams during implementation of a modern quantitative Foucault knife-edge method is presented. The map of wave-front aberrations introduced by errors of an optical surface or a system, along with the results of calculation of the set of required characteristics of image quality, are shown.

  6. Foucault and the Use of Critique: Breaching the Self-Evidence of Educational Practices

    ERIC Educational Resources Information Center

    Bye, Jayne

    2015-01-01

    This paper poses methodological questions about the role and limits of Foucault's concept of governmentality in education research. Firstly, it argues for the utility of governmentality as a means of exploring questions of power regardless of domain or scale. Secondly, it explores the boundary between the tasks of formulating critique and…

  7. Making Use of Foucault in a Study of Specific Parrhesiastic Scholars

    ERIC Educational Resources Information Center

    Huckaby, M. Francyne

    2008-01-01

    In this article, I describe how I made use of Foucault theoretically and methodologically in a study of five specific parrhesiastic scholars. Such scholars challenge hegemony in educational policies and practices, and advocate for educational reform and societal structures that move toward equity instead of marginalization. The article begins by…

  8. Power/Knowledge for Educational Theory: Stephen Ball and the Reception of Foucault

    ERIC Educational Resources Information Center

    Wang, Chia-Ling

    2011-01-01

    This paper explores the significance of the concept of power/knowledge in educational theory. The argument proceeds in two main parts. In the first, I consider aspects of Stephen J. Ball's highly influential work in educational theory. I examine his reception of Foucault's concept of power/knowledge and suggest that there are problems in his…

  9. Foucault and Human Rights: Seeking the Renewal of Human Rights Education

    ERIC Educational Resources Information Center

    Zembylas, Michalinos

    2016-01-01

    This article takes up Foucault's politics of human rights and suggests that it may constitute a point of departure for the renewal of HRE, not only because it rejects the moral superiority of humanism--the grounding for the dominant liberal framework of international human rights--but also because it makes visible the complexities of human rights…

  10. Derrida, Foucault and Critical Pedagogies of Friendship in Conflict-Troubled Societies

    ERIC Educational Resources Information Center

    Zembylas, Michalinos

    2015-01-01

    The aim of this paper is to place Derrida's and Foucault's ideas on friendship in conversation and then discuss how those ideas provide a pedagogical space in which critical educators in conflict-troubled societies can promote new modes of being and living with others. In particular, the notion of critical pedagogies of friendship is…

  11. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    SciTech Connect

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  12. Braverman, Foucault and the Labor Process: Framing the Current High-Skills Debate

    ERIC Educational Resources Information Center

    Lewis, Theodore

    2007-01-01

    This article examines the current high-skills discourse against the backdrop of labor process theory. It draws on the theoretical debate between Harry Braverman and Michael Foucault, supplementing the traditional treatment of the labor process with Foucauldian insights. The primary argument is that especially in the market-led economies, current…

  13. Truth Telling in Foucault and Arendt: Parrhesia, the Pariah and Academics in Dark Times

    ERIC Educational Resources Information Center

    Tamboukou, Maria

    2012-01-01

    In this paper, I consider the problem of truth telling through the notion of parrhesia as developed and explicated in Foucault's last lectures at the College de France (1982-1983 and 1983-1984) and the figure of the pariah that runs throughout Arendt's work. In tracing connections and tensions in the way the two thinkers explore questions and…

  14. Power Matters: Foucault's "Pouvoir/Savoir" as a Conceptual Lens in Information Research and Practice

    ERIC Educational Resources Information Center

    Olsson, Michael; Heizmann, Helena

    2015-01-01

    Introduction: This paper advocates Foucault's notion of pouvoir/savoir (power/knowledge) as a conceptual lens that information researchers might fruitfully use to develop a richer understanding of the relationship between knowledge and power. Methods: Three of the authors' earlier studies are employed to illustrate the use of this conceptual lens.…

  15. Autonomy, Candour and Professional Teacher Practice: A Discussion Inspired by the Later Works of Michel Foucault

    ERIC Educational Resources Information Center

    Raaen, Finn Daniel

    2011-01-01

    Autonomy is considered to be an important feature of professionals and to provide a necessary basis for their informed judgments. In this article these notions will be challenged. In this article I use Michel Foucault's deconstruction of the idea of the autonomous citizen, and his later attempts to reconstruct that idea, in order to bring some new…

  16. The ethics of Foucault and Ricoeur: an underrepresented discussion in nursing.

    PubMed

    Flaming, Don

    2006-09-01

    Paul Ricoeur and Michel Foucault enjoy a privileged status in nursing academia as two thinkers who influence both nursing research and philosophical explorations of nursing practice. Most nurse authors, however, focus only on the earlier works of these two philosophers and, for example, base qualitative research methodologies on Foucault's genealogy and Ricoeur's hermeneutics. In their later years, both these writers talk more explicitly about being an ethical self. Ideas from their earlier writing is evident in their writing on ethics and both writers could not discuss ethics without also exploring their ideas of the self and the other. I suggest that some of their thoughts on ethics connect with or complement each other quite well. I will first give an overview of Foucault's ethics, self and the other, and then do the same with Ricoeur's thought. In the third part of the paper I will describe how Foucault and Ricoeur complement each other, and conclude the paper by briefly suggesting how these writers influence my own practice as a nurse educator.

  17. The production of the psychiatric subject: power, knowledge and Michel Foucault.

    PubMed

    Roberts, Marc

    2005-01-01

    The issue of power has become increasingly important within psychiatry, psychotherapy and mental health nursing generally. This paper will suggest that the work of Michel Foucault, the French philosopher and historian, has much to contribute to the discussion about the nature, existence and exercise of power within contemporary mental health care. As well as examining his original and challenging account of power, Foucault's emphasis on the intimate relationship between power and knowledge will be explored within the context of psychiatry and mental health nursing. This is to say that the paper will investigate Foucault's account of how power and knowledge are central to the process by which human beings are 'made subjects' and therefore how 'psychiatric identities' are produced. In doing so, it will be suggested that Foucault's work can not only make a valuable contribution to contemporary discussions about power and knowledge, but can also provide a significant critique and reconceptualization of the theoretical foundations and associated diagnostic and therapeutic practices of psychiatry and mental health nursing.

  18. Michel Foucault Goes Outside: Discipline and Control in the Practice of Outdoor Education

    ERIC Educational Resources Information Center

    Bowdridge, Michael; Blenkinsop, Sean

    2011-01-01

    This paper is concerned with if, and how, measures of discipline and control are involved in outdoor and experiential education. Using the work of the French philosopher Michel Foucault, author of Discipline and Punish (1975), we shall explore how educational practice may be used to control people and to render them into "docile bodies." We follow…

  19. Criticising with Foucault: Towards a Guiding Framework for Socio-Political Studies in Mathematics Education

    ERIC Educational Resources Information Center

    Kollosche, David

    2016-01-01

    Socio-political studies in mathematics education often touch complex fields of interaction between education, mathematics and the political. In this paper I present a Foucault-based framework for socio-political studies in mathematics education which may guide research in that area. In order to show the potential of such a framework, I discuss the…

  20. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  1. Kraus representation of a damped harmonic oscillator and its application

    SciTech Connect

    Liu Yuxi; Oezdemir, Sahin K.; Miranowicz, Adam; Imoto, Nobuyuki

    2004-10-01

    By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect, modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra solution. As examples and applications, we first give a Kraus representation of a single qubit whose computational basis states are defined as bosonic vacuum and single particle number states. We further discuss the environment effect on qubits whose computational basis states are defined as the bosonic odd and even coherent states. The environment effects on entangled qubits defined by two different kinds of computational basis are compared with the use of fidelity.

  2. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    NASA Astrophysics Data System (ADS)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.; Eggeling, Christian

    2017-02-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µm2 s-1, in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1-10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of  ≈0.7-1.0 µm2 s-1, and a compartment size of about 100-150 nm.

  3. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  4. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking.

    PubMed

    Scalettar, B A; Jacobs, C; Fulwiler, A; Prahl, L; Simon, A; Hilken, L; Lochner, J E

    2012-09-01

    Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs.

  5. Analysis and interpretation of two-dimensional single-particle tracking microscopy measurements: effect of local surface roughness.

    PubMed

    Hall, Damien

    2008-06-01

    Methodological advances in light microscopy have made it possible to record the motions of individual lipid and protein molecules resident in the membrane of living cells down to the nanometer level of precision in the x, y plane. Such measurement of a single molecule's trajectory for a sufficiently long period of time or the measurement of multiple molecules' trajectories for a shorter period of time can in principle provide the necessary information to derive the particle's macroscopic two-dimensional-diffusion coefficient-a quantity of vital biological interest. However, one drawback of the light microscopy procedures used in such experiments is their relatively poor discriminatory capability for determining spatial differences along the z axis in comparison to those in the x, y plane. In this study we used computer simulation to examine the likely effect of local surface roughness over the nanometer to micrometer scale on the determination of diffusion constants in the membrane bilayer by the use of such optical-microscope-based single-particle tracking (SPT) procedures. We specifically examined motion of a single molecule along (i) a locally planar and (ii) a locally rough surface. Our results indicate a need for caution in applying overly simplistic analytical strategies to the analysis of data from SPT measurements and provide upper and lower bounds for the likely degree of error introduced on the basis of surface roughness effects alone. Additionally we present an empirical method based on an autocorrelation function approach that may prove useful in identifying the existence of surface roughness and give some idea of its extent.

  6. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    PubMed

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination.

  7. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  8. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGES

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (dme), enabling application for microphysical studies. However, the removal of particles ≤100 nm dme is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  9. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    SciTech Connect

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; Dubey, Manvendra K.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory using the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (dme), enabling application for microphysical studies. However, the removal of particles ≤100 nm dme is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).

  10. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    PubMed

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  11. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking.

    PubMed

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W E

    2017-02-02

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.

  12. Use of single particle aerosol mass spectrometry for the automated nondestructive identification of drugs in multicomponent samples.

    PubMed

    Martin, Audrey N; Farquar, George R; Steele, Paul T; Jones, A Daniel; Frank, Matthias

    2009-11-15

    In this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles. Active ingredients were identified from the parent ions and fragment ions formed from each sample, and alarm files were developed for each active ingredient, allowing successful automated identification of each compound in a mixture. The alarm algorithm developed for SPAMS correctly identified all drug compounds in all single-ingredient and multi-ingredient tablets studied. A further study demonstrated the ability of this technique to identify the active ingredient in a single tablet analyzed in the presence of several other nonidentical tablets. In situ measurements were also made by sampling directly from a drug sample in its original bottle. A single tablet embedded in 11 identical tablets of different composition was detected in this manner. Overall, this work demonstrates the ability of the SPAMS technique to detect a target drug compound both in complex tablets, i.e., multidrug ingredient tablets, and complex sampling environments, i.e., multitablet sampling sources. The technique is practically nondestructive, leaving the characteristic shape, color, and imprint of a tablet intact for further analysis. Applications of this technique may include forensic and pharmaceutical analysis.

  13. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS.

    PubMed

    Hadioui, Madjid; Merdzan, Vladimir; Wilkinson, Kevin J

    2015-05-19

    The increasing production of ZnO nanoparticles (nZnO) makes their analysis and characterization extremely important from an ecological risk perspective, especially at the low concentrations at which they are expected to be found in natural waters. Single particle ICPMS (SP-ICPMS) is one of the few techniques available to detect and characterize nanoparticles at environmentally relevant concentrations. Unfortunately, at the very low particle concentrations where SP-ICPMS is performed, significant dissolution of the nZnO generally increases background levels of dissolved Zn to the point where measurements are not generally possible. By hyphenating SP-ICPMS with an ion-exchange resin, it was possible to characterize and quantify nZnO in order to gain insight into the nature of the nZnO in natural waters. Spiked and unspiked water samples were analyzed using a SP-ICPMS that was coupled to a column containing a strong metal binding resin (Chelex 100). In addition to the detection of ZnO nanoparticles and the determination of a size distribution in natural waters, it was possible to partition the dissolved Zn among free and/or labile and strongly bound Zn fractions. In two natural waters, a high proportion (ca. 93-100%) of dissolved Zn was measured, and the residual ZnO particles were mainly composed of small agglomerates (average sizes ranging from 133.6 to 172.4 nm in the surface water and from 167.6 to 216.4 nm in the wastewater effluent). Small numbers of small nanoparticles were also detected in nonspiked waters.

  14. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  15. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  16. Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments

    PubMed Central

    Calderon, Christopher P.; Bloom, Kerry

    2015-01-01

    Understanding the basis for intracellular motion is critical as the field moves toward a deeper understanding of the relation between Brownian forces, molecular crowding, and anisotropic (or isotropic) energetic forcing. Effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study discusses limitations in currently popular analysis methods (e.g., mean square displacement-based analyses) and how new techniques can be used to systematically analyze Single Particle Tracking (SPT) data experiencing abrupt state changes in time or space. The approach is to track GFP tagged chromatids in metaphase in live yeast cells and quantitatively probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes can be induced by various sources including: microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, and DNA-based molecular machines including polymerases and protein exchange complexes such as chaperones and chromatin remodeling complexes. Simulations aiming to show the relevance of the approach to more general SPT data analyses are also studied. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and

  17. New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique

    NASA Astrophysics Data System (ADS)

    Spencer, Matthew Todd

    burning and appeared to be internally mixed with sulfate which suggests it was cloud processed during transport. Lastly, noble metal nanoparticles are explored as potential matrices for visible wavelength single particle matrix assisted laser desorption/ionization mass spectrometry (VIS-MALDI). This work demonstrates that noble metal nanoparticle matrices can be used for VIS-MALDI analysis.

  18. Source apportionment of single particles sampled at the industrially polluted town of Port Talbot, United Kingdom by ATOFMS

    NASA Astrophysics Data System (ADS)

    Taiwo, Adewale M.; Harrison, Roy M.; Beddows, David C. S.; Shi, Zongbo

    2014-11-01

    Single particle analysis of an industrially polluted atmosphere in Port Talbot, South Wales, United Kingdom was conducted using Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS). During the four week sampling campaign, a total of 5,162,018 particles were sized in the size range 0.2-1.9 μm aerodynamic diameter. Of these, 580,798 were successfully ionized generating mass spectra. K-means clustering employed for analysing ATOFMS data utilized 96% of the hit particles to generate 20 clusters. Similar clusters were merged together and 17 clusters were generated from which 7 main particle groups were identified. The particle classes include: K-rich particles (K-CN, K-NO3, K-EC, K-Cl-PO3 and K-HSO4), aged sea salt (Na-NO3), silicate dust (Na-HSiO2), sulphate rich particles (K-HSO4), nitrate rich particles (AlO-NO3), Ca particles (Ca-NO3), carbon-rich particles (Mn-OC, Metallic-EC, EC, EC-NO3 and OC-EC), and aromatic hydrocarbon particles (Arom-CN, Fe-PAH-NO3 and PAH-CN). With the aid of wind sector plots, the K-Cl-PO3 and Na-HSiO2 particle clusters were related to the steelworks blast furnace/sinter plant while Ca-rich particles arose from blast furnace emissions. K-CN, K-EC, Na-HSiO2, K-HSO4, Mn-OC, Arom-CN, Fe-PAH-NO3, and PAH-CN particles were closely linked with emissions from the cokemaking and mills (hot and cold) steelworks sections. The source factors identified by the ATOFMS were compared with those derived from multivariate analysis using Multilinear Engine (ME-2) applied to filter samples analysed off-line. Both methods of source apportionment identified common source factors including those within the steelworks (blast furnace, sinter, cokemaking), as well as marine, traffic and secondary particles, but quantitative attribution of mass is very different.

  19. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation

    PubMed Central

    Slator, Paddy J.; Cairo, Christopher W.; Burroughs, Nigel J.

    2015-01-01

    We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behaviour of single particle trajectories on cells, implementing model selection to classify trajectories as either consistent with Brownian motion or with a two-state (diffusion coefficient) switching model. The incorporation of localisation accuracy is essential, as otherwise false detection of switching within a trajectory was observed and diffusion coefficient estimates were inflated. Since our analysis is on a single trajectory basis, we are able to examine heterogeneity between trajectories in a quantitative manner. Applying our method to the lymphocyte function-associated antigen 1 (LFA-1) receptor tagged with latex beads (4 s trajectories at 1000 frames s−1), both intra- and inter-trajectory heterogeneity were detected; 12–26% of trajectories display clear switching between diffusive states dependent on condition, whilst the inter-trajectory variability is highly structured with the diffusion coefficients being related by D1 = 0.68D0 − 1.5 × 104 nm2 s−1, suggestive that on these time scales we are detecting switching due to a single process. Further, the inter-trajectory variability of the diffusion coefficient estimates (1.6 × 102 − 2.6 × 105 nm2 s−1) is very much larger than the measurement uncertainty within trajectories, suggesting that LFA-1 aggregation and cytoskeletal interactions are significantly affecting mobility, whilst the timescales of these processes are distinctly different giving rise to inter- and intra-trajectory variability. There is also an ‘immobile’ state (defined as D < 3.0 × 103 nm2 s−1) that is rarely involved in switching, immobility occurring with the highest frequency (47%) under T cell activation (phorbol-12-myristate-13-acetate (PMA) treatment) with enhanced cytoskeletal attachment (calpain inhibition). Such ‘immobile’ states frequently display slow linear drift, potentially reflecting binding to a dynamic actin cortex

  20. Black carbon in cloud residual nuclei during PACDEX: Combining the single particle soot photometer and the counterflow virtual impactor

    NASA Astrophysics Data System (ADS)

    Kok, G.; Subramanian, R.; Twohy, C.; Baumgardner, D.

    2007-12-01

    The single particle soot photometer (SP2) measures black carbon (BC) using laser incandescence. In the PACific Dust EXperiment (PACDEX), the SP2 was operated downstream of a counterflow virtual impactor (CVI) during flight portions when the aircraft was passing through a cloud. The CVI collects cloud droplets and ice crystals larger than 5 μm and evaporates the water content, so that residual nuclei are sampled. The CVI also concentrates the incoming air-stream by as much as a factor of 30 or more. The combination of the SP2 with the CVI enables BC measurements below a few ng/m3. Preliminary results indicate that compared to aerosol in the surrounding air mass, black carbon concentrations (per unit volume air) were generally lower in cloud, but a greater fraction of cloud residual particles contain BC. Cloud residual nuclei also seem to contain more BC mass/particle than the ambient aerosol. The May 5 flight made a number of passes through a Pacific frontal system. During one such pass at 8.3 km ASL, BC in residual nuclei sampled through the CVI was on average 0.4 ng/m3 with a mean incandescent particle concentration of 0.1 particles/cm3, compared to over 7 ng/m3 and 2.5 particles/cm3 in ambient aerosol behind the front. For total concentrations over 0.2 particles/cm3 as detected by the SP2, the fraction of cloud nuclei that incandesced or contained BC was often greater than the incandescing fraction of the ambient aerosol at the same altitude, with up to 40% of cloud nuclei incandescing compared to ~10-25% for ambient aerosol. BC mass distributions peaked around 5 fg-BC/particle in ambient air. Inside the front, BC mass distributions in cloud nuclei were broader with peaks between 10-23 fg-BC/particle. Possible explanations for these results are that either BC-containing particles are scavenged by clouds, or these particles are good cloud nuclei, with larger aerosol containing more BC mass/particle preferentially forming cloud droplets and ice crystals.