NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham; ...
2016-06-14
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less
A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruxi; Wang, Fei; Boroyevich, Dushan
It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemesmore » is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.« less
A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Ruxi; Wang, Fei
It is well known that there exist second-order harmonic current and corresponding ripple voltage on dc bus for single phase PWM rectifiers. The low frequency harmonic current is normally filtered using a bulk capacitor in the bus which results in low power density. This paper proposed an active ripple energy storage method that can effectively reduce the energy storage capacitance. The feed-forward control method and design considerations are provided. Simulation and 15 kW experimental results are provided for verification purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan
2014-01-01
Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side formore » power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.« less
Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement
NASA Astrophysics Data System (ADS)
Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.
2017-10-01
A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
Phase-locking of bursting neuronal firing to dominant LFP frequency components.
Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A
2015-10-01
Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Bush, Craig R.
This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.
Single phase inverter for a three phase power generation and distribution system
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1976-01-01
A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
High power density dc-to-dc converters for aerospace applications
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1990-01-01
Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers
NASA Astrophysics Data System (ADS)
Goodno, Gregory D.; Book, Lewis D.; Rothenberg, Joshua E.; Weber, Mark E.; Benjamin Weiss, S.
2011-11-01
Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
A grid-connected single-phase photovoltaic micro inverter
NASA Astrophysics Data System (ADS)
Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.
2017-11-01
In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
Single-stage three-phase boost power factor correction circuit for AC-DC converter
NASA Astrophysics Data System (ADS)
Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.
2018-01-01
This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.
Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light
NASA Astrophysics Data System (ADS)
Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad
2016-03-01
We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.
Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter
2016-09-01
ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then
Phase-front measurements of an injection-locked AlGaAs laser-diode array
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Rall, Jonathan A. R.; Abshire, James B.
1989-01-01
The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach-Zehnder interferometer. Root-mean-square phase errors of 0.037 + or - 0.003 wave are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe's ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.
NASA Astrophysics Data System (ADS)
Bazarov, A. E.; Goldobin, I. S.; Eliseev, P. G.; Kobilzhanov, O. A.; Pak, G. T.; Petrakova, T. V.; Pushkina, T. N.; Semenov, A. T.
1987-04-01
An experimental study was made of the characteristics of radiation emitted by arrays of stripe injection lasers in the form of coupled symmetric active Y couplers. An output power of 300 mW in one direction was achieved under cw emission conditions. The periodicity of lobes in the angular distribution corresponded to diffraction of radiation from phase-locked sources and the presence of a peak in the direction of the normal to the emitting surface indicated that the radiation from the individual sources was in phase. An output power of 72.5 mW was obtained in the case of single-frequency cw emission (in an external dispersive resonator).
Electrical heating of soils using high efficiency electrode patterns and power phases
Buettner, Harley M.
1999-01-01
Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.
NASA Astrophysics Data System (ADS)
Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.
2018-03-01
A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Howard, Mary F; Poeppel, David
2010-11-01
Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.
Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2017-05-17
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less
Input-current shaped ac to dc converters
NASA Technical Reports Server (NTRS)
1986-01-01
The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less
NASA Astrophysics Data System (ADS)
Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar
2016-12-01
This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.
NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi
2017-05-01
A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.
2011-11-01
We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.
Single-phase power distribution system power flow and fault analysis
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.
1992-01-01
Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.
A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid
NASA Astrophysics Data System (ADS)
Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.
2012-10-01
Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.
High power density dc/dc converter: Selection of converter topology
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1990-01-01
The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.
NASA Technical Reports Server (NTRS)
Feigenbaum, H.; Kaufman, A.; Wang, C. L.; Werth, J.; Whelan, J. A.
1983-01-01
Operating experience with a 5kW methanol-air integrated system is described. On-going test results for a 24-cell, two-sq ft (4kW) stack are reported. The main activity for this stack is currently the evaluation of developmental non-metalic cooling plates. Single-cell test results are presented for a promising developmental cathode catalyst.
Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance
Veniero, Domenica
2017-01-01
Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794
A Study of Three Phase and Single Phase High Frequency Distribution Systems
1989-09-20
single Schwarz converter which operates in a variable frequency mode and acts as a regulated dc power supply . This mode of operation is used to maintain a...conditioning stages. The first stage contains a single Schwarz converter which operates in a variable frequency mode and acts as a regulated dc power supply ...dependent upon the amount of current ripple the capacitor must sink. This determines the capacitor heating since the power dissipated is equal to 2R
Coherent beam combining architectures for high power tapered laser arrays
NASA Astrophysics Data System (ADS)
Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.
2017-02-01
Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.
NASA Technical Reports Server (NTRS)
Cunefare, K. A.; Koopmann, G. H.
1991-01-01
This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.
Development status of the small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1982-01-01
The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.
Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation
NASA Astrophysics Data System (ADS)
Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai
2018-03-01
The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Astrophysics Data System (ADS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
1983-12-01
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Technical Reports Server (NTRS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
1983-01-01
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2017-08-01
Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.
Three-Phase and Six-Phase AC at the Lab Bench
ERIC Educational Resources Information Center
Caplan, George M.
2009-01-01
Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…
Coherently coupled high-power fiber arrays
NASA Astrophysics Data System (ADS)
Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael
2006-02-01
A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
NASA Astrophysics Data System (ADS)
Neba, Yasuhiko
This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Astrophysics Data System (ADS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Technical Reports Server (NTRS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
1984-01-01
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399
Description of a 20 kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Description of a 20 Kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Three phase AC motor controller
Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.
1984-03-20
A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.
Improved battery charger for electric vehicles
NASA Technical Reports Server (NTRS)
Rippel, W. E.
1981-01-01
Polyphase version of single-phase "boost chopper" significantly reduces ripple and electromagnetic interference (EMI). Drive circuit of n-phase boost chopper incorporates n-phase duty-cycle generator; inductor, transistor, and diode compose chopper which can run on single-phase or three-phase alternating current or on direct current. Device retains compactness and power factors approaching unity, while improving efficiency.
Active phase locking of thirty fiber channels using multilevel phase dithering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli
2016-03-15
An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
Phased-array radar for airborne systems
NASA Astrophysics Data System (ADS)
Tahim, Raghbir S.; Foshee, James J.; Chang, Kai
2003-09-01
Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.
Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita
2017-08-30
The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple, severe impairments.
A New Clinical HIFU System (Teleson II)
NASA Astrophysics Data System (ADS)
Ma, Yixin; Symonds-Tayler, Richard; Rivens, Ian H.; ter Haar, Gail R.
2007-05-01
Previous clinical trials with our first prototype HIFU system (Teleson I) for the treatment of liver tumors, demonstrated a major challenge to be treatment of those tumors located behind the ribs. We have designed a new multi-element transducer for rib sparing. Initial simulation and experimental results (using a single channel power amplifier) are very encouraging. A new clinical HIFU system which can drive the multi-element transducer and control each channel independently is being designed and constructed. This second version of a clinical prototype HIFU system consists of a 3D motorised gantry, a multi-channel signal generator, a multi-channel power amplifier, a user interface PC, an embedded controller and auxiliary circuits for real-time interleaving/synchronization control and a to-be-implemented safety monitoring and data logging unit. For multi-element transducers, each element can be individually switched on and off for rib sparing, and phase and amplitude modulated for potential phased array applications. The multi-channel power amplifier can be switched on/off very rapidly at required intervals to interleave with ultrasound B-Scan imaging for HIFU monitoring or radiation force elastography imaging via a dedicated interleaving/timing module. The gantry movement can also be synchronised with power amplifier on/off and phase/amplitude updating for lesion generation under a wide variety of conditions including single lesions, lesion arrays and lesions "tracks" created whilst translating the active transducer. Results from testing the system using excised tissue will be presented.
NASA Astrophysics Data System (ADS)
Sotoodeh, Pedram
This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.
Quaternion-valued single-phase model for three-phase power system
NASA Astrophysics Data System (ADS)
Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin
2018-03-01
In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.
NASA Astrophysics Data System (ADS)
Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.
2018-01-01
The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).
High-Power, High-Thrust Ion Thruster (HPHTion)
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.
2015-01-01
Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.
Phase matters: A role for the subthalamic network during gait.
Arnulfo, Gabriele; Pozzi, Nicolò Gabriele; Palmisano, Chiara; Leporini, Alice; Canessa, Andrea; Brumberg, Joachim; Pezzoli, Gianni; Matthies, Cordula; Volkmann, Jens; Isaias, Ioannis Ugo
2018-01-01
The role of the subthalamic nucleus in human locomotion is unclear although relevant, given the troublesome management of gait disturbances with subthalamic deep brain stimulation in patients with Parkinson's disease. We investigated the subthalamic activity and inter-hemispheric connectivity during walking in eight freely-moving subjects with Parkinson's disease and bilateral deep brain stimulation. In particular, we compared the subthalamic power spectral densities and coherence, amplitude cross-correlation and phase locking value between resting state, upright standing, and steady forward walking. We observed a phase locking value drop in the β-frequency band (≈13-35Hz) during walking with respect to resting and standing. This modulation was not accompanied by specific changes in subthalamic power spectral densities, which was not related to gait phases or to striatal dopamine loss measured with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane and single-photon computed tomography. We speculate that the subthalamic inter-hemispheric desynchronization in the β-frequency band reflects the information processing of each body side separately, which may support linear walking. This study also suggests that in some cases (i.e. gait) the brain signal, which could allow feedback-controlled stimulation, might derive from network activity.
NASA Astrophysics Data System (ADS)
Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.
2012-12-01
The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.
Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology
NASA Astrophysics Data System (ADS)
Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan
2017-11-01
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
Development of software to improve AC power quality on large spacecraft
NASA Technical Reports Server (NTRS)
Kraft, L. Alan
1991-01-01
To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.
Computational Power of Symmetry-Protected Topological Phases.
Stephen, David T; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-07
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
Computational Power of Symmetry-Protected Topological Phases
NASA Astrophysics Data System (ADS)
Stephen, David T.; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-01
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
Villarreal, Dario J.; Gregg, Robert D.
2016-01-01
This paper presents the experimental validation of a novel control strategy that unifies the entire gait cycle of a powered knee-ankle prosthetic leg without the need to switch between controllers for different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific control parameters and switching rules that must be tuned for a specific walking speed. The single controller presented is speed-invariant with a minimal number of control parameters to be tuned. A single, periodic virtual constraint is derived that exactly characterizes the desired actuated joint motion as a function of a mechanical phase variable across walking cycles. A single sensor was used to compute a phase variable related to the residual thigh angle’s phase plane, which was recently shown to robustly represent the phase of non-steady human gait. This phase variable allows the prosthesis to synchronize naturally with the human user for intuitive, biomimetic behavior. A custom powered knee-ankle prosthesis was designed and built to implement the control strategy and validate its performance. A human subject experiment was conducted across multiple walking speeds (1 to 3 miles/hour) in a continuous sequence with the single phase-based controller, demonstrating its adaptability to the user’s intended speed. PMID:28392969
NASA Technical Reports Server (NTRS)
Goldstein, B.; Pultz, G. N.; Carlin, D. B.; Slavin, S. E.; Ettenberg, M.
1988-01-01
The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures.
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph
2016-04-26
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.
Prestimulus influences on auditory perception from sensory representations and decision processes
McNair, Steven W.
2016-01-01
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task. PMID:27071110
Large piezoelectricity in electric-field modified single crystals of SrTiO3
NASA Astrophysics Data System (ADS)
Khanbabaee, B.; Mehner, E.; Richter, C.; Hanzig, J.; Zschornak, M.; Pietsch, U.; Stöcker, H.; Leisegang, T.; Meyer, D. C.; Gorfman, S.
2016-11-01
Defect engineering is an effective and powerful tool to control the existing material properties and produce completely new ones, which are symmetry-forbidden in a defect-free crystal. For example, the application of a static electric field to a single crystal of SrTiO3 forms a strained near-surface layer through the migration of oxygen vacancies out of the area beneath the positively charged electrode. While it was previously shown that this near-surface phase holds pyroelectric properties, which are symmetry-forbidden in centrosymmetric bulk SrTiO3, this paper reports that the same phase is strongly piezoelectric. We demonstrate the piezoelectricity of this phase through stroboscopic time-resolved X-ray diffraction under alternating electric field and show that the effective piezoelectric coefficient d33 ranges between 60 and 100 pC/N. The possible atomistic origins of the piezoelectric activity are discussed as a coupling between the electrostrictive effect and spontaneous polarization of this near-surface phase.
Power allocation and range performance considerations for a dual-frequency EBPSK/MPPSK system
NASA Astrophysics Data System (ADS)
Yao, Yu; Wu, Lenan; Zhao, Junhui
2017-12-01
Extended binary phase shift keying/M-ary position phase shift keying (EBPSK/MPPSK)-MODEM provides radar and communication functions on a single hardware platform with a single waveform. However, its range estimation accuracy is worse than continuous-wave (CW) radar because of the imbalance of power in two carrier frequencies. In this article, the power allocation method for dual-frequency EBPSK/MPPSK modulated systems is presented. The power of two signal transmitters is adequately allocated to ensure that the power in two carrier frequencies is equal. The power allocation ratios for two types of modulation systems are obtained. Moreover, considerations regarding the range of operation of the dual-frequency system are analysed. In addition to theoretical considerations, computer simulations are provided to illustrate the performance.
Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.
2005-12-01
Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Xianchen; Zhang Jiande; Yang Jianhua
2012-12-15
Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of themore » WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.« less
NASA Astrophysics Data System (ADS)
Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing
2012-12-01
Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.
A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter
NASA Astrophysics Data System (ADS)
Verma, A. K.; Singh, B.; Kaushika, S. C.
2013-03-01
In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.
Simulation Tools for Power Electronics Courses Based on Java Technologies
ERIC Educational Resources Information Center
Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.
2010-01-01
This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…
NASA Technical Reports Server (NTRS)
Wood, M. E.
1980-01-01
Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.
NASA Astrophysics Data System (ADS)
Tiunov, V. V.
2018-02-01
The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.
Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F
2017-04-20
To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.
Development of a single-phase 30 m HTS power cable
NASA Astrophysics Data System (ADS)
Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook
2006-05-01
HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.
Logic computation in phase change materials by threshold and memory switching.
Cassinerio, M; Ciocchini, N; Ielmini, D
2013-11-06
Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced power quality based single phase photovoltaic distributed generation system
NASA Astrophysics Data System (ADS)
Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.
2016-08-01
This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.
Design of three-phased SPWM based on AT89C52
NASA Astrophysics Data System (ADS)
Wu, Xiaorui
2018-05-01
According to the AT89C52 and the area equivalent principle, a three phase SPWM algorithm based on the 8 bit single chip is obtained. Through computer programming, three-phase SPWM wave generated by a single chip microcomputer is applied to the circuit of the static reactive power generator. The result shows that this method is feasible and can reduce the cost of SVG.
Common Utilities in the Energy Systems Integration Facility | Energy
Systems Integration Facility. Common utilities include: Power: Three-phase 480/277 VAC, 208/120 VAC, 240 split-phase VAC, and 120 single-phase VAC Water: Process heating and cooling and research cooling
NASA Astrophysics Data System (ADS)
Choi, Jae-Hak; Lee, Sung-Ho
2009-04-01
This paper presents a single-phase written pole motor using a bonded ring magnet for the small power home application. The motor has an exciter pole structure inside the stator and hybrid characteristics of an induction motor and permanent magnet motor. The design parameters and operating characteristics of the hybrid concept motor are investigated to increase starting torque and efficiency, which is most important for the small power home application. Larger starting torque and higher efficiency than those of the conventional induction motor could be obtained by using the rewritable characteristics of bonded magnet on the starting and running conditions.
Advanced microprocessor based power protection system using artificial neural network techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Kalam, A.; Zayegh, A.
This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.
NASA Astrophysics Data System (ADS)
Nohavica, D.; Têminová, J.; Berková, D.; Zagrádková, M.; Kortan, I.; Zelinka, I.; Walachová, I.; Malina, V.
1988-11-01
A modified single-phase liquid phase epitaxy method was developed on the basis of a novel variant of the growth boat. The method was used to grow GaInAsP/InP double heterostructures for lasers emitting at 1.3 and 1.55 μm. The main properties of wide-contact diodes (radiation power and threshold current density) were adopted as the characteristics of the quality of heterostructures characterized by different configurations of active and guiding layers. The quality of the structure was confirmed by the fabrication of laser diodes of the following types: stripe with oxide insulation, clad-ridge waveguide, and double-channel planar buried.
Device with Functions of Linear Motor and Non-contact Power Collector for Wireless Drive
NASA Astrophysics Data System (ADS)
Fujii, Nobuo; Mizuma, Tsuyoshi
The authors propose a new apparatus with functions of propulsion and non-contact power collection for a future vehicle which can run like an electric vehicle supplied from the onboard battery source in most of the root except near stations. The batteries or power-capacitors are non-contact charged from the winding connected with commercial power on ground in the stations etc. The apparatus has both functions of linear motor and transformer, and the basic configuration is a wound-secondary type linear induction motor (LIM). In the paper, the wound type LIM with the concentrated single-phase winding for the primary member on the ground is dealt from the viewpoint of low cost arrangement. The secondary winding is changed to the single-phase connection for zero thrust in the transformer operation, and the two-phase connection for the linear motor respectively. The change of connection is done by the special converter for charge and linear drive on board. The characteristics are studied analytically.
Theta EEG dynamics of the error-related negativity.
Trujillo, Logan T; Allen, John J B
2007-03-01
The error-related negativity (ERN) is a response-locked brain potential (ERP) occurring 80-100ms following response errors. This report contrasts three views of the genesis of the ERN, testing the classic view that time-locked phasic bursts give rise to the ERN against the view that the ERN arises from a pure phase-resetting of ongoing theta (4-7Hz) EEG activity and the view that the ERN is generated - at least in part - by a phase-resetting and amplitude enhancement of ongoing theta EEG activity. Time-domain ERP analyses were augmented with time-frequency investigations of phase-locked and non-phase-locked spectral power, and inter-trial phase coherence (ITPC) computed from individual EEG trials, examining time courses and scalp topographies. Simulations based on the assumptions of the classic, pure phase-resetting, and phase-resetting plus enhancement views, using parameters from each subject's empirical data, were used to contrast the time-frequency findings that could be expected if one or more of these hypotheses adequately modeled the data. Error responses produced larger amplitude activity than correct responses in time-domain ERPs immediately following responses, as expected. Time-frequency analyses revealed that significant error-related post-response increases in total spectral power (phase- and non-phase-locked), phase-locked power, and ITPC were primarily restricted to the theta range, with this effect located over midfrontocentral sites, with a temporal distribution from approximately 150-200ms prior to the button press and persisting up to 400ms post-button press. The increase in non-phase-locked power (total power minus phase-locked power) was larger than phase-locked power, indicating that the bulk of the theta event-related dynamics were not phase-locked to response. Results of the simulations revealed a good fit for data simulated according to the phase-locking with amplitude enhancement perspective, and a poor fit for data simulated according to the classic view and the pure phase-resetting view. Error responses produce not only phase-locked increases in theta EEG activity, but also increases in non-phase-locked theta, both of which share a similar topography. The findings are thus consistent with the notion advanced by Luu et al. [Luu P, Tucker DM, Makeig S. Frontal midline theta and the error-related negativity; neurophysiological mechanisms of action regulation. Clin Neurophysiol 2004;115:1821-35] that the ERN emerges, at least in part, from a phase-resetting and phase-locking of ongoing theta-band activity, in the context of a general increase in theta power following errors.
Toward single-mode active crystal fibers for next-generation high-power fiber devices.
Lai, Chien-Chih; Gao, Wan-Ting; Nguyen, Duc Huy; Ma, Yuan-Ron; Cheng, Nai-Chia; Wang, Shih-Chang; Tjiu, Jeng-Wei; Huang, Chun-Ming
2014-08-27
We report what we believe to be the first demonstration of a facile approach with controlled geometry for the production of crystal-core ceramic-clad hybrid fibers for scaling fiber devices to high average powers. The process consists of dip coating a solution of polycrystalline alumina onto a high-crystallinity 40-μm-diameter Ti:sapphire single-crystalline core followed by thermal treatments. Comparison of the measured refractive index with high-resolution transmission electron microscopy reveals that a Ca/Si-rich intragranular layer is precipitated at grain boundaries by impurity segregation and liquid-phase formation due to the relief of misfit strain energy in the Al2O3 matrix, slightly perturbing the refractive index and hence the optical properties. Additionally, electron backscatter diffractions supply further evidence that the Ti:sapphire single-crystalline core provides the template for growth into a sacrificial polycrystalline cladding, bringing the core and cladding into a direct bond. The thus-prepared doped crystal core with the undoped crystal cladding was achieved through the abnormal grain-growth process. The presented results provide a general guideline both for controlling crystal growth and for the performance of hybrid materials and provides insights into how one might design single-mode high-power crystal fiber devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu
Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22,more » and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.« less
Sponberg, S; Daniel, T L
2012-10-07
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.
Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.
Chen, Pengwen; Fannjiang, Albert
2018-05-01
The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.
Thermo-hydraulic actuator as a new way for conversion of solar energy in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhodolsky, A.T.
1998-07-01
A thermo-hydraulic actuator (THA) to directly convert the energy of continuous radiation into mechanical energy of vibration for use in power or propulsive systems in space is described. A THA consists of a chamber with an active liquid and optical fibers to deliver light energy inside. Power input comes from either argon laser or a solar concentrator 300 mm. in diameter. The principle of THA function is self-organization of a heat cycle that takes place by using a state of liquid (inversion) powered by light up to a temperature much higher than the temperature of boiling. As a result, anmore » excited state of liquid is able to form a single cavity to absorb thermal energy that is available to be converted by the non-equilibrium phase transition of first order into mechanical energy. This work stroke of a THA to form a hydraulic shock has been stimulated by non-linear mechanical motion of a single cavity and non-equilibrium phase transition of first order. The main feature of THA to accumulate energy of light in form of heat between sequential mechanical impulses gives the unique possibility to reach the motive forces induced by solar light by many order of the magnitude greater than the forces available by equilibrium radiation pressure. The first free-piston actuator (FPA) powered by solar light is also described. The construction consists of parabolic collector of diameter of 300mm and a transparent window with mounted actuator that has of a hollow piston with active liquid. Direct generation of hydraulic shocks by THA and preliminary experiments on generation of vibrations within a construction (FPA) has been proposed to be a new subject of interdisciplinary research to go from physical phenomenon observed in laser experiments to engineering development of new vibration machines powered by solar light. To conclude, a project to apply THA in new solar cosmic propulsive systems is discussed.« less
Mobile Centers For Secondary Power Distribution
NASA Technical Reports Server (NTRS)
Mears, Robert L.
1990-01-01
Concept for distribution of 60-Hz ac power in large building devoted to assembly and testing of equipment improves safety, reduces number of outlets and lengthy cables, and readily accommodates frequent changes in operations and configuration. Power from floor recess fed via unobtrusive cable to portable power management center. A cart containing variety of outlets and circuit breakers, wheeled to convenient location near equipment to be assembled or tested. Power distribution system presents larger range of operational configurations than fixed location. Meets tighter standards to feed computers and delicate instruments. Industrial-grade power suitable for power tools and other hardware. Three-phase and single-phase outlets available from each.
Atmospheric Propagation and Combining of High-Power Lasers
2015-09-08
Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when
NASA Astrophysics Data System (ADS)
Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.
2018-02-01
Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.
NASA Astrophysics Data System (ADS)
Kondo, Keiichiro; Hata, Hiroshi; Yuki, Kazuaki; Naganuma, Katsunori; Matsuoka, Koichi; Hasebe, Toshio
This paper is aimed at providing the designing method of a permanent magnet synchronous motor (PMSM) control system for the high-speed and the single-phase AC powered Gauge Changing Train (GCT). The state-of-the-art electrical motive unit is equipped with downsized direct drive type PMSMs for the simplified gauge changeable truck. Due to the feeding the AC single phase power, we propose a beat-less control for PMSMs. We verify the development results of designing procedures by the experimental results of operation on a high-speed test line in Colorado, USA.
NASA Technical Reports Server (NTRS)
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
Transparent self-cleaning dust shield
Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.
2005-06-28
A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.
Development of an X-Band 50 MW Multiple Beam Klystron
NASA Astrophysics Data System (ADS)
Song, Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max
2003-12-01
Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam — wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust — high efficient — long life high power amplifier.
Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines
NASA Astrophysics Data System (ADS)
Boldea, I.; Nasar, S. A.
1987-01-01
The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.
Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised
NASA Technical Reports Server (NTRS)
Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.
1995-01-01
The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.
Ethridge, Lauren E; White, Stormi P; Mosconi, Matthew W; Wang, Jun; Pedapati, Ernest V; Erickson, Craig A; Byerly, Matthew J; Sweeney, John A
2017-01-01
Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0-100 Hz over 2 s. Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics.
Xiao, Bailu; Hang, Lijun; Mei, Jun; ...
2014-09-04
This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less
2010-01-01
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract. PMID:20420714
Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian
2010-04-27
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration
NASA Technical Reports Server (NTRS)
Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.
2004-01-01
Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.
High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fang-Liang; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Jia, Zhi-Wei
2016-03-15
A phase-locked quantum cascade laser (QCL) array consisting of one hundred elements that were integrated in parallel was achieved at λ ∼ 4.6 μm. The proposed Fraunhofer’s multiple slits diffraction model predicted and explained the far-field pattern of the phase-locked laser array. A single-lobed far-field pattern, attributed to the emission of an in-phase-like supermode, is obtained near the threshold (I{sub th}). Even at 1.5 I{sub th}, greater than 73.3% of the laser output power is concentrated in a low-divergence beam with an optical power of up to 40 W.
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José
2011-08-29
A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.
NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Neubauer, M.
A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less
Detection of abnormal muscle activations during walking following spinal cord injury (SCI).
Wang, Ping; Low, K H; McGregor, Alison H; Tow, Adela
2013-04-01
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI participants were given assistance from physiotherapists, if required, while they were walking. In agreement with other research, larger cadence and smaller step length and swing phase of SCI gait were observed as a result of muscle weakness and resultant gait instability. Muscle activation patterns of seven major leg muscles were collected. The EMG signal was processed by the RMS in frequency domain to represent the muscle activation power, and the distribution of muscle activation was compared between healthy and SCI participants. The alternations of muscle activation within the phases of the gait cycle are highlighted to facilitate our understanding of the underlying muscular activation following SCI. Key differences were observed (p-value=0.0006) in the reduced activation of tibialis anterior (TA) in single stance phase and rectus femoris (RF) in swing phase (p-value=0.0011). We can then conclude that the proposed assessment approach of gait provides valuable information that can be used to target and define therapeutic interventions and their evaluation; hence impacting the functional outcome of SCI individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design and Development of an Engineering Prototype Compact X-Ray Scanner (FMS 5000)
1989-03-31
machined by "wire-EDM" (electro discharge machining ). Three different slice thicknesses can be selected from the scan menu. The set of slice thicknesses...circuit. This type of circuit is used whenever more than ten kilowatts of power are needed by a machine . For example, lathes and milling machines in a... machine shop usually use this type of input power. A three- phase circuit delivers power more efficiently than a single-phase circuit because three
Sponberg, S.; Daniel, T. L.
2012-01-01
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M Jamal
2013-08-02
Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of -122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of -120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.
Cohen, Michael X; Donner, Tobias H
2013-12-01
Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to reflect neural oscillations that support conflict detection and resolution processes. However, it has remained unclear whether this frequency-band-specific activity reflects neural oscillations or nonoscillatory responses (i.e., event-related potentials). Here, we show that removing the phase-locked component of the EEG did not reduce the strength of the conflict-related modulation of the residual (i.e., non-phase-locked) theta power over midfrontal cortex. Furthermore, within-subject regression analyses revealed that the non-phase-locked theta power was a significantly better predictor of the conflict condition than was the time-domain phase-locked EEG component. Finally, non-phase-locked theta power showed robust and condition-specific (high- vs. low-conflict) cross-trial correlations with reaction time, whereas the phase-locked component did not. Taken together, our results indicate that most of the conflict-related and behaviorally relevant midfrontal EEG signal reflects a modulation of ongoing theta-band oscillations that occurs during the decision process but is not phase-locked to the stimulus or to the response.
All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.
Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In
2016-09-05
An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
NASA Astrophysics Data System (ADS)
Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang
To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.
NASA Technical Reports Server (NTRS)
Parrott, T. L.; Schein, D. B.; Gridley, D.
1985-01-01
The acoustic response of a semireverberant enclosure with two interacting, velocity-prescribed source distributions was analyzed using standard modal analysis techniques with a view toward a better understanding of active noise control. Different source and enclosure dimensions, source separations, and single-wall admittances were studied over representative frequency bandwidths of 10 Hz with source relative phase as a parameter. Results indicate that power radiated into the enclosure agree qualitatively with the spatial average of the mean square pressure, even though the reverberant field is nondiffuse. Decreases in acoustic power can therefore be used to estimate global noise reduction in a nondiffuse semireverberant environment. As might be expected, parametric studies indicate that maximum power reductions of up to 25 dB can be achieved when secondary and primary sources are compact and closely spaced. Although less success is achieved with increasing frequency and source separation or size, significant suppression of up to 8 dB still occurs over the 1 to 2 Hz bandwidth.
NASA Astrophysics Data System (ADS)
Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis
2014-10-01
The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.
Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit
2015-01-01
Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.
Single phase dynamic CMOS PLA using charge sharing technique
NASA Technical Reports Server (NTRS)
Dhong, Y. B.; Tsang, C. P.
1991-01-01
A single phase dynamic CMOS NOR-NOR programmable logic array (PLA) using triggered decoders and charge sharing techniques for high speed and low power is presented. By using the triggered decoder technique, the ground switches are eliminated, thereby, making this new design much faster and lower power dissipation than conventional PLA's. By using the charge-sharing technique in a dynamic CMOS NOR structure, a cascading AND gate can be implemented. The proposed PLA's are presented with a delay-time of 15.95 and 18.05 nsec, respectively, which compare with a conventional single phase PLA with 35.5 nsec delay-time. For a typical example of PLA like the Signetics 82S100 with 16 inputs, 48 input minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation than the conventional PLA. These results are simulated using maximum drain current of 600 micro-A, gate length of 2.0 micron, V sub DD of 5 V, the capacitance of an input miniterm of 1600 fF, and the capacitance of an output minterm of 1500 fF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flueck, Alex
The “High Fidelity, Faster than RealTime Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of largescale power system dynamics simulation, including (1) a validated faster than real time simulation of both stable and unstable transient dynamics in a largescale positive sequence transmission grid model, (2) a threephase unbalanced simulation platform formore » modeling new grid devices, such as independently controlled singlephase static var compensators (SVCs), (3) the world’s first high fidelity threephase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a firstofits kind implementation of a singlephase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the longterm, the simulator will form the backbone of the newly conceived hybrid realtime protection and control architecture that will coordinate local controls, widearea measurements, widearea controls and advanced realtime prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the fasterthanrealtime simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three phase unbalanced simulator’s ability to model threephase and single phase networks and devices.« less
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
Resonant AC power system proof-of-concept test program
NASA Technical Reports Server (NTRS)
Wappes, Loran J.
1986-01-01
Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.
Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond
Hemawan, Kadek W.; Hemley, Russell J.
2015-08-03
Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C 2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculatedmore » from measurements of the C 2 Swan band (d 3Π → a 3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH 4 + H 2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.« less
Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency
NASA Astrophysics Data System (ADS)
Jiang, Man; Zhou, Pu; Gu, Xijia
2018-01-01
Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.
Hasan, Abul; Helaoui, Mohamed; Ghannouchi, Fadhel M
2017-08-29
In this article, a novel tunable, blocker and clock jitter tolerant, low power, quadrature phase shift frequency selective (QPS-FS) receiver with energy harvesting capability is proposed. The receiver's design embraces and integrates (i) the baseband to radio frequency (RF) impedance translation concept to improve selectivity over that of conventional homodyne receiver topologies and (ii) broadband quadrature phase shift circuitry in the RF path to remove an active multi-phase clock generation circuit in passive mixer (PM) receivers. The use of a single local oscillator clock signal with a passive clock division network improves the receiver's robustness against clock jitter and reduces the source clock frequency by a factor of N, compared to PM receivers using N switches (N≥4). As a consequence, the frequency coverage of the QPS-FS receiver is improved by a factor of N, given a clock source of maximum frequency; and, the power consumption of the whole receiver system can eventually be reduced. The tunable QPS-FS receiver separates the wanted RF band signal from the unwanted blockers/interferers. The desired RF signal is frequency down-converted to baseband, while the undesired blocker/interferer signals are reflected by the receiver, collected and could be energy recycled using an auxiliary energy harvesting device.
Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian
2018-06-01
Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.
Modelling a single phase voltage controlled rectifier using Laplace transforms
NASA Technical Reports Server (NTRS)
Kraft, L. Alan; Kankam, M. David
1992-01-01
The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.
Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.
Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing
2014-10-01
A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.
Koenig, Judith B; Martin, Christina E W; Dobson, Howard; Mintchev, Martin P
2009-01-01
To evaluate whether changes in gastric myoelectrical activity in healthy, awake dogs can be detected via multichannel electrogastrography (EGG). 6 healthy hound-breed dogs. For each dog, 8-channel EGG was performed after food had been withheld for 12 hours and at 30 minutes after subsequent feeding; 60 minutes after feeding, atropine (0.04 mg/kg) was administered IM to induce ileus, and 30 minutes later, EGG was again performed. Mean cycles per minute (cpm) values of the dominant frequency (a measure of the rhythmicity of gastric electrical activity) and mean power ratios (ie, power measured after treatment divided by the power measured when food was withheld) were calculated. Motility of the gastric antrum was assessed via B-mode ultrasonography during the same phases; contractions determined ultrasonographically were correlated with EGG power for each channel in each phase. The criterion for stability (SD of the dominant frequency < 15% of the cpm value in at least 3 of the 8 EGG channels) was met in 4 of the 6 dogs (only in long-distance channels). The mean power ratios were significantly higher in the postprandial phase than in the ileus phase. Compared with the postprandial phase, significantly fewer contractions per minute were evident ultrasonographically in the ileus and food-withholding phases. There was a significant and good correlation between EGG power and ultrasonographic findings in all 8 channels. Electrogastrography may be useful in assessing gastric myoelectrical activities in awake dogs with naturally occurring gastrointestinal disease, including gastric dilatation-volvulus.
Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong
2017-06-01
The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.
Field-circuit analysis and measurements of a single-phase self-excited induction generator
NASA Astrophysics Data System (ADS)
Makowski, Krzysztof; Leicht, Aleksander
2017-12-01
The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.
Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.
2012-01-01
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276
Bid, Aveek; Raychaudhuri, A K
2016-11-11
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Influence of beam-loaded effects on phase-locking in the high power microwave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenghong; Zhou, Zhigang; Qiu, Rong
2014-06-15
Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistentmore » analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given.« less
Unity PF current-source rectifier based on dynamic trilogic PWM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Wang; Boon-Teck Ooi
1993-07-01
One remaining step in perfecting the stand-along, unity power factor, regulated current-source PWM rectifier is to reduce cost, by bringing the 12-valve converter (consisting of three single-phase full bridges that operate with two-level or bilogic PWM) to the six-valve bridge. However, the six-valve topology requires a three-level or trilogic PWM strategy that can handle feedback signals. This feature was not available until now. The paper describes a general method of translating three-phase bilogic PWM signals to three-phase trilogic PWM signals. The method of translation retains the characteristics of the bilogic PWM, including the frequency bandwidth. Experiments show that the trilogicmore » PWM signals produced by the method can not only handle stabilizing feedback signals but also signals for active filtering.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... electrically-powered devices used in central HVAC systems for the purposes of circulating air through ductwork...- powered device used in a central HVAC system for the purpose of circulating air through ductwork. DOE... included single-phase, electrically-powered devices that circulate air through ductwork in HVAC systems...
Ultralow-phase-noise oscillators based on BAW resonators.
Li, Mingdong; Seok, Seonho; Rolland, Nathalie; Rolland, Paul; El Aabbaoui, Hassan; de Foucauld, Emeric; Vincent, Pierre; Giordano, Vincent
2014-06-01
This paper presents two 2.1-GHz low-phase noise oscillators based on BAW resonators. Both a single-ended common base structure and a differential Colpitts structure have been implemented in a 0.25-μm BiCMOS process. The detailed design methods including the realization, optimization, and test are reported. The differential Colpitts structure exhibits a phase noise 6.5 dB lower than the single-ended structure because of its good performance of power noise immunity. Comparison between the two structures is also carried out. The differential Colpitts structure shows a phase noise level of -87 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -162 dBc/Hz, with an output power close to -6.5 dBm and a core consumption of 21.6 mW. Furthermore, with the proposed optimization methods, both proposed devices have achieved promising phase noise performance compared with state-of-the-art oscillators described in the literature. Finally, we briefly present the application of the proposed BAW oscillator to a micro-atomic clock.
High-Power Fiber Lasers Using Photonic Band Gap Materials
NASA Technical Reports Server (NTRS)
DiDomenico, Leo; Dowling, Jonathan
2005-01-01
High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power at undesirably low levels, and scattering of light from dopants. In designing a given fiber laser for reduced ASE, care must be taken to maintain a correct fiber structure for eventual scaling to an array of many such lasers such that the interactions among all the members of the array would cause them to operate in phase lock. Hence, the problems associated with improving a single-fiber laser are not entirely separate from the bundling problem, and some designs for individual fiber lasers may be better than others if the fibers are to be incorporated into bundles. Extensive calculations, expected to take about a year, must be performed in order to determine design parameters before construction of prototype individual and fiber lasers can begin. The design effort can be expected to include calculations to optimize overlaps between the electromagnetic modes and the gain media and calculations of responses of PBG materials to electromagnetic fields. Design alternatives and physical responses that may be considered include simple PBG fibers with no intensity-dependent responses, PBG fibers with intensity- dependent band-gap shifting (see figure), and broad-band pumping made possible by use of candidate broad-band pumping media in place of the air or vacuum gaps used in prior PBG fibers.
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Neural correlates of mathematical problem solving.
Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping
2015-03-01
This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein
2014-01-01
Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900
An alternative cooling system to enhance the safety of Li-ion battery packs
NASA Astrophysics Data System (ADS)
Kizilel, Riza; Sabbah, Rami; Selman, J. Robert; Al-Hallaj, Said
A passive thermal management system is evaluated for high-power Li-ion packs under stressful or abusive conditions, and compared with a purely air-cooling mode under normal and abuse conditions. A compact and properly designed passive thermal management system utilizing phase change material (PCM) provides faster heat dissipation than active cooling during high pulse power discharges while preserving sufficiently uniform cell temperature to ensure the desirable cycle life for the pack. This study investigates how passive cooling with PCM contributes to preventing the propagation of thermal runaway in a single cell or adjacent cells due to a cell catastrophic failure. Its effectiveness is compared with that of active cooling by forced air flow or natural convection using the same compact module and pack configuration corresponding to the PCM matrix technology. The effects of nickel tabs and spacing between the cells were also studied.
SINGLE NEURON ACTIVITY AND THETA MODULATION IN POSTRHINAL CORTEX DURING VISUAL OBJECT DISCRIMINATION
Furtak, Sharon C.; Ahmed, Omar J.; Burwell, Rebecca D.
2012-01-01
Postrhinal cortex, the rodent homolog of the primate parahippocampal cortex, processes spatial and contextual information. Our hypothesis of postrhinal function is that it serves to encode context, in part, by forming representations that link objects to places. We recorded postrhinal neuronal activity and local field potentials (LFPs) in rats trained on a two-choice, visual discrimination task. As predicted, a large proportion of postrhinal neurons signaled object-location conjunctions. In addition, postrhinal LFPs exhibited strong oscillatory rhythms in the theta band, and many postrhinal neurons were phase locked to theta. Although correlated with running speed, theta power was lower than predicted by speed alone immediately before and after choice. However, theta power was significantly increased following incorrect decisions, suggesting a role in signaling error. These findings provide evidence that postrhinal cortex encodes representations that link objects to places and suggest that postrhinal theta modulation extends to cognitive as well as spatial functions. PMID:23217745
1992-08-01
three existing 167 kVA PCB-filled, single phase , polemount transformers that were connected in a three phase bank and replacing them with a single 300...A-18 3.11.1 Insulated Phase Barriers .......................... A-lB 3.11.2 Undercoating ...................................... A-18 3.11.3 Warning...2.1 mezan Na, ý n al S I.and a r, 7nSt *u~e f’-^S. ANSI- C57 12.00 General Requirements for Liquid Immersed Distribution Power and Regulating
Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio
2008-07-21
We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.
NASA Technical Reports Server (NTRS)
Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip
2010-01-01
Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.
Space station WP-04 power system. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.
Vaisman, Alex; Guiloff, Rodrigo; Rojas, Juan; Delgado, Iris; Figueroa, David; Calvo, Rafael
2017-12-01
Achieving a symmetrical power performance (difference <15%) between lower limbs is generally recommended during sports rehabilitation. However, athletes in single-leg-dominant sports, such as professional soccer players, could develop significant asymmetry between their dominant and nondominant legs, such that symmetry does not act as a viable comparison. To (1) compare maximal muscular power between the dominant and nondominant legs in healthy young adults, (2) evaluate the effect of a single-leg-dominant sport activity performed at the professional level, and (3) propose a parameter of normality for maximal power difference in the lower limbs of this young adult population. Controlled laboratory study. A total of 78 healthy, male, young adults were divided into 2 groups according to sport activity level. Group 1 consisted of 51 nonathletes (mean ± SD age, 20.8 ± 1.5 years; weight, 71.9 ± 10.5 kg) who participated in less than 8 hours a week of recreational physical activity with nonspecific training; group 2 consisted of 27 single-leg-dominant professional soccer players (age, 18.4 ± 0.6 years; weight, 70.1 ± 7.5 kg) who specifically trained and competed at their particular activity 8 hours or more a week. For assessment of maximal leg power, both groups completed the single-leg squat jump test. Dominance was determined when participants completed 2 of 3 specific tests with the same extremity. Statistical analysis included the Student t test. No statistical difference was found for maximal power between dominant and nondominant legs for nonathletes ( t = -1.01, P = .316) or single-leg-dominant professional soccer players ( t = -1.10, P = .281). A majority (95%) of participants studied showed a power difference of less than 15% between their lower extremities. Among young healthy adults, symmetrical power performance is expected between lower extremities independent of the existence of dominance and difference in sport activity level. A less than 15% difference in power seems to be a proper parameter to define symmetrical power performance assessed by vertical single-leg jump tests.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2006-01-01
NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.
Transmitter switch for high-power microwave output
NASA Technical Reports Server (NTRS)
Wiggins, C. P.; Leu, R. K.
1975-01-01
Combiner system can be used for combining output powers of two transmitters or for switching from one to the other. This can be done when pair of transmitters operate on same frequency and carriers are phase coherent as by excitation from single exciter.
Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide
2017-01-01
Organolead halide perovskites are increasingly considered for applications well beyond photovoltaics, for example, as the active regions within photonic devices. Herein, we report the direct laser writing (DLW: 458 nm cw-laser) of the formamidinium lead iodide (FAPbI3) yellow δ-phase into its high-temperature luminescent black α-phase, a remarkably easy and scalable approach that takes advantage of the material’s susceptibility to transition under ambient conditions. Through the DLW of α-FAPbI3 tracks on δ-FAPbI3 single-crystal surfaces, the controlled and rapid microfabrication of highly luminescent structures exhibiting long-term phase stability is detailed, offering an avenue toward the prototyping of complex perovskite-based optical devices. The dynamics and kinetics of laser-induced δ- to α-phase transformations are investigated in situ by Raman microprobe analysis, as a function of irradiation power, time, temperature, and atmospheric conditions, revealing an interesting connection between oxygen intercalation at the surface and the δ- to α-phase transformation dynamics, an insight that will find application within the wider context of FAPbI3 thermal phase relations. PMID:28763617
Power combination of a self-coherent high power microwave source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xiaolu, E-mail: yanxl-dut@163.com; Zhang, Xiaoping; Li, Yangmei
2015-09-15
In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%.
NASA Astrophysics Data System (ADS)
Taylor, Richard J. E.; Li, Guangrui; Ivanov, Pavlo; Childs, David T. D.; Stevens, Ben J.; Babazadeh, Nasser; Ignatova, Olesya; Hogg, Richard A.
2017-02-01
All-semiconductor photonic crystal surface-emitting lasers (PCSELs) operating in CW mode at room temperature and coherently coupled arrays of these lasers are reviewed. These PCSELs are grown via MOVPE on GaAs substrates and include QW active elements and GaAs/InGaP photonic crystal (PC) layer situated above this active zone. Atoms of triangular shapes have been shown to increase optical power from the PCSEL but are also shown to result in a competition between lasing modes. Simulation shows that the energy splitting of lasing modes is smaller for triangular atoms, than for circles making high power single-mode devices difficult to achieve. In this work we experimentally investigate the effect of lateral optical feedback introduced by a facet cleave along one or two perpendicular PCSEL edges. This cleavage plane is misaligned to the PC resulting in a periodic variation of facet phase along the side of the device. Results confirm that a single cleave selects the lowest threshold 2D lasing mode, resulting in a 20% reduction in threshold current and favours single-mode emission. The addition of a second cleave at right-angles to the first has no significant effect upon threshold current. The virgin device is shown to have a symmetric far-field (1 degree) whilst a single cleave produces a 1 degree divergence perpendicular to cleave and 5 degree parallel to cleave. The second orthogonal cleave results in the far field becoming symmetric again but with a divergence angle of 1 degree indicating that single-mode lasing is supported over a wider area.
Use of TCSR with Split Windings for Shortening the Spar Cycle Time in 500 kV Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.
The arc-fault recharge phenomenon in single-phase automatic reclosure (SPAR) of a line is examined. Abrief description is given of the design of a 500 kV thyristor controlled shunt reactor (TCSR) with split valve-side windings. This type of TCSR is shown to effectively quench a single-phase arc fault in a power transmission line and shortens the SPAR cycle time.
High performance protection circuit for power electronics applications
NASA Astrophysics Data System (ADS)
Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan
2015-12-01
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.
Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines
NASA Astrophysics Data System (ADS)
Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.
2017-11-01
The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.
Thermospheric mass density model error variance as a function of time scale
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
NASA Astrophysics Data System (ADS)
Wang, He
The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei
2014-05-01
This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.
High static gain single-phase PFC based on a hybrid boost converter
NASA Astrophysics Data System (ADS)
Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo
2017-05-01
In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.
Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano
2018-04-07
This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.
Solid-state transformer-based new traction drive system and control
NASA Astrophysics Data System (ADS)
Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao
2017-11-01
A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.
High-power diode lasers for optical communications applications
NASA Technical Reports Server (NTRS)
Carlin, D. B.; Goldstein, B.; Channin, D. J.
1985-01-01
High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.
Photovoltaic power system tests on an 8-kilowatt single-phase line-commutated inverter
NASA Technical Reports Server (NTRS)
Stover, J. B.
1978-01-01
Efficiency and power factor were measured as functions of solar array voltage and current. The effects of input shunt capacitance and series inductance were determined. Tests were conducted from 15 to 75 percent of the 8 kW rated inverter input power. Measured efficiencies ranged from 76 percent to 88 percent at about 50 percent of rated inverter input power. Power factor ranged from 36 percent to 72 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurkin, N V; Konyshev, V A; Novikov, A G
2015-01-31
We have studied experimentally and using numerical simulations and a phenomenological analytical model the dependences of the bit error rate (BER) on the signal power and length of a coherent single-span communication line with transponders employing polarisation division multiplexing and four-level phase modulation (100 Gbit s{sup -1} DP-QPSK format). In comparing the data of the experiment, numerical simulations and theoretical analysis, we have found two optimal powers: the power at which the BER is minimal and the power at which the fade margin in the line is maximal. We have derived and analysed the dependences of the BER on themore » optical signal power at the fibre line input and the dependence of the admissible input signal power range for implementation of the communication lines with a length from 30 – 50 km up to a maximum length of 250 km. (optical transmission of information)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akulov, V A; Kablukov, S I; Babin, Sergei A
2012-02-28
This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less
Phase stabilization for mode locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.T.
A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less
High temperature helical tubular receiver for concentrating solar power system
NASA Astrophysics Data System (ADS)
Hossain, Nazmul
In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.
Motion compensation via redundant-wavelet multihypothesis.
Fowler, James E; Cui, Suxia; Wang, Yonghui
2006-10-01
Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.
Thermal management system options for high power space platforms
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; Lehtinen, A.; Parish, R.
1985-01-01
Thermal Management System (TMS) design options for a high power (75kWe), low earth orbit, multimodule space platform were investigated. The approach taken was to establish a baseline TMS representative of current technology, and to make incremental improvements through successive subsystem trades that lead to a candidate TMS. The TMS trades included centralized and decentralized transport, single-phase and two-phase transport, alternate working fluids, liquid loop and heat pipe radiators, deployed fixed, body mounted and steerable radiators, and thermal storage. The subsystem options were evaluated against criteria such as weight, TMS power requirement, reliability, system isothermality penalty, and growth potential.
Poynting Vector in High-Temperature Superconducting Transformers with a Separate Excitation Winding
NASA Astrophysics Data System (ADS)
Volkov, E. P.; Dzhafarov, E. A.
2017-12-01
The HTSC transformer with a separate winding for excitation of the mutual magnetic flux is considered; the windings of the transformer are performed of first- or second-generation HTSC wires. The article presents the design and the electrical circuit of the transformer, the equations of electromagnetic balance, and the total resistance of the primary and secondary power windings and the separate excitation winding. The transfer of the electromagnetic field energy is considered in a single-phase HTSC transformer with the separate excitation winding using the Poynting vector. The temporal change in the reactive and active components of the Poynting vector and the decrease in the leakage energy flux of the separate excitation winding are shown, which causes an increase in the critical current density of the HTSC power windings, a decrease in the energy losses in the latter, and an increase the in the specific power of the HTSC transformer.
High performance mode locking characteristics of single section quantum dash lasers.
Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim
2012-04-09
Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.
Virtual Oscillator Controls | Grid Modernization | NREL
Virtual Oscillator Controls Virtual Oscillator Controls NREL is developing virtual oscillator Santa-Barbara, and SunPower. Publications Synthesizing Virtual Oscillators To Control Islanded Inverters Synchronization of Parallel Single-Phase Inverters Using Virtual Oscillator Control, IEEE Transactions on Power
Space station WP-04 power system. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
Mendez-Villanueva, Alberto; Palazzi, Dino; Ahmaidi, Saïd
2016-01-01
Purpose The aims of this study were to 1) compare the metabolic power demand of straight-line and change of direction (COD) sprints including 45° or 90°-turns, and 2) examine the relation between estimated metabolic demands and muscular activity throughout the 3 phases of COD-sprints. Methods Twelve highly-trained soccer players performed one 25-m and three 20-m sprints, either in straight-line or with one 45°- or 90°-COD. Sprints were monitored with 2 synchronized 100-Hz laser guns to assess players’ velocities before, during and after the COD. Acceleration and deceleration were derived from changes in speed over time. Metabolic power was estimated based on di Prampero’s approach (2005). Electromyography amplitude (RMS) of 2 lower limb muscles was measured. The expected energy expenditure during time-adjusted straight-line sprints (matching COD sprints time) was also calculated. Results Locomotor-dependant metabolic demand was largely lower with COD (90°, 142.1±13.5 J.kg-1) compared with time-adjusted (effect size, ES = -3.0; 193.2±18.6 J.kg-1) and non-adjusted straight-line sprints (ES = -1.7; 168.4±15.3 J.kg-1). Metabolic power requirement was angle-dependent, moderately lower for 90°-COD vs. 45°-COD sprint (ES = -1.0; 149.5±10.4 J.kg-1). Conversely, the RMS was slightly- (45°, ES = +0.5; +2.1%, 90% confidence limits (±3.6) for vastus lateralis muscle (VL)) to-largely (90°, ES = +1.6; +6.1 (3.3%) for VL) greater for COD-sprints. Metabolic power/RMS ratio was 2 to 4 times lower during deceleration than acceleration phases. Conclusion Present results show that COD-sprints are largely less metabolically demanding than linear sprints. This may be related to the very low metabolic demand associated with the deceleration phase during COD-sprints that may not be compensated by the increased requirement of the reacceleration phase. These results also highlight the dissociation between metabolic and muscle activity demands during COD-sprints, which questions the use of metabolic power as a single measure of running load in soccer. PMID:26930649
Automated power distribution system hardware. [for space station power supplies
NASA Technical Reports Server (NTRS)
Anderson, Paul M.; Martin, James A.; Thomason, Cindy
1989-01-01
An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.
Combrisson, Etienne; Perrone-Bertolotti, Marcela; Soto, Juan Lp; Alamian, Golnoush; Kahane, Philippe; Lachaux, Jean-Philippe; Guillot, Aymeric; Jerbi, Karim
2017-02-15
Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase, amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive. Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at movement execution, and during the delay period where motor intention is present but execution is withheld. In particular, we used a machine-learning framework to identify the key contributions of various neuronal responses. We found a high degree of overlap between brain network patterns observed during planning and those present during execution. Prominent amplitude increases in the delta (2-4Hz) and high gamma (60-200Hz) bands were observed during both planning and execution. In contrast, motor alpha (8-13Hz) and beta (13-30Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly, single-trial classification revealed that low-frequency phase information, rather than spectral power change, was the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker decoding, PAC features led to statistically significant classification of motor states, particularly in anterior cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions. Copyright © 2016 Elsevier Inc. All rights reserved.
High Power mm-Wave Transmitter System for Radar or Telecommunications
NASA Technical Reports Server (NTRS)
Stride, S. L.; McMaster, R. L.; Pogorzelski, R. J.
2003-01-01
Future NASA deep space missions able to provide tens of kilo-watts of spacecraft DC power, make it feasible to employ high power RF telecommunications systems. Traditional flight systems (e.g., Cassini), constrained by limited DC power, used a single high-gain 4m Cassegrain reflector fed by a single lower power (20W) transmitter. Increased available DC power means that high power (1000 W) transmitters can be used. Rather than continue building traditional single-transmitter systems it now becomes feasible to engineer and build multi-element active arrays that can illuminate a dish. Illuminating a 2m dish with a spherical wavefront from an offset 1kW active array can provide sufficient ERP (Effective Radiated Power) when compared to a larger Cassegrain dish. Such a system has the advantage of lower mass, lower volume, improved reliability, less stringent pointing requirements, lower cost and risk. We propose to design and build a prototype Ka-band transmit antenna with an active sub-array using 125W TWTAs. The system could be applied to a telecommunications downlink or radar transmitter used for missions such as JIMO.
NASA Astrophysics Data System (ADS)
Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.
2018-04-01
The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.
Solar Power Satellite (SPS) fiber optic link assessment
NASA Technical Reports Server (NTRS)
1980-01-01
A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.
High performance protection circuit for power electronics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta
2015-12-23
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less
Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu
2013-04-01
Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.
NASA Astrophysics Data System (ADS)
Wang, Xi; Zhang, Bichan; Zhao, Hua; Su, Yongbo; Muhammad, Asif; Guo, Dong; Jin, Zhi
2017-08-01
This letter presents a high speed 2:1 regenerative dynamic frequency divider with an active transformer fabricated in 0.7 μm InP DHBT technology with {f}{{T}} of 165 GHz and {f}\\max of 230 GHz. The circuit includes a two-stage active transformer, input buffer, divider core and output buffer. The core part of the frequency divider is composed of a double-balanced active mixer (widely known as the Gilbert cell) and a regenerative feedback loop. The active transformer with two stages can contribute to positive gain and greatly improve phase difference. Instead of the passive transformer, the active one occupies a much smaller chip area. The area of the chip is only 469× 414 μ {{{m}}}2 and it entirely consumes a total DC power of only 94.6 mW from a single -4.8 V DC supply. The measured results present that the divider achieves an operating frequency bandwidth from 75 to 80 GHz, and performs a -23 dBm maximum output power at 37.5 GHz with a 0 dBm input signal of 75 GHz.
NASA Astrophysics Data System (ADS)
Buchman, Michael; Winter, Amos
2015-11-01
Turbocharging an engine increases specific power, improves fuel economy, reduces emissions, and lowers cost compared to a naturally aspirated engine of the same power output. These advantages make turbocharging commonplace for multi-cylinder engines. Single cylinder engineers are not commonly turbocharged due to the phase lag between the exhaust stroke, which powers the turbocharger, and the intake stroke, when air is pumped into the engine. Our proposed method of turbocharging single cylinder engines is to add an ``air capacitor'' to the intake manifold, an additional volume that acts as a buffer to store compressed air between the exhaust and intake strokes, and smooth out the pressure pulses from the turbocharger. This talk presents experimental results from a single cylinder, turbocharged diesel engine fit with various sized air capacitors. Power output from the engine was measured using a dynamometer made from a generator, with the electrical power dissipated with resistive heating elements. We found that intake air density increases with capacitor size as theoretically predicted, ranging from 40 to 60 percent depending on heat transfer. Our experiment was able to produce 29 percent more power compared to using natural aspiration. These results validated that an air capacitor and turbocharger may be a simple, cost effective means of increasing the power density of single cylinder engines.
Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.
Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo
2018-05-15
We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.
Study of the choice of the decoupling layout for the ITER ICRH system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vervier, M., E-mail: michel.vervier@rma.ac.be; Messiaen, A.; Ongena, J.
10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition ofmore » four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Hui; Mignolet, Benoit; Fang, Li
The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1–5 × 10 14 W/cm 2), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho 3N@C 80 q+, q = 1–2, was found to be different from that of C 60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C 60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho 3N@C 80 is responsible for the nmore » = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10 14 W/cm 2.« less
An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)
Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation
NASA Astrophysics Data System (ADS)
Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui
2018-04-01
The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n > 2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n > 2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n = 2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.
OPERATIONAL CHARACTERISTICS OF THE ARMOUR FISSION GAS GAMMA FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrell, C.W.; McElroy, W.N.
1958-10-31
As the reactor power level is changed frequently, the radiation levels in the gamma facility fluctuate. Data are presented to show the power dependency of the gamma dose rate and the manner of growth and decay. Additional data show the dependercy of the equilibrium gamma activity on the foel temperature and total system pressure. The final phase of the work is directed toward determining an average gamma energy by attenuation measurements with various thicknesses of several materials. The neutrou flux associated with the gas phase activity is determined by foil measurement. From the measurements of dose rate and average gammamore » energy, calculations to determine the number of curies of gas phase decay gamma activity per watt of reactor power are presented. (auth)« less
Energy storage and thermal control system design status. [for space station power supplies
NASA Technical Reports Server (NTRS)
Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert
1989-01-01
The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.
Status of 20 kHz space station power distribution technology
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1988-01-01
Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.
2014-02-12
Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” Themore » relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.« less
Hohimer, John P.
1994-01-01
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.
Hohimer, J.P.
1994-06-07
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.
NASA Astrophysics Data System (ADS)
Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin
2018-06-01
This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.
NASA Astrophysics Data System (ADS)
Sinha, Pampa; Nath, Sudipta
2010-10-01
The main aspects of power system delivery are reliability and quality. If all the customers of a power system get uninterrupted power through the year then the system is considered to be reliable. The term power quality may be referred to as maintaining near sinusoidal voltage at rated frequency at the consumers end. The power component definitions are defined according to the IEEE Standard 1459-2000 both for single phase and three phase unbalanced systems based on Fourier Transform (FFT). In the presence of nonstationary power quality (PQ) disturbances results in accurate values due to its sensitivity to the spectral leakage problem. To overcome these limitations the power quality components are calculated using Discrete Wavelet Transform (DWT). In order to handle the uncertainties associated with electric power systems operations fuzzy logic has been incorporated in this paper. A new power quality index has been introduced here which can assess the power quality under nonstationary disturbances.
Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.
2015-01-01
In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667
SPIKE-2: a Practical Stirling Engine for Kilowatt Level Solar Power
NASA Technical Reports Server (NTRS)
Beale, W. T.
1984-01-01
Recent advances in the art of free piston Stirling engine design make possible the production of 1-10kW free piston Stirling linear alternator engine, hermetically sealed, efficient, durable and simple in construction and operation. Power output is in the form of single or three phase 60 Hz. AC, or DC. The three phase capability is available from single machines without need of external conditioning. Engine voltage control regains set voltage within 5 cycles in response to any load change. The existing SPIKE-2 design has an engine alternator efficiency of 25% at 650 C heater wall temperature and a service life of over three years in solar service. The same system can be scaled over a range of at least 100 watts to 25kW.
SPS phase control system performance via analytical simulation
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Kantak, A. V.; Chie, C. M.; Booth, R. W. D.
1979-01-01
A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems.
NASA Astrophysics Data System (ADS)
Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui
2012-08-01
Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.
NASA Astrophysics Data System (ADS)
Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick
2016-05-01
We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2<1.26 for the SH beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.
Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo; Lee, Eun-Hye; Kim, Tae-Wook; Ahn, Tae Kyu; Oh, Seung-Hwan; Jang, Sung-Yeon
2017-05-01
Colloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej
2013-01-01
Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.
Wind Powering America's Regional Stakeholder Meetings and Priority State Reports: FY11 Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-06-01
Beginning in 2010, DOE conducted an assessment of Wind Powering America (WPA) activities to determine whether the methods the department had used to help grow the wind industry to provide 2% of the nation's electrical energy should be the same methods used to achieve 20% of the nation's energy from wind (as described in the report 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply). After the assessment, it was determined that the initiative's state-based activities should be phased out as part of a shift to regional-based approaches. To assist with this transition, WPA hosted amore » series of 1-day regional meetings at six strategic locations around the country and a single teleconference for island states, U.S. territories, and remote communities. This report summarizes the results of the inaugural regional meetings and the state reports with a focus on ongoing wind deployment barriers in each region.« less
Wind Powering America's Regional Stakeholder Meetings and Priority State Reports: FY11 Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, Ian
2013-06-01
Beginning in 2010, DOE conducted an assessment of Wind Powering America (WPA) activities to determine whether the methods the department had used to help grow the wind industry to provide 2% of the nation's electrical energy should be the same methods used to achieve 20% of the nation's energy from wind (as described in the report 20% Wind Energy by 2030: Increasing Wind Energy's Contribution toU.S. Electricity Supply). After the assessment, it was determined that the initiative's state-based activities should be phased out as part of a shift to regional-based approaches. To assist with this transition, WPA hosted a seriesmore » of 1-day regional meetings at six strategic locations around the country and a single teleconference for island states, U.S. territories, and remote communities.This report summarizes the results of the inaugural regional meetings and the state reports with a focus on ongoing wind deployment barriers in each region.« less
Li, Ningzhi; An, Li; Johnson, Christopher; Shen, Jun
2017-01-01
Due to imperfect slice profiles, unwanted signals from outside the selected voxel may significantly contaminate metabolite signals acquired using in vivo magnetic resonance spectroscopy (MRS). The use of outer volume suppression may exceed the SAR threshold, especially at high field. We propose using phase-encoding gradients after radiofrequency (RF) excitation to spatially encode unwanted signals originating from outside of the selected single voxel. Phase-encoding gradients were added to a standard single voxel point-resolved spectroscopy (PRESS) sequence which selects a 2 × 2 × 2 cm 3 voxel. Subsequent spatial Fourier transform was used to encode outer volume signals. Phantom and in vivo experiments were performed using both phase-encoded PRESS and standard PRESS at 7 Tesla. Quantification was performed using fitting software developed in-house. Both phantom and in vivo studies showed that spectra from the phase-encoded PRESS sequence were relatively immune from contamination by oil signals and have more accurate quantification results than spectra from standard PRESS spectra of the same voxel. The proposed phase-encoded single-voxel PRESS method can significantly suppress outer volume signals that may appear in the spectra of standard PRESS without increasing RF power deposition.
Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.
1983-01-01
current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit
NASA Astrophysics Data System (ADS)
Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad
2017-03-01
The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.
Single-Event Effects in Silicon and Silicon Carbide Power Devices
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.
2014-01-01
NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.
Double minute chromosomes in mouse methotrexate-resistant cells studied by atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Xinyu; Zhang Liangyu; Zhang Yu
2006-08-11
Double minute chromosomes (DMs) are acentric, autonomously replicating extra-chromosomes and frequently mediate gene amplification in tumor and drug resistant cells. Atomic force microscopy (AFM) is a powerful tool in microbiology. We used AFM to explore the ultrastructure of DMs in mouse fibroblasts 3T3R500. DMs in various phases of cell cycle were also studied in order to elucidate the mechanisms of their duplication and separation. Metaphase spread and induced premature condensed chromosomes (PCCs) were observed under the AFM. DMs were detected to be composed of two compact spheres linked by fibers. The fibers of DMs directly connected with metaphase chromosomes weremore » observed. Many single-minutes and few DMs were detected in G1 PCCs, while more DMs were detected in S PCCs than in G1 PCCs. Besides, all of the DMs in G2 PCCs were coupled. Our present results suggested that DMs might divide into single-minutes during or before G1-phase, followed by duplication of the single-minutes in S-phase. Moreover, we introduced a new powerful tool to study DMs and got some ideal results.« less
Tactical swimming activity and heart rate aspects of youth water polo game.
Lupo, Corrado; Capranica, Laura; Cugliari, Giovanni; Gomez, Miguel A; Tessitore, Antonio
2016-09-01
Although physical demands could differently occur during particular phases of the youth water polo game, at present, literature lacks of time-motion and heart rate data referred to specific tactical situation. Therefore, the present study aimed to analyze a youth water polo game, specifying heart rate, and swimming activity aspects in relation to game situations. Twenty-six youth male players (15.6±0.5 years old) voluntary played a friendly game, which was tactically analyzed (offensive and defensive Even and Counterattack situation, and Power-play, Inferiority and Game Breaks) using notational analysis procedures. Successively, the heart rate (aerobic, anaerobic) and time motion (horizontal, vertical, and duel swimming patterns, with and without ball possession, backstroke) analyses were applied only to six (3 for team) players because they performed at list half of the total game duration. The tactical scenarios were mainly characterized by offensive (33%) and defensive (33%) even possessions, and game breaks (23%). No effect emerged between situations in terms of heart rate distribution, because it principally resulted as aerobic (range: 58-97%). The swimming activity analysis mainly showed differences (P≤0.05) between offensive counterattack and power-play in terms of distance (1 min of game, single pattern), time duration (1 min of game), and speed (single pattern) related to the horizontal activity. Repeated high intensity activities were performed 3.0±2.8 (range: 1-7) during the game. The findings of the present study provide important information for the planning of youth water polo training, with specific reference to playing situations.
Complete analog control of the carrier-envelope-phase of a high-power laser amplifier.
Feng, C; Hergott, J-F; Paul, P-M; Chen, X; Tcherbakoff, O; Comte, M; Gobert, O; Reduzzi, M; Calegari, F; Manzoni, C; Nisoli, M; Sansone, G
2013-10-21
In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.
Research on Robust Control Strategies for VSC-HVDC
NASA Astrophysics Data System (ADS)
Zhu, Kaicheng; Bao, Hai
2018-01-01
In the control system of VSC-HVDC, the phase locked loop provides phase signals to voltage vector control and trigger pulses to generate the required reference phase. The PLL is a typical second-order system. When the system is in unstable state, it will oscillate, make the trigger angle shift, produce harmonic, and make active power and reactive power coupled. Thus, considering the external disturbances introduced by the PLL in VSC-HVDC control system, the parameter perturbations of the controller and the model uncertainties, a H∞ robust controller of mixed sensitivity optimization problem is designed by using the Hinf function provided by the robust control toolbox. Then, compare it with the proportional integral controller through the MATLAB simulation experiment. By contrast, when the H∞ robust controller is added, active and reactive power of the converter station can track the change of reference values more accurately and quickly, and reduce overshoot. When the step change of active and reactive power occurs, mutual influence is reduced and better independent regulation is achieved.
Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano
2016-09-01
Possible delays in pre-activation or deficiencies in the activity of the dynamic muscle stabilizers of the knee and hip joints are the most common causes of the patellofemoral pain syndrome (PFPS). The aim of the study was to compare kinematic variables and electromyographic activity of the vastus lateralis, biceps femoris, gluteus maximus and gluteus medius muscles between patients with PFPS and health subjects during the single leg triple hop test (SLTHT). This study included 14 female with PFPS (PFPS group) and 14 female healthy with no history of knee pain (Healthy group). Kinematic and EMG data ware collected through participants performed a single session of the SLTHT. The PFPS group exhibited a significant increase (p<0.05) in the EMG activity of the biceps femoris and vastus lateralis muscles, when compared with the healthy group in pre-activity and during the stance phase. This same result was also found for the vastus lateralis muscle (p<0.05) when analyzing the EMG activity during the eccentric phase of the stance phase. In kinematic analysis, no significant differences were found between the groups. These results indicate that biceps femoris and vastus lateralis muscles mainly during the pre-activation phase and stance phases of the SLTHT are more active in PFPS group among healthy group. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less
Joint probability of statistical success of multiple phase III trials.
Zhang, Jianliang; Zhang, Jenny J
2013-01-01
In drug development, after completion of phase II proof-of-concept trials, the sponsor needs to make a go/no-go decision to start expensive phase III trials. The probability of statistical success (PoSS) of the phase III trials based on data from earlier studies is an important factor in that decision-making process. Instead of statistical power, the predictive power of a phase III trial, which takes into account the uncertainty in the estimation of treatment effect from earlier studies, has been proposed to evaluate the PoSS of a single trial. However, regulatory authorities generally require statistical significance in two (or more) trials for marketing licensure. We show that the predictive statistics of two future trials are statistically correlated through use of the common observed data from earlier studies. Thus, the joint predictive power should not be evaluated as a simplistic product of the predictive powers of the individual trials. We develop the relevant formulae for the appropriate evaluation of the joint predictive power and provide numerical examples. Our methodology is further extended to the more complex phase III development scenario comprising more than two (K > 2) trials, that is, the evaluation of the PoSS of at least k₀ (k₀≤ K) trials from a program of K total trials. Copyright © 2013 John Wiley & Sons, Ltd.
Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang
2014-01-01
Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... must activate in the machinery space upon— (1) Failure of any phase of a three-phase power supply; (2... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-25 Indicating and alarm systems. (a) Indication of the... accordance with § 112.15-5(h) of this chapter, draw its power from the source of emergency power. (c) On each...
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... must activate in the machinery space upon— (1) Failure of any phase of a three-phase power supply; (2... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-25 Indicating and alarm systems. (a) Indication of the... accordance with § 112.15-5(h) of this chapter, draw its power from the source of emergency power. (c) On each...
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... must activate in the machinery space upon— (1) Failure of any phase of a three-phase power supply; (2... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-25 Indicating and alarm systems. (a) Indication of the... accordance with § 112.15-5(h) of this chapter, draw its power from the source of emergency power. (c) On each...
Ferroelectric Based High Power Components for L-Band Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Jing, Chunguang; Kostin, Roman
2018-01-16
We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less
Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
2000-01-01
A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.
NASA Astrophysics Data System (ADS)
Arzuman, Anry
Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm coefficients were derived. Mercury air-phase removal efficiency was studied as a function of dominant mercury species vapor pressures, the amount of chlorine, sorbent injection rate and adsorption capacities, and process temperature and modifications. A mercury air phase removal algorithm was derived which defines the future removal efficiencies as a function of activated carbon injection rate. Mercury adsorption on soil was studied as a function of Mercury Mass Law incorporating the dominant aquatic mercury species, pH, chlorine and sulfur concentrations, and the amount of complexed hydroxyl groups. Aquatic mercury longitudinal plume delineation was studied using the Domenico and Robbins function. A Monte Carlo simulation was performed using random number series (5000) for all of the variables in the Domenico and Robbins and mercury retardation functions. The probability that the Maximum Contaminant Level for mercury will be exceeded was found to be equal approximately 1 percent of all soil-related fly ash applications.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved method of grounding metallic frames... grounding metallic frames, casings and other enclosures receiving power from single-phase 110-220-volt... only method of grounding that will be approved is the connection of all metallic frames, casings and...
Maintaining power: women's experiences from labour onset before admittance to maternity ward.
Carlsson, Ing-Marie; Ziegert, Kristina; Sahlberg-Blom, Eva; Nissen, Eva
2012-02-01
In Sweden pregnant women are encouraged to remain at home until the active phase of labour. Recommendation is based on evidence, that women who seek care and are admitted in the latent phase of labour are subjected to more obstetric interventions and suffer more complications than women who remain at home until the active phase of labour. The aim of this study was to obtain a deeper understanding of how women, who remain at home until the active phase of labour, experience the period from labour onset until admission to labour ward. Interviews were conducted with 19 women after they had given birth to their first child. A Constructivist Grounded theory method was used. 'Maintaining power' was identified as the core category, explaining the women's experience of having enough power, when the labour started. Four related categories: 'to share the experience with another', 'to listen to the rhythm of the body', 'to distract oneself' and 'to be encased in a glass vessel', explained how the women coped and thereby maintained power. The first time mothers in this study, who managed to stay at home during the latent phase of labour, had a sense of power that was expressed as a driving force towards the birth, a bodily and mental strength and the right to decide over their own bodies. This implies that women who maintain power have the ability to make choices during the birth process. The professionals need to be sensitive, supportive and respectful to women's own preferences in the health-care encounter, to promote the existing power throughout the birthing process. Copyright © 2010 Elsevier Ltd. All rights reserved.
Energy storage and thermal control system design status
NASA Technical Reports Server (NTRS)
Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert
1989-01-01
The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousavian, Seyedamirabbas; Valenzuela, Jorge; Wang, Jianhui
2015-02-01
Ensuring the reliability of an electrical power system requires a wide-area monitoring and full observability of the state variables. Phasor measurement units (PMUs) collect in real time synchronized phasors of voltages and currents which are used for the observability of the power grid. Due to the considerable cost of installing PMUs, it is not possible to equip all buses with PMUs. In this paper, we propose an integer linear programming model to determine the optimal PMU placement plan in two investment phases. In the first phase, PMUs are installed to achieve full observability of the power grid whereas additional PMUsmore » are installed in the second phase to guarantee the N - 1 observability of the power grid. The proposed model also accounts for transmission switching and single contingencies such as failure of a PMU or a transmission line. Results are provided on several IEEE test systems which show that our proposed approach is a promising enhancement to the methods available for the optimal placement of PMUs.« less
Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo
2013-10-25
The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Merging and energy exchange between optical filaments
NASA Astrophysics Data System (ADS)
Georgieva, D. A.; Kovachev, L. M.
2015-10-01
We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing Pcr trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.
Field-Oriented Control Of Induction Motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.
1993-01-01
Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.
Merging and energy exchange between optical filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg; Kovachev, L. M.
2015-10-28
We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is describedmore » through FPPM scheme and requests initial phase difference between the waves.« less
Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing
2014-09-24
In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.
Space Station 20-kHz power management and distribution system
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Sundberg, Gale R.
1986-01-01
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the Space Station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.
Space station 20-kHz power management and distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Sundberg, G. R.
1986-01-01
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.
Integrated Photonic Comb Generation: Applications in Coherent Communication and Sensing
NASA Astrophysics Data System (ADS)
Parker, John S.
Integrated photonics combines many optical components including lasers, modulators, waveguides, and detectors in close proximity via homogeneous (monolithic) or heterogeneous (using multiple materials) integration. This improves stability for interferometers and lasers, reduces the occurrence of unwanted reflections, and it avoids coupling losses between different components as they are on the same chip. Thus, less power is needed to compensate for these added losses, and less heat needs to be removed due to these power savings. In addition, integration allows the many components that comprise a system to be fabricated together, thereby reducing the cost per system and allowing rapid scaling in production throughput. Integrated optical combs have many applications including: metrology, THz frequency generation, arbitrary waveform generation, optical clocks, photonic analog-to-digital converters, sensing (imaging), spectroscopy, and data communication. A comb is a set of optical sources evenly spaced in frequency. Several methods of comb generation including mode-locking and optical parametric oscillation produce phase-matched optical outputs with a fixed phase relationship between the frequency lines. When the absolute frequency of a single comb line is stabilized along with the frequency spacing between comb lines, absolute phase and frequency precision can be achieved over the entire comb bandwidth. This functionality provides tremendous benefits to many applications such as coherent communication and optical sensing. The goals for this work were achieving a broad comb bandwidth and noise reduction, i.e., frequency and phase stability. Integrated mode-locked lasers on the InGaAsP/InP material platform were chosen, as they could be monolithically integrated with the wide range of highly functional and versatile photonic integrated circuits (PICs) previously demonstrated on this platform at UCSB. Gain flattening filters were implemented to increase the comb bandwidths to 2.5 THz. Active mode-locking with an RF source was used to precisely set the frequency spacing between comb lines with better than 10 Hz accuracy. An integrated optical phase-locked loop (OPLL) for the comb was designed, built, and tested. The OPLL fixed a single comb line to a stable single linewidth laser, demonstrating a ˜430 Hz FWHM optical linewidth on the locked comb line and 20º RMS phase deviation between the comb and optical reference. The free-running linewidth is 50--100 MHz, demonstrating over 50 dB improvement in optical linewidth via locking. An integrated tunable laser (SG-DBR) with an OPLL was phase-locked to a comb source with a fixed offset frequency, thus showing the potential for using a comb with SG-DBRs as a compact frequency synthesizer.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
Tağluk, M E; Cakmak, E D; Karakaş, S
2005-04-30
Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics.
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J
2006-04-01
A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.
Investigation on phase noise of the signal from a singly resonant optical parametric oscillator
NASA Astrophysics Data System (ADS)
Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang
2018-04-01
The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.
New approaches to provide ride-through for critical loads in electric power distribution systems
NASA Astrophysics Data System (ADS)
Montero-Hernandez, Oscar C.
2001-07-01
The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly-phase voltage sags. Algorithms capable of detecting voltage disturbances such as voltage sags, voltage swells, flicker, frequency change, and harmonics in a fast and reliable way are investigated and developed in this dissertation as an essential part of the approaches previously described. Simulation and experimental work has been done to validate the feasibility of all approaches under the most common voltage disturbances such as single-phase voltage sags and three-phase voltage sags.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
NASA Astrophysics Data System (ADS)
Kovachev, L. M.; Georgieva, D. A.; Dakova, A. M.
2015-10-01
We investigate two types of nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing {{P}\\text{cr}} . In the first case we study energy exchange between filaments. The model describes this process through a degenerate four-photon parametric mixing (FPPM) scheme and requests initial phase difference between the waves. When there is no initial phase difference between the pulses, the FPPM process does not work. In this case the second type of interaction is obtained as merging between two, three or four filaments in a single filament with higher power. It is found that in the second case the interflow between the filaments has the potential for interaction due to cross-phase modulation (CPM).
NASA Astrophysics Data System (ADS)
Steigerwald, R. L.; Ferraro, A.; Turnbull, F. G.
1983-04-01
Power conditioning systems that interface with photovoltaic arrays are presently investigated for the cases of 5-30 kW residential systems interfacing with a 240-V single-phase utility connection, and 30-200 kW intermediate systems interfacing with a 480-V three-phase utility connection. Both systems require an isolation transformer between the array and the utility interface. A tradeoff study is conducted for numerous transistor and thyristor circuits and configurations, with weighting criteria that include full- and part-load efficiency, size, weight, reliability, ease of control, injected harmonics, reactive power requirements, and parts cost. On the basis of study results, a 10-kW high frequency transistor inverter feeding a high frequency isolation transformer with a sinusoidally shaped current wave was selected.
Effects of evening bright light exposure on melatonin, body temperature and sleep.
Bunnell; Treiber; Phillips; Berger
1992-03-01
Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection
NASA Astrophysics Data System (ADS)
Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel
1991-04-01
Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.
Design and Development of the Solar Dynamics Observatory (SDO) Electrical Power System
NASA Technical Reports Server (NTRS)
Denney, Keys; Burns, Michael; Kercheval, Bradford
2009-01-01
The SDO spacecraft was designed to help us understand the Sun's influence on Earth and Near-Earth space by studying the solar atmosphere on small scales of space and time and in many wavelengths simultaneously. It will perform its operations in a geosynchronous orbit of the earth. This paper will present background on the SDO mission, an overview of the design and development activities associated specifically with the SDO electrical power system (EPS), as well as the major driving requirements behind the mission design. The primary coverage of the paper will be devoted to some of the challenges faced during the design and development phase. This will include the challenges associated with development of a compatible CompactPCI (cPCI) interface within the Power System Electronics (PSE) in order to utilize a "common" processor card, implementation of new solid state power controllers (SSPC) for primary load distribution switching and over current protection in the PSE, and the design approach adopted to meet single fault tolerance requirements for all of the SDO EPS functions.
Space shuttle guidance, navigation, and control design equations. Volume 3: Guidance
NASA Technical Reports Server (NTRS)
1973-01-01
Space shuttle guidance, navigation, and control design equations are presented. The space-shuttle mission includes three relatively distinct guidance phases which are discussed; atmospheric boost, which is characterized by an adaptive guidance law; extra-atmospheric activities; and re-entry activities, where aerodynamic surfaces are the principal effectors. Guidance tasks include pre-maneuver targeting and powered flight guidance, where powered flight is defined to include the application of aerodynamic forces as well as thruster forces. A flow chart which follows guidance activities throughout the mission from the pre-launch phase through touchdown is presented. The main guidance programs and subroutines used in each phase of a typical rendezvous mission are listed. Detailed software requirements are also presented.
ERIC Educational Resources Information Center
Pohl, Nicola; Schwarz, Kimberly
2008-01-01
We describe an experiment for the undergraduate organic laboratory curriculum in which 2-bromoacetophenone is converted to 2-fluoroacetophenone using a solid-phase nucleophilic fluorine source. The experiment introduces students to the utility of solid-phase reagents in organic synthesis, to NMR-active nuclei other than [to the first power]H…
Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn
2017-06-02
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-16
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-01-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
NASA Astrophysics Data System (ADS)
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Active thermal control systems for lunar and Martian exploration
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John
1990-01-01
Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.
Free-piston Stirling engine conceptual design and technologies for space power, phase 1
NASA Technical Reports Server (NTRS)
Penswick, L. Barry; Beale, William T.; Wood, J. Gary
1990-01-01
As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.
Höhne, Marlene; Jahanbekam, Amirhossein; Bauckhage, Christian; Axmacher, Nikolai; Fell, Juergen
2016-10-01
Mediotemporal EEG characteristics are closely related to long-term memory formation. It has been reported that rhinal and hippocampal EEG measures reflecting the stability of phases across trials are better suited to distinguish subsequently remembered from forgotten trials than event-related potentials or amplitude-based measures. Theoretical models suggest that the phase of EEG oscillations reflects neural excitability and influences cellular plasticity. However, while previous studies have shown that the stability of phase values across trials is indeed a relevant predictor of subsequent memory performance, the effect of absolute single-trial phase values has been little explored. Here, we reanalyzed intracranial EEG recordings from the mediotemporal lobe of 27 epilepsy patients performing a continuous word recognition paradigm. Two-class classification using a support vector machine was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies and time points. We demonstrate that it is possible to successfully predict single-trial memory formation in the majority of patients (23 out of 27) based on only three single-trial phase values given by a rhinal phase, a hippocampal phase, and a rhinal-hippocampal phase difference. Overall classification accuracy across all subjects was 69.2% choosing frequencies from the range between 0.5 and 50Hz and time points from the interval between -0.5s and 2s. For 19 patients, above chance prediction of subsequent memory was possible even when choosing only time points from the prestimulus interval (overall accuracy: 65.2%). Furthermore, prediction accuracies based on single-trial phase surpassed those based on single-trial power. Our results confirm the functional relevance of mediotemporal EEG phase for long-term memory operations and suggest that phase information may be utilized for memory enhancement applications based on deep brain stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Josephson Photodetectors via Temperature-to-Phase Conversion
NASA Astrophysics Data System (ADS)
Virtanen, P.; Ronzani, A.; Giazotto, F.
2018-05-01
We theoretically investigate the temperature-to-phase conversion (TPC) process occurring in dc superconducting quantum interferometers based on superconductor-normal-metal-superconductor (S -N -S ) mesoscopic Josephson junctions. In particular, we predict the temperature-driven rearrangement of the phase gradients in the interferometer under the fixed constraints of fluxoid quantization and supercurrent conservation. This mechanism allows sizeable phase variations across the junctions for suitable structure parameters and temperatures. We show that the TPC can be a basis for sensitive single-photon sensors or bolometers. We propose a radiation detector realizable with conventional materials and state-of-the-art nanofabrication techniques. Integrated with a superconducting quantum-interference proximity transistor as a readout setup, an aluminum-based TPC calorimeter can provide a large signal-to-noise ratio >100 in the 10-GHz-10-THz frequency range and a resolving power larger than 1 02 below 50 mK for terahertz photons. In the bolometric operation, electrical noise equivalent power of approximately 10-22 W /√{Hz } is predicted at 50 mK. This device can be attractive as a cryogenic single-photon sensor operating in the giga- and terahertz regime with applications in dark-matter searches.
High free carrier concentration in p-GaN grown on AlN substrates
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Mita, Seiji; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Tweedie, James; Bryan, Isaac; Bryan, Zachary; Kirste, Ronny; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko
2017-07-01
A high free hole concentration in III-nitrides is important for next generation optoelectronic and high power electronic devices. The free hole concentration exceeding 1018 cm-3 and resistivity as low as 0.7 Ω cm are reported for p-GaN layers grown by metalorganic vapor phase epitaxy on single crystal AlN substrates. Temperature dependent Hall measurements confirmed a much lower activation energy, 60-80 mV, for p-GaN grown on AlN as compared to sapphire substrates; the lowering of the activation energy was due to screening of Coulomb potential by free carriers. It is also shown that a higher doping density (more than 5 × 1019 cm-3) can be achieved in p-GaN/AlN without the onset of self-compensation.
Phase Transitions of Thermoelectric TAGS-85.
Kumar, Anil; Vermeulen, Paul A; Kooi, Bart J; Rao, Jiancun; van Eijck, Lambert; Schwarzmüller, Stefan; Oeckler, Oliver; Blake, Graeme R
2017-12-18
The alloys (GeTe) x (AgSbTe 2 ) 100-x , commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200-500 °C. They adopt a rhombohedrally distorted rocksalt structure at room temperature and are reported to undergo a reversible phase transition to a cubic structure at ∼250 °C. However, we show that, for the optimal x = 85 composition (TAGS-85), both the structural and thermoelectric properties are highly sensitive to the initial synthesis method employed. Single-phase rhombohedral samples exhibit the best thermoelectric properties but can only be obtained after an annealing step at 600 °C during initial cooling from the melt. Under faster cooling conditions, the samples obtained are inhomogeneous, containing multiple rhombohedral phases with a range of lattice parameters and exhibiting inferior thermoelectric properties. We also find that when the room-temperature rhombohedral phase is heated, an intermediate trigonal structure containing ordered cation vacancy layers is formed at ∼200 °C, driven by the spontaneous precipitation of argyrodite-type Ag 8 GeTe 6 which alters the stoichiometry of the TAGS-85 matrix. The rhombohedral and trigonal phases of TAGS-85 coexist up to 380 °C, above which a single cubic phase is obtained and the Ag 8 GeTe 6 precipitates redissolve into the matrix. On subsequent cooling a mixture of rhombohedral, trigonal, and Ag 8 GeTe 6 phases is again obtained. Initially single-phase samples exhibit thermoelectric power factors of up to 0.0035 W m -1 K -2 at 500 °C, a value that is maintained on subsequent thermal cycling and which represents the highest power factor yet reported for undoped TAGS-85. Therefore, control over the structural homogeneity of TAGS-85 as demonstrated here is essential in order to optimize the thermoelectric performance.
Phase-locked array of quantum cascade lasers with an integrated Talbot cavity.
Wang, Lei; Zhang, Jinchuan; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Xu, Xiangang; Liu, Fengqi
2016-12-26
We show a phase-locked array of three quantum cascade lasers with an integrated Talbot cavity at one side of the laser array. The coupling scheme is called diffraction coupling. By controlling the length of Talbot to be a quarter of Talbot distance (Zt/4), in-phase mode operation can be selected. The in-phase operation shows great modal stability under different injection currents, from the threshold current to the full power current. The far-field radiation pattern of the in-phase operation contains three lobes, one central maximum lobe and two side lobes. The interval between adjacent lobes is about 10.5°. The output power is about 1.5 times that of a single-ridge laser. Further studies should be taken to achieve better beam performance and reduce optical losses brought by the integrated Talbot cavity.
Solar Power Satellite Microwave Transmission and Reception
NASA Technical Reports Server (NTRS)
Dietz, R. H.
1980-01-01
Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Cartaxo, Adolfo V. T.
2005-03-01
This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark A. Johnson
2012-06-29
Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.
Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A
2016-06-01
Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Sood, Pradeep K.
1987-01-01
Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.
Phase change energy storage for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Chiaramonte, F. P.; Taylor, J. D.
1992-01-01
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Phase change energy storage for solar dynamic power systems
NASA Astrophysics Data System (ADS)
Chiaramonte, F. P.; Taylor, J. D.
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon
2016-10-01
Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Pyrkov, Yu. N.; Tsvetkov, V. B.
2017-12-01
We have demonstrated stable operation of a system for maintaining a constant phase difference between two laser channels with a total output power of 60 W. The system is based on a two-channel fibre amplifier with phase modulators based on piezoceramic spools. At a main piezo element modulation frequency of 11 kHz, the phasing time after thermal and mechanical influences on the active medium is 100 ms.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures
NASA Astrophysics Data System (ADS)
Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.
2017-10-01
This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of >17 dB, an insertion loss of <1.97 dB and maximum isolation of >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to >100 million cycles at 25° C; they can even sustained up to >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of <6 dB, return loss of >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
Some Aspects of an Air-Core Single-Coil Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Hamlet, Irvin L.; Kilgore, Robert A.
1966-01-01
This paper presents some of the technical aspects in the development at the Langley Research Center of an air-cove, dual-wound, single-coil, magnetic-suspension system with one-dimensional control. Overall electrical system design features and techniques are discussed in addition to the problems of control and stability. Special treatment is given to the operation of a dual-wound, high-current support coil which provides the bias fields and superimposed modulated field. Other designs features include a six-phase, solid-state power stage for modulation of the relatively large magnitude control current, and an associated six-phase trigger circuit.
In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Li; Liu, Yang; Han, Wei-Qiang
Although a non-equilibrium single-phase reaction, with the absence of nucleation and growth of a second phase, is believed to be a key factor for high-rate performance of lithium-ion batteries, it is thermodynamically unfavorable and usually proceeds in electrode materials with small particle sizes (tens of nanometers). Unfortunately, the phase evolutions inside such small particles are often shrouded by the macroscopic inhomogeneous reactions of electrodes containing millions of particles, leading to intensive debate over the size-dependent microscopic reaction mechanisms. Here, we provide a generally applicable methodology based on in-situ electron diffraction study on a multi-particle system to track the lithiation pathwaysmore » in individual nanoparticles, and unambiguously reveal that lithiation of anatase TiO 2, previously long believed to be biphasic, converts to a single-phase reaction when the particle size is below ~25 nm. Our results imply the prevalence of such a size-dependent transition in lithiation mechanism among intercalation compounds whose lithium miscibility gaps are associated with a prominent size effect, and therefore provide important guidelines for designing high-power electrodes, especially cathodes.« less
NASA Astrophysics Data System (ADS)
Stock, Stuart R.; Almer, Jonathan D.; Birkedal, Henrik
2016-10-01
Scattered x-radiation can be used for computed tomographic reconstruction of the distribution of crystallographic phases within the interior of specimens, and diffraction patterns can be measured for each volume element (voxel) within a reconstructed slice. This modality has been applied to systems as diverse as mineralized tissues and inorganic composites. Use of high energy x-rays (E < 40 keV) offers advantages including the ability to study volumes deep with specimens and to sample large ranges of reciprocal space, i.e., many reflections. The bases of diffraction tomography are reviewed, and the power of the technique is illustrated by the results obtained for specimens containing: a) different materials (SiC/Al composite), b) different polytypes (calcite/aragonite in a bivalve attachment system); c) mixtures of nanocrystalline and amorphous phases; d) a single phase, but volumes with different lattice parameters (hydroxyapatite, hAp, the mineral in bone and tooth); e) a single phase containing a spatial distribution of crystallographic texture (bone); a single phase with a spatial distribution of strains produced by in situ loading (bone). Finally, challenges and future directions are discussed.
In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles
Zhong, Li; Liu, Yang; Han, Wei-Qiang; ...
2017-05-05
Although a non-equilibrium single-phase reaction, with the absence of nucleation and growth of a second phase, is believed to be a key factor for high-rate performance of lithium-ion batteries, it is thermodynamically unfavorable and usually proceeds in electrode materials with small particle sizes (tens of nanometers). Unfortunately, the phase evolutions inside such small particles are often shrouded by the macroscopic inhomogeneous reactions of electrodes containing millions of particles, leading to intensive debate over the size-dependent microscopic reaction mechanisms. Here, we provide a generally applicable methodology based on in-situ electron diffraction study on a multi-particle system to track the lithiation pathwaysmore » in individual nanoparticles, and unambiguously reveal that lithiation of anatase TiO 2, previously long believed to be biphasic, converts to a single-phase reaction when the particle size is below ~25 nm. Our results imply the prevalence of such a size-dependent transition in lithiation mechanism among intercalation compounds whose lithium miscibility gaps are associated with a prominent size effect, and therefore provide important guidelines for designing high-power electrodes, especially cathodes.« less
Quad-Chip Double-Balanced Frequency Tripler
NASA Technical Reports Server (NTRS)
Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain
2010-01-01
Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.
Results of the harmonics measurement program at the John F. Long photovoltaic house
NASA Astrophysics Data System (ADS)
Campen, G. L.
1982-03-01
Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.
Achievement of radiative feedback control for long-pulse operation on EAST
NASA Astrophysics Data System (ADS)
Wu, K.; Yuan, Q. P.; Xiao, B. J.; Wang, L.; Duan, Y. M.; Chen, J. B.; Zheng, X. W.; Liu, X. J.; Zhang, B.; Xu, J. C.; Luo, Z. P.; Zang, Q.; Li, Y. Y.; Feng, W.; Wu, J. H.; Yang, Z. S.; Zhang, L.; Luo, G.-N.; Gong, X. Z.; Hu, L. Q.; Hu, J. S.; Li, J.
2018-05-01
The active feedback control of radiated power to prevent divertor target plates overheating during long-pulse operation has been developed and implemented on EAST. The radiation control algorithm, with impurity seeding via a supersonic molecular beam injection (SMBI) system, has shown great success in both reliability and stability. By seeding a sequence of short neon (Ne) impurity pulses with the SMBI from the outer mid-plane, the radiated power of the bulk plasma can be well controlled, and the duration of radiative control (feedforward and feedback) is 4.5 s during a discharge of 10 s. Reliable control of the total radiated power of bulk plasma has been successfully achieved in long-pulse upper single null (USN) discharges with a tungsten divertor. The achieved control range of {{f}rad} is 20%–30% in L-mode regimes and 18%–36% in H-mode regimes. The temperature of the divertor target plates was maintained at a low level during the radiative control phase. The peak particle flux on the divertor target was decreased by feedforward Ne injection in the L-mode discharges, while the Ne pulses from the SMBI had no influence on the peak particle flux because of the very small injecting volume. It is shown that although the radiated power increased, no serious reduction of plasma-stored energy or confinement was observed during the control phase. The success of the radiation control algorithm and current experiments in radiated power control represents a significant advance for steady-state divertor radiation and heat flux control on EAST for near-future long-pulse operation.
Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV).
Brar, Tejinder Kaur; Singh, K D; Kumar, Avnish
2015-10-01
Heart Rate Variability (HRV), which is a measure of the cardiac autonomic tone, displays physiological changes throughout the menstrual cycle. The functions of the ANS in various phases of the menstrual cycle were examined in some studies. The aim of our study was to observe the effect of menstrual cycle on cardiac autonomic function parameters in healthy females. A cross-sectional (observational) study was conducted on 50 healthy females, in the age group of 18-25 years. Heart Rate Variability (HRV) was recorded by Physio Pac (PC-2004). The data consisted of Time Domain Analysis and Frequency Domain Analysis in menstrual, proliferative and secretory phase of menstrual cycle. Data collected was analysed statistically using student's pair t-test. The difference in mean heart rate, LF power%, LFnu and HFnu in menstrual and proliferative phase was found to be statistically significant. The difference in mean RR, Mean HR, RMSSD (the square root of the mean of the squares of the successive differences between adjacent NNs.), NN50 (the number of pairs of successive NNs that differ by more than 50 ms), pNN50 (the proportion of NN50 divided by total number of NNs.), VLF (very low frequency) power, LF (low frequency) power, LF power%, HF power %, LF/HF ratio, LFnu and HFnu was found to be statistically significant in proliferative and secretory phase. The difference in Mean RR, Mean HR, LFnu and HFnu was found to be statistically significant in secretory and menstrual phases. From the study it can be concluded that sympathetic nervous activity in secretory phase is greater than in the proliferative phase, whereas parasympathetic nervous activity is predominant in proliferative phase.
Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV)
Singh, K. D.; Kumar, Avnish
2015-01-01
Background Heart Rate Variability (HRV), which is a measure of the cardiac autonomic tone, displays physiological changes throughout the menstrual cycle. The functions of the ANS in various phases of the menstrual cycle were examined in some studies. Aims and Objectives The aim of our study was to observe the effect of menstrual cycle on cardiac autonomic function parameters in healthy females. Materials and Methods A cross-sectional (observational) study was conducted on 50 healthy females, in the age group of 18-25 years. Heart Rate Variability (HRV) was recorded by Physio Pac (PC-2004). The data consisted of Time Domain Analysis and Frequency Domain Analysis in menstrual, proliferative and secretory phase of menstrual cycle. Data collected was analysed statistically using student’s pair t-test. Results The difference in mean heart rate, LF power%, LFnu and HFnu in menstrual and proliferative phase was found to be statistically significant. The difference in mean RR, Mean HR, RMSSD (the square root of the mean of the squares of the successive differences between adjacent NNs.), NN50 (the number of pairs of successive NNs that differ by more than 50 ms), pNN50 (the proportion of NN50 divided by total number of NNs.), VLF (very low frequency) power, LF (low frequency) power, LF power%, HF power %, LF/HF ratio, LFnu and HFnu was found to be statistically significant in proliferative and secretory phase. The difference in Mean RR, Mean HR, LFnu and HFnu was found to be statistically significant in secretory and menstrual phases. Conclusion From the study it can be concluded that sympathetic nervous activity in secretory phase is greater than in the proliferative phase, whereas parasympathetic nervous activity is predominant in proliferative phase. PMID:26557512
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter
Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060
Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide
NASA Technical Reports Server (NTRS)
Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.
2005-01-01
The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.
The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field
Xiong, Hui; Mignolet, Benoit; Fang, Li; ...
2017-03-09
The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1–5 × 10 14 W/cm 2), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho 3N@C 80 q+, q = 1–2, was found to be different from that of C 60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C 60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho 3N@C 80 is responsible for the nmore » = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10 14 W/cm 2.« less
Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul
2017-12-01
Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Shuoting; Liu, Bo; Zheng, Sheng; ...
2018-01-01
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuoting; Liu, Bo; Zheng, Sheng
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
EMC and power quality standards for 20-kHz power distribution
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1987-01-01
The Space Station Power Distribution System has been baselined as a sinusoidal single phase, 440 VRMS system. This system has certain unique characteristics directly affecting its application. In particular, existing systematic description and control documents were modified to reflect the high operating frequency. This paper will discuss amendments made on Mil STD 704 (Electrical Power Characteristics), and Mil STD 461-B (Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference). In some cases these amendments reflect changes of several orders of magnitude. Implications and impacts of these changes are discussed.
Thermal control system for Space Station Freedom photovoltaic power module
NASA Technical Reports Server (NTRS)
Hacha, Thomas H.; Howard, Laura
1994-01-01
The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.
Thermal control system for Space Station Freedom photovoltaic power module
NASA Technical Reports Server (NTRS)
Hacha, Thomas H.; Howard, Laura S.
1992-01-01
The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.
Single-shot high-resolution characterization of optical pulses by spectral phase diversity
Dorrer, C.; Waxer, L. J.; Kalb, A.; ...
2015-12-15
The concept of spectral phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmore » in a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulse–amplification system when its stretcher is detuned from the position for optimal recompression. As a result, various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.« less
Single-shot high-resolution characterization of optical pulses by spectral phase diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, C.; Waxer, L. J.; Kalb, A.
The concept of spectral phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmore » in a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulse–amplification system when its stretcher is detuned from the position for optimal recompression. As a result, various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.« less
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
Design of a nanopatterned long focal-length planar focusing collector for concentrated solar power
NASA Astrophysics Data System (ADS)
Ding, Qing; Choubal, Aakash; Toussaint, Kimani C.
2017-02-01
Concentrated solar power (CSP) facilities heavily utilize parabolic troughs to collect and concentrate sunlight onto receivers that deliver solar thermal energy to heat engines for generating electricity. However, parabolic troughs are bulky and heavy and result in a large capital investment for CSP plants, thereby making it difficult for CSP technology to be competitive with photovoltaics. We present the design of a planar focusing collector (PFC) with focal length beyond the micron scale. The PFC design is based on the use of a nanostructured silver surface for linearly polarized singlewavelength light. The designed PFC consists of metallic nanogrooves on a dielectric substrate. The geometric properties, namely the width and depth, of a single-unit nanogroove allows for full control of the optical phase at desired spatial coordinates along the nanogroove short-axis for a single wavelength. Moreover, we show numerically that such phase control can be used to construct a phase front that mimics that of a cylindrical lens. In addition, we determine the concentration ratio by comparing the width of our PFC design to the cross-sectional width of its focal spot. We also determine the conversion efficiency at long focal lengths by evaluating the ratio of the collected optical power to the incoming optical power. Finally, we examine the focusing behavior across multiple wavelengths and angles of incidence. Our work shows how nano-optics and plasmonics could contribute to this important area of CSP technology.
Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian
2016-01-01
We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470
Thin film solar cells grown by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Yang, Fan
Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.
Gating of tactile information through gamma band during passive arm movement in awake primates
Song, Weiguo; Francis, Joseph T.
2015-01-01
To make precise and prompt action in a dynamic environment, the sensorimotor system needs to integrate all related information. The inflow of somatosensory information to the cerebral cortex is regulated and mostly suppressed by movement, which is commonly referred to as sensory gating or gating. Sensory gating plays an important role in preventing redundant information from reaching the cortex, which should be considered when designing somatosensory neuroprosthetics. Gating can occur at several levels within the sensorimotor pathway, while the underlying mechanism is not yet fully understood. The average sensory evoked potential is commonly used to assess sensory information processing, however the assumption of a stereotyped response to each stimulus is still an open question. Event related spectral perturbation (ERSP), which is the power spectrum after time-frequency decomposition on single trial evoked potentials (total power), could overcome this limitation of averaging and provide additional information for understanding the underlying mechanism. To this aim, neural activities in primary somatosensory cortex (S1), primary motor cortex (M1), and ventral posterolateral (VPL) nucleus of thalamus were recorded simultaneously in two areas (S1 and M1 or S1 and VPL) during passive arm movement and rest in awake monkeys. Our results showed that neural activity at different recording areas demonstrated specific and unique response frequency characteristics. Tactile input induced early high frequency responses followed by low frequency oscillations within sensorimotor circuits, and passive movement suppressed these oscillations either in a phase-locked or non-phase-locked manner. Sensory gating by movement was non-phase-locked in M1, and complex in sensory areas. VPL showed gating of non-phase-locked at gamma band and mix of phase-locked and non-phase-locked at low frequency, while S1 showed gating of phase-locked and non-phase-locked at gamma band and an early phase-locked elevation followed by non-phase-locked gating at low frequency. Granger causality (GC) analysis showed bidirectional coupling between VPL and S1, while GC between M1 and S1 was not responsive to tactile input. Thus, these results suggest that tactile input is dominantly transmitted along the ascending direction from VPL to S1, and the sensory input is suppressed during movement through a bottom-up strategy within the gamma-band during passive movement. PMID:26578892
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
Controlling a Four-Quadrant Brushless Three-Phase dc Motor
NASA Technical Reports Server (NTRS)
Nola, F. J.
1986-01-01
Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.
Single-stage high frequency coaxial pulse tube cryocooler with base temperature below 30 K
NASA Astrophysics Data System (ADS)
Yang, L. W.; Xun, Y. Q.; Thummes, G.; Liang, J. T.
2010-05-01
This paper introduces two single-stage high frequency coaxial pulse tube cryocoolers (PTCs) with base temperature below 30 K. One has reached the lowest temperature of 26.1 K with an electric power of 250 W, which is the reported lowest temperature for single-stage high frequency PTC without multi-bypass. Using nozzle for double-inlet instead of need valves, the second PTC has achieved the temperature of 28.6 K with an electric power of 235 W. The analysis result is coinciding with experiments in general. The paper shows the advantage of the cooperated phase adjustment method of inertance tube and double-inlet, they might be the best choice when low temperature PTC is required.
Experimental demonstration of an optical phased array antenna for laser space communications.
Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L
1994-06-20
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.
Model-based multi-fringe interferometry using Zernike polynomials
NASA Astrophysics Data System (ADS)
Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan
2018-06-01
In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.
[EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].
Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E
2014-01-01
The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.
Acute Phencyclidine Alters Neural Oscillations Evoked by Tones in the Auditory Cortex of Rats.
Schnakenberg Martin, Ashley M; OʼDonnell, Brian F; Millward, James B; Vohs, Jenifer L; Leishman, Emma; Bolbecker, Amanda R; Rass, Olga; Morzorati, Sandra L
2017-01-01
The onset response to a single tone as measured by electroencephalography (EEG) is diminished in power and synchrony in schizophrenia. Because neural synchrony, particularly at gamma frequencies (30-80 Hz), is hypothesized to be supported by the N-methyl-D-aspartate receptor (NMDAr) system, we tested whether phencyclidine (PCP), an NMDAr antagonist, produced similar deficits to tone stimuli in rats. Experiment 1 tested the effect of a PCP dose (1.0, 2.5, and 4.5 mg/kg) on response to single tones on intracranial EEG recorded over the auditory cortex in rats. Experiment 2 evaluated the effect of PCP after acute administration of saline or PCP (5 mg/kg), after continuous subchronic administration of saline or PCP (5 mg/kg/day), and after a week of drug cessation. In both experiments, a time-frequency analysis quantified mean power (MP) and phase locking factor (PLF) between 1 and 80 Hz. Event-related potentials (ERPs) were also measured to tones, and EEG spectral power in the absence of auditory stimuli. Acute PCP increased PLF and MP between 10 and 30 Hz, while decreasing MP and PLF between approximately 50 and 70 Hz. Acute PCP produced a dose-dependent broad-band increase in EEG power that extended into gamma range frequencies. There were no consistent effects of subchronic administration on gamma range activity. Acute PCP increased ERP amplitudes for the P16 and N70 components. Findings suggest that acute PCP-induced NMDAr hypofunction has differential effects on neural power and synchrony which vary with dose, time course of administration and EEG frequency. EEG synchrony and power appear to be sensitive translational biomarkers for disrupted NMDAr function, which may contribute to the pathophysiology of schizophrenia and other neuropsychiatric disorders. © 2017 S. Karger AG, Basel.
100kW Energy Transfer Multiplexer Power Converter Prototype Development Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Merrill Skeist; Richard H.; Anthony G.P. Marini
2006-03-21
Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a seriesmore » L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.« less
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Chen, Liubiao; Jin, Hai; Wang, Junjie; Zhou, Yuan; Zhu, Wenxiu; Zhou, Qiang
2013-02-01
A single-stage high frequency multi-bypass coaxial pulse tube cryocooler (PTC) has been developed for physical experiments. The performance characteristics are presented. At present, the cooler has reached the lowest temperature of 18.6 K with an electric input power of 268 W, which is the reported lowest temperature for single-stage high frequency PTC. The cooler typically provides 0.2 W at 20.6 K and 0.5 W at 24.1 K with the input power of 260 W at 300 K ambient temperature. The cooperation phase adjustment method of multi-bypass and double-inlet shows its advantages in experiments, they might be the best way to get temperature below 20 K for single-stage high frequency PTC. The temperature stability of the developed PTC is also observed.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-03-01
Sr(1-x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-07-01
Sr(1- x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
NASA Astrophysics Data System (ADS)
Bogatov, Alexandr P.; Eliseev, P. G.; Luk'yanov, S. A.; Pak, G. T.; Petrakova, T. V.
1988-11-01
A nonmonotonic dependence of the emission line width on the power was observed for a single longitudinal mode of an AlGaAs heterojunction laser. This behavior could be due to the dependence of the waveguide coefficient of the amplitude-phase coupling on the nature of operation of the laser.
NASA Astrophysics Data System (ADS)
Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi
2017-07-01
Nuclear power has progressive improvement in the operating performance of exiting reactors and ensuring economic competitiveness of nuclear electricity around the world. The GFR use gas coolant and fast neutron spectrum. This research use helium coolant which has low neutron moderation, chemical inert and single phase. Comparative study on various geometrical core design for modular GFR with UN-PuN fuel long life without refuelling has been done. The calculation use SRAC2006 code both PIJ calculation and CITATION calculation. The data libraries use JENDL 4.0. The variation of fuel fraction is 40% until 65%. In this research, we varied the geometry of core reactor to find the optimum geometry design. The variation of the geometry design is balance cylinder; it means that the diameter active core (D) same with height active core (H). Second, pancake cylinder (D>H) and third, tall cylinder (D
Space station electrical power distribution analysis using a load flow approach
NASA Technical Reports Server (NTRS)
Emanuel, Ervin M.
1987-01-01
The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.
Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method
NASA Astrophysics Data System (ADS)
Kumari, Kalpana
In the present investigation, a facile synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide Fe2O3 and boric acid (H3BO3) using camphor (C10H16O) as fuel in ambient air in order to form a single phase Fe3BO6 crystallites. X-ray diffraction (XRD), Field emission electron microscopy (FESEM), magnetic, and dielectric properties of as prepared sample are studied. From XRD pattern, a single phase compound is observed with an orthorhombic crystal structure (Pnma space group), with average crystallite size of 42nm. A reasonably uniform size distribution of the plates and self-assemblies is retained in the sample. A magnetic transition is observed in dielectric permittivity (at ˜445K) and power loss (at ˜435K) when plotted against temperature. A weak peak occurs near 330K due to the charge reordering in the sample. For temperatures above the transition temperature, a sharp increase of the dielectric loss is observed which occurs due to the presence of thermally activated charge carriers. A canted antiferromagnetic Fe3+ ordering in a Fe3BO6 lattice with a localized charge surface layer is an apparent source of exhibiting a ferroelectric feature in this unique example of a centrosymmetric compound. An induced spin current over the Fe sites thus could give rise to a polarization hysteresis loop. Due to the presence of both ferromagnetic as well as polarization ordering, Fe3BO6 behaves like a single phase multiferroic ceramics.
Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2016-05-02
We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.
Cooperative photoinduced metastable phase control in strained manganite films
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.
2016-09-01
A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.
Kinetic and kinematic differences between squats performed with and without elastic bands.
Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M
2010-01-01
The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.
Cost Optimal Design of a Power Inductor by Sequential Gradient Search
NASA Astrophysics Data System (ADS)
Basak, Raju; Das, Arabinda; Sanyal, Amarnath
2018-05-01
Power inductors are used for compensating VAR generated by long EHV transmission lines and in electronic circuits. For the EHV-lines, the rating of the inductor is decided upon by techno-economic considerations on the basis of the line-susceptance. It is a high voltage high current device, absorbing little active power and large reactive power. The cost is quite high- hence the design should be made cost-optimally. The 3-phase power inductor is similar in construction to a 3-phase core-type transformer with the exception that it has only one winding per phase and each limb is provided with an air-gap, the length of which is decided upon by the inductance required. In this paper, a design methodology based on sequential gradient search technique and the corresponding algorithm leading to cost-optimal design of a 3-phase EHV power inductor has been presented. The case-study has been made on a 220 kV long line of NHPC running from Chukha HPS to Birpara of Coochbihar.
Single-frequency oscillation of thin-disk lasers due to phase-matched pumping.
Vorholt, Christian; Wittrock, Ulrich
2017-09-04
We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.
System and method for single-phase, single-stage grid-interactive inverter
Liu, Liming; Li, Hui
2015-09-01
The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.
Differences in the utilisation of active power in squat and countermovement jumps.
Ferraro, Damián; Fábrica, Gabriel
2017-07-01
The aim of this article was to understand how active power is used in squat and countermovement jumps. A simple empirical model comprising a mass, a spring, an active element and a damper, together with an optimisation principle, was used to identify the mechanical factors that maximise performance of jumps without countermovement (squat jumps, SJ) and with countermovement (CMJ). Twelve amateur volleyball players performed SJ from two initial positions and CMJ with two degrees of counterbalancing, while kinematic data were collected (jump height, push-off duration and position of the centre of mass). The model adjusted well to real data of SJ through all the impulse phase, and slightly less adequately at the end of this phase for CMJ. Nevertheless, it provides a satisfactory explanation for the generation and utilisation of active power for both type of jumps. On average, the estimated power of the active elements, the spring, and the damper were greater in the SJ. Based upon the result obtained with this model, we suggest that active power is best evaluated with SJ. The reason for this is that, during this kind of jump, the elements associated with the damper consume much of the energy produced by the active elements. The participation of the elements that consume the energy generated by the active elements is less in CMJ than in SJ, allowing for a better utilisation of this energy. In this way it is possible to achieve a better performance in CMJ with less active power.
Neural activity in the hippocampus during conflict resolution.
Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo
2013-01-15
This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrical properties of Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, K. Amar, E-mail: karn190@gmail.com; Chandra, K. P., E-mail: kpchandra23@gmail.com; Dubey, K., E-mail: kirandubey45@yahoo.com
2016-05-06
Polycrystalline Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} was prepared using a high-temperature solid-state reaction method. X-ray diffraction analysis indicated the formation of a single-phase cubic structure having space group Pm3m. AC impedance plots as a function of frequency at different temperatures were used to analyse the electrical behaviour of the sample, which indicated the negative temperature coefficient of resistance character. Complex impedance analysis targeted non-Debye type dielectric relaxation. Frequency dependent ac conductivity data obeyed Jonscher’s power law. The apparent activation energy was estimated to be 0.97 eV at 1 kHz.
A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes
Król, Henryk; Mynarski, Władysław
2012-01-01
The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157
Delorme, Arnaud; Miyakoshi, Makoto; Jung, Tzyy-Ping; Makeig, Scott
2014-01-01
With the advent of modern computing methods, modeling trial-to-trial variability in biophysical recordings including electroencephalography (EEG) has become of increasingly interest. Yet no widely used method exists for comparing variability in ordered collections of single-trial data epochs across conditions and subjects. We have developed a method based on an ERP-image visualization tool in which potential, spectral power, or some other measure at each time point in a set of event-related single-trial data epochs are represented as color coded horizontal lines that are then stacked to form a 2-D colored image. Moving-window smoothing across trial epochs can make otherwise hidden event-related features in the data more perceptible. Stacking trials in different orders, for example ordered by subject reaction time, by context-related information such as inter-stimulus interval, or some other characteristic of the data (e.g., latency-window mean power or phase of some EEG source) can reveal aspects of the multifold complexities of trial-to-trial EEG data variability. This study demonstrates new methods for computing and visualizing grand ERP-image plots across subjects and for performing robust statistical testing on the resulting images. These methods have been implemented and made freely available in the EEGLAB signal-processing environment that we maintain and distribute. PMID:25447029
Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Lance G
2014-07-07
A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapormore » leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.« less
NASA Astrophysics Data System (ADS)
Lv, Zhiguo; Yang, Zhi; Li, Feng; Yang, Xiaojun; Li, Qianglong; Zhang, Xin; Wang, Yishan; Zhao, Wei
2018-03-01
We report on an experimental study on fully fusion spliced high power all-polarization-maintaining Yb-doped photonic crystal fiber (PCF) femtosecond nonlinear chirped-pulse amplifier (CPA), which features large values of the positive third-order dispersion (TOD) superposed from the single-mode fiber stretcher (SMFs) and grating-pair compressor. Compensation of the TOD is realized by means of self-phase modulation (SPM) induced nonlinear phase shift during amplification. Up to 9.8 W of compressed average power at 275 kHz repetition rates with 36 μJ pulse energy and 495 fs pulse width has been obtained. To the best of our knowledge, this is the highest output power generated from the strictly all-fiber nonlinear CPA amplifier in femtosecond domain, which provides a possibility for the industrialized promotion and development of the high energy femtosecond fiber laser.
Computational models of an inductive power transfer system for electric vehicle battery charge
NASA Astrophysics Data System (ADS)
Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.
2015-09-01
One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.
Evaluation of the JPL X-band 32 element active array. [for deep space communication
NASA Technical Reports Server (NTRS)
Boreham, J. F.; Postal, R. B.; Conroy, B. L.
1979-01-01
Tests performed on an X-band 32-element active array are described. Antenna pattern characteristics of the array were tested in its standard operating mode as well as several degraded performance modes, including failures of 1, 2, 3, 4, 8, 16, and 31 elements. Additionally, the array was characterized with the addition of a metallic shroud, and also characterized versus rf drive level and at a single off-axis electronic beamsteered position. Characterization was performed on several of the 3/4-watt, three-stage, X-band solid-state power amplifier modules. The characterization included swept amplitude response, amplitude and phase versus temperature from -20 to +60 C, and intermodulation distortion of selected modules. The array is described and conclusions and recommendations based upon the experience and results achieved are included.
Resonant AC power system proof-of-concept test program, volume 2, appendix 1
NASA Technical Reports Server (NTRS)
1986-01-01
This report contains two volumes. The main text (Volume 1) summarizes the tests results and gives a detailed discussion of the response of three early, first generation configurations of ac power system IRAD breadboards to the contracted tests imposed on them. It explains photographs, measurements, and data calculations, as well as any observed anomalies or lessons learned. This volume (No 2, Appendix 1, Test Results and Data), published under separate cover, includes all of the data taken on the 1.0 kW single-phase; 5.0 kW three-phase; and 25.0-kW three-phase system breadboards. The format of this data is raw, i.e., it is a direct copy of the data sheets for the test data notebook.
A Self-Synchronized Optoelectronic Oscillator based on an RTD Photo-Detector and a Laser Diode
Romeira, Bruno; Seunarine, Kris; Ironside, Charles N.; Kelly, Anthony E.; Figueiredo, José M. L.
2013-01-01
We propose and demonstrate a simple and stable low-phase noise optoelectronic oscillator (OEO) that uses a laser diode, an optical fiber delay line and a resonant tunneling diode (RTD) free-running oscillator that is monolithic integrated with a waveguide photo-detector. The RTD-OEO exhibits single-side band phase noise power below −100 dBc/Hz with more than 30 dB noise suppression at 10 kHz from the center free-running frequency for fiber loop lengths around 1.2 km. The oscillator power consumption is below 0.55 W, and can be controlled either by the injected optical power or the fiber delay line. The RTD-OEO stability is achieved without using other high-speed optical/optoelectronic components and amplification. PMID:23814452
Biomass power for rural development. Technical progress report, July 1--September 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.« less
Performance of planar single cell lanthanum gallate based solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Maffei, N.; Kuriakose, A. K.
A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.
Single-frequency diode-pumped lasers for free-space optical communication
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Gerstenberger, David C.; Wallace, Richard W.
1990-01-01
Recent advances in laser technology for intersatellite optical communication systems are reviewed and illustrated with graphs and diagrams. Topics addressed include (1) single-frequency diode-pumped Nd:YAG lasers of monolithic ring configuration (yielding 368-384 mW output power with 1-W pumping), (2) injection chaining of up to 10 monolithic resonators to achieve redundancy and/or higher output power, (3) 2-kHz-linewidth 5-mW versions of (1) which are tunable over a 30-MHz range for use as local oscillators in coherent communication, (4) resonant external modulation and doubling or resonant phase modulation of diode-pumped lasers, and (5) wavelength multiplexing.
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.
1982-01-01
A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.
EEG phase reset due to auditory attention: an inverse time-scale approach.
Low, Yin Fen; Strauss, Daniel J
2009-08-01
We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.
42 CFR 84.1145 - Silica dust test; non-powered single-use dust respirators; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Silica dust test; non-powered single-use dust respirators; minimum requirements. 84.1145 Section 84.1145 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1145 - Silica dust test; non-powered single-use dust respirators; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Silica dust test; non-powered single-use dust respirators; minimum requirements. 84.1145 Section 84.1145 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1145 - Silica dust test; non-powered single-use dust respirators; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Silica dust test; non-powered single-use dust respirators; minimum requirements. 84.1145 Section 84.1145 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1145 - Silica dust test; non-powered single-use dust respirators; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Silica dust test; non-powered single-use dust respirators; minimum requirements. 84.1145 Section 84.1145 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
42 CFR 84.1145 - Silica dust test; non-powered single-use dust respirators; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Silica dust test; non-powered single-use dust respirators; minimum requirements. 84.1145 Section 84.1145 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...
NASA Astrophysics Data System (ADS)
Choi, Myoung-Taek
This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.
The effect of aluminium on the creep behavior of titanium aluminide alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandy, T.K.; Mishra, R.S.; Gogia, A.K.
Small increases in the Al content of Ti{sub 3}Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior.more » The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep ({approximately}370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD{sub o} in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content.« less
Ren, Jie; Liu, Guang-Hua; You, Wen-Long
2015-03-18
We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu
We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promisingmore » non-contact, real-time, and high-resolution optical coherence elastography.« less
Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals.
Wu, Wenhan; Yu, Yu; Zou, Bingrong; Yang, Weili; Zhang, Xinliang
2013-03-25
We propose and demonstrate all-optical amplitude regeneration for the wavelength division multiplexing and polarization division multiplexing (WDM-PDM) return-to-zero phase shift keying (RZ-PSK) signals using a single semiconductor optical amplifier (SOA) and subsequent filtering. The regeneration is based on the cross phase modulation (XPM) effect in the saturated SOA and the subsequent narrow filtering. The spectrum of the distorted signal can be broadened due to the phase modulation induced by the synchronous optical clock signal. A narrow band pass filter is utilized to extract part of the broadened spectrum and remove the amplitude noise, while preserving the phase information. The working principle for multi-channel and polarization orthogonality preserving is analyzed. 4-channel dual polarization signals can be simultaneously amplitude regenerated without introducing wavelength and polarization demultiplexing. An average power penalty improvement of 1.75dB can be achieved for the WDM-PDM signals.
Wang, Wanjun; Zhou, Haifeng; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing
2012-06-15
We report on an experimental 3×3 thermo-optical switch on silicon on insulator. By controlling a single combined phase shifter, light from any input waveguide can be directed to any output waveguide, showing a simple control method and highly integrated structure as compared to the conventional multiway optical switches. Furthermore, the proposed optical switch can be generalized to be a 1×N and N×N optical switch without an extra phase shifter. The switch is fabricated by complementary metal oxide semiconductor technology. By experiment, full 3×3 switching functionality is demonstrated at a wavelength of 1.55 μm, with an average cross talk of -11.1 dB and a power consumption of 97.5 mW.
Development of high-power dye laser chain
NASA Astrophysics Data System (ADS)
Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo
2000-01-01
Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.
Developments on GM-Type Pulse Tube Cryorefrigerators with Large Cooling Power
NASA Astrophysics Data System (ADS)
Köttig, T.; Waldauf, A.; Thürk, M.; Seidel, P.
2004-06-01
Over the past several years the authors have participated in basic and prototype developments of four valve pulse tube refrigerators (FVPTR). Systematic studies have been carried out to characterize the basics of energy transport mechanisms, the flow distribution and loss mechanisms of this type of pulse tube refrigerator (PTR) with its active type of phase shifting. Based on the comprehension of these phenomena, several prototypes have been built and optimized for various applications. Recently a single-stage PTR in coaxial arrangement has been designed for maximum refrigeration power in the temperature range between 20 and 80 K limited by an available electrical input power of 7 kW. To reach this goal we used lead screens in the coldest part of the regenerator instead of spheres in order to decrease the pressure drop. The improvement of the regenerator prevents the reported fact that at higher temperatures the performance of a pulse tube with a regenerator partially filled with lead spheres can even be worse than a regenerator totally made of stainless steel. At the moment the cooler provides a cooling power of 120 W@74 K and 40 W@34 K. The minimum no-load temperature achieved is 18.6 K.
Decoding visual object categories from temporal correlations of ECoG signals.
Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu
2014-04-15
How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.
High-Power Microwave Metamaterials for Phased-Array, anti-HPM, and Pulse-Shaping Applications
2014-07-23
examined single-layer metasurfaces composed of miniature LC resonators arranged in a 2-D periodic lattice. These metasurfaces are engineered to be...with a reasonable degree of accuracy. Additionally, when the unit cell of the metasurface was composed of two different resonators, breakdown was...Electrical and Computer Engineering of the University of Wisconsin-Madison, we demonstrated that such single-layer metasurfaces can be used to reduce
A Linear Model of Phase-Dependent Power Correlations in Neuronal Oscillations
Eriksson, David; Vicente, Raul; Schmidt, Kerstin
2011-01-01
Recently, it has been suggested that effective interactions between two neuronal populations are supported by the phase difference between the oscillations in these two populations, a hypothesis referred to as “communication through coherence” (CTC). Experimental work quantified effective interactions by means of the power correlations between the two populations, where power was calculated on the local field potential and/or multi-unit activity. Here, we present a linear model of interacting oscillators that accounts for the phase dependency of the power correlation between the two populations and that can be used as a reference for detecting non-linearities such as gain control. In the experimental analysis, trials were sorted according to the coupled phase difference of the oscillators while the putative interaction between oscillations was taking place. Taking advantage of the modeling, we further studied the dependency of the power correlation on the uncoupled phase difference, connection strength, and topology. Since the uncoupled phase difference, i.e., the phase relation before the effective interaction, is the causal variable in the CTC hypothesis we also describe how power correlations depend on that variable. For uni-directional connectivity we observe that the width of the uncoupled phase dependency is broader than for the coupled phase. Furthermore, the analytical results show that the characteristics of the phase dependency change when a bidirectional connection is assumed. The width of the phase dependency indicates which oscillation frequencies are optimal for a given connection delay distribution. We propose that a certain width enables a stimulus-contrast dependent extent of effective long-range lateral connections. PMID:21808618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohlin, Alexis; Kliewer, Christopher J.
2013-01-01
Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the highmore » efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N 2 and air over a 2D field of 40 mm 2.« less
Distributed parametric amplifier for RZ-DPSK signal transmission system.
Xu, Xing; Zhang, Chi; Yuk, T I; Wong, Kenneth K Y
2012-08-13
We have experimentally demonstrated a single pump distributed parametric amplification (DPA) system for differential phase shift keying (DPSK) signal in a spool of dispersion-shifted fiber (DSF). The gain spectrum of single pump DPA is thoroughly investigated by both simulation and experiment, and a possible reference for optimal input pump power and fiber length relationship is provided to DPA based applications. Furthermore, DPSK format is compared with on-off keying (OOK) within DPA scheme. Eight WDM signal channels at 10-Gb/s are utilized, and approximately 0.5-dB power penalties at the bit-error rate (BER) of 10(-9) are achieved for return-to-zero DPSK (RZ-DPSK), comparing to larger than 1.5-dB with OOK format. In order to improve the system power efficiency, at the receiver, the pump is recycled by a photovoltaic cell and the converted energy can be used by potential low-power-consuming devices, i.e sensors or small-scale electronic circuits. Additionally, with suitable components, the whole DPA concept could be directly applied to the 1.3-μm telecommunication window along the most commonly used single-mode fiber (SMF).
Development of a single-phase thermosiphon for cold collection and storage of radiative cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu
A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facilitymore » was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.« less
High-quality EuO thin films the easy way via topotactic transformation
Mairoser, Thomas; Mundy, Julia A.; Melville, Alexander; ...
2015-07-16
Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidizedmore » half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. Lastly, as the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds.« less
AlGaAs phased array laser for optical communications
NASA Technical Reports Server (NTRS)
Carlson, N. W.
1989-01-01
Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.
Phillips, C R; Mayer, B W; Gallmann, L; Keller, U
2016-07-11
Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.
2015-12-11
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less
NASA Astrophysics Data System (ADS)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-12-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-01-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
NASA Astrophysics Data System (ADS)
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Bararunyeretse, Prudence; Ji, Hongbing; Yao, Jun
2017-06-01
The toxicity of nickel and three of its main collectors, sodium isopropyl xanthate (SIPX), sodium ethyl xanthate (SEX), and potassium ethyl xanthate (PEX) to soil microbial activity, was analyzed, individually and as a binary combination of nickel and each of the collectors. The investigation was performed through the microcalorimetric analysis method. For the single chemicals, all power-time curves exhibited lag, exponential, stationary, and death phases of microbial growth. Different parameters exhibited a significant adverse effect of the analyzed chemicals on soil microbial activity, with a positive relationship between the inhibitory ratio and the chemical dose (p < 0.05 or p < 0.01). A peak power reduction level of 24.23% was noted for 50 μg g -1 soil in the case of Ni while for the mineral collectors, only 5 μg g -1 soil and 50 μg g -1 soil induced a peak power reduction level of over 35 and 50%, respectively, in general. The inhibitory ratio ranged in the following order: PEX > SEX > SIPX > Ni. Similar behavior was observed with the mixture toxicity whose inhibitory ratio substantially decreased (maximum decrease of 38.35%) and slightly increased (maximum increase of 15.34%), in comparison with the single toxicity of mineral collectors and nickel, respectively. The inhibitory ratio of the mixture toxicity was positively correlated (p < 0.05 or p < 0.01) with the total dose of the mixture. In general, the lesser and higher toxic effects are those of mixtures containing SIPX and PEX, respectively.
NASA Technical Reports Server (NTRS)
Falconer, David; Moore, Ron
2011-01-01
For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.
High-Frequency ac Power-Distribution System
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Mildice, James
1987-01-01
Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.
Unity power factor switching regulator
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1983-01-01
A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.
Labeled carbon dioxide (C18O2): an indicator gas for phase II in expirograms.
Schulz, Holger; Schulz, Anne; Eder, Gunter; Heyder, Joachim
2004-11-01
Carbon dioxide labeled with 18O (C18O2) was used as a tracer gas for single-breath measurements in six anesthetized, mechanically ventilated beagle dogs. C18O2 is taken up quasi-instantaneously in the gas-exchanging region of the lungs but much less so in the conducting airways. Its use allows a clear separation of phase II in an expirogram even from diseased individuals and excludes the influence of alveolar concentration differences. Phase II of a C18O2 expirogram mathematically corresponds to the cumulative distribution of bronchial pathways to be traversed completely in the course of exhalation. The derivative of this cumulative distribution with respect to respired volume was submitted to a power moment analysis to characterize volumetric mean (position), standard deviation (broadness), and skewness (asymmetry) of phase II. Position is an estimate of dead space volume, whereas broadness and skewness are measures of the range and asymmetry of functional airway pathway lengths. The effects of changing ventilatory patterns and of changes in airway size (via carbachol-induced bronchoconstriction) were studied. Increasing inspiratory or expiratory flow rates or tidal volume had only minor influence on position and shape of phase II. With the introduction of a postinspiratory breath hold, phase II was continually shifted toward the airway opening (maximum 45% at 16 s) and became steeper by up to 16%, whereas skewness showed a biphasic response with a moderate decrease at short breath holding and a significant increase at longer breath holds. Stepwise bronchoconstriction decreased position up to 45 +/- 2% and broadness of phase II up to 43 +/- 4%, whereas skewness was increased up to twofold at high-carbachol concentrations. Under all circumstances, position of phase II by power moment analysis and dead space volume by the Fowler technique agreed closely in our healthy dogs. Overall, power moment analysis provides a more comprehensive view on phase II of single-breath expirograms than conventional dead space volume determinations and may be useful for respiratory physiology studies as well as for the study of diseased lungs.
2012-01-01
Background Efficient, robust, and accurate genotype imputation algorithms make large-scale application of genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all pedigree, genomic, and phenotypic information into a single-stage genomic evaluation. Methods An algorithm was developed for imputation of genotypes in pedigreed populations that allows imputation for completely ungenotyped animals and for low-density genotyped animals, accommodates a wide variety of pedigree structures for genotyped animals, imputes unmapped SNP, and works for large datasets. The method involves simple phasing rules, long-range phasing and haplotype library imputation and segregation analysis. Results Imputation accuracy was high and computational cost was feasible for datasets with pedigrees of up to 25 000 animals. The resulting single-stage genomic evaluation increased the accuracy of estimated genomic breeding values compared to a scenario in which phenotypes on relatives that were not genotyped were ignored. Conclusions The developed imputation algorithm and software and the resulting single-stage genomic evaluation method provide powerful new ways to exploit imputation and to obtain more accurate genetic evaluations. PMID:22462519
NASA Astrophysics Data System (ADS)
Gao, F.; Song, X. H.; Zhang, Y.; Li, J. F.; Zhao, S. S.; Ma, W. Q.; Jia, Z. Y.
2017-05-01
In order to reduce the adverse effects of uncertainty on optimal dispatch in active distribution network, an optimal dispatch model based on chance-constrained programming is proposed in this paper. In this model, the active and reactive power of DG can be dispatched at the aim of reducing the operating cost. The effect of operation strategy on the cost can be reflected in the objective which contains the cost of network loss, DG curtailment, DG reactive power ancillary service, and power quality compensation. At the same time, the probabilistic constraints can reflect the operation risk degree. Then the optimal dispatch model is simplified as a series of single stage model which can avoid large variable dimension and improve the convergence speed. And the single stage model is solved using a combination of particle swarm optimization (PSO) and point estimate method (PEM). Finally, the proposed optimal dispatch model and method is verified by the IEEE33 test system.
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defennse (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
Analysis and Design of Bridgeless Switched Mode Power Supply for Computers
NASA Astrophysics Data System (ADS)
Singh, S.; Bhuvaneswari, G.; Singh, B.
2014-09-01
Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Three-phase Four-leg Inverter LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less
Demonstration of Active Combustion Control
NASA Technical Reports Server (NTRS)
Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.
2008-01-01
The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.
Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.
Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J
2012-06-15
A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6 dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.
1998-03-01
This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.
Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)
NASA Technical Reports Server (NTRS)
Cornwell, Donald Mitchell, Jr.
1992-01-01
A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.
20-W 1952-nm tandem hybrid single and double clad TDFA
NASA Astrophysics Data System (ADS)
Romano, Clément; Tench, Robert E.; Delavaux, Jean-Marc
2018-02-01
A simple engineering design is important for achieving high Thulium-doped amplifier (TDFA) performance such as good power conversion, low noise figure (NF), scalable output power, high gain, and stable operation over a large dynamic range. In this paper we report the design, performance, and simulation of two stage high-power 1952 nm hybrid single and double clad TDFAs. The first stage of our hybrid amplifier is a single clad design, and the second stage is a double clad design. We demonstrate TDFAs with an output power greater than 20 W with single-frequency narrow linewidth (i.e. MHz) input signals at both 1952 and 2004 nm. An optical 10 dB bandwidth of 80 nm is derived from the ASE spectrum. The power stage is constructed with 10 μm core active fibers showing a maximum optical slope efficiency greater than 50 %. The experimental results lead to a 1 dB agreement with our simulation tool developed for single clad and double clad TDFAs. Overall this hybrid amplifier offers versatile features with the potential of much higher output power.
NASA Astrophysics Data System (ADS)
Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun
2018-07-01
In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.
Yasui, Takeshi; Fujio, Makoto; Yokoyama, Shuko; Araki, Tsutomu
2014-07-14
Phase measurement of continuous-wave terahertz (CW-THz) radiation is a potential tool for direct distance and imaging measurement of optically rough objects due to its high robustness to optical rough surfaces. However, the 2π phase ambiguity in the phase measurement of single-frequency CW-THz radiation limits the dynamic range of the measured distance to the order of the wavelength used. In this article, phase-slope measurement of tunable CW-THz radiation with a THz frequency comb was effectively used to extend the dynamic range up to 1.834 m while maintaining an error of a few tens µm in the distance measurement of an optically rough object. Furthermore, a combination of phase-slope measurement of tunable CW-THz radiation and phase measurement of single-frequency CW-THz radiation enhanced the distance error to a few µm within the dynamic range of 1.834 m without any influence from the 2π phase ambiguity. The proposed method will be a powerful tool for the construction and maintenance of large-scale structures covered with optically rough surfaces.
Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B
2005-09-19
We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Kroposki, B.; Kramer, W.
Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report alsomore » analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.« less
NASA Technical Reports Server (NTRS)
Hsieh, H.-H.; Fonstad, C. G.
1980-01-01
Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.
Development of a Portable AC/DC Welding Power Supply Module
1975-03-01
REPORT DATE MAR 1975 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Development of a Portable AC /DC Welding Power Supply...achieved. Additional bypass capacitors were added to reduce further switch heating and voltage transients. November AC welding was achieved with...Investigate the conversion of inversion frequency back to 60 Hz for AC welding. 4) Investigate a 120V single phase mini supply. VI I Objectives A) Goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The battery energy stored quasi-Z-source (BES-qZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. However, the second harmonic (2 ) power ripple will degrade the system's performance and affect the system's design. An accurate model to analyze the 2 ripple is very important. The existing models did not consider the battery, and with the assumption L1=L2 and C1=C2, which causes the non-optimized design for the impedance parameters of qZS network. This paper proposes a comprehensive model for single-phase BES-qZS-PV inverter system, where the battery is considered and without any restrictionmore » of L1, L2, C1, and C2. A BES-qZS impedance design method based on the built model is proposed to mitigate the 2 ripple. Simulation and experimental results verify the proposed 2 ripple model and design method.« less
Investigation and Feasibility Assessment of TOPAZ-2 Derivations for Space Power Applications
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Peddicord, Kenneth L.
1998-01-01
The ability to provide continuous power at significant levels is of utmost importance for many space missions, from simple satellite operations to manned Mars missions. One of the main problems faced in delivering solar or chemical space power in the tens of kW range, is the increasingly massive nature of the power source and the costs associated with its launch, operation and maintenance. A national program had been initiated to study the feasibility of using certain advanced technologies in developing an efficient lightweight space power source. The starting point for these studies has been the Russian TOPAZ-2 space reactor system, with the ultimate goal to aid in the development of a TOPAZ-2 derivative which will be ready for flight by the year 2000. The main objective of this project has been to perform feasibility assessment and trade studies which would allow the development of an advanced space nuclear power system based on the in-core thermionic fuel element technology currently used in the Russian TOPAZ-2 reactor. Two of the important considerations in developing the concept are: (1) compliance of the current TOPAZ-2 and of any advanced designs with U.S. nuclear safety expectations, and (2) compliance of the design with the seven years lifetime requirement. The project was composed of two major phases. The initial phase of the project has concentrated on understanding the TOPAZ-2 thermionic reactor in sufficient detail to allow several follow-on tasks. The primary interest during this first phase has been given on identifying the potential of the TOPAZ-2 design for further improvements. The second phase of the project has focused on the feasibility of a TOPAZ-2 system capable of delivering 30-50 kWe. Towards the elimination of single-point failures in the load voltage regulation system an active voltage regulator has been designed to be used in conjunction with the available shunt load voltage regulator. The possible use of a dual-loop, model-based adaptive control system for load-following in the TOPAZ-2 has also been investigated. The objective of this fault-tolerant, autonomous control system is to deliver the demanded electric power at the desired voltage level, by appropriately manipulating the neutron power through the control drums. As a result, sufficient thermal power is produced to meet the required demand in the presence of dynamically changing system operating conditions and potential sensor failures. The designed controller is proposed for use in combination with the currently available shunt regulators, or as a back-up controller when other means of power system control, including some of the sensors, fail.
Self-referenced locking of optical coherence by single-detector electronic-frequency tagging
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard
2006-02-01
We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.
Power System Observation by using Synchronized Phasor Measurements as a Smart Device
NASA Astrophysics Data System (ADS)
Mitani, Yasunori
Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
Interrelation of soft and hard X-ray emissions during solar flares. I - Observations
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.
1991-01-01
The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.
A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine
NASA Astrophysics Data System (ADS)
Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping
2017-05-01
A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Radiation-hardened-by-design clocking circuits in 0.13-μm CMOS technology
NASA Astrophysics Data System (ADS)
You, Y.; Huang, D.; Chen, J.; Gong, D.; Liu, T.; Ye, J.
2014-01-01
We present a single-event-hardened phase-locked loop for frequency generation applications and a digital delay-locked loop for DDR2 memory interface applications. The PLL covers a 12.5 MHz to 500 MHz frequency range with an RMS Jitter (RJ) of 4.70-pS. The DLL operates at 267 MHz and has a phase resolution of 60-pS. Designed in 0.13-μm CMOS technology, the PLL and the DLL are hardened against SEE for charge injection of 250 fC. The PLL and the DLL consume 17 mW and 22 mW of power under a 1.5 V power supply, respectively.
Stirling convertor performance mapping test results
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.
2002-01-01
The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande
2014-10-15
The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less
A three-limb amorphous magnetic circuit for three-phase 200 kVA distribution transformers
NASA Astrophysics Data System (ADS)
Kolano, R.; Wójcik, N.; Gawior, W.
1996-07-01
This paper describes the construction and method of preparation of a three-limb amorphous magnetic circuit. The circuit consists of three single cores: two smaller cores of the same size, surrounded by a third larger one with appropriate window dimensions. The no-load loss and exciting power of the single cores have been investigated as a function of the magnetic induction and stresses applied to the third core.
Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk
2016-10-12
A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge 2 Sb 2 Te 5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.
Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Kantorowicz, Malgorzata; Szygula, Zbigniew
2017-11-01
The aim of the study was to evaluate the activity of xanthine oxidase (XO) in the blood of men and women during the first hour following a single anaerobic exercise (AN-EX), and after 24 hours of recovery, and to determine whether the changes in XO activity in the blood after AN-EX are dependent on anaerobic performance. Ten men and ten women performed a single AN-EX. Blood was collected before and five times after completion of the AN-EX. The activity of XO was determined. In both groups, a significant (P < 0.05) increase in blood XO activity was found only 24 hours after the AN-EX. The increased activity of XO in men was significantly lower than in women (P < 0.05). Negative correlations were found between the increase in XO activity in the blood plasma 24 hours after the AN-EX and anaerobic power, the total work performed during the AN-EX and the power decrease. In the first hour after the single AN-EX, XO activity in the blood of women and men did not change, but after 24 hours of recovery, it was significantly higher compared to baseline levels in both sexes. Single AN-EX causes a smaller increase in XO activity in people with higher anaerobic performance.
CURRENT CONCEPTS OF PLYOMETRIC EXERCISE.
Davies, George; Riemann, Bryan L; Manske, Robert
2015-11-01
As knowledge regarding rehabilitation science continues to increase, exercise programs following musculoskeletal athletic injury continue to evolve. Rehabilitation programs have drastically changed, especially in the terminal phases of rehabilitation, which include performance enhancement, development of power, and a safe return to activity. Plyometric exercise has become an integral component of late phase rehabilitation as the patient nears return to activity. Among the numerous types of available exercises, plyometrics assist in the development of power, a foundation from which the athlete can refine the skills of their sport. Therefore, the purpose of this clinical commentary is to provide an overview of plyometrics including: definition, phases, the physiological, mechanical and neurophysiological basis of plyometrics, and to describe clinical guidelines and contraindications for implementing plyometric programs.
Cortical theta wanes for language.
Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F
2014-01-15
The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.
Cascaded Quadruple Active Bridge Structures for Multilevel DC to Three-Phase AC Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Achanta, Prasanta K; Maksimovic, Dragan
This paper introduces a multilevel architecture comprised of interconnected dc to three-phase ac converter units. To enable series connected operation, each converter unit contains a quadruple active bridge (QAB) converter that provides isolation between the dc side and each of the three ac sides. Since each converter unit transfers dc-side power as constant balanced three-phase power on the ac side, this implies instantaneous input-output power balance and allows elimination of bulk capacitive energy storage. In addition to minimizing required capacitance, the proposed approach simultaneously enables simplified dc-link controllers amenable to decentralized implementation, supports bidirectional power transfer, and exhibits a modularmore » structure to enhance scalability. Isolation provided by the QAB allows a wide range of electrical configurations among multiple units in various dc-ac, ac-dc or ac-ac applications. In this paper, the focus is on series connections on the ac side to emphasize multilevel operation, and the approach is experimentally validated in a dc-ac system containing two cascaded converter units.« less
Yang, Zhihui; Luo, Shuang; Wei, Zongsu; Ye, Tiantian; Spinney, Richard; Chen, Dong; Xiao, Ruiyang
2016-04-01
The second-order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure-activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi-linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = -0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas-phase ·OH oxidation of 2,4',5-trichlorobiphenyl (PCB31), 2,2',4,4'-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169), and 2,3,3',4,5,5',6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6-311++G**//B3LYP/6-31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single-descriptor based QSAR model we developed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pefkou, Maria; Arnal, Luc H; Fontolan, Lorenzo; Giraud, Anne-Lise
2017-08-16
Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm. SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process. Copyright © 2017 the authors 0270-6474/17/377930-09$15.00/0.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
NASA Astrophysics Data System (ADS)
Adan, N. F.; Soomro, D. M.
2017-01-01
Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.
Zhang, Jiang; Yuan, Zhen; Huang, Jin; Yang, Qin; Chen, Huafu
2014-12-01
Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks. Copyright © 2014 Elsevier Inc. All rights reserved.
Phased laser array with tailored spectral and coherence properties
Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA
2011-03-29
Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
Phased laser array with tailored spectral and coherence properties
Messerly, Michael J; Dawson, Jay W; Beach, Raymond J
2014-05-20
Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2006-01-01
A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.
NASA Astrophysics Data System (ADS)
Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu
2016-08-01
This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallet, Jr., R. W.; Gervais, R. L.
1977-10-01
The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)
Exploring the robustness of a noise correlation resonance in a Zeeman EIT system
NASA Astrophysics Data System (ADS)
O'Leary, Shannon; Crescimanno, Michael; Strehlow, Henry; Snider, Chad
2011-05-01
Using a single diode laser with large phase noise (linewidth ~100 MHz) resonant with Zeeman EIT in rubidium vapor, we examine intensity noise correlations of orthogonally-polarized laser components. A sharp correlation feature (~100 Hz) is shown to be power-broadening resistant at low powers. However, the limitations of this resistance are revealed, with the onset of a power-broadening regime once a threshold power is crossed. Possible mechanisms for this broadening, due to decoherence of the ground state superposition, are experimentally explored and results are compared to a model. Understanding the limits of this noise correlation feature is essential to practical applications such as magnetometry.
NASA Astrophysics Data System (ADS)
Bid, Aveek; Guha, Ayan; Raychaudhuri, A. K.
2003-05-01
We have studied low-frequency resistance fluctuations (noise) in a single crystal of the rare-earth perovskite manganite Pr0.63Ca0.37MnO3, which shows a charge-ordering transition at a temperature TCO≈245 K. The measurements were made across the charge-ordering transition covering the temperature range 200 K
High-efficiency solid state power amplifier
NASA Technical Reports Server (NTRS)
Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)
2005-01-01
A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.
Thermal management of high power space based systems
NASA Technical Reports Server (NTRS)
Hwangbo, H.; Mcever, W. S.
1985-01-01
Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.
8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.
Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R
2017-11-27
We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.
Ball, Nick; Nolan, Emily; Wheeler, Keane
2011-10-01
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.
CAP, epilepsy and motor events during sleep: the unifying role of arousal.
Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni
2006-08-01
Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.
Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, M.A.; Shah, N.M.; Cleek, K.J.
1995-12-31
A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less
Melt-processing of small molecule organic photovoltaics via bulk heterojunction compatibilization.
Rahmanudin, Aiman; Yao, Liang; Jeanbourquin, Xavier A; Liu, Yongpeng; Sekar, Arvindh; Ripaud, Emilie; Sivula, Kevin
2018-05-21
Melt-processing of organic semiconductors (OSCs) is a promising environmentally-friendly technique that can alleviate dependence on toxic chlorinated solvents. While melt-processed single-component OSC devices ( e.g. field-effect-transistors) have been demonstrated, multi-component bulk heterojunctions (BHJs) for organic photovoltaics (OPVs) remain a challenge. Herein, we demonstrate a strategy that affords tunable BHJ phase segregation and domain sizes from a single-phase homogeneous melt by employing strongly-crystalline small-molecule OSCs together with a customized molecular compatibilizing (MCP) additive. An optimized photoactive BHJ with 50 wt% MCP achieved a device power conversion efficiency of ca. 1% after melting the active layer at 240 °C (15 min, followed by slow cooling) before deposition of the top electrode. BHJ morphology characterization using atomic force and Kelvin probe microscopy, X-ray diffraction, and photo-luminescence measurements further demonstrate the trade-off between free charge generation and transport with respect to MCP loading in the BHJ. In addition, a functional OPV was also obtained from the melt-processing of dispersed micron-sized solid BHJ particles into a smooth and homogeneous thin-film by using the MCP approach. These results demonstrate that molecular compatibilization is a key prerequisite for further developments towards true solvent-free melt-processed BHJ OPV systems.
NASA Astrophysics Data System (ADS)
Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng
2015-09-01
A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.
Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology.
Ode, K L; Ueda, H R
2015-09-01
Recent advances in methods for making mammalian organs translucent have made possible whole-body fluorescent imaging with single-cell resolution. Because organ-clearing methods can be used to image the heterogeneous nature of cell populations, they are powerful tools to investigate the hierarchical organization of the cellular circadian clock, and how the clock synchronizes a variety of physiological activities. In particular, methods compatible with genetically encoded fluorescent reporters have the potential to detect circadian activity in different brain regions and the circadian-phase distribution across the whole body. In this review, we summarize the current methods and strategy for making organs translucent (removal of lipids, decolourization of haemoglobin and adjusting the refractive index of the specimen). We then discuss possible applications to circadian biology. For example, the coupling of circadian rhythms among different brain regions, brain activity in sleep-wake cycles and the role of migrating cells such as immune cells and cancer cells in chronopharmacology. © 2015 John Wiley & Sons Ltd.
Progress in Decommissioning the Humboldt Bay Power Plant - 13604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John
Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) tomore » Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)« less
Carty, Christopher P; Cronin, Neil J; Lichtwark, Glen A; Mills, Peter M; Barrett, Rod S
2012-12-01
Studying recovery responses to loss of balance may help to explain why older adults are susceptible to falls. The purpose of the present study was to assess whether male and female older adults, that use a single or multiple step recovery strategy, differ in the proportion of lower limb strength used and power produced during the stepping phase of balance recovery. Eighty-four community-dwelling older adults (47 men, 37 women) participated in the study. Isometric strength of the ankle, knee and hip joint flexors and extensors was assessed using a dynamometer. Loss of balance was induced by releasing participants from a static forward lean (4 trials at each of 3 forward lean angles). Participants were instructed to recover with a single step and were subsequently classified as using a single or multiple step recovery strategy for each trial. (1) Females were weaker than males and the proportion of females that were able to recover with a single step were lower than for males at each lean magnitude. (2) Multiple compared to single steppers used a significantly higher proportion of their hip extension strength and produced less knee and ankle joint peak power during stepping, at the intermediate lean angle. Strength deficits in female compared to male participants may explain why a lower proportion of female participants were able to recover with a single step. The inability to generate sufficient power in the stepping limb appears to be a limiting factor in single step recovery from forward loss of balance. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Variable speed drives for pumps used in intensive pond culture systems
USDA-ARS?s Scientific Manuscript database
Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operate on a nominal 120/240 volt, 60 Hz, 3-wire single phase AC power source and must meet the following... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor limits with wind velocities of up to 70 knots from such directions that the velocity component...
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operate on a nominal 120/240 volt, 60 Hz, 3-wire single phase AC power source and must meet the following... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor limits with wind velocities of up to 70 knots from such directions that the velocity component...
2014-02-26
through RF filtering . Subsequently, this modulated signal is used in a cutback experiment with a passive fiber . Studies describing enhancement factors...to filter out higher order modes [3]. However, in order to maintain single-mode (diffraction limited) operation, conventional step-index fiber core...Letters 36, 2686-2688 (2011). [3] J. P. Koplaw, D. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Optics Letters
High Voltage, Solid-State Switch for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Prager, James; Miller, Kenneth E.; Slobodov, Ilia
2017-10-01
Eagle Harbor Technologies, Inc. is developing a series stack of solid-state switches to produce a single high voltage switch that can be operated at over 35 kV. During the Phase I program, EHT developed two high voltage switch modules: one with isolated power gate drive and a second with inductively coupled gate drive. These switches were tested at 15 kV and up to 300 A at switching frequencies up to 500 kHz for 10 ms bursts. Robust switching was demonstrated for both IGBTs and SiC MOSFETs. During the Phase II program, EHT will develop a higher voltage switch (>35 kV) that will be suitable for high pulsed and average power applications. EHT will work with LTX to utilize these switches to design, build, and test a pulsed magnetron driver that will be delivered to LTX before the completion of the program. EHT will present data from the Phase I program as well as preliminary results from the start of the Phase II program. With support of DOE SBIR.
Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi
2016-05-01
The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.
2008-01-01
Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.
Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems
NASA Astrophysics Data System (ADS)
Alaas, Zuhair
This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing.
NASA Astrophysics Data System (ADS)
Lam, Hing-Lan
2017-01-01
A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.
E-beam high voltage switching power supply
Shimer, Daniel W.; Lange, Arnold C.
1997-01-01
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.
E-beam high voltage switching power supply
Shimer, D.W.; Lange, A.C.
1997-03-11
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.
Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.
2004-01-01
Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors, etc. is not included.
Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F
2015-07-01
In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Demonstration of Cascaded Modulator-Chicane Microbunching of a Relativistic Electron Beam
Sudar, N.; Musumeci, P.; Gadjev, I.; ...
2018-03-15
Here, we present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared tomore » the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.« less
Power module packaging with double sided planar interconnection and heat exchangers
Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei
2015-05-26
A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.
Thermoelectric properties of Ca(1-x-y)Dy(x)CeyMnO3 for power generation.
Park, K; Lee, G W; Jung, J; Kim, S-J; Lim, Y-S; Choi, S-M; Seo, W-S
2011-08-01
The sintered Ca(1-x-y)Dy(x)CeyMnO3 bodies were a single phase with a perovskite structure without any impurity phases. The calculated crystallite sizes of the Ca(1-x-y)Dy(x)CeyMnO3 were in the range of 43.3 to 63.3 nm. The composition significantly affected their microstructural and thermoelectric characteristics. The doped Dy led to both an increase in the electrical conductivity as well as the absolute value of the Seebeck coefficient, resulting in an enhanced power factor. The highest power factor (5.1 x 10(-4) Wm(-1) K(-2)) was obtained for Ca(0.8)Dy(0.2)MnO3 at 800 degrees C. In this study, we systematically discussed the thermoelectric properties of the Ca(1-x-y)Dy(x)CeyMnO3, with respect to the substitution of Dy and/or Ce for Ca.
Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao
2016-01-01
Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538
NASA Astrophysics Data System (ADS)
Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao
2016-12-01
Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.
Guiomar, Fernando P; Reis, Jacklyn D; Carena, Andrea; Bosco, Gabriella; Teixeira, António L; Pinto, Armando N
2013-01-14
Employing 100G polarization-multiplexed quaternary phase-shift keying (PM-QPSK) signals, we experimentally demonstrate a dual-polarization Volterra series nonlinear equalizer (VSNE) applied in frequency-domain, to mitigate intra-channel nonlinearities. The performance of the dual-polarization VSNE is assessed in both single-channel and in wavelength-division multiplexing (WDM) scenarios, providing direct comparisons with its single-polarization version and with the widely studied back-propagation split-step Fourier (SSF) approach. In single-channel transmission, the optimum power has been increased by about 1 dB, relatively to the single-polarization equalizers, and up to 3 dB over linear equalization, with a corresponding bit error rate (BER) reduction of up to 63% and 85%, respectively. Despite of the impact of inter-channel nonlinearities, we show that intra-channel nonlinear equalization is still able to provide approximately 1 dB improvement in the optimum power and a BER reduction of ~33%, considering a 66 GHz WDM grid. By means of simulation, we demonstrate that the performance of nonlinear equalization can be substantially enhanced if both optical and electrical filtering are optimized, enabling the VSNE technique to outperform its SSF counterpart at high input powers.
Singlet oxygen generator for a solar powered chemically pumped iodine laser
NASA Technical Reports Server (NTRS)
Busch, G. E.
1984-01-01
The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.
Low-Mass, Low-Power Hall Thruster System
NASA Technical Reports Server (NTRS)
Pote, Bruce
2015-01-01
NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.
Evaluation of an intelligent wheelchair system for older adults with cognitive impairments
2013-01-01
Background Older adults are the most prevalent wheelchair users in Canada. Yet, cognitive impairments may prevent an older adult from being allowed to use a powered wheelchair due to safety and usability concerns. To address this issue, an add-on Intelligent Wheelchair System (IWS) was developed to help older adults with cognitive impairments drive a powered wheelchair safely and effectively. When attached to a powered wheelchair, the IWS adds a vision-based anti-collision feature that prevents the wheelchair from hitting obstacles and a navigation assistance feature that plays audio prompts to help users manoeuvre around obstacles. Methods A two stage evaluation was conducted to test the efficacy of the IWS. Stage One: Environment of Use – the IWS’s anti-collision and navigation features were evaluated against objects found in a long-term care facility. Six different collision scenarios (wall, walker, cane, no object, moving and stationary person) and three different navigation scenarios (object on left, object on right, and no object) were performed. Signal detection theory was used to categorize the response of the system in each scenario. Stage Two: User Trials – single-subject research design was used to evaluate the impact of the IWS on older adults with cognitive impairment. Participants were asked to drive a powered wheelchair through a structured obstacle course in two phases: 1) with the IWS and 2) without the IWS. Measurements of safety and usability were taken and compared between the two phases. Visual analysis and phase averages were used to analyze the single-subject data. Results Stage One: The IWS performed correctly for all environmental anti-collision and navigation scenarios. Stage Two: Two participants completed the trials. The IWS was able to limit the number of collisions that occurred with a powered wheelchair and lower the perceived workload for driving a powered wheelchair. However, the objective performance (time to complete course) of users navigating their environment did not improve with the IWS. Conclusions This study shows the efficacy of the IWS in performing with a potential environment of use, and benefiting members of its desired user population to increase safety and lower perceived demands of powered wheelchair driving. PMID:23924489
NASA Technical Reports Server (NTRS)
Dijk, D. J.
1999-01-01
In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Li, Qiang, E-mail: liqiang@bnl.gov; Shi, Xun
We report on the thermoelectric properties of the higher manganese silicide MnSi{sub 1.75} synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example, the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5 × 10{sup 20 }cm{sup −3} at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper.« less
Kwag, Jeehyun; Jang, Hyun Jae; Kim, Mincheol; Lee, Sujeong
2014-01-01
Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin–Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons. PMID:25100320
The effect of active recovery on power performance during the bench press exercise.
Lopes, Felipe A S; Panissa, Valéria L G; Julio, Ursula F; Menegon, Elton M; Franchini, Emerson
2014-03-27
The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise.
The Effect of Active Recovery on Power Performance During the Bench Press Exercise
Lopes, Felipe A. S.; Panissa, Valéria L. G.; Julio, Ursula F.; Menegon, Elton M.; Franchini, Emerson
2014-01-01
The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise. PMID:25031684
NASA Astrophysics Data System (ADS)
Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.
2017-11-01
A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.
Single wall carbon nanotube supports for portable direct methanol fuel cells.
Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V
2006-01-12
Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.
NASA Astrophysics Data System (ADS)
Kleindienst, Tadeusz E.; Smith, David F.; Hudgens, Edward E.; Snow, Richard F.; Perry, Erica; Claxton, Larry D.; Bufalini, Joseph J.; Black, Francis M.; Cupitt, Larry T.
Dilute mixtures of automobile emissions (comprising 50% exhaust and 50% surrogate evaporative emissions) were irradiated in a 22.7 m 3 smog chamber and tested for mutagenic activity by using a variant of the Ames test. The exhaust was taken from a single vehicle, a 1977 Ford Mustang equipped with a catalytic converter. Irradiated and nonirradiated gas-phase emissions were used in exposures of the bacteria, Salmonella typhimurium, strains TA100 and TA98. A single set of vehicular operating conditions was used to perform multiple exposures. The mutagenic activities of extracts from the particulate phase were also measured with the standard plate incorporation assay. (In most experiments only direct-acting mutagenic compounds were measured.) The gas-phase data for TA100 and TA98 showed increased activity for the irradiated emissions when compared to the nonirradiated mixture, which exhibited negligible activity with respect to the control values. The particulate phase for both the irradiated and nonirradiated mixtures showed negligible activity when results were compared to the control values for both strains. However, the experimental conditions limited the amount of extractable mass which could be collected in the particulate phase. The measured activities from the gas phase and particulate phase were converted to the number of revertants per cubic meter of effluent (i.e. the mutagenic density) to compare the contributions of each of these phases to the total mutagenic activity for each strain. Under the experimental conditions of this study, the mutagenic density of the gas-phase component of the irradiated mixture contributed approximately two orders of magnitude more of the total TA100 activity than did the particulate phase. For TA98 the gas-phase component contributed approximately one order of magnitude more. However, caution must be exercised in extrapolating these results to urban atmospheres heavily impacted by automotive emissions, because the bacterial mutagenicity assay was used as a screening method, and additional assays using mammalian systems have not yet been conducted. In addition, only limited number of conditions were able to be tested. The significance and limitations of the results are discussed.
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
NASA Astrophysics Data System (ADS)
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
Mahaki, M; Mi'mar, R; Mahaki, B
2015-10-01
Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.
Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher
2013-01-01
Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images. PMID:23994351
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan; Khan, Sabih D; Shakya, Mahendra M; Moon, Eric; Chang, Zenghu
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2{pi} radians.
News and views in discontinuous phase transitions
NASA Astrophysics Data System (ADS)
Nagler, Jan
2014-03-01
Recent progress in the theory of discontinuous percolation allow us to better understand the the sudden emergence of large-scale connectedness both in networked systems and on the lattice. We analytically study mechanisms for the amplification of critical fluctuations at the phase transition point, non-self-averaging and power law fluctuations. A single event analysis allow to establish criteria for discontinuous percolation transitions, even on the high-dimensional lattice. Some applications such as salad bowl percolation, and inverse fragmentation are discussed.
Coherent communication link using diode-pumped lasers
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Wallace, Richard W.
1989-01-01
Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.
High efficiency 40 K single-stage Stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.
2017-12-01
A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.
Millimeter Wave Communications Program: Link Tests of High Speed Digital Radio Set AN/GRC-173 (XW-1)
1975-01-01
Terrence Kelly, John Mutty, Edward Rich, James Roche, William J. Smxth, Carson Tsao, and David Trask. Hugh N. Siegel (DCCW) was the RADC...shelter, except for the parabolic dish and front-feed antenna system, which is mast-mounted adjacent to the shelter and connected to an rf input...Equipment: All rf and digital units 8. POWER SUPPLIES Quantity: 1 for rf , 1 for digital Primary Power: 120/240V +10% single phase, 47 - 420 Hz
An efficient multiplexing approach for adaptive aircraft communications via a relay satellite.
NASA Technical Reports Server (NTRS)
Devieux, C.; Bisaga, J. J.
1973-01-01
Description of a coherent wide-angle multiplexing approach which is 4 to 8 dB more efficient in the utilization of satellite power as compared to a multicarrier transmission accessing a single TWT amplifier transponder. The wide-angle multiplexing approach achieves this performance by efficiently trading the modulation power improvement against backoff at the satellite earth terminal phase modulator. A simple addition of an amplitude clipper at the modulator input is critical to the proper operation of the system.
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey
2018-02-01
Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Single-Track Melt-Pool Measurements and Microstructures in Inconel 625
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.
2018-06-01
We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.
Streak camera imaging of single photons at telecom wavelength
NASA Astrophysics Data System (ADS)
Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine
2018-01-01
Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.