Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J.; Cliff, William C.; Creer, James M.
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
NASA Astrophysics Data System (ADS)
Papell, S. Stephen; Saiyed, Naseem H.; Nyland, Ted W.
1990-05-01
Liquid nitrogen mass flow rate, pressure drop, and temperature drop data were obtained for a series of multiple orifice Joule-Thomson devices, known as Visco Jets, over a wide range of flow resistance. The test rig used to acquire the data was designed to minimize heat transfer so that fluid expansion through the Visco Jets would be isenthalpic. The data include a range of fluid inlet pressures from 30 to 60 psia, fluid inlet temperatures from 118 to 164 R, outlet pressures from 2.8 to 55.8 psia, outlet temperatures from 117 to 162 R and flow rate from 0.04 to 4.0 lbm/hr of nitrogen. A flow rate equation supplied by the manufacturer was found to accurately predict single-phase (noncavitating) liquid nitrogen flow through the Visco Jets. For cavitating flow, the manufacturer's equation was found to be inaccurate. Greatly improved results were achieved with a modified version of the single-phase equation. The modification consists of a multiplication factor to the manufacturer's equation equal to one minus the downstream quality on an isenthalpic expansion of the fluid across the Visco Jet. For a range of flow resistances represented by Visco Jet Lohm ratings between 17,600 and 80,000, 100 percent of the single-phase data and 85 percent of the two-phase data fall within + or - 10 percent of predicted values.
NASA Astrophysics Data System (ADS)
Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali
2017-11-01
Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.
Simulation of two-phase flow in horizontal fracture networks with numerical manifold method
NASA Astrophysics Data System (ADS)
Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.
2017-10-01
The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.
NASA Astrophysics Data System (ADS)
Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.
2014-11-01
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future developments can be safely built, which is also relevant for stochastic subgrid models for particle-laden flows in the context of Large Eddy Simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minier, Jean-Pierre, E-mail: Jean-Pierre.Minier@edf.fr; Chibbaro, Sergio; Pope, Stephen B.
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangianmore » stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future developments can be safely built, which is also relevant for stochastic subgrid models for particle-laden flows in the context of Large Eddy Simulations.« less
A study of nonlinear dynamics of single- and two-phase flow oscillations
NASA Astrophysics Data System (ADS)
Mawasha, Phetolo Ruby
The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
NASA Astrophysics Data System (ADS)
Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.
2017-09-01
Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2008-01-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.
Volume-Of-Fluid Simulation for Predicting Two-Phase Cooling in a Microchannel
NASA Astrophysics Data System (ADS)
Gorle, Catherine; Parida, Pritish; Houshmand, Farzad; Asheghi, Mehdi; Goodson, Kenneth
2014-11-01
Two-phase flow in microfluidic geometries has applications of increasing interest for next generation electronic and optoelectronic systems, telecommunications devices, and vehicle electronics. While there has been progress on comprehensive simulation of two-phase flows in compact geometries, validation of the results in different flow regimes should be considered to determine the predictive capabilities. In the present study we use the volume-of-fluid method to model the flow through a single micro channel with cross section 100 × 100 μm and length 10 mm. The channel inlet mass flux and the heat flux at the lower wall result in a subcooled boiling regime in the first 2.5 mm of the channel and a saturated flow regime further downstream. A conservation equation for the vapor volume fraction, and a single set of momentum and energy equations with volume-averaged fluid properties are solved. A reduced-physics phase change model represents the evaporation of the liquid and the corresponding heat loss, and the surface tension is accounted for by a source term in the momentum equation. The phase change model used requires the definition of a time relaxation parameter, which can significantly affect the solution since it determines the rate of evaporation. The results are compared to experimental data available from literature, focusing on the capability of the reduced-physics phase change model to predict the correct flow pattern, temperature profile and pressure drop.
Scaling of Two-Phase Flows to Partial-Earth Gravity
NASA Technical Reports Server (NTRS)
Hurlbert, Kathryn M.; Witte, Larry C.
2003-01-01
A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.
High temperature helical tubular receiver for concentrating solar power system
NASA Astrophysics Data System (ADS)
Hossain, Nazmul
In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.
Thermal Vibrational Convection in a Two-phase Stratified Liquid
NASA Technical Reports Server (NTRS)
Chang, Qingming; Alexander, J. Iwan D.
2007-01-01
The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.
NASA Astrophysics Data System (ADS)
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
NASA Astrophysics Data System (ADS)
Kaur, K.; Laanearu, J.; Annus, I.
2017-10-01
The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.
Statistical representation of multiphase flow
NASA Astrophysics Data System (ADS)
Subramaniam
2000-11-01
The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.
Two-phase choked flow of cryogenic fluids in converging-diverging nozzles
NASA Technical Reports Server (NTRS)
Simoneau, R. J.; Hendricks, R. C.
1979-01-01
Data are presented for the two phase choked flow of three cryogenic fluids - nitrogen, methane, and hydrogen - in four converging-diverging nozzles. The data cover a range of inlet stagnation conditions, all single phase, from well below to well above the thermodynamic critical conditions. In almost all cases the nozzle throat conditions were two phase. The results indicate that the choked flow rates were not very sensitive to nozzle geometry. However, the axial pressure profiles, especially the throat pressure and the point of vaporization, were very sensitive to both nozzle geometry and operating conditions. A modified Henry-Fauske model correlated all the choked flow rate data to within + or - 10 percent. Neither the equilibrium model nor the Henry-Fauske model predicted throat pressures well over the whole range of data. Above the thermodynamic critical temperature the homogeneous equilibrium model was preferred for both flow rate and pressure ratio. The data of the three fluids could be normalized by the principle of corresponding states.
Aspects of wellbore heat transfer during two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, A.R.; Kabir, C.S.
1994-08-01
Wellbore fluid temperature is governed by the rate of heat loss from the wellbore to the surrounding formation, which in turn is a function of depth and production/injection time. The authors present an approach to estimate wellbore fluid temperature during steady-state two-phase flow. The method incorporates a new solution of the thermal diffusivity equation and the effect of both conductive and convective heat transport for the wellbore/formation system. For the multiphase flow in the wellbore, the Hasan-Kabir model has been adapted, although other mechanistic models may be used. A field example is used to illustrate the fluid temperature calculation proceduremore » and shows the importance of accounting for convection in the tubing/casing annulus. A sensitivity study shows that significant differences exist between the predicted wellhead temperature and the formation surface temperature and that the fluid temperature gradient is nonlinear. This study further shows that increased free gas lowers the wellhead temperature as a result of the Joule-Thompson effect. In such cases, the expression for fluid temperature developed earlier for single-phase flow should not be applied when multiphase flow is encountered. An appropriate expression is presented in this work for wellbores producing multiphase fluids.« less
Direct numerical simulations of fluid flow, heat transfer and phase changes
NASA Technical Reports Server (NTRS)
Juric, D.; Tryggvason, G.; Han, J.
1997-01-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Validation of model predictions of pore-scale fluid distributions during two-phase flow
NASA Astrophysics Data System (ADS)
Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.
2018-05-01
Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.
Two-phase flows within systems with ambient pressure
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.
1985-01-01
In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.
Continuum approaches for describing solid-gas and solid-liquid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, P.; Harvey, J.; Levine, H.
Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelanti, Marica, E-mail: Marica.Pelanti@ens.f; Bouchut, Francois, E-mail: francois.bouchut@univ-mlv.f; Mangeney, Anne, E-mail: mangeney@ipgp.jussieu.f
2011-02-01
We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resultingmore » relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.« less
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids
NASA Astrophysics Data System (ADS)
Jerzy, MIZERACZYK; Artur, BERENDT
2018-05-01
Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).
NASA Technical Reports Server (NTRS)
Disimile, Peter J.; Heist, Timothy J.
1990-01-01
The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
NASA Astrophysics Data System (ADS)
Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy
2017-04-01
The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
A theoretical analysis of fluid flow and energy transport in hydrothermal systems
Faust, Charles R.; Mercer, James W.
1977-01-01
A mathematical derivation for fluid flow and energy transport in hydrothermal systems is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)
Transitioning from a single-phase fluid to a porous medium: a boundary layer approach
NASA Astrophysics Data System (ADS)
Dalwadi, Mohit P.; Chapman, S. Jon; Oliver, James M.; Waters, Sarah L.
2014-11-01
Pressure-driven laminar channel flow is a classic problem in fluid mechanics, and the resultant Poiseuille flow is one of the few exact solutions to the Navier-Stokes equations. If the channel interior is a porous medium (governed by Darcy's law) rather than a single-phase fluid, the resultant behaviour is plug flow. But what happens when these two flow regions are coupled, as is the case for industrial membrane filtration systems or biological tissue engineering problems? How does one flow transition to the other? We use asymptotic methods to investigate pressure-driven flow through a long channel completely blocked by a finite-length porous obstacle. We analytically solve for the flow at both small and large Reynolds number (whilst remaining within the laminar regime). The boundary layer structure is surprisingly intricate for large Reynolds number. In that limit, the structure is markedly different depending on whether there is inflow or outflow through the porous medium, there being six asymptotic regions for inflow and three for outflow. We have extended this result to a wide class of 3D porous obstacles within a Hele-Shaw cell. We obtain general boundary conditions to couple the outer flows, and find that these conditions are far from obvious at higher order.
A model for wave propagation in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2016-02-01
This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.
2009-01-01
Single phase fluid flow in microchannels has been widely investigated ( Morini , 2006; Abdelaziz et al., 2008) and it was verified that the conventional...Optimization, Kluwer. 203 78. Morini , G. L., 2006, “Scaling Effects for Liquid Flows in Microchannels,” Heat Transfer Engineering, Vol. 27, No. 4, pp
Viscoelastic effects on residual oil distribution in flows through pillared microchannels.
De, S; Krishnan, P; van der Schaaf, J; Kuipers, J A M; Peters, E A J F; Padding, J T
2018-01-15
Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible displacement through heterogonous porous media is usually governed by competing viscous and capillary forces, expressed through a Capillary number Ca, and viscosity ratio of the displacing and displaced fluid. However, when viscoelastic displacement fluids are used, elastic forces in the displacement fluid also become significant. It is hypothesized that elastic instabilities are responsible for enhanced oil recovery through an elastic microsweep mechanism. In this work, we use a simplified geometry in the form of a pillared microchannel. We analyze the trapped residual oil size distribution after displacement by a Newtonian fluid, a nearly inelastic shear thinning fluid, and viscoelastic polymers and surfactant solutions. We find that viscoelastic polymers and surfactant solutions can displace more oil compared to Newtonian fluids and nearly inelastic shear thinning polymers at similar Ca numbers. Beyond a critical Ca number, the size of residual oil blobs decreases significantly for viscoelastic fluids. This critical Ca number directly corresponds to flow rates where elastic instabilities occur in single phase flow, suggesting a close link between enhancement of oil recovery and appearance of elastic instabilities. Copyright © 2017 Elsevier Inc. All rights reserved.
Two-phase reduced gravity experiments for a space reactor design
NASA Technical Reports Server (NTRS)
Antoniak, Zenen I.
1987-01-01
Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.
CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe
NASA Astrophysics Data System (ADS)
Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin
2017-08-01
In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.
Re-suspension Process In Turbulent Particle-fluid Mixture Boundary Layers
NASA Astrophysics Data System (ADS)
Zwinger, T.; Kluwick, A.
Many theoretical applications of geophysical flows, such as sediment transport (e.g. Jenkins &Hanes, 1998) and aeolian transport of particles (e.g. Hopwood et al., 1995) utilize concepts for describing the near wall velocity profiles of particle suspensions originally arising from classical single phase theories. This approach is supported by experiments indicating the existence of a logarithmic fluid velocity profile similar to single phase flows also in case of high Reynolds number wall bounded particle sus- pension flows with low particle volume fractions (Nishimura &Hunt, 2000). Since the concept of a logarithmic near wall profile follows from classic asymptotic the- ory of high Reynolds number wall bounded flows the question arises to what extent this theory can be modified to account for particles being suspended in the ambient fluid. To this end, the asymptotic theory developed by Mellor (1972) is applied to the Favré-averaged equations for the carrier fluid as well as the dispersed phase derived on the basis of a volume averaged dispersed two-phase theory (Gray &Lee, 1977). Numerical solutions for profiles of main stream velocities and particle volume frac- tion in the fully turbulent region of the boundary layer for different turbulent Schmidt numbers are computed applying a Finite Difference box scheme. In particular, atten- tion is focused on the turbulent re-suspension process of particles from dense granular flow adjacent to the bounding surface into the suspension. From these results boundary conditions in form of wall functions for velocities as well as the volume fraction of the particles can be derived and the validity of analogy laws between turbulent mass and momentum transfer at the bounding surface can be proved from an asymptotic point of view. The application of these concepts in the field of snow avalanche simulation (Zwinger, 2000) is discussed.
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
Microgravity fluid management in two-phase thermal systems
NASA Technical Reports Server (NTRS)
Parish, Richard C.
1987-01-01
Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.
Graf, Darin C.; Warpinski, Norman R.
1996-01-01
A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.
Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow
NASA Astrophysics Data System (ADS)
Mitra, D.; Dhir, V. K.; Catton, I.
2009-10-01
Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.
1992-01-01
As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.
A map for heavy inertial particles in fluid flows
NASA Astrophysics Data System (ADS)
Vilela, Rafael D.; de Oliveira, Vitor M.
2017-06-01
We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single parameter s (analogous of the Stokes number) approaches zero, the possibility of fold caustics in the "velocity field", and a minimum, as a function of s, of the Lyapunov (Kaplan-Yorke) dimension of the attractor where particles accumulate.
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Saar, Martin O.
2011-11-01
Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less
Graf, D.C.; Warpinski, N.R.
1996-08-13
A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, D.C.; Warpinski, N.R.
A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.
Proceedings of Workshop on Laser Diagnostics in Fluid Mechanics and Combustion
NASA Astrophysics Data System (ADS)
1993-10-01
Proceedings of the Workshop on Laser Diagnostics in Fluid Mechanics and Combustion are presented. Topics included are: Accuracy of Laser Doppler Anemometry; Applications of Raman-Rayleigh-LIF Diagnostics in Combustion Research; Phase Doppler Anemometer Technique Concepts and Applications; CARS; Particle Image Velocimetry; Practical Consideration in the Use and Design of Laser Velocimetry Systems in Turbomachinery Applications; Phase Doppler Measurements of Gas-Particle Flow Through a Tube Bank; Degenerate Four Wave Mixing for Shock Tunnel Studies of Supersonic Combustion; Laser Induced Photodissociation and Fluorescence (LIPF) of Sodium Species Present in Coal Combustion; 3D Holographic Measurements Inside a Spark Ignition Engine; Laser Doppler Velocimeter Measurements in Compressible Flow; Bursting in a Tornado Vortex; Quantitative Imaging of OH and Temperature Using a Single Laser Source and Single Intensified Camera; and Laser Doppler Measurements Inside an Artificial Heart Valve.
NASA Astrophysics Data System (ADS)
Jerbi, Chahir; Fourno, André; Noetinger, Benoit; Delay, Frederick
2017-05-01
Single and multiphase flows in fractured porous media at the scale of natural reservoirs are often handled by resorting to homogenized models that avoid the heavy computations associated with a complete discretization of both fractures and matrix blocks. For example, the two overlapping continua (fractures and matrix) of a dual porosity system are coupled by way of fluid flux exchanges that deeply condition flow at the large scale. This characteristic is a key to realistic flow simulations, especially for multiphase flow as capillary forces and contrasts of fluid mobility compete in the extraction of a fluid from a capacitive matrix then conveyed through the fractures. The exchange rate between fractures and matrix is conditioned by the so-called mean matrix block size which can be viewed as the size of a single matrix block neighboring a single fracture within a mesh of a dual porosity model. We propose a new evaluation of this matrix block size based on the analysis of discrete fracture networks. The fundaments rely upon establishing at the scale of a fractured block the equivalence between the actual fracture network and a Warren and Root network only made of three regularly spaced fracture families parallel to the facets of the fractured block. The resulting matrix block sizes are then compared via geometrical considerations and two-phase flow simulations to the few other available methods. It is shown that the new method is stable in the sense it provides accurate sizes irrespective of the type of fracture network investigated. The method also results in two-phase flow simulations from dual porosity models very close to that from references calculated in finely discretized networks. Finally, calculations of matrix block sizes by this new technique reveal very rapid, which opens the way to cumbersome applications such as preconditioning a dual porosity approach applied to regional fractured reservoirs.
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
NASA Astrophysics Data System (ADS)
Delil, A. A. M.
2003-01-01
Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
NASA Astrophysics Data System (ADS)
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.
2011-12-01
Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Pore-scale modeling of phase change in porous media
NASA Astrophysics Data System (ADS)
Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing
2017-11-01
One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.
NASA Astrophysics Data System (ADS)
Datta, Sujit Sankar
2015-11-01
Filtering water and brewing coffee are familiar examples of forcing a fluid through a porous material. Such flows are also crucial to many technological applications, including oil recovery, groundwater remediation, waste CO2 sequestration, and even transporting nutrients through mammalian tissues. I will present an experimental approach by which we directly visualize flow within a disordered 3D porous medium over a broad range of length scales, from the scale of individual pores to that of the entire medium. I will describe how we use this approach to learn about fluctuations and instabilities in single-phase and multi-phase flows.
Active thermal control systems for lunar and Martian exploration
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John
1990-01-01
Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.
Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program
1979-04-01
34 ME 5-77, Ben Gurlon University of the Negev , Beer- Sheva, Israel. BRANOVER, H., ELBOCHER, A., HOCH, E., UNGER, Y., YAKHOT, A., and ZILBERMAN, I...1978, "Hydrodynamic Investigation of Single and Two-Phase Flow Ill Liquid Metal MHD Generator Channels," ME 4-78, Ben Gurion University o the Negev , Beer...Conducting Fluid Flows in Magnetic Fields," UCRL-51010, Lawrence Radiation Laboratory, Livermore, CA. LAVRENTIEV, I. V., 1967, "Effect of Baffle Location
NASA Astrophysics Data System (ADS)
Rasthofer, U.; Wall, W. A.; Gravemeier, V.
2018-04-01
A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results
NASA Astrophysics Data System (ADS)
Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.
2015-09-01
Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.
Simulations of Cavitating Cryogenic Inducers
NASA Technical Reports Server (NTRS)
Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.
2004-01-01
Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)
1995-01-01
The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for drift errors. The output signals are digitized and provided to a computer at a sample rate which may be very high. The computer is operable to identify the fluid based on its complex permittivity as may be useful for identifying the flow rates, determining the fluid mixture ratio, detecting impurities in the fluid, and so forth. Novelty is believed to reside in the use of the real part of complex permittivity to measure small difference in permittivity of the fluid.
Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis
NASA Astrophysics Data System (ADS)
Rajendran, Rahul; Banerjee, Arindam
2015-11-01
Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
Neutron Radiography of Fluid Flow for Geothermal Energy Research
NASA Astrophysics Data System (ADS)
Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.
Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the ;particles; and imaging with 10 ms exposures.
Effect of Phase Lag on Fluid Flow and Particle Dispersion in a Single Human Alveolus
NASA Astrophysics Data System (ADS)
Chhabra, Sudhaker; Prasad, Ajay
2007-11-01
The human lung can be divided into (1) the conducting airways, and (2) the acini. The acini are responsible for gas exchange and consist of alveoli and bronchioles. The acini are useful delivery sites for inhaled therapeutic aerosols. In normal lung function the alveolus expands and contracts in phase with the bronchiole airflow oscillation. Lung diseases such as emphysema compromise the elasticity of the lung. Consequently, the alveolus may not oscillate in-phase with the oscillating bronchiole airflow. We have previously studied flow and particle transport in an alveolus for in-phase flow. The current work focuses on measuring out-of-phase airflow patterns and particle transport in an in-vitro model of a single expanding/contracting human alveolus. The model consists of a transparent, elastic, oscillating alveolus (represented by a 5/6th hemisphere) attached to a rigid circular tube. Realistic tidal breathing conditions were achieved by matching Reynolds and Womersley numbers. Flow patterns were measured using PIV; these velocity maps were subsequently used to calculate particle transport and deposition on the alveolar wall.
NASA Astrophysics Data System (ADS)
Broglia, Riccardo; Durante, Danilo
2017-11-01
This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to compare the hydrodynamic forces and the attitudes assumed at different velocities. A very good agreement between numerical and experimental results demonstrates the reliability of the single-phase level set approach for the predictions of high Froude numbers flows.
Chilldown study of the single stage inducer test rig
NASA Technical Reports Server (NTRS)
Kimura, L. A.
1972-01-01
Of the six chilldown tests, data from only one could be used for evaluation. During the rest of the chilldown tests, there was leakage hydrogen flow into the pump cavity prior to the initiation of the chilldown test. In all of the tests the hydrogen condition into the pump was probably 100% vapor. The data from this one test, therefore, can be used to compare only the single phase fluid correlation in the analytical pump chilldown model. In general, the actual pump chilled down much faster than predicted by the analytical pump model. There were insufficient data from the test to measure the pump flow rate and pump inlet fluid condition; therefore, these parameters were extrapolated based on related data which were available. However, even with the highest probable flow rate, the pump chilled faster than predicted.
Fluid mechanics and heat transfer spirally fluted tubing
NASA Astrophysics Data System (ADS)
Yampolsky, J. S.; Libby, P. A.; Launder, B. E.; Larue, J. C.
1984-12-01
The objective of this program is to develop an understanding of the fluid mechanics and heat transfer mechanisms that result in the demonstrated performance of the spiral fluted tubing under development at GA Technologies Inc. Particularly emphasized are the processes that result in the augmentation of the heat transfer coefficient without an increase in friction coefficient in the single-phase flow. Quantitative delineation of these processes would allow for their application to the optimal solution of heat transfer problems in general was well as to tubular heat exchanges using spiral fluted tubes. The experimental phase of the program consisted of the following: (1) Flow visualization studies using high-speed photography of dye injected into water flowing in a cast acrylic spiral fluted tube. (2) Time-resolved axial velocity measurements as a function of radius at the exit plane of a spiral fluted tube with water flowing through the tube. (3) Simultaneous time-resolved measurements of the axial and radial velocity components and temperature with heated air flowing through the tube cooled by a water jacket.
McClure, James E.; Berrill, Mark A.; Gray, William G.; ...
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClure, James E.; Berrill, Mark A.; Gray, William G.
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less
Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow
NASA Astrophysics Data System (ADS)
Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.
2017-12-01
The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-01-01
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269
The Voronoi Implicit Interface Method for computing multiphase physics.
Saye, Robert I; Sethian, James A
2011-12-06
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-11-21
In this paper, we introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarilymore » high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. Finally, we test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.« less
Hybrid upwind discretization of nonlinear two-phase flow with gravity
NASA Astrophysics Data System (ADS)
Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.
2015-08-01
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.
Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon
2013-01-01
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi-Gang Feng
2012-05-31
The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.
2017-02-01
An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps
NASA Astrophysics Data System (ADS)
Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.
2017-04-01
Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.
Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. J. Berry; Susanta Das
2009-12-30
To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less
Interfacial Area Development in Two-Phase Fluid Flow: Transient vs. Quasi-Static Flow Conditions
NASA Astrophysics Data System (ADS)
Meisenheimer, D. E.; Wildenschild, D.
2017-12-01
Fluid-fluid interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different phases in these systems but they also influence fluid flow processes. There is a need to better understand this relationship between interfacial area and fluid flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-phase flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the fluid-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of fluid topology) will also be presented.
Extend of magnetic field interference in the natural convection of diamagnetic nanofluid
NASA Astrophysics Data System (ADS)
Roszko, Aleksandra; Fornalik-Wajs, Elzbieta
2017-10-01
Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.
Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2016-04-01
Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.
NASA Astrophysics Data System (ADS)
Ruiz, Maritza
Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
Traffic jam dynamics in stochastic cellular automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less
NASA Astrophysics Data System (ADS)
Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.
2018-03-01
Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.
Principles of operation and data reduction techniques for the loft drag disc turbine transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, S.
An analysis of the single- and two-phase flow data applicable to the loss-of-fluid test (LOFT) is presented for the LOFT drag turbine transducer. Analytical models which were employed to correlate the experimental data are presented.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A two-phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates zero-g conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-g which became bubbly, slug, or annular flow regimes on 0-g. A portion of this work is the analysis of adiabatic flow regimes. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes.
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
Multiscale Modeling of Multiphase Fluid Flow
2016-08-01
the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural
NASA Astrophysics Data System (ADS)
Jurns, J. M.; Hartwig, J. W.
2012-04-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.
NASA Technical Reports Server (NTRS)
Jurns, John M.; Hartwig, Jason W.
2011-01-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.
Online capacitive densitometer
Porges, K.G.
1988-01-21
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.
Online capacitive densitometer
Porges, Karl G.
1990-01-01
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.
The 400W at 1.8K Test Facility at CEA-Grenoble
NASA Astrophysics Data System (ADS)
Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.
2006-04-01
A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.
The modelling of heat, mass and solute transport in solidification systems
NASA Technical Reports Server (NTRS)
Voller, V. R.; Brent, A. D.; Prakash, C.
1989-01-01
The aim of this paper is to explore the range of possible one-phase models of binary alloy solidification. Starting from a general two-phase description, based on the two-fluid model, three limiting cases are identified which result in one-phase models of binary systems. Each of these models can be readily implemented in standard single phase flow numerical codes. Differences between predictions from these models are examined. In particular, the effects of the models on the predicted macro-segregation patterns are evaluated.
NASA Astrophysics Data System (ADS)
Premnath, Kannan N.; Hajabdollahi, Farzaneh; Welch, Samuel W. J.
2018-04-01
The presence of surfactants in two-phase flows results in the transport and adsorption of surfactants to the interface, and the resulting local interfacial concentration significantly influences the surface tension between the liquid and vapor phases in a fluid undergoing phase change. This computational study is aimed at understanding and elucidating the mechanisms of enhanced flows and thermal transport processes in film boiling due to the addition of surfactants. A change in surface tension results in a change in the critical Rayleigh-Taylor wavelength leading to different bubble release patterns and a change in the overall heat transfer rates. Due to the presence of surfactants, an additional transport mechanism of the Marangoni convection arises from the resulting tangential gradients in the surfactant concentration along the phase interface. Our computational approach to study such phenomena consists of representing the interfacial motion by means of the coupled level set-volume-of-fluid method, the fluid motion via the classical marker-and-cell approach, as well as representations for the bulk transport of energy and surfactants, in conjunction with a phase change model and an interfacial surfactant model. Using such an approach, we perform numerical simulations of surfactant-laden single mode as well as multiple mode film boiling and study the effect of surfactants on the transport processes in film boiling, including bubble release patterns, vapor generation rates, and heat transfer rates at different surfactant concentrations. The details of the underlying mechanisms will be investigated and interpreted.
NASA Astrophysics Data System (ADS)
Peterson, Jeffrey H.
Cadmium telluride (CdTe) and cadmium zinc telluride (CZT) are important optoelectronic materials with applications ranging from medical imaging to nuclear materials monitoring. However, CZT and CdTe have long been plagued by second-phase particles, inhomogeneity, and other defects. The traveling heater method (THM) is a promising approach for growing CZT and other compound semiconductors that has been shown to grow detector-grade crystals. In contrast to traditional directional solidification, the THM consists of a moving melt zone that simultaneously dissolves a polycrystalline feed while producing a single-crystal of material. Additionally, the melt is highly enriched in tellurium, which allows for growth at lower temperatures, limiting the presence of precipitated tellurium second-phase particles in the final crystal. Unfortunately, the THM growth of CZT is limited to millimeters per day when other growth techniques can grow an order of magnitude faster. To understand these growth limits, we employ a mathematical model of the THM system that is formulated to realistically represent the interactions of heat and species transport, fluid flow, and interfacial dissolution and growth under conditions of local thermodynamic equilibrium and steady-state growth. We examine the complicated interactions among zone geometry, continuum transport, phase change, and fluid flow driven by buoyancy. Of particular interest and importance is the formation of flow structures in the liquid zone of the THM that arise from the same physical mechanism as lee waves in atmospheric flows and demonstrate the same characteristic Brunt-Vaisala scaling. We show that flow stagnation and reversal associated with lee-wave formation are responsible for the accumulation of tellurium and supercooled liquid near the growth interface, even when the lee-wave vortex is not readily apparent in the overall flow structure. The supercooled fluid is posited to result in morphological instability at growth rates far below the limit predicted by the classical criterion by Tiller et al. for constitutional supercooling.
COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA
A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...
Two-Fluid Models and Interfacial Area Transport in Microgravity Condition
NASA Technical Reports Server (NTRS)
Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp
2004-01-01
The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.
Inflow performance relationship for perforated wells producing from solution gas drive reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukarno, P.; Tobing, E.L.
1995-10-01
The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed usingmore » two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.« less
Development of a two-phase SPH model for sediment laden flows
NASA Astrophysics Data System (ADS)
Shi, Huabin; Yu, Xiping; Dalrymple, Robert A.
2017-12-01
A SPH model based on a general formulation for solid-fluid two-phase flows is proposed for suspended sediment motion in free surface flows. The water and the sediment are treated as two miscible fluids, and the multi-fluid system is discretized by a single set of SPH particles, which move with the water velocity and carry properties of the two phases. Large eddy simulation (LES) is introduced to deal with the turbulence effect, and the widely used Smagorinsky model is modified to take into account the influence of sediment particles on the turbulence. The drag force is accurately formulated by including the hindered settling effect. In the model, the water is assumed to be weakly compressible while the sediment is incompressible, and a new equation of state is proposed for the pressure in the sediment-water mixture. Dynamic boundary condition is employed to treat wall boundaries, and a new strategy of Shepard filtering is adopted to damp the pressure oscillation. The developed two-phase SPH model is validated by comparing the numerical results with analytical solutions for idealized cases of still water containing both neutrally buoyant and naturally settling sand and for plane Poiseuille flows carrying neutrally buoyant particles, and is then applied to sand dumping from a line source into a water tank, where the sand cloud settles with a response of the free water surface. It is shown that the numerical results are in good agreement with the experimental data as well as the empirical formulas. The characteristics of the settling sand cloud, the pressure field, and the flow vortices are studied. The motion of the free water surface is also discussed. The proposed two-phase SPH model is proven to be effective for numerical simulation of sand dumping into waters.
NASA Astrophysics Data System (ADS)
Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian
2013-04-01
Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A. et al.: Dumux: Dune for multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media, Advances in Water Resources, 34, 1102-1112, 2011. McWhorter, D. B., and Sunada, D. K.: Exact integral solutions for two-phase flow, Water Resources Research, 26(3), 399-413, 1990.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
2010-05-11
convective heat transfer , researchers have been drawn to the high heat flux potentials of microfluidic devices. Microchannel flows, with hydraulic...novel heat transfer enhancement technique proven on the conventional scale to the mini and microchannel scales. 1.3 Background: Conventional...S.G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” International Conference on Microchannels
Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows
NASA Astrophysics Data System (ADS)
Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.
1999-12-01
Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.
Visualization of various working fluids flow regimes in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
A pumped, two-phase flow heat transport system for orbiting instrument payloads
NASA Technical Reports Server (NTRS)
Fowle, A. A.
1981-01-01
A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.
NASA Astrophysics Data System (ADS)
Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.
2017-11-01
A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.
Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation
NASA Technical Reports Server (NTRS)
Syed, S. A.; James, R. H.
1989-01-01
This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.
Injection System for Multi-Well Injection Using a Single Pump
Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.
2015-01-01
Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
The dynamic two-fluid model OLGA; Theory and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendiksen, K.H.; Maines, D.; Moe, R.
1991-05-01
Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Turowski, Jens M.; McArdell, Brian; Rickenmann, Dieter
2016-04-01
Debris flows are frequent natural hazards that cause massive damage. A wide range of debris flow models try to cover the complex flow behavior that arises from the inhomogeneous material mixture of water with clay, silt, sand, and gravel. The energy dissipation between moving grains depends on grain collisions and tangential friction, and the viscosity of the interstitial fine material suspension depends on the shear gradient. Thus a rheology description needs to be sensitive to the local pressure and shear rate, making the three-dimensional flow structure a key issue for flows in complex terrain. Furthermore, the momentum exchange between the granular and fluid phases should account for the presence of larger particles. We model the fine material suspension with a Herschel-Bulkley rheology law, and represent the gravel with the Coulomb-viscoplastic rheology of Domnik & Pudasaini (Domnik et al. 2013). Both composites are described by two phases that can mix; a third phase accounting for the air is kept separate to account for the free surface. The fluid dynamics are solved in three dimensions using the finite volume open-source code OpenFOAM. Computational costs are kept reasonable by using the Volume of Fluid method to solve only one phase-averaged system of Navier-Stokes equations. The Herschel-Bulkley parameters are modeled as a function of water content, volumetric solid concentration of the mixture, clay content and its mineral composition (Coussot et al. 1989, Yu et al. 2013). The gravel phase properties needed for the Coulomb-viscoplastic rheology are defined by the angle of repose of the gravel. In addition to this basic setup, larger grains and the corresponding grain collisions can be introduced by a coupled Lagrangian particle simulation. Based on the local Savage number a diffusive term in the gravel phase can activate phase separation. The resulting model can reproduce the sensitivity of the debris flow to water content and channel bed roughness, as illustrated with lab-scale and large-scale experiments. A large-scale natural landslide event down a curved channel is presented to show the model performance at such a scale, calibrated based on the observed surface super-elevation.
Polymer as Permeability Modifier in Porous Media
NASA Astrophysics Data System (ADS)
Parsa, S.; Weitz, D.
2017-12-01
Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.
Multiphase flow models for hydraulic fracturing technology
NASA Astrophysics Data System (ADS)
Osiptsov, Andrei A.
2017-10-01
The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.
An investigation of two phase flow pressure drops in a reduced acceleration environment
NASA Astrophysics Data System (ADS)
Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.
1993-01-01
Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.
A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method
NASA Astrophysics Data System (ADS)
Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko
2018-03-01
This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.
An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology
NASA Astrophysics Data System (ADS)
Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien
2018-01-01
A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.
Chemical reaction fouling model for single-phase heat transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, C.B.; Watkinson, A.P.
1993-08-01
A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differmore » for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninokata, H.; Deguchi, A.; Kawahara, A.
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less
The use of numerical programs in research and academic institutions
NASA Astrophysics Data System (ADS)
Scupi, A. A.
2016-08-01
This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.
Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue
NASA Astrophysics Data System (ADS)
Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.
2017-11-01
The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions
NASA Astrophysics Data System (ADS)
Longeot, Matthieu J.; Best, Frederick R.
1995-01-01
Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Experiment and Lattice Boltzmann numerical study on nanofluids flow in a micromodel as porous medium
NASA Astrophysics Data System (ADS)
Meghdadi Isfahani, A. H.; Afrand, Masoud
2017-10-01
Al2O3 nanofluids flow has been studied in etched glass micromodel which is idealization of porous media by using a pseudo 2D Lattice Boltzmann Method (LBM). The predictions were compared with experimental results. Pressure drop / flow rate relations have been measured for pure water and Al2O3 nanofluids. Because the size of Al2O3 nanoparticles is tiny enough to permit through the pore throats of the micromodel, blockage does not occur and the permeability is independent of the nanofluid volume fraction. Therefore, the nanofluid behaves as a single phase fluid, and a single phase LBM is able to simulate the results of this experiment. Although the flow in micromodels is 3D, we showed that 2D LBM can be used provided an effective viscous drag force, representing the effect of the third dimension, is considered. Good qualitative and quantitative agreement is seen between the numerical and experimental results.
Modelling of sea floor spreading initiation and rifted continental margin formation
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Isimm Team
2003-04-01
Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj
2017-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time scales in the model and their role in granular/fluid flow dynamics. References [1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, J. Phys. D: Appl. Phys., in press (2016). [2] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, J. Fluid Mech., 801, 166-221 (2016). [3] R. Jackson, Cambridges Monographs on Mechanics (2000).
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu
2017-12-01
In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.
Phase behavior of a simple dipolar fluid under shear flow in an electric field.
McWhirter, J Liam
2008-01-21
Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.
Aerospace applications of SINDA/FLUINT at the Johnson Space Center
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Bellmore, Phillip E.; Andish, Kambiz K.; Keller, John R.
1992-01-01
SINDA/FLUINT has been found to be a versatile code for modeling aerospace systems involving single or two-phase fluid flow and all modes of heat transfer. Several applications of SINDA/FLUINT are described in this paper. SINDA/FLUINT is being used extensively to model the single phase water loops and the two-phase ammonia loops of the Space Station Freedom active thermal control system (ATCS). These models range from large integrated system models with multiple submodels to very detailed subsystem models. An integrated Space Station ATCS model has been created with ten submodels representing five water loops, three ammonia loops, a Freon loop and a thermal submodel representing the air loop. The model, which has approximately 800 FLUINT lumps and 300 thermal nodes, is used to determine the interaction between the multiple fluid loops which comprise the Space Station ATCS. Several detailed models of the flow-through radiator subsystem of the Space Station ATCS have been developed. One model, which has approximately 70 FLUINT lumps and 340 thermal nodes, provides a representation of the ATCS low temperature radiator array with two fluid loops connected only by conduction through the radiator face sheet. The detailed models are used to determine parameters such as radiator fluid return temperature, fin efficiency, flow distribution and total heat rejection for the baseline design as well as proposed alternate designs. SINDA/FLUINT has also been used as a design tool for several systems using pressurized gasses. One model examined the pressurization and depressurization of the Space Station airlock under a variety of operating conditions including convection with the side walls and internal cooling. Another model predicted the performance of a new generation of manned maneuvering units. This model included high pressure gas depressurization, internal heat transfer and supersonic thruster equations. The results of both models were used to size components, such as the heaters and gas bottles and also to point to areas where hardware testing was needed.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Wang; X. Sun; H. Zhao
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less
Modeling the use of a binary mixture as a control scheme for two-phase thermal systems
NASA Technical Reports Server (NTRS)
Benner, S. M.; Costello, Frederick A.
1990-01-01
Two-phase thermal loops using mechanical pumps, capillary pumps, or a combination of the two have been chosen as the main heat transfer systems for the space station. For these systems to operate optimally, the flow rate in the loop should be controlled in response to the vapor/liquid ratio leaving the evaporator. By substituting a mixture of two non-azeotropic fluids in place of the single fluid normally used in these systems, it may be possible to monitor the temperature of the exiting vapor and determine the vapor/liquid ratio. The flow rate would then be adjusted to maximize the load capability with minimum energy input. A FLUINT model was developed to study the system dynamics of a hybrid capillary pumped loop using this type of control and was found to be stable under all the test conditions.
Microfluidic Controlled Conformal Coating of Particles
NASA Astrophysics Data System (ADS)
Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard
2011-11-01
Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.
Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media
NASA Astrophysics Data System (ADS)
Jinwei, Zhang; Handong, Huang; Chunhua, Wu; Sheng, Zhang; Gang, Wu; Fang, Chen
2018-04-01
Wave induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and micro-cracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low frequency limit and consistent with the isolated fracture model at high frequency limit. After the frequency dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analyzed through several numerical examples. We investigated three poroelastic cases: medium including pores and micro-cracks, media including pores, micro-cracks and fractures, media including pores and fractures. The frequency dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.
Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media
NASA Astrophysics Data System (ADS)
Zhang, Jinwei; Huang, Handong; Wu, Chunhua; Zhang, Sheng; Wu, Gang; Chen, Fang
2018-07-01
Wave-induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and microcracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low-frequency limit and consistent with the isolated fracture model at high-frequency limit. After the frequency-dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analysed through several numerical examples. We investigated three poroelastic cases: medium including pores and microcracks; media including pores, microcracks and fractures; media including pores and fractures. The frequency-dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.
NASA Astrophysics Data System (ADS)
Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.
2017-07-01
The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.
NASA Astrophysics Data System (ADS)
Matveev, A. S.; Ishchenko, R.
2017-11-01
We consider a generic deterministic time-invariant fluid model of a single server switched network, which consists of finitely many infinite size buffers (queues) and receives constant rate inflows of jobs from the outside. Any flow undergoes a multi-phase service, entering a specific buffer after every phase, and ultimately leaves the network; the route of the flow over the buffers is pre-specified, and flows may merge inside the network. They share a common source of service, which can serve at most one buffer at a time and has to switch among buffers from time to time; any switch consumes a nonzero switchover period. With respect to the long-run maximal scaled wip (work in progress) performance metric, near-optimality of periodic scheduling and service protocols is established: the deepest optimum (that is over all feasible processes in the network, irrespective of the initial state) is furnished by such a protocol up to as small error as desired. Moreover, this can be achieved with a special periodic protocol introduced in the paper. It is also shown that the exhaustive policy is optimal for any buffer whose service at the maximal rate does not cause growth of the scaled wip.
Flocking from a quantum analogy: spin-orbit coupling in an active fluid
NASA Astrophysics Data System (ADS)
Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.
2018-01-01
Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Controlled double emulsification utilizing 3D PDMS microchannels
NASA Astrophysics Data System (ADS)
Chang, Fu-Che; Su, Yu-Chuan
2008-06-01
This paper presents a PDMS emulsification device that is capable of generating water-in-oil-in-water double emulsions in a controlled manner. Specially designed 3D microchannels are utilized to steer the independently driven water- and oil-phase flows (especially to restrict the attachment of the middle oil-phase flow on the channel surfaces), and to break the continuous flows into monodisperse double emulsions. In addition to channel geometries and fluid flow rates, surfactants and osmotic agents are employed to facilitate the breakup process and stabilize the resulting emulsion structures. In the prototype demonstration, two-level SU-8 molds were fabricated to duplicate PDMS microstructures, which were surface treated and bonded irreversibly to form 3D microchannels. Throughout the emulsification trials, dripping was intentionally induced to generate monodisperse double emulsions with single or multiple aqueous droplets inside each oil drop. It is found that the overall and core sizes of the resulting double emulsions could be adjusted independently, mainly by varying the outer and inner fluid flow rates, respectively. As such, the presented double emulsification device could potentially realize the controllability on emulsion structure and size distribution, which is desired for a variety of biological and pharmaceutical applications.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
A review of numerical simulation of hydrothermal systems.
Mercer, J.W.; Faust, C.R.
1979-01-01
Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
NASA Astrophysics Data System (ADS)
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia Wang; Xiaodong Sun; Benjamin Doup
In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less
Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement
NASA Astrophysics Data System (ADS)
Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.
2018-01-01
Researchers have paid attention to nanofluid applications, since nanofluids have revealed their potentials as working fluids in many thermal systems. Numerical studies of convective heat transfer in nanofluids can be based on considering them as single- and two-phase fluids. This work is focused on improving the single-phase nanofluid model performance, since the employment of this model requires less calculation time and it is less complicated due to utilizing the mixing thermal conductivity model, which combines static and dynamic parts used in the simulation domain alternately. The in-house numerical program has been developed to analyze the effects of the grid nodes, effective viscosity model, boundary-layer thickness, and of the mixing thermal conductivity model on the nanofluid heat transfer enhancement. CuO-water, Al2O3-water, and Cu-water nanofluids are chosen, and their laminar fully developed flows through a rectangular channel are considered. The influence of the effective viscosity model on the nanofluid heat transfer enhancement is estimated through the average differences between the numerical and experimental results for the nanofluids mentioned. The nanofluid heat transfer enhancement results show that the mixing thermal conductivity model consisting of the Maxwell model as the static part and the Yu and Choi model as the dynamic part, being applied to all three nanofluids, brings the numerical results closer to the experimental ones. The average differences between those results for CuO-water, Al2O3-water, and CuO-water nanofluid flows are 3.25, 2.74, and 3.02%, respectively. The mixing thermal conductivity model has been proved to increase the accuracy of the single-phase nanofluid simulation and to reveal its potentials in the single-phase nanofluid numerical studies.
Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena
2012-04-01
The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow
NASA Astrophysics Data System (ADS)
Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.
2003-05-01
We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.
Study of two-phase flows in reduced gravity
NASA Astrophysics Data System (ADS)
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.
Rapid Confined Mixing with Transverse Jets Part 1: Single Jet
NASA Astrophysics Data System (ADS)
Salazar, David; Forliti, David
2012-11-01
Transverse jets have been studied extensively due to their relevance and efficiency in fluid mixing applications. Gas turbine burners, film cooling, and chemical reactors are some examples of rapid transverse jet mixing. Motivated by a lack of universal scaling laws for confined and unconfined transverse jets, a newly developed momentum transfer parameter was found to improve correlation of literature data. Jet column drag and entrainment arguments for momentum transfer are made to derive the parameter. A liquid-phase mixing study was conducted to investigate confined mixing for a low number of jets. Planar laser induced fluorescence was implemented to measure mixture fraction for a single confined transverse jet. Time-averaged cross-sectional images were taken with a light sheet located three diameters downstream of transverse injection. A mixture of water and sodium fluorescein was used to distinguish jet fluid from main flow fluid for the test section images. Image data suggest regimes for under- and overpenetration of jet fluid into the main flow. The scaling parameter is found to correlate optimum unmixedness for multiple diameter ratios at a parameter value of 0.75. Distribution A: Public Release, Public Affairs Clearance Number: 12655.
Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution
NASA Astrophysics Data System (ADS)
Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.
2016-09-01
A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.
2018-03-01
The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.
Conger, Randall W.
2000-01-01
Between November 1998 and May 1999, geophysical logging was conducted in 29 boreholes at the Crossley Farms Superfund Site, Hereford Township, Berks County, Pa., to determine the fluidproducing zones, fluid-receiving zones, zones of vertical borehole flow, and casing depth. The wells range in depth from 96 to 500 feet below land surface. Gamma logs only were collected in three bedrock wells. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, video, fluid-temperature, fluid-resistivity, single-point-resistance, natural-gamma, fluid-flow, and acoustic-televiewer logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on fluidtemperature and fluid-resistivity logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical, video logs, and drillers notes, 24 of the wells were reconstructed such that water levels can be monitored and water samples collected from discrete water-bearing fractures in each well.
Phase change material storage heater
Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.
1997-01-01
A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.
2016-12-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time scales in the model and their role in granular/fluid flow dynamics. References[1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, J. Phys. D: Appl. Phys., in press (2016). [2] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, J. Fluid Mech., 801, 166-221 (2016). [3] R. Jackson, Cambridges Monographs on Mechanics (2000).
NASA Astrophysics Data System (ADS)
He, Yuanyuan; Bai, Bing; Li, Xiaochun
2017-11-01
CO2 and water are two commonly employed heat transmission fluids in several fields. Their temperature and pressure determine their phase states, thus affecting the heat transfer performance of the water/CO2. The heat transfer characteristics of gaseous CO2 and gaseous water flowing through fractured hot dry rock still need a great deal of investigation, in order to understand and evaluate the heat extraction in enhanced geothermal systems. In this work, we develop a 2D numerical model to compare the heat transfer performance of gaseous CO2 and gaseous water flowing through a single fracture aperture of 0.2 mm in a φ 50 × 50 mm cylindrical granite sample with a confining temperature of 200°C under different inlet mass flow rates. Our results indicate that: (1) the final outlet temperatures of the fluid are very close to the outer surface temperature under low inlet mass flow rate, regardless of the sample length. (2) Both the temperature of the fluid (gaseous CO2/gaseous water) and inner surface temperature rise sharply at the inlet, and the inner surface temperature is always higher than the fluid temperature. However, their temperature difference becomes increasingly small. (3) Both the overall heat transfer coefficient (OHTC) and local heat transfer coefficient (LHTC) of gaseous CO2 and gaseous water increase with increasing inlet mass flow rates. (4) Both the OHTC and LHTC of gaseous CO2 are lower than those of gaseous water under the same conditions; therefore, the heat mining performance of gaseous water is superior to gaseous CO2 under high temperature and low pressure.
NASA Astrophysics Data System (ADS)
Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.
2015-12-01
The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.
NASA Astrophysics Data System (ADS)
Ohyama, R.; Inoue, K.; Chang, J. S.
2007-01-01
A flow pattern characterization of electrohydrodynamically (EHD) induced flow phenomena of a stratified dielectric fluid situated in an ac corona discharge field is conducted by a Schlieren optical system. A high voltage application to a needle-plate electrode arrangement in gas-phase normally initiates a conductive type EHD gas flow. Although the EHD gas flow motion initiated from the corona discharge electrode has been well known as corona wind, no comprehensive study has been conducted for an EHD fluid flow motion of the stratified dielectric liquid that is exposed to the gas-phase ac corona discharge. The experimentally observed result clearly presents the liquid-phase EHD flow phenomenon induced from the gas-phase EHD flow via an interfacial momentum transfer. The flow phenomenon is also discussed in terms of the gas-phase EHD number under the reduced gas pressure (reduced interfacial momentum transfer) conditions.
Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids
NASA Astrophysics Data System (ADS)
Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo
2017-05-01
We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudasaini, Shiva P.; Miller, Stephen A.
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include amore » dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.« less
Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows
NASA Astrophysics Data System (ADS)
Fordham, E. J.; Holmes, A.; Ramos, R. T.; Simonian, S.; Huang, S.-M.; Lenn, C. P.
1999-12-01
We demonstrate the use of a novel design of fibre-optical sensor (or `local probe') for immiscible-fluid discrimination in multi-phase flows. These probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with various surface treatments, including a crucial one for wettability control. Total internal reflection is used to distinguish drops, bubbles or other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Such probes have quasi-binary outputs; we demonstrate in this paper their use in distinguishing water from oil (kerosene) in oil/water two-phase flows and compare the results with those obtained from a simple cleaved fibre relying on the (small) difference in Fresnel reflectivity for discrimination. Quantitative accuracy is demonstrated by comparison of profiles, across a pipe diameter, of local, time-averaged volume fractions (`hold-ups'), with pipe-averaged hold-ups determined from a carefully calibrated gradio-manometer in a fully developed region of the flow. Companion papers deal with the sensors used and results achieved in gas/liquid flows and three-phase flows.
A Report from the Thermal Science Research Center (TSRC)
NASA Technical Reports Server (NTRS)
Boyd, Ronald D.
1998-01-01
A vertical flow loop was designed and assembled to determine the local (circumferential and axial) and mean wall temperature distributions for single-phase and two-phase (subcooled and saturated) downward flow in both uniformly-heated and single-side heated vertical channels. Freon-11 was used as the working fluid in order to directly relate and compare the results with a previous experimental campaign which employed this same working fluid. For a given steady-state experiment, the following parameters were held constant: (1) exit pressure, (2) inlet temperature, and (3) mass velocity. For a given configuration of the 2.2 m long cylindrical channel test section, which had a 1.2 m long heated section, the applied heat rate was varied from zero through successive quasi-steady states to a level which corresponded to localized film boiling in the test section. The measurements showed that the boiling curve changes significantly at higher mass velocities with respect to both the circumferential and axial directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential direction. The measurements point to the existence of a dry-out phenomenon occurring at multiple levels of the applied heat for the single-side heated channel. In comparing the heat transfer for horizontal channel flow with a vertically downward flow, the results show that significantly lower heat transfer occurs in the horizontal flow. However, this trend reverses as both the Reynolds number and the applied heat rate increase. Both the Liu-Winterton and Shah correlations were compared with the experimental data. The Shah correlation predicted the uniformly heated tube data better. When a thermal hydraulic diameter approach was used for the single-side heated case, the data at upstream locations for Z/L less than 0.5 was bounded above by the Liu-Winterton correlation and below by the Shah correlation. At Z/L = 0.5, the Shah correlation bounded the data; and for Z/L greater than 0.5, both correlations overpredicted the data with the Shah correlation being closest to the data. The present results indicate that additional correlational development is needed. In addressing some of the advanced space thermal management objectives concerning accommodating high heat fluxes in non-uniformly heated systems, a large battery of experiments 88 have been completed where local two-dimensional wall temperature variations were measured for both single-phase and two-phase flow in a single-side heated circular tube. As noted above, the results show significant axial and circumferential variations. Accurately accounting for such variations can result in optimized future advanced space, enhanced (high heat flux) thermal management systems.
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Lattice Boltzmann model for three-phase viscoelastic fluid flow
NASA Astrophysics Data System (ADS)
Xie, Chiyu; Lei, Wenhai; Wang, Moran
2018-02-01
A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.
A two-phase solid/fluid model for dense granular flows including dilatancy effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).
High-performance computational fluid dynamics: a custom-code approach
NASA Astrophysics Data System (ADS)
Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.
2016-07-01
We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.
Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.; Metwally, H.M.
1999-11-01
Thermal processing and manufacturing in the chemical, foods, pharmaceutical, hygiene products, and biochemical industries invariably involve heating and cooling of highly viscous fluid media. These fluids tend to flow in the low Reynolds number regime, inherently have relatively low heat transfer coefficients, and are often temperature sensitive and prone to thermal degradation in the presence of large temperature differences. In recent times, plate heat exchangers (PHEs) have found increasing usage in such applications, primarily due to their features that promote enhanced heat transfer, and provide for the flexibility in altering their unit thermal size with ease, close approach temperature operation,more » and mitigation of thermal degradation of the process fluid. Here, steady-state heat transfer and pressure drop data for single-phase viscous fluid flows (2 {le} Re {le} 400) in a single-pass U-type counterflow plate heat exchanger (PHE) with chevron plates are presented. With vegetable oil as test fluid (130 {lt} Pr {lt} 290), three different plate arrangements are employed: two symmetric ({beta} = 30 deg/30 deg and 60 deg/60 deg) and one mixed ({beta} = 30 deg/60 deg). The effects of chevron angle {beta}, corrugation aspect ratio {gamma}, and flow conditions (Re, Pr, {mu}/{mu}{sub w}) on Nu and f characteristics of the PHE are delineated. The results show a rather complex influence of plate surface corrugations on the enhanced thermal-hydraulic behavior. Relative to the performance of equivalent flat-plate packs, chevron plates sustain up to 2.9 times higher heat transfer rates on a fixed geometry and constant pumping power basis, and require up to 48% less surface area for the fixed heat load and pressure drop constraint.« less
Condition of Development of Channeled Flow in Analogue Partially Molten Medium
NASA Astrophysics Data System (ADS)
Takashima, S.; Kumagai, I.; Kurita, K.
2003-12-01
Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from homogeneous flow to localized one is promoted with advance of melting and deformation of the medium, but the physics behind this transition is not yet clarified well. Here we show two kinds of experimental results which are mutually related. One is a development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid is poured at the top of the matrix fluid; homogeneous mixture of soft transparent gel and viscous fluid having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction (between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by PIV/PTV methods. Estimated relative motion and divergence of velocity field of the solid phase show that the state in the relative movement of the solid phase could cause heterogeneous distribution of the solid fraction. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. Deformation experiment with concentric cylinders shows that the mixture system has yield strength at the intermediate gel fraction. In the stress state above the yield strength the region where deformation rate is large has low viscosity and its internal structure evolves to the state in heterogeneous distribution of viscosity. We would like to show that this nature is critical in the development of flow from homogeneous one to localized one.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Segregated Methods for Two-Fluid Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosperetti, Andrea; Sundaresan, Sankaran; Pannala, Sreekanth
2007-01-01
The previous chapter, with its direct simulation of the fluid flow and a modeling approach to the particle phase, may be seen as a transition between the methods for a fully resolved simulation described in the first part of this book and those for a coarse grained description based on the averaging approach described in chapter ??. We now turn to the latter, which in practice are the only methods able to deal with the complex flows encountered in most situations of practical interest such as fluidized beds, pipelines, energy generation, sediment transport, and others. This chapter and the nextmore » one are devoted to numerical methods for so-called two-fluid models in which the phases are treated as inter-penetrating continua describing, e.g., a liquid and a gas, or a fluid and a suspended solid phase. These models can be extended to deal with more than two continua and, then, the denomination multi-fluid models might be more appropriate. For example, the commercial code OLGA (Bendiksen et al. 1991), widely used in the oil industry, recognizes three phases, all treated as interpenetrating continua: a continuous liquid, a gas, and a disperse liquid phase present as drops suspended in the gas phase. The more recent PeTra (Petroleum Transport, Larsen et al. 1997) also describes three phases, gas, oil, and water. Recent approaches to the description of complex boiling flows recognize four inter-penetrating phases: a liquid phase present both as a continuum and as a dispersion of droplets, and a gas/vapor phase also present as a continuum and a dispersion of bubbles. Methods for these multi-fluid models are based on those developed for the two-fluid model to which we limit ourselves. In principle, one could simply take the model equations, discretize them, and solve them by a method suitable for non-linear problems, e.g. Newton-Raphson iteration. In practice, the computational cost of such a frontal attack is nearly always prohibitive in terms of storage requirement and execution time. It is therefore necessary to devise different, less direct strategies. Two principal classes of algorithms have been developed for this purpose. The first one, described in this chapter, consists of algorithms derived from the pressure based schemes widely used in single-phase flow, such as SIMPLE and its variations (see e.g. Patankar 1980). In this approach, the model equations are solved sequentially and, therefore, these methods are often referred to as segregated algorithms to distinguish them from a second class of methods, object of the next chapter, in which a coupled or semi-coupled time-marching solution strategy is adopted. Broadly speaking, the first class of methods is suitable for relatively slow transients, such as fluidized beds, or phenomena with a long duration, such as flow in pipelines. The methods in the second group have been designed to deal principally with fast transients, such as those hypothesized in nuclear reactor safety. Since in segregated solvers the equations are solved one by one, it is possible to add equations to the mathematical model - to describe e.g. turbulence - at a later stage after the development of the initial code without major modifications of the algorithm.« less
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
A sliding-control switch stabilizes synchronized states in a model of actuated cilia
NASA Astrophysics Data System (ADS)
Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa
2017-11-01
A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.
NASA Astrophysics Data System (ADS)
Nabil, Mahdi; Rattner, Alexander S.
The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.
Yoon, Hongkyu; Klise, Katherine A.; Torrealba, Victor A.; ...
2015-05-25
Understanding the effect of changing stress conditions on multiphase flow in porous media is of fundamental importance for many subsurface activities including enhanced oil recovery, water drawdown from aquifers, soil confinement, and geologic carbon storage. Geomechanical properties of complex porous systems are dynamically linked to flow conditions, but their feedback relationship is often oversimplified due to the difficulty of representing pore-scale stress deformation and multiphase flow characteristics in high fidelity. In this work, we performed pore-scale experiments of single- and multiphase flow through bead packs at different confining pressure conditions to elucidate compaction-dependent characteristics of granular packs and their impactmore » on fluid flow. A series of drainage and imbibition cycles were conducted on a water-wet, soda-lime glass bead pack under varying confining stress conditions. Simultaneously, X-ray micro-CT was used to visualize and quantify the degree of deformation and fluid distribution corresponding with each stress condition and injection cycle. Micro-CT images were segmented using a gradient-based method to identify fluids (e.g., oil and water), and solid phase redistribution throughout the different experimental stages. Changes in porosity, tortuosity, and specific surface area were quantified as a function of applied confining pressure. Results demonstrate varying degrees of sensitivity of these properties to confining pressure, which suggests that caution must be taken when considering scalability of these properties for practical modeling purposes. Changes in capillary number with confining pressure are attributed to the increase in pore velocity as a result of pore contraction. Furthermore, this increase in pore velocity was found to have a marginal impact on average phase trapping at different confining pressures.« less
NASA Astrophysics Data System (ADS)
Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou
This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.
Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties
NASA Technical Reports Server (NTRS)
Sherif, S. A.
1998-01-01
One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.
Multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Parker, J. C.
1989-08-01
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce
2001-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1997-01-01
A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.
Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1997-01-01
Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.
Benchmarks for single-phase flow in fractured porous media
NASA Astrophysics Data System (ADS)
Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru
2018-01-01
This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.
Zero Boil-Off Tank (ZBOT) Experiment
NASA Technical Reports Server (NTRS)
Mcquillen, John
2016-01-01
The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.
NASA Technical Reports Server (NTRS)
Hurlbut, F. C.; Jih, C. R.
1972-01-01
Theoretical and experimental research on fluid conductivity of lunar surface materials is summarized. Theoretical methods were developed for the analysis of transitional and free-molecular flows, and for analysis of lunar permeability probe data in general. Experimental studies of rarefied flows under conditions of a large pressure gradient show flows in the continuum regime to be responsible for the largest portion of the pressure drop between source and sink for one dimensional flow, provided the entrance Knudsen number is sufficiently small. The concept of local similarity leading to a universal nondimensional function of Knudsen number was shown to have approximate validity; flows in all regimes may be described in terms of an area fraction and a single length parameter. Synthetic porous media prepared from glass beads exhibited flow behavior similar in many regards to that of a natural sandstone; studies using artificial stones with known pore configurations may lead to new insight concerning the structure of natural materials. The experimental method involving the use of segmented specimens of large permeability is shown to be fruitful.
Simple and Double Alfven Waves: Hamiltonian Aspects
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Hu, Q.; le Roux, J. A.; Dasgupta, B.
2011-12-01
We discuss the nature of simple and double Alfvén waves. Simple waves depend on a single phase variable \\varphi, but double waves depend on two independent phase variables \\varphi1 and \\varphi2. The phase variables depend on the space and time coordinates x and t. Simple and double Alfvén waves have the same integrals, namely, the entropy, density, magnetic pressure, and group velocity (the sum of the Alfvén and fluid velocities) are constant throughout the flow. We present examples of both simple and double Alfvén waves, and discuss Hamiltonian formulations of the waves.
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...
2018-02-27
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai
2018-02-01
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
NASA Astrophysics Data System (ADS)
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard
2017-11-01
Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.
Simultaneous Multiple-Location Separation Control
NASA Technical Reports Server (NTRS)
Greenblatt, David (Inventor)
2009-01-01
A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.
Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel
NASA Astrophysics Data System (ADS)
Mogilner, Alex; Manhart, Angelika
2018-01-01
The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
NASA Astrophysics Data System (ADS)
Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.
2013-12-01
The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sina, Nima; Moosavi, Hassan; Aghaei, Hosein; Afrand, Masoud; Wongwises, Somchai
2017-01-01
In this paper, for the first time, a nonlocal Timoshenko beam model is employed for studying the wave dispersion of a fluid-conveying single-walled carbon nanotube on Viscoelastic Pasternak foundation under high and low temperature change. In addition, the phase and group velocity for the nanotube are discussed, respectively. The influences of Winkler and Pasternak modulus, homogenous temperature change, steady flow velocity and damping factor of viscoelastic foundation on wave dispersion of carbon nanotubes are investigated. It was observed that the characteristic of the wave for carbon nanotubes conveying fluid is the normal dispersion. Moreover, implying viscoelastic foundation leads to increasing the wave frequencies.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Study of transient behavior of finned coil heat exchangers
NASA Technical Reports Server (NTRS)
Rooke, S. P.; Elissa, M. G.
1993-01-01
The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.
Modeling and measuring non-Newtonian shear flows of soft interfaces
NASA Astrophysics Data System (ADS)
Lopez, Juan; Raghunandan, Aditya; Underhill, Patrick; Hirsa, Amir
2017-11-01
Soft interfaces of polymers, particles, and proteins between fluid phases are ubiquitous in industrial and natural processes. The flow response of such systems to deformation is often not linear, as one would expect for Newtonian interfaces. The resistance to (pure shear) flow of interfaces is generally characterized by a single intrinsic material property, the surface shear viscosity. Predicted shear responses of Newtonian interfaces have achieved consensus across a wide range of flow conditions and measurement devices, when the nonlinear hydrodynamic coupling to the bulk phase is correctly accounted for. However, predicting the flows of sheared non-Newtonian interfaces remains a challenge. Here, we introduce a computational model that incorporates a non-Newtonian constitutive equation for the sheared interface and properly accounts for the coupled interfacial and bulk phase flows. We compare predictions to experiments performed with a model phospholipid system, DPPC - the main constituent of mammalian lung surfactant. Densely packed films of DPPC are directly sheared in a knife-edge surface viscometer. Yield-stress and shear thinning behaviors are shown to be accurately captured across hydrodynamic regimes straddling the Stokes flow limit to inertia dominated flows. Supported by NASA Grant NNX13AQ22G.
NASA Astrophysics Data System (ADS)
Moebius, F.; Or, D.
2012-12-01
Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.
NASA Astrophysics Data System (ADS)
Terekhov, V. I.; Pakhomov, M. A.
2011-12-01
Flow, particles dispersion and heat transfer of dilute gas-droplet turbulent flow downstream of a pipe sudden expansion have been numerically investigated for the conditions of heated dry wall. An Euler two-fluid model with additional turbulence transport equations for gas and particulate phases was employed in the study. Gas phase turbulence was modelled using the elliptic blending Reynolds stress model of Fadai-Ghotbi et al. (2008). Two-way coupling is achieved between the dispersed and carrier phases. The partial equations of Reynolds stresses and temperature fluctuations, and the turbulent heat flux equations in dispersed phase by Zaichik (1999) were applied. Fine droplets get readily entrained with the detached flow, spread throughout the whole pipe cross-section. On the contrary, large particles, due to their inertia, do not appear in the recirculation zone and are presented only in the shear layer region. The presence of fine dispersed droplets in the flow attenuates the gas phase turbulence of up 25 %. Heat transfer in the mist flow increased (more than twice in comparison with the single-phase air flow). Intensification of heat transfer is observed both in the recirculation zone and flow development region in the case of fine particles. Large particles enhanced heat transfer only in the reattachment zone. Comparison between simulated results and experimental data of Hishida et al. (1995) for mist turbulent separated flow behind a backward-facing step shows quite good agreement.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-01
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Noncircular Cross Sections Could Enhance Mixing in Sprays
NASA Technical Reports Server (NTRS)
Bellan, Josette; Abdel-Hameed, Hesham
2003-01-01
A computational study has shown that by injecting drops in jets of gas having square, elliptical, triangular, or other noncircular injection cross sections, it should be possible to increase (relative to comparable situations having circular cross section) the entrainment and dispersion of liquid drops. This finding has practical significance for a variety of applications in which it is desirable to increase dispersion of drops. For example, in chemical-process sprays, increased dispersion leads to increases in chemical- reaction rates; in diesel engines, increasing the dispersion of drops of sprayed fuel reduces the production of soot; and in household and paint sprays, increasing the dispersion of drops makes it possible to cover larger surfaces. It has been known for some years that single-phase fluid jets that enter flow fields through noncircular inlets entrain more fluid than do comparable jets entering through circular inlets. The computational study reported here was directed in part toward determining whether and how this superior mixing characteristic of noncircular single phase jets translates to a similar benefit in cases of two-phase jets (that is, sprays). The study involved direct numerical simulations of single- and two-phase free jets with circular, elliptical, rectangular, square, and triangular inlet cross sections. The two-phase jets consisted of gas laden with liquid drops randomly injected at the inlets. To address the more interesting case of evaporating drops, the carrier gas in the jets was specified to be initially unvitiated by the vapor of the liquid chemical species and the initial temperature of the drops was chosen to be smaller than that of the gas. The mathematical model used in the study was constructed from the conservation equations for the two-phase flow and included complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the enthalpy, internal energy, and latent heat of vaporization of the vapor.
Florea, Cristina; Tanska, Petri; Mononen, Mika E; Qu, Chengjuan; Lammi, Mikko J; Laasanen, Mikko S; Korhonen, Rami K
2017-02-01
Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.
The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation
NASA Astrophysics Data System (ADS)
Michal, Tomášek; Richard, Matas; Tomáš, Syka
2017-09-01
This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.
Droplet microfluidics driven by gradients of confinement.
Dangla, Rémi; Kayi, S Cagri; Baroud, Charles N
2013-01-15
The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices.
Droplet microfluidics driven by gradients of confinement
Dangla, Rémi; Kayi, S. Cagri; Baroud, Charles N.
2013-01-01
The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices. PMID:23284169
Influence of process fluids properties on component surface convective heat emission
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Korshunov, A. I.; Zavialov, P. M.
2018-03-01
When grinding with metal-working process fluid, a thin layer of inhibited liquid is formed between the component and the grinding wheel under the action of viscous forces. This can be defined as a hydrodynamic boundary layer or a thermal boundary layer. In this work, the thickness of the layers is studied depending on the viscosity of the fluid, inertia forces, velocity and pressure of the flow; also the causes of their occurrence are identified. It is established that under turbulent flow, the viscosity of the flow and the diffusion rate are much higher than in laminar flow, which also affects heat emission. Calculation of heat transfer in a single-phase chemically homogeneous medium of process liquids has shown that their properties, such as viscosity, thermal conductivity, density and heat capacity are of primary importance. The results of experimental studies of these characteristics are presented. When determining the heat transfer coefficient, functional correlations between the physical variables of the process fluid and the change in time and space have been established. As a result of the studies carried out to determine the heat transfer coefficient of a plate immersed in the process fluid, it is established that the intensification of the cooling process of the treated surface immersed in the coolant is more intense than with other methods of coolant supplying. An increase in the pulsation rate of the process liquid flow and the length of the flow displacement path leads to an increase in the heat transfer coefficient of the treated surface and a decrease in the temperature that arises during grinding.
NASA Technical Reports Server (NTRS)
McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian
2003-01-01
The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.
Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester
Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.
2017-01-01
Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling. PMID:28638167
Desse, Jean-Michel; Olchewsky, François
2018-04-15
This Letter proposes a dual-reference digital holographic interferometer for analyzing the high refractive index encountered in transonic and supersonic flows. For that, a Wollaston prism is inserted in the reference arm in order to simultaneously generate two orthogonally polarized reference waves. As a consequence, recorded interferograms contain two crossed and perpendicular interference patterns that give two orders fully separated in the Fourier spectrum. It is then possible to analyze a transparent object regardless of the orientation of the refractive index gradient using the two phase maps reconstructed with each of the two first interference orders. Fusion of the phase maps yields a single phase map in which the phase singularities are removed. Experimental results demonstrate the suitability of the proposed approach for analyzing shock waves in the unsteady wake flow around a circular cylinder at Mach 0.75.
NASA Astrophysics Data System (ADS)
Aplin, Andrew C.; Larter, Steve R.; Bigge, M. Ashley; MacLeod, Gordon; Swarbrick, Richard E.; Grunberger, Daniel
2000-11-01
We present two examples of how fluid inclusion data can be used to determine geologic pressure histories and to quantify the compositional evolution of petroleum in oil reservoirs. Volumetric liquid: vapor ratios generated with a confocal laser scanning microscope are used along with pressure-vapor-temperature (P-V-T) modeling software to estimate the composition, P-T phase envelope, and isochore of single petroleum inclusions in the North Sea's Judy and Alwyn fields. In both cases, the gas condensates currently in the reservoirs formed by the emplacement of gas into preexisting oil accumulations. Pressure histories of individual units in each field are also revealed, providing the kind of data needed to determine the permeability and fluid flow histories of sedimentary basins.
Simulation of Two-Phase Flow Based on a Thermodynamically Constrained Averaging Theory Flow Model
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Dye, A. L.; McClure, J. E.; Farthing, M. W.; Gray, W. G.; Miller, C. T.
2014-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for two-fluid-phase flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as interfacial areas, contact angles, interfacial tension, and curvatures; and dynamics of interface movement and relaxation to an equilibrium state. In order to render the TCAT model solvable, certain closure relations are needed to relate fluid pressure, interfacial areas, curvatures, and relaxation rates. In this work, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instance from a hierarchy of two-fluid-phase flow models that emerge from the theory. We show the closure problem that must be solved. Using recent results from high-resolution microscale simulations, we advance a set of closure relations that produce a closed model. Lastly, we use locally conservative spatial discretization and higher order temporal discretization methods to approximate the solution to this new model and compare the solution to the traditional model.
Integrated reactor and centrifugal separator and uses thereof
Birdwell, Jr., Joseph F; Jennings, Harold L [Clinton, TN; McFarlane, Joanna [Oak Ridge, TN; Tsouris, Constantino [Oak Ridge, TN
2012-01-17
An apparatus for providing reaction of fluids and separation of products with increased residence time. The apparatus includes a stationary shell, a rotating hollow cylindrical component disposed in the stationary shell, a residence-time increasing device external to the stationary shell, a standpipe for introducing fluid into an interior cavity of the hollow cylindrical component from the residence-time increasing device, a first outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a less dense phase fluid, and a second outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a more dense phase fluid.
Possible effects of two-phase flow pattern on the mechanical behavior of mudstones
NASA Astrophysics Data System (ADS)
Goto, H.; Tokunaga, T.; Aichi, M.
2016-12-01
To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis
2015-11-01
Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.
NASA Astrophysics Data System (ADS)
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.
The pdf approach to turbulent polydispersed two-phase flows
NASA Astrophysics Data System (ADS)
Minier, Jean-Pierre; Peirano, Eric
2001-10-01
The purpose of this paper is to develop a probabilistic approach to turbulent polydispersed two-phase flows. The two-phase flows considered are composed of a continuous phase, which is a turbulent fluid, and a dispersed phase, which represents an ensemble of discrete particles (solid particles, droplets or bubbles). Gathering the difficulties of turbulent flows and of particle motion, the challenge is to work out a general modelling approach that meets three requirements: to treat accurately the physically relevant phenomena, to provide enough information to address issues of complex physics (combustion, polydispersed particle flows, …) and to remain tractable for general non-homogeneous flows. The present probabilistic approach models the statistical dynamics of the system and consists in simulating the joint probability density function (pdf) of a number of fluid and discrete particle properties. A new point is that both the fluid and the particles are included in the pdf description. The derivation of the joint pdf model for the fluid and for the discrete particles is worked out in several steps. The mathematical properties of stochastic processes are first recalled. The various hierarchies of pdf descriptions are detailed and the physical principles that are used in the construction of the models are explained. The Lagrangian one-particle probabilistic description is developed first for the fluid alone, then for the discrete particles and finally for the joint fluid and particle turbulent systems. In the case of the probabilistic description for the fluid alone or for the discrete particles alone, numerical computations are presented and discussed to illustrate how the method works in practice and the kind of information that can be extracted from it. Comments on the current modelling state and propositions for future investigations which try to link the present work with other ideas in physics are made at the end of the paper.
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less
Two-phase pressure drop in a helical coil flow boiling system
NASA Astrophysics Data System (ADS)
Hardik, B. K.; Prabhu, S. V.
2018-05-01
The objective of the present work is to study the two-phase pressure drop in helical coils. Literature on the two-phase pressure drop in a helical coil suggests the complexity in flow boiling inside a helical coil due to secondary flow. Most of correlations reported in the literature on the two-phase pressure drop in a helical coil are limited to a specific operating range. No general correlation is available for a helical coil which is applicable for all fluids. In the present study, an experimental databank collected containing a total of 832 data points includes the data from the present study and from the literature. The data includes diabatic pressure drop of two fluids namely water and R123. Data covers a range of parameters namely a mass flux of 120-2058 kg/m2 s, a heat flux of 18-2831 kW/m2, an exit quality of 0.03-1, a density ratio of 32-1404 and a coil to tube diameter ratio of 14-58. The databank is compared with eighteen empirical correlations which include well referred correlations of straight tubes and the available correlations of helical coils. The straight tube correlations are not working well for the present data set. The helical coil correlations work reasonably well for the present databank. A correlation is suggested to predict the two-phase pressure drop in helical coils. The present study suggests that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coils.
Drag reduction in turbulent channel laden with finite-size oblate spheroids
NASA Astrophysics Data System (ADS)
Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration
2016-11-01
Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.
Viscous and gravitational fingering in multiphase compositional and compressible flow
NASA Astrophysics Data System (ADS)
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Averaging processes in granular flows driven by gravity
NASA Astrophysics Data System (ADS)
Rossi, Giulia; Armanini, Aronne
2016-04-01
One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental results, we aim to define the scales governing the diffusive phenomenon, introducing the diffusive terms following the Boussinesq model. The diffusive coefficient will be experimentally defined; it will be probably proportional to the square root of the granular temperature θ and the diameter of the particles d or, alternatively, the flow height h. REFERENCES 1 Chapman S., Cowling T.G., 1971. Cambridge University Press, Cambridge, England. 2 Jenkins J.T., Savage S.B., 1983 J. Fluid.Mech., 130: 187-202 3 Savage S.B.,1984. J. Fluid.Mech., 24: 289-366 4 D.A.Drew, 1983. Annu. Rev. Fluid Mech. 15:261-291 5 I. Goldhirsch, 2003. Annu. Rev. Fluid Mech., 35:267-293. 6 I. Goldhirsch, 2008. Powder Technology, 182: 130-136. 7 T.J. Hsu, J.T. Jenkins, P.L. Liu 2004. Proc. Royal Soc.
NASA Astrophysics Data System (ADS)
Yeo, Haram; Ki, Hyungson
2018-03-01
In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.
Scaling and modeling of turbulent suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1989-01-01
Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.
Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions
NASA Technical Reports Server (NTRS)
Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.
2005-01-01
The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.
Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.
1992-01-01
An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.
Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver
NASA Astrophysics Data System (ADS)
Turnquist, Brian; Owkes, Mark
2016-11-01
Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
Numerical modeling of Stokes flows over a superhydrophobic surface containing gas bubbles
NASA Astrophysics Data System (ADS)
Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.
2017-10-01
This paper continues the numerical modeling of Stokes flows near cavities of a superhydrophobic surface, occupied by gas bubbles, based on the Boundary Element Method (BEM). The aim of the present study is to estimate the friction reduction (pressure drop) in a microchannel with a bottom superhydrophobic surface, the texture of which is formed by a periodic system of striped rectangular microcavities containing compressible gas bubbles. The model proposed takes into account the streamwise variation of the bubble shift into the cavities, caused by the longitudinal pressure gradient in the channel flow. The solution for the macroscopic (averaged) flow in the microchannel, constructed using an effective slip boundary condition on the superhydrophobic bottom wall, is matched with the solution of the Stokes problem at the microscale of a single cavity containing a gas bubble. The 2D Stokes problems of fluid flow over single cavities containing curved phase interfaces with the condition of zero shear stress are reduced to the boundary integral equations which are solved using the BEM method.
Fluid mechanics and heat transfer spirally fluted tubing
NASA Astrophysics Data System (ADS)
Larue, J. C.; Libby, P. A.; Yampolsky, J. S.
1981-08-01
The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.
Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps
NASA Astrophysics Data System (ADS)
Polzin, A.-E.; Kabelac, S.; de Vries, B.
2016-09-01
Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.
New views of granular mass flows
Iverson, R.M.; Vallance, J.W.
2001-01-01
Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.
Flow Pattern Phenomena in Two-Phase Flow in Microchannels
NASA Astrophysics Data System (ADS)
Keska, Jerry K.; Simon, William E.
2004-02-01
Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.
NASA Astrophysics Data System (ADS)
Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis
2018-04-01
In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.
A conservative fully implicit algorithm for predicting slug flows
NASA Astrophysics Data System (ADS)
Krasnopolsky, Boris I.; Lukyanov, Alexander A.
2018-02-01
An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.
Near-critical fluid boiling: overheating and wetting films.
Hegseth, J; Oprisan, A; Garrabos, Y; Lecoutre-Chabot, C; Nikolayev, V S; Beysens, D
2008-08-01
The heating of coexisting gas and liquid phases of pure fluid through its critical point makes the fluid extremely compressible, expandable, slows the diffusive transport, and decreases the contact angle to zero (perfect wetting by the liquid phase). We have performed experiments on near-critical fluids in a variable volume cell in the weightlessness of an orbiting space vehicle, to suppress buoyancy-driven flows and gravitational constraints on the liquid-gas interface. The high compressibility, high thermal expansion, and low thermal diffusivity lead to a pronounced adiabatic heating called the piston effect. We have directly visualized the near-critical fluid's boundary layer response to a volume quench when the external temperature is held constant. We have found that when the system's temperature T is increased at a constant rate past the critical temperature T(c), the interior of the fluid gains a higher temperature than the hot wall (overheating). This extends previous results in temperature quenching experiments in a similarly prepared system when the gas is clearly isolated from the wall. Large elliptical wetting film distortions are also seen during these ramps. By ray tracing through the elliptically shaped wetting film, we find very thick wetting film on the walls. This wetting film is at least one order of magnitude thicker than films that form in the Earth's gravity. The thick wetting film isolates the gas bubble from the wall allowing gas overheating to occur due to the difference in the piston effect response between gas and liquid. Remarkably, this overheating continues and actually increases when the fluid is ramped into the single-phase supercritical phase.
Advanced Supercritical Carbon Dioxide Brayton Cycle Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sienicki, James; Moisseytsev, Anton
2015-10-21
Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less
NASA Astrophysics Data System (ADS)
Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.
2017-12-01
Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including reservoir production, carbon storage and sequestration, and hazardous waste sequestration. A reliable prediction of capillary trapping, for instance, can determine the fracture fluid saturation subsequent to hydraulic fracturing of unconventional formations or the efficacy of water flooding in fractured reservoirs.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2
NASA Technical Reports Server (NTRS)
Sanandres, Luis
1994-01-01
The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.
The effects of forcing on a single stream shear layer and its parent boundary layer
NASA Technical Reports Server (NTRS)
Haw, Richard C.; Foss, John F.
1990-01-01
Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...
2016-01-01
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-07-01
Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Flow of wormlike micellar solutions around confined microfluidic cylinders.
Zhao, Ya; Shen, Amy Q; Haward, Simon J
2016-10-26
Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena, including the formation of stable gel-like structures known as a Flow-Induced Structured Phase (FISP), which undoubtedly play an important role in applications of WLM fluids, but are still poorly understood. A first step in understanding flows of WLM fluids through porous media can be made by examining the flow around a single micro-scale cylinder aligned on the flow axis. Here we study flow behavior of an aqueous WLM solution consisting of cationic surfactant cetyltrimethylammonium bromide (CTAB) and a stable hydrotropic salt 3-hydroxy naphthalene-2-carboxylate (SHNC) in microfluidic devices with three different cylinder blockage ratios, β. We observe a rich sequence of flow instabilities depending on β as the Weissenberg number (Wi) is increased to large values while the Reynolds number (Re) remains low. Instabilities upstream of the cylinder are associated with high stresses in fluid that accelerates into the narrow gap between the cylinder and the channel wall; vortex growth upstream is reminiscent of that seen in microfluidic contraction geometries. Instability downstream of the cylinder is associated with stresses generated at the trailing stagnation point and the resulting flow modification in the wake, coupled with the onset of time-dependent flow upstream and the asymmetric division of flow around the cylinder.
The influence of interfacial slip on two-phase flow in rough pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...
2017-08-01
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
NASA Astrophysics Data System (ADS)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.
2017-08-01
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
Experimental investigation of ice slurry flow pressure drop in horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per
2009-01-15
Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less
NASA Astrophysics Data System (ADS)
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
High Fidelity Computational Analysis of CO2 Trapping at Pore Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vinod
2013-07-13
With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and naturalmore » porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.« less
Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics
NASA Astrophysics Data System (ADS)
Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.
2014-12-01
Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.
Interfacing the Generalized Fluid System Simulation Program with the SINDA/G Thermal Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Palmiter, Christopher; Farmer, Jeffery; Lycans, Randall; Tiller, Bruce
2000-01-01
A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface development will be addressed in a later paper. Phase 1 development has been benchmarked to an analytical solution with excellent agreement. Additional test cases for each development phase demonstrate desired features of the interface. The results of the benchmark case, three additional test cases and a practical application are presented herein.
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
NASA Astrophysics Data System (ADS)
Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor
2014-06-01
TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.
NASA Astrophysics Data System (ADS)
Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.
2017-04-01
In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.
NASA Astrophysics Data System (ADS)
Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.
2017-06-01
In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.
Hamzehpour, Hossein; Rasaei, M Reza; Sahimi, Muhammad
2007-05-01
We describe a method for the development of the optimal spatial distributions of the porosity phi and permeability k of a large-scale porous medium. The optimal distributions are constrained by static and dynamic data. The static data that we utilize are limited data for phi and k, which the method honors in the optimal model and utilizes their correlation functions in the optimization process. The dynamic data include the first-arrival (FA) times, at a number of receivers, of seismic waves that have propagated in the porous medium, and the time-dependent production rates of a fluid that flows in the medium. The method combines the simulated-annealing method with a simulator that solves numerically the three-dimensional (3D) acoustic wave equation and computes the FA times, and a second simulator that solves the 3D governing equation for the fluid's pressure as a function of time. To our knowledge, this is the first time that an optimization method has been developed to determine simultaneously the global minima of two distinct total energy functions. As a stringent test of the method's accuracy, we solve for flow of two immiscible fluids in the same porous medium, without using any data for the two-phase flow problem in the optimization process. We show that the optimal model, in addition to honoring the data, also yields accurate spatial distributions of phi and k, as well as providing accurate quantitative predictions for the single- and two-phase flow problems. The efficiency of the computations is discussed in detail.
Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System
NASA Astrophysics Data System (ADS)
Jarrahi, Miad; Holländer, Hartmut
2017-04-01
The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.
NASA Astrophysics Data System (ADS)
Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.
2018-03-01
Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.
Analysis of physics-based preconditioning for single-phase subchannel equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansel, J. E.; Ragusa, J. C.; Allu, S.
2013-07-01
The (single-phase) subchannel approximations are used throughout nuclear engineering to provide an efficient flow simulation because the computational burden is much smaller than for computational fluid dynamics (CFD) simulations, and empirical relations have been developed and validated to provide accurate solutions in appropriate flow regimes. Here, the subchannel equations have been recast in a residual form suitable for a multi-physics framework. The Eigen spectrum of the Jacobian matrix, along with several potential physics-based preconditioning approaches, are evaluated, and the the potential for improved convergence from preconditioning is assessed. The physics-based preconditioner options include several forms of reduced equations that decouplemore » the subchannels by neglecting crossflow, conduction, and/or both turbulent momentum and energy exchange between subchannels. Eigen-scopy analysis shows that preconditioning moves clusters of eigenvalues away from zero and toward one. A test problem is run with and without preconditioning. Without preconditioning, the solution failed to converge using GMRES, but application of any of the preconditioners allowed the solution to converge. (authors)« less
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.
1992-01-01
Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
NASA Astrophysics Data System (ADS)
Leclaire, Sebastien
The computer assisted simulation of the dynamics of fluid flow has been a highly rewarding topic of research for several decades now, in terms of the number of scientific problems that have been solved as a result, both in the academic world and in industry. In the fluid dynamics field, simulating multiphase immiscible fluid flow remains a challenge, because of the complexity of the interactions at the flow phase interfaces. Various numerical methods are available to study these phenomena, and, the lattice Boltzmann method has been shown in recent years to be well adapted to solving this type of complex flow. In this thesis, a lattice Boltzmann model for the simulation of two-phase immiscible flows is studied. The main objective of the thesis is to develop this promising method further, with a view to enhancing its validity. To achieve this objective, the research is divided into five distinct themes. The first two focus on correcting some of the deficiencies of the original model. The third generalizes the model to support the simulation of N-phase immiscible fluid flows. The fourth is aimed at modifying the model itself, to enable the simulation of immiscible fluid flows in which the density of the phases varies. With the lattice Boltzmann class of models studied here, this density variation has been inadequately modeled, and, after 20 years, the issue still has not been resolved. The fifth, which complements this thesis, is connected with the lattice Boltzmann method, in that it generalizes the theory of 2D and 3D isotropic gradients for a high order of spatial precision. These themes have each been the subject of a scientific article, as listed in the appendix to this thesis, and together they constitute a synthesis that explains the links between the articles, as well as their scientific contributions, and satisfy the main objective of this research. Globally, a number of qualitative and quantitative test cases based on the theory of multiphase fluid flows have highlighted issues plaguing the simulation model. These test cases have resulted in various modifications to the model, which have reduced or eliminated some numerical artifacts that were problematic. They also allowed us to validate the extensions that were applied to the original model.
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
NASA Astrophysics Data System (ADS)
Lakehal, D.; Métrailler, D.; Reboux, S.
2017-06-01
This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which confirms that the bubbles increase the energy at smaller scales. The coherent structures in the boundary layer are broken by the bubbles, which disrupts the formation of long structures, reducing the streamwise integral length scale.
Numerical Simulation of a Seaway with Breaking
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald
2012-11-01
The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.
NASA Astrophysics Data System (ADS)
Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk
2018-05-01
Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.
Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca
2014-12-19
The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.
Analysis of dynamic characteristics of fluid force induced by labyrinth seal
NASA Technical Reports Server (NTRS)
Iwatsubo, T.; Kawai, R.; Kagawa, N.; Kakiuchi, T.; Takahara, K.
1984-01-01
Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers.
Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels.
Podbevsek, D; Colombet, D; Ledoux, G; Ayela, F
2018-05-01
We have performed hydrodynamic cavitation experiments with an aqueous luminol solution as the working fluid. Light emission, together with the high frequency noise which characterizes cavitation, was emitted by the two-phase flow, whereas no light emission from luminol was recorded in the single phase liquid flow. Light emission occurs downstream transparent microdiaphragms. The maximum level of the recorded signal was around 180 photons per second with flow rates of 380 µl/s, that corresponds to a real order of magnitude of the chemiluminescence of 75,000 photons per second. The yield of emitted photons increases linearly with the pressure drop, which is proportional to the square of the total flow rate. Chemiluminescence of luminol is a direct and a quantitative demonstration of the presence of OH hydroxyl radicals created by hydrodynamic cavitation. The presented method could be a key to optimize channel geometry for processes where radical production is essential. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Pooja; Ali, Sk. M., E-mail: musharaf@barc.gov.in; Shenoy, K. T.
2015-02-21
Thermodynamic properties of the fluid in the hydrophobic pores of nanotubes are known to be different not only from the bulk phase but also from other conventional confinements. Here, we use a recently developed theoretical scheme of “two phase thermodynamic (2PT)” model to understand the driving forces inclined to spontaneous filling of carbon nanotubes (CNTs) with polar (water) and nonpolar (methane) fluids. The CNT confinement is found to be energetically favorable for both water and methane, leading to their spontaneous filling inside CNT(6,6). For both the systems, the free energy of transfer from bulk to CNT confinement is favored bymore » the increased entropy (TΔS), i.e., increased translational entropy and increased rotational entropy, which were found to be sufficiently high to conquer the unfavorable increase in enthalpy (ΔE) when they are transferred inside CNT. To the best of our knowledge, this is the first time when it has been established that the increase in translational entropy during confinement in CNT(6,6) is not unique to water-like H bonding fluid but is also observed in case of nonpolar fluids such as methane. The thermodynamic results are explained in terms of density, structural rigidity, and transport of fluid molecules inside CNT. The faster diffusion of methane over water in bulk phase is found to be reversed during the confinement in CNT(6,6). Studies reveal that though hydrogen bonding plays an important role in transport of water through CNT, but it is not the solitary driving factor, as the nonpolar fluids, which do not have any hydrogen bond formation capacity can go inside CNT and also can flow through it. The associated driving force for filling and transport of water and methane is enhanced translational and rotational entropies, which are attributed mainly by the strong correlation between confined fluid molecules and availability of more free space for rotation of molecule, i.e., lower density of fluid inside CNT due to their single file-like arrangement. To the best of our information, this is perhaps the first study of nonpolar fluid within CNT using 2PT method. Furthermore, the fast flow of polar fluid (water) over nonpolar fluid (methane) has been captured for the first time using molecular dynamic simulations.« less
Application of the principle of similarity fluid mechanics
NASA Technical Reports Server (NTRS)
Hendericks, R. C.; Sengers, J. V.
1979-01-01
The principle of similarity applied to fluid mechanics is described and illustrated. The concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow is examined. The usefulness of the procedure is illustrated by applying such a transformation to calculate two phase critical mass flow through a nozzle.
Pore-scale mechanisms of gas flow in tight sand reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.
2010-11-30
Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.« less
NASA Astrophysics Data System (ADS)
Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio
2017-04-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.
Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad
2018-05-01
The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5 m 3 /s.
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2016-11-23
We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
Sedimentation of finite-size particles in quiescent and turbulent environments
NASA Astrophysics Data System (ADS)
Brandt, Luca; Fornari, Walter; Picano, Francesco
2015-11-01
Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows. We present Direct Numerical Simulations of sedimentation in quiescent and turbulent environments using an Immersed Boundary Method to study the behavior of finite-size particles in homogeneous isotropic turbulence. The particle radius is approximately 6 Komlogorov lengthscales, the volume fraction 0.5% and 1% and the density ratio 1.02. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. The reduction with respect to a single particle in quiescent fluid is about 12% in dilute conditions. The probability density function of the particle velocity is almost Gaussian in a turbulent flow, whereas it displays large positive tails in quiescent fluid. These tails are associated to the intermittent fast sedimentation of particle pairs in drafting-kissing-tumbling motions. Using the concept of mean relative velocity we estimate the mean drag coefficient from empirical formulas and show that non stationary effects, related to vortex shedding, explain the increased reduction in mean settling velocity in a turbulent environment. This work was supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS.
New analytical solutions to the two-phase water faucet problem
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-06-17
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
NASA Astrophysics Data System (ADS)
Elazhary, Amr Mohamed; Soliman, Hassan M.
2012-10-01
An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.
Pandiyan, Vimal Prabhu; John, Renu
2016-01-20
We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
2004-06-15
al. (2002) and Yu, et al., (2002) Bowers and Mudawar (1994a) along with Peng and Peterson (1996) analyzed the geometry and layout of multiple...maintain a more uniform wall temperature; whereas, a single phase fluid must rise in temperature to absorb sensible heat. Qu and Mudawar (2002) and...experiments. In another study of the ONB, Qu and Mudawar (2002) varied flow conditions and visually observed the factors influ- encing ONB. They
DOE Office of Scientific and Technical Information (OSTI.GOV)
WONG, TENG-FONG; Lindquist, Brent
In the context of CO{sub 2} sequestration, the overall objective of this project is to conduct a systematic investigation of how the flow of the acidic, CO{sub 2} saturated, single phase component of the injected/sequestered fluid changes the microstructure, permeability and strength of sedimentary rocks, specifically limestone and sandstone samples. Hydromechanical experiments, microstructural observations and theoretical modeling on multiple scales were conducted.
NASA Astrophysics Data System (ADS)
Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian
2017-09-01
We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-12-01
We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.
NASA Astrophysics Data System (ADS)
Ezoe, Yuichiro; Ishikawa, Kumi; Mitsuishi, Ikuyuki; Ohashi, Takaya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter
2016-07-01
Suppression of super fluid helium flow is critical for the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi). In nominal operation, a small helium gas flow of 30 μg/s must be safely vented and a super fluid film flow must be sufficiently small <2 μg/s. To achieve a life time of the liquid helium, a porous plug phase separator and a film flow suppression system composed of an orifice, a heat exchanger, and knife edge devices are employed. In this paper, design, on-ground testing results and in-orbit performance of the porous plug and the film flow suppression system are described.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
NASA Technical Reports Server (NTRS)
Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.
2002-01-01
Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.
2015-12-01
The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.
Stenfelt, Stefan; Hato, Naohito; Goode, Richard L
2004-02-01
The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.
Fluid volume displacement at the oval and round windows with air and bone conduction stimulation
NASA Astrophysics Data System (ADS)
Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.
2004-02-01
The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.
Flow regimes in a T-mixer operating with a binary mixture
NASA Astrophysics Data System (ADS)
Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria
2015-11-01
Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Method for driving two-phase turbines with enhanced efficiency
NASA Technical Reports Server (NTRS)
Elliott, D. G. (Inventor)
1985-01-01
A method for driving a two phase turbine characterized by an output shaft having at least one stage including a bladed rotor connected in driving relation with the shaft is described. A two phase fluid is introduced into one stage at a known flow velocity and caused to pass through the rotor for imparing angular velocity thereto. The angular velocity of the rotor is maintained at a value such that the angular velocity of the tips of the blades of the rotor is a velocity equal to at least 50% of the velocity of the flow of the two phase fluid.
Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions
NASA Astrophysics Data System (ADS)
Steinheimer, J.; Auvinen, J.; Petersen, H.; Bleicher, M.; Stöcker, H.
2014-05-01
The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles was measured by the STAR Collaboration in the beam energy scan program. In this article, we examine the collision energy dependence of directed flow v1 in fluid dynamical model descriptions of heavy ion collisions for √sNN =3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities such as the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data; the values of the slopes are always larger than in the data.
Particle-fluid interactions for flow measurements
NASA Technical Reports Server (NTRS)
Berman, N. S.
1973-01-01
Study has been made of the motion of single particle and of group of particles, emphasizing solid particles in gaseous fluid. Velocities of fluid and particle are compared for several conditions of physical interest. Mean velocity and velocity fluctuations are calculated for single particle, and some consideration is given to multiparticle systems.
Microfluidic droplet-based liquid-liquid extraction.
Mary, Pascaline; Studer, Vincent; Tabeling, Patrick
2008-04-15
We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solute-fluorescein-from the external phase (extraction) and the opposite case, where droplets reject a solute-rhodamine-into the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe-2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.
Methods for compressible multiphase flows and their applications
NASA Astrophysics Data System (ADS)
Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.
2018-06-01
This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
Two phase flow and heat transfer in porous beds under variable body forces, part 2
NASA Technical Reports Server (NTRS)
Evers, J. L.; Henry, H. R.
1969-01-01
Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.
Device for measuring the fluid density of a two-phase mixture
Cole, Jack H.
1980-01-01
A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.
Stability of miscible core?annular flows with viscosity stratification
NASA Astrophysics Data System (ADS)
Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.
The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.
Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q
2015-01-01
A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.
Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q.
2015-01-01
A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments relies upon the global momentum conservation of the fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. Numerical examples illustrate the method's application to predicting bulk fluid motion including lateral propellant slosh in low-g conditions.
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari
2017-04-01
Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.
Flow measurement in an in-vitro model of a single human alveolus
NASA Astrophysics Data System (ADS)
Chhabra, Sudhaker; Prasad, Ajay
2006-03-01
The alveolus is the smallest and most important unit in the acinar region of the human lung. It is responsible for gas exchange between the lungs and the blood. A complete knowledge of the airflow pattern in the acinar region is necessary to predict the transport and deposition of inhaled aerosol particles. Such knowledge will benefit the pharmaceutical community in its effort to deliver therapeutic aerosols for lung-specific as well as system-wide ailments. In addition, it can also help to assess the health effects of the toxic aerosols in the environment. We have constructed an in-vitro model of a single spherical alveolus on a circular tube. The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions are reproduced by matching Reynolds and Womersley numbers. Experimental methods such as particle imaging velocimetry and laser induced fluorescence are used to study the resulting flow patterns. In particular, recirculating flow within the alveolus, and the fluid exchange between the alveolar duct and the alveolus are important for better understanding the flow in the acinar region.
Computational techniques for flows with finite-rate condensation
NASA Technical Reports Server (NTRS)
Candler, Graham V.
1993-01-01
A computational method to simulate the inviscid two-dimensional flow of a two-phase fluid was developed. This computational technique treats the gas phase and each of a prescribed number of particle sizes as separate fluids which are allowed to interact with one another. Thus, each particle-size class is allowed to move through the fluid at its own velocity at each point in the flow field. Mass, momentum, and energy are exchanged between each particle class and the gas phase. It is assumed that the particles do not collide with one another, so that there is no inter-particle exchange of momentum and energy. However, the particles are allowed to grow, and therefore, they may change from one size class to another. Appropriate rates of mass, momentum, and energy exchange between the gas and particle phases and between the different particle classes were developed. A numerical method was developed for use with this equation set. Several test cases were computed and show qualitative agreement with previous calculations.
Effects of surface properties on droplet formation inside a microfluidic device
NASA Astrophysics Data System (ADS)
Steinhaus, Ben; Shen, Amy
2004-11-01
Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.
A monolithic homotopy continuation algorithm with application to computational fluid dynamics
NASA Astrophysics Data System (ADS)
Brown, David A.; Zingg, David W.
2016-09-01
A new class of homotopy continuation methods is developed suitable for globalizing quasi-Newton methods for large sparse nonlinear systems of equations. The new continuation methods, described as monolithic homotopy continuation, differ from the classical predictor-corrector algorithm in that the predictor and corrector phases are replaced with a single phase which includes both a predictor and corrector component. Conditional convergence and stability are proved analytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown to be more efficient than the predictor-corrector homotopy continuation algorithm as well as an implementation of the widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil using a parallel implicit Newton-Krylov finite-difference flow solver.
Numerical study of particle deposition and scaling in dust exhaust of cyclone separator
NASA Astrophysics Data System (ADS)
Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.
2016-05-01
The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Bresinsky, L. T.
2017-12-01
The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow behavior.
Method and turbine for extracting kinetic energy from a stream of two-phase fluid
NASA Technical Reports Server (NTRS)
Elliott, D. G. (Inventor)
1979-01-01
An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
NASA Astrophysics Data System (ADS)
Lee, S. H.; Efendiev, Y.
2016-10-01
Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the buoyancy effect can be expressed as a sum of two buoyancy effects from two-phase flows, i.e., oil-water and oil-gas systems. We propose an upwind scheme for the buoyancy flux term from three-phase flow as a sum of two buoyancy terms from two-phase flows. The upwind direction of the buoyancy flux in two phase flow is always fixed such that the heavier fluid goes downward and the lighter fluid goes upward. It is shown that the Implicit Hybrid-Upwinding (IHU) scheme for three-phase flow is locally conservative and produces physically-consistent numerical solutions. As in two phase flow, the primary advantage of the IHU scheme is that the flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions as a function of time, or (Newton) iterations. This is in contrast to the standard phase-potential-based upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the transition between co-current and counter-current flows.
More Analytical Tools for Fluids Management in Space
NASA Astrophysics Data System (ADS)
Weislogel, Mark
Continued advances during the 2000-2010 decade in the analysis of a class of capillary-driven flows relevant to materials processing and fluids management aboard spacecraft have been made. The class of flows addressed concern combined forced and spontaneous capillary flows in complex containers with interior edges. Such flows are commonplace in space-based fluid systems and arise from the particular container geometry and wetting properties of the system. Important applications for this work include low-g liquid fill and/or purge operations and passive fluid phase separation operations, where the container (i.e. fuel tank, water processer, etc.) geometry possesses interior edges, and where quantitative information of fluid location, transients, flow rates, and stability is critical. Examples include the storage and handling of liquid propellants and cryogens, water conditioning for life support, fluid phase-change thermal systems, materials processing in the liquid state, on-orbit biofluids processing, among others. For a growing number of important problems, closed-form expressions to transient three-dimensional flows are possible that, as design tools, replace difficult, time-consuming, and rarely performed numerical calculations. An overview of a selection of solutions in-hand is presented with example problems solved. NASA drop tower, low-g aircraft, and ISS flight ex-periment results are employed where practical to buttress the theoretical findings. The current review builds on a similar review presented at COSPAR, 2002, for the approximate decade 1990-2000.
Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann
2016-05-03
Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.
Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity
NASA Technical Reports Server (NTRS)
Carter, Layne; O'Connor, Edward W.; Snowdon, Doug
2003-01-01
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
Topology optimization of unsteady flow problems using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Nørgaard, Sebastian; Sigmund, Ole; Lazarov, Boyan
2016-02-01
This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems. The optimization problem is solved with a gradient based method, and the design sensitivities are computed by solving the discrete adjoint problem. For moderate Reynolds number flows, it is demonstrated that topology optimization can successfully account for unsteady effects such as vortex shedding and time-varying boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid pumps and control valves.
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...
2014-12-31
During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992
NASA Technical Reports Server (NTRS)
Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)
1992-01-01
This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.
Wettability control on fluid-fluid displacements in patterned microfluidics and porous media
NASA Astrophysics Data System (ADS)
Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong
2014-11-01
While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.
Viscoelastic stability in a single-screw channel flow
NASA Astrophysics Data System (ADS)
Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.
2018-05-01
In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
Toward a unifying constitutive relation for sediment transport across environments
NASA Astrophysics Data System (ADS)
Houssais, Morgane; Jerolmack, Douglas J.
2017-01-01
Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
Cryogenic fluid flow instabilities in heat exchangers
NASA Technical Reports Server (NTRS)
Fleming, R. B.; Staub, F. W.
1969-01-01
Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry.
Investigating Darcy-scale assumptions by means of a multiphysics algorithm
NASA Astrophysics Data System (ADS)
Tomin, Pavel; Lunati, Ivan
2016-09-01
Multiphysics (or hybrid) algorithms, which couple Darcy and pore-scale descriptions of flow through porous media in a single numerical framework, are usually employed to decrease the computational cost of full pore-scale simulations or to increase the accuracy of pure Darcy-scale simulations when a simple macroscopic description breaks down. Despite the massive increase in available computational power, the application of these techniques remains limited to core-size problems and upscaling remains crucial for practical large-scale applications. In this context, the Hybrid Multiscale Finite Volume (HMsFV) method, which constructs the macroscopic (Darcy-scale) problem directly by numerical averaging of pore-scale flow, offers not only a flexible framework to efficiently deal with multiphysics problems, but also a tool to investigate the assumptions used to derive macroscopic models and to better understand the relationship between pore-scale quantities and the corresponding macroscale variables. Indeed, by direct comparison of the multiphysics solution with a reference pore-scale simulation, we can assess the validity of the closure assumptions inherent to the multiphysics algorithm and infer the consequences for macroscopic models at the Darcy scale. We show that the definition of the scale ratio based on the geometric properties of the porous medium is well justified only for single-phase flow, whereas in case of unstable multiphase flow the nonlinear interplay between different forces creates complex fluid patterns characterized by new spatial scales, which emerge dynamically and weaken the scale-separation assumption. In general, the multiphysics solution proves very robust even when the characteristic size of the fluid-distribution patterns is comparable with the observation length, provided that all relevant physical processes affecting the fluid distribution are considered. This suggests that macroscopic constitutive relationships (e.g., the relative permeability) should account for the fact that they depend not only on the saturation but also on the actual characteristics of the fluid distribution.
Laboratory Simulation of Flow through Single Fractured Granite
NASA Astrophysics Data System (ADS)
Singh, K. K.; Singh, D. N.; Ranjith, P. G.
2015-05-01
Laboratory simulation on fluid flow through fractured rock is important in addressing the seepage/fluid-in-rush related problems that occur during the execution of any civil or geological engineering projects. To understand the mechanics and transport properties of fluid through a fractured rock in detail and to quantify the sources of non-linearity in the discharge and base pressure relationship, fluid flow experiments were carried out on a cylindrical sample of granite containing a `single rough walled fracture'. These experiments were performed under varied conditions of confining pressures, σ 3 (5-40 MPa), which can simulate the condition occurring about 1,000 m below in the earth crust, with elevated base pressure, b p (up to 25 MPa) and by changing fracture roughness. The details of the methodologies involved and the observations are discussed here. The obtained results indicate that most of the data in the Q verses b p plot, fall on the straight line and the flow through the single fracture in granite obeys Darcy's law or the well-known "cubic law" even at high value of b p (=4 MPa) and σ 3 (=5 MPa) combination. The Reynolds number is quite sensitive to the b p, σ 3 and fracture roughness, and there is a critical b p, beyond which transition in flow occurs from laminar to turbulent. It is believed that such studies will be quite useful in identifying the limits of applicability of well know `cubic law', which is required for precise calculation of discharge and/or aperture in any practical issues and in further improving theoretical/numerical models associated with fluid flow through a single fracture.
NASA Astrophysics Data System (ADS)
Yang, Z.; Juanes, R.
2015-12-01
The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.
Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Pak, Tannaz; Shokri, Nima
2017-07-04
Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO 2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.
A complete two-phase model of a porous cathode of a PEM fuel cell
NASA Astrophysics Data System (ADS)
Hwang, J. J.
This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel
NASA Astrophysics Data System (ADS)
Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.
2014-03-01
Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.
Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer
Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos
2010-01-01
We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s−1. Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 µm, shell thicknesses ranging from 10 to 50 µm and shell pore diameters ranging from 1 to 10 µm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core–shell multimaterial particles. PMID:20484226
Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos
2010-08-06
We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s(-1). Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 microm, shell thicknesses ranging from 10 to 50 microm and shell pore diameters ranging from 1 to 10 microm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core-shell multimaterial particles.
NASA Astrophysics Data System (ADS)
Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro
2009-02-01
An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.
Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
NASA Astrophysics Data System (ADS)
Cates, Michael E.; Tjhung, Elsen
2018-02-01
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.
Flow through triple helical microchannel
NASA Astrophysics Data System (ADS)
Rajbanshi, Pravat; Ghatak, Animangsu
2018-02-01
Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.
Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids
NASA Astrophysics Data System (ADS)
Bhatti, M. M.; Zeeshan, A.; Tripathi, D.; Ellahi, R.
2018-04-01
In this article, effects of heat and mass transfer on MHD peristaltic motion of solid particles in a dusty fluid are investigated. The effects of nonlinear thermal radiation and Hall current are also taken into account. The relevant flow analysis is modelled for fluid phase and dust phase in wave frame by means of Casson fluid model. Computation of solutions is presented for velocity profile, temperature profile and concentration profile. The effects of all the physical parameters such as particle volume fraction, Hartmann number, Hall Effect, Prandtl number, Eckert number, Schmidt number and Soret number are discussed mathematically and graphically. It is noted that the influence of magnetic field and particle volume fraction opposes the flow. Also, the impact of particle volume fraction is quite opposite on temperature and concentration profile. This model is applicable in smart drug delivery systems and bacteria movement in urine flow through the ureter.
NASA Astrophysics Data System (ADS)
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa
2017-01-01
Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.
Numerical modeling of flow focusing: Quantitative characterization of the flow regimes
NASA Astrophysics Data System (ADS)
Mamet, V.; Namy, P.; Dedulle, J.-M.
2017-09-01
Among droplet generation technologies, the flow focusing technique is a major process due to its control, stability, and reproducibility. In this process, one fluid (the continuous phase) interacts with another one (the dispersed phase) to create small droplets. Experimental assays in the literature on gas-liquid flow focusing have shown that different jet regimes can be obtained depending on the operating conditions. However, the underlying physical phenomena remain unclear, especially mechanical interactions between the fluids and the oscillation phenomenon of the liquid. In this paper, based on published studies, a numerical diphasic model has been developed to take into consideration the mechanical interaction between phases, using the Cahn-Hilliard method to monitor the interface. Depending on the liquid/gas inputs and the geometrical parameters, various regimes can be obtained, from a steady state regime to an unsteady one with liquid oscillation. In the dispersed phase, the model enables us to compute the evolution of fluid flow, both in space (size of the recirculation zone) and in time (period of oscillation). The transition between unsteady and stationary regimes is assessed in relation to liquid and gas dimensionless numbers, showing the existence of critical thresholds. This model successfully highlights, qualitatively and quantitatively, the influence of the geometry of the nozzle, in particular, its inner diameter.
Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders
NASA Astrophysics Data System (ADS)
Shao, J.; Zhang, C.
Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.
Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.
2007-12-01
Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a more thorough understanding of hydrothermal fluid processes. One such attempt will incorporate geometric data of veins in the Bingham porphyry Cu-Mo-Au deposit into our numerical model. The presentation will introduce the numerical model and show examples and first results of the aforementioned applications.
Characterizing flow in oil reservoir rock using SPH: absolute permeability
NASA Astrophysics Data System (ADS)
Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.
2016-04-01
In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.
Kinetics-based phase change approach for VOF method applied to boiling flow
NASA Astrophysics Data System (ADS)
Cifani, Paolo; Geurts, Bernard; Kuerten, Hans
2014-11-01
Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.
NASA Astrophysics Data System (ADS)
Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.
2017-01-01
This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.
Quantification of uncertainty for fluid flow in heterogeneous petroleum reservoirs
NASA Astrophysics Data System (ADS)
Zhang, Dongxiao
Detailed description of the heterogeneity of oil/gas reservoirs is needed to make performance predictions of oil/gas recovery. However, only limited measurements at a few locations are usually available. This combination of significant spatial heterogeneity with incomplete information about it leads to uncertainty about the values of reservoir properties and thus, to uncertainty in estimates of production potential. The theory of stochastic processes provides a natural method for evaluating these uncertainties. In this study, we present a stochastic analysis of transient, single phase flow in heterogeneous reservoirs. We derive general equations governing the statistical moments of flow quantities by perturbation expansions. These moments can be used to construct confidence intervals for the flow quantities (e.g., pressure and flow rate). The moment equations are deterministic and can be solved numerically with existing solvers. The proposed moment equation approach has certain advantages over the commonly used Monte Carlo approach.
NASA Astrophysics Data System (ADS)
Szabo, Peter S. B.; Früh, Wolf-Gerrit
2018-02-01
Magnetic fluid flow and heat transfer by natural and thermomagnetic convection was studied numerically in a square enclosure. The aim was to investigate the transition from natural convection to thermomagnetic convection by exploring situations where buoyancy and the Kelvin body force would be opposing each other such that the magnetic effects would in some cases be the dominant factor throughout the domain and in other cases only in a part of the fluid. The numerical model coupled the solution of the magnetostatic field equation with the heat and fluid flow equations to simulate the fluid flow under a realistic magnetic field generated by a permanent magnet. The results suggest that the domain of influence over the flow field is largely aligned with the domain of dominance of the respective driving force. The result is that the transition from a single buoyancy-driven convection cell to a single thermomagnetically driven cell is via a two-cell structure and that the local effect on the flow field leads to a global effect on the heat transfer with a minimum of the Nusselt number in the transition region.
Finite volume solution for two-phase flow in a straight capillary
NASA Astrophysics Data System (ADS)
Yelkhovsky, Alexander; Pinczewski, W. Val
2018-04-01
The problem of two-phase flow in straight capillaries of polygonal cross section displays many of the dynamic characteristics of rapid interfacial motions associated with pore-scale displacements in porous media. Fluid inertia is known to be important in these displacements but is usually ignored in network models commonly used to predict macroscopic flow properties. This study presents a numerical model for two-phase flow which describes the spatial and temporal evolution of the interface between the fluids. The model is based on an averaged Navier-Stokes equation and is shown to be successful in predicting the complex dynamics of both capillary rise in round capillaries and imbibition along the corners of polygonal capillaries. The model can form the basis for more realistic network models which capture the effect of capillary, viscous, and inertial forces on pore-scale interfacial dynamics and consequent macroscopic flow properties.
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2015-09-01
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.
Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A.; Chen, C. P.
1990-01-01
Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
NASA Astrophysics Data System (ADS)
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
Environmental solid particle effects on compressor cascade performance
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Balan, C.
1982-01-01
The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.
NASA Astrophysics Data System (ADS)
Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek
2018-02-01
A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.
Viza, N. D.; Harding, D. R.
2017-12-20
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viza, N. D.; Harding, D. R.
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
Development of a prototype two-phase thermal bus system for Space Station
NASA Technical Reports Server (NTRS)
Myron, D. L.; Parish, R. C.
1987-01-01
This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.
Computer code for gas-liquid two-phase vortex motions: GLVM
NASA Technical Reports Server (NTRS)
Yeh, T. T.
1986-01-01
A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.
NASA Astrophysics Data System (ADS)
Singh, Umesh; Anapagaddi, Ravikiran; Mangal, Saurabh; Padmanabhan, Kuppuswamy Anantha; Singh, Amarendra Kumar
2016-06-01
Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag-steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).
Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones
NASA Astrophysics Data System (ADS)
Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.
2010-03-01
A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.
Numerical modeling of fluid migration in subduction zones
NASA Astrophysics Data System (ADS)
Walter, Marius J.; Quinteros, Javier; Sobolev, Stephan V.
2015-04-01
It is well known that fluids play a crucial role in subduction evolution. For example, excess mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the downgoing plate, and resulting in chemical changes in earth interior and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It incorporates an arbitrary Lagrangian Eulerian formulation, free surface, and changes in density and viscosity, due to endothermic and exothermic phase transitions. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. This system of equations becomes, however, nonlinear, because the rheology and permeability are depended on the porosity (fluid fraction of the matrix). Ultimately, the evolution of porosity is governed by the compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks (e.g. solitary wave) and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.
Yazdani, Alireza Z K; Bagchi, Prosenjit
2011-08-01
We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as "breathing" dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less
Convective heat transfer in foams under laminar flow in pipes and tube bundles.
Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent
2012-12-01
The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.
Coupled discrete element and finite volume solution of two classical soil mechanics problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Drumm, Eric; Guiochon, Georges A
One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
Application of a single-fluid model for the steam condensing flow prediction
NASA Astrophysics Data System (ADS)
Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.
2016-10-01
One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.
First-order system least squares and the energetic variational approach for two-phase flow
NASA Astrophysics Data System (ADS)
Adler, J. H.; Brannick, J.; Liu, C.; Manteuffel, T.; Zikatanov, L.
2011-07-01
This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.
Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen
2015-09-01
The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.
1D numerical model of muddy subaqueous and subaerial debris flows
Imran, J.; Parker, G.; Locat, J.; Lee, H.
2001-01-01
A 1D numerical model of the downslope flow and deposition of muddy subaerial and subaqueous debris flows is presented. The model incorporates the Herschel-Bulkley and bilinear rheologies of viscoplastic fluid. The more familiar Bingham model is integrated into the Herschel-Bulkley rheological model. The conservation equations of mass and momentum of single-phase laminar debris flow are layer-integrated using the slender flow approximation. They are then expressed in a Lagrangian framework and solved numerically using an explicit finite difference scheme. Starting from a given initial shape, a debris flow is allowed to collapse and propagate over a specified topography. Comparison between the model predictions and laboratory experiments shows reasonable agreement. The model is used to study the effect of the ambient fluid density, initial shape of the failed mass, and rheological model on the simulated propagation of the front and runout characteristics of muddy debris flows. It is found that initial failure shape influence the front velocity but has little bearing on the final deposit shape. In the Bingham model, the excess of shear stress above the yield strength is proportional to the strain rate to the first power. This exponent is free to vary in the Herschel-Bulkley model. When it is set at a value lower than unity, the resulting final deposits are thicker and shorter than in the case of the Bingham rheology. The final deposit resulting from the bilinear model is longer and thinner than that from the Bingham model due to the fact that the debris flow is allowed to act as a Newtonian fluid at low shear rate in the bilinear model.
Forecasting production in Liquid Rich Shale plays
NASA Astrophysics Data System (ADS)
Nikfarman, Hanieh
Production from Liquid Rich Shale (LRS) reservoirs is taking center stage in the exploration and production of unconventional reservoirs. Production from the low and ultra-low permeability LRS plays is possible only through multi-fractured horizontal wells (MFHW's). There is no existing workflow that is applicable to forecasting multi-phase production from MFHW's in LRS plays. This project presents a practical and rigorous workflow for forecasting multiphase production from MFHW's in LRS reservoirs. There has been much effort in developing workflows and methodology for forecasting in tight/shale plays in recent years. The existing workflows, however, are applicable only to single phase flow, and are primarily used in shale gas plays. These methodologies do not apply to the multi-phase flow that is inevitable in LRS plays. To account for complexities of multiphase flow in MFHW's the only available technique is dynamic modeling in compositional numerical simulators. These are time consuming and not practical when it comes to forecasting production and estimating reserves for a large number of producers. A workflow was developed, and validated by compositional numerical simulation. The workflow honors physics of flow, and is sufficiently accurate while practical so that an analyst can readily apply it to forecast production and estimate reserves in a large number of producers in a short period of time. To simplify the complex multiphase flow in MFHW, the workflow divides production periods into an initial period where large production and pressure declines are expected, and the subsequent period where production decline may converge into a common trend for a number of producers across an area of interest in the field. Initial period assumes the production is dominated by single-phase flow of oil and uses the tri-linear flow model of Erdal Ozkan to estimate the production history. Commercial software readily available can simulate flow and forecast production in this period. In the subsequent Period, dimensionless rate and dimensionless time functions are introduced that help identify transition from initial period into subsequent period. The production trends in terms of the dimensionless parameters converge for a range of rock permeability and stimulation intensity. This helps forecast production beyond transition to the end of life of well. This workflow is applicable to single fluid system.
Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A
2015-01-01
Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Weijermars, R.; van Harmelen, A.
2016-07-01
An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.
Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.
ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi
This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
Measurement of flow and dispersion in an in-vitro model of a single human alveolus
NASA Astrophysics Data System (ADS)
Chhabra, Sudhaker; Prasad, Ajay
2006-11-01
The acinar region of the lung consists of alveoli and respiratory bronchioles. Alveoli are the smallest units which participate in gas exchange with the blood. Alveoli can also be exploited as a delivery site for inhaled therapeutic aerosols. While gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (of the order of 500 microns), the transport and deposition of inhaled aerosol particles is influenced by convective airflow patterns. The current work focuses on measuring the airflow patterns in the acinar region using an in-vitro model of a single alveolus located on a bronchiole. The model consists of a single transparent 5/6^th hemispherical oscillating alveolus attached to a rigid circular tube. The alveolus, fabricated from an elastic latex film, is capable of expanding and contracting in phase with the oscillatory flow through the rigid tube. Realistic breathing conditions were achieved by matching Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns. Data will be presented to show the effect of oscillatory flow in the bronchiole and alveolar wall motion on the flow and dispersion within the alveolus. In particular, measurement of the recirculating flow within the alveolus, and the fluid exchange between the bronchiole and the alveolus provide insights for the transport, mixing and deposition of inhaled aerosols.
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
Benkó, Zsolt; Mogessie, Aberra; Molnár, Ferenc; Krenn, Kurt; Poulson, Simon R.; Hauck, Steven; Severson, Mark; Arehart, Greg B.
2015-01-01
In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu–Ni–PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2–3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p–T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage. Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6–2.0 kbar) and temperature (810–920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion. Fluid inclusion assemblages with CO2–H2O–NaCl and CH4–N2–H2O–NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240–650 bar and 120–150 °C for CO2–H2O–NaCl inclusions and 315–360 bar and 145–165 °C for CH4–N2–H2O–NaCl inclusions) are significantly lower than the p–T conditions (> 700 °C and 1.6–2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite inclusions in these fluid inclusions and in the trails of these fluid inclusion assemblages confirms that at least on local scale these fluids played a role in base metal remobilization. No evidences have been observed for PGE remobilization and transport in the samples. The source of the carbonic phase in the carbonic assemblages (CO2; CH4) could be the graphite, present in the metasedimentary hornfelsed inclusions in the basal zones of the South Kawishiwi intrusion. The hydrothermal veins in the charnockite can be characterized by an actinolite + cummingtonite + chlorite + prehnite + pumpellyite + calcite (I–II) + quartz mineral assemblage. Chlorite thermometry yields temperatures around 276–308 °C during the earliest phase of the fluid flow. In the late calcite (II) phase, high salinity (21.6–28.8 NaCl + CaCl2 equiv. wt.%), low temperature (90–160 °C), primary aqueous inclusions were found. Chalcopyrite (± sphalerite ± millerite), replacing and intersecting the early hydrothermal phases, are associated to the late calcite (II) phase. The composition of the formational fluids in the Canadian Shield is comparable with the composition of the studied fluid inclusions. This suggests that the composition of the fluids did not change in the past 2 Ga and base metal remobilization by formational fluids could have taken place any time after the formation of the South Kawishiwi intrusion. Sulfur isotope studies carried out on the primary metamorphic (δ34S = 7.4–8.9‰) and the hydrothermal sulfide mineral assemblage (δ34S = 5.5–5.7‰) proves, that during the hydrothermal fluid flow the primary metamorphic ores were remobilized. PMID:26594080
NASA Astrophysics Data System (ADS)
Gao, Ying; Lin, Qingyang; Bijeljic, Branko; Blunt, Martin J.
2017-12-01
We imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts impact the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, Ca, namely 3.0 × 10-7 and 7.5 × 10-6. At the lower Ca, for a fixed fractional flow, the two phases appear to flow in connected unchanging subnetworks of the pore space, consistent with conventional theory. At the higher Ca, we observed that a significant fraction of the pore space contained sometimes oil and sometimes brine during the 1 h scan: this intermittent occupancy, which was interpreted as regions of the pore space that contained both fluid phases for some time, is necessary to explain the flow and dynamic connectivity of the oil phase; pathways of always oil-filled portions of the void space did not span the core. This phase was segmented from the differential image between the 30 wt % KI brine image and the scans taken at each fractional flow. Using the grey scale histogram distribution of the raw images, the oil proportion in the intermittent phase was calculated. The pressure drops at each fractional flow at low and high flow rates were measured by high-precision differential pressure sensors. The relative permeabilities and fractional flow obtained by our experiment at the mm-scale compare well with data from the literature on cm-scale samples.
Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology.
Martin, Hazel P; Brooks, Nicholas J; Seddon, John M; Luckham, Paul F; Terrill, Nick J; Kowalski, Adam J; Cabral, João T
2016-02-14
We investigate the effect of microfluidic flow on the microstructure and dynamics of a model surfactant mixture, combining synchrotron Small Angle X-ray Scattering (SAXS), microscopy and rheology. A system comprising a single-chain cationic surfactant, hexadecyl trimethyl ammonium chloride (C16TAC), a short-chain alcohol (1-pentanol) and water was selected for the study due to its flow responsiveness and industrial relevance. Model flow fields, including sequential contraction-expansion (extensional) and rotational flows, were investigated and the fluid response in terms of the lamellar d-spacing, orientation and birefringence was monitored in situ, as well as the recovery processes after cessation of flow. Extensional flows are found to result in considerable d-spacing increase (from approx 59 Å to 65 Å). However, under continuous flow, swelling decreases with increasing flow velocity, eventually approaching the equilibrium values at velocities ≃2 cm s(-1). Through individual constrictions we observe the alignment of lamellae along the flow velocity, accompanied by increasing birefringence, followed by an orientation flip whereby lamellae exit perpendicularly to the flow direction. The resulting microstructures are mapped quantitatively onto the flow field in 2D with 200 μm spatial resolution. Rotational flows alone do not result in appreciable changes in lamellar spacing and flow type and magnitude evidently impact the fluid microstructure under flow, as well as upon relaxation. The findings are correlated with rheological properties measured ex situ to provide a mechanistic understanding of the effect of flow imposed by tubular processing units in the phase behavior and performance of a model surfactant system with ubiquitous applications in personal care and coating industries.
NASA Astrophysics Data System (ADS)
Schrooyen, Pierre; Chatelain, Philippe; Hillewaert, Koen; Magin, Thierry E.
2014-11-01
The atmospheric entry of spacecraft presents several challenges in simulating the aerothermal flow around the heat shield. Predicting an accurate heat-flux is a complex task, especially regarding the interaction between the flow in the free stream and the erosion of the thermal protection material. To capture this interaction, a continuum approach is developed to go progressively from the region fully occupied by fluid to a receding porous medium. The volume averaged Navier-Stokes equations are used to model both phases in the same computational domain considering a single set of conservation laws. The porosity is itself a variable of the computation, allowing to take volumetric ablation into account through adequate source terms. This approach is implemented within a computational tool based on a high-order discontinuous Galerkin discretization. The multi-dimensional tool has already been validated and has proven its efficient parallel implementation. Within this platform, a fully implicit method was developed to simulate multi-phase reacting flows. Numerical results to verify and validate the methodology are considered within this work. Interactions between the flow and the ablated geometry are also presented. Supported by Fund for Research Training in Industry and Agriculture.
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Toward multiscale modelings of grain-fluid systems
NASA Astrophysics Data System (ADS)
Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon
2017-06-01
Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.
Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology
Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran
2017-01-01
In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217
Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.
Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran
2017-04-18
In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.
Jacobson, Stephen C.; Ramsey, J. Michael
2010-06-01
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either electric current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to electrokinetically inducing fluid flow to confine a selected material in a region of a microchannel that is not influenced by an electric field. Other structures for inducing fluid flow in accordance with this invention include nanochannel bridging membranes and alternating current fluid pumping devices. Applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
NASA Astrophysics Data System (ADS)
Wei, Wei; Gu, Zhaolin
2015-10-01
Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.
NASA Technical Reports Server (NTRS)
McAllister, T. N.; Frangos, J. A.
1999-01-01
Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.
NASA Astrophysics Data System (ADS)
Dodd, Michael; Ferrante, Antonino
2017-11-01
Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.
A porous flow approach to model thermal non-equilibrium applicable to melt migration
NASA Astrophysics Data System (ADS)
Schmeling, Harro; Marquart, Gabriele; Grebe, Michael
2018-01-01
We develop an approach for heat exchange between a fluid and a solid phase of a porous medium where the temperatures of the fluid and matrix are not in thermal equilibrium. The formulation considers moving of the fluid within a resting or deforming porous matrix in an Eulerian coordinate system. The approach can be applied, for example, to partially molten systems or to brine transport in porous rocks. We start from an existing theory for heat exchange where the energy conservation equations for the fluid and the solid phases are separated and coupled by a heat exchange term. This term is extended to account for the full history of heat exchange. It depends on the microscopic geometry of the fluid phase. For the case of solid containing hot, fluid-filled channels, we derive an expression based on a time-dependent Fourier approach for periodic half-waves. On the macroscopic scale, the temporal evolution of the heat exchange leads to a convolution integral along the flow path of the solid, which simplifies considerably in case of a resting matrix. The evolution of the temperature in both phases with time is derived by inserting the heat exchange term into the energy equations. We explore the effects of thermal non-equilibrium between fluid and solid by considering simple cases with sudden temperature differences between fluid and solid as initial or boundary conditions, and by varying the fluid velocity with respect to the resting porous solid. Our results agree well with an analytical solution for non-moving fluid and solid. The temperature difference between solid and fluid depends on the Peclet number based on the Darcy velocity. For Peclet numbers larger than 1, the temperature difference after one diffusion time reaches 5 per cent of \\tilde{T} or more (\\tilde{T} is a scaling temperature, e.g. the initial temperature difference). Thus, our results imply that thermal non-equilibrium can play an important role for melt migration through partially molten systems where melt focuses into melt channels near the transition to melt ascent by dykes. Our method is based on solving the convolution integration for the heat exchange over the full flow history, which is numerically expensive. We tested to replace the heat exchange term by an instantaneous, approximate term. We found considerable errors on the short timescale, but a good agreement on the long timescale if appropriate parameters for the approximate terms are used. We derived these parameters which may be implemented in fully dynamical two-phase flow formulations of melt migration in the Earth.
Falkner-Skan Boundary Layer Flow of a Sisko Fluid
NASA Astrophysics Data System (ADS)
Khan, Masood; Shahzad, Azeem
2012-09-01
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the dimensionless stream function, which is then solved analytically using the homotopy analysis method. Some important parameters have been discussed by this study, which include the power law index n, the material parameter A, the wedge shape factor b, and the skin friction coefficient Cf. A comprehensive study is made between the results of the Sisko and the power-law fluids.
Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements
NASA Astrophysics Data System (ADS)
Liburdy, James
2017-11-01
Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.
NASA Astrophysics Data System (ADS)
Dahms, Rainer N.; Oefelein, Joseph C.
2013-09-01
A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.
Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis
2013-02-01
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
Tests of a 2-Stage, Axial-Flow, 2-Phase Turbine
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1982-01-01
A two phase flow turbine with two stages of axial flow impulse rotors was tested with three different working fluid mixtures at a shaft power of 30 kW. The turbine efficiency was 0.55 with nitrogen and water of 0.02 quality and 94 m/s velocity, 0.57 with Refrigerant 22 of 0.27 quality and 123 m/s velocity, and 0.30 with steam and water of 0.27 quality and 457 m/s velocity. The efficiencies with nitrogen and water and Refrigerant 22 were 86 percent of theoretical. At that fraction of theoretical, the efficiencies of optimized two phase turbines would be in the low 60 percent range with organic working fluids and in the mid 50 percent range with steam and water. The recommended turbine design is a two stage axial flow impulse turbine followed by a rotary separator for discharge of separate liquid and gas streams and recovery of liquid pressure.
Studies in Three Phase Gas-Liquid Fluidised Systems
NASA Astrophysics Data System (ADS)
Awofisayo, Joyce Ololade
1992-01-01
Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.
NASA Astrophysics Data System (ADS)
Melka, Bartlomiej; Gracka, Maria; Adamczyk, Wojciech; Rojczyk, Marek; Golda, Adam; Nowak, Andrzej J.; Białecki, Ryszard A.; Ostrowski, Ziemowit
2017-08-01
In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect - coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.
Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1999-01-01
The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.
Hydrodynamic interaction of two deformable drops in confined shear flow.
Chen, Yongping; Wang, Chengyao
2014-09-01
We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.
Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Gayathri, R.; Govindarajan, A.; Sasikala, R.
2018-04-01
This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.
NASA Astrophysics Data System (ADS)
Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.
2017-12-01
Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.
Damage Response in Fluid Flow Networks
NASA Astrophysics Data System (ADS)
Gavrilchenko, Tatyana; Katifori, Eleni
The networks found in biological fluid flow systems such as leaf venation and animal vasculature are characterized by hierarchically nested loops. This structure allows the system to be resilient against fluctuations in the flow of fluid and to be robust against damage. We analytically and computationally investigate how this loopy hierarchy determines the extent of disruption in fluid flow in the vicinity of a damage site. Perturbing the network with the removal of a single edge results in the differential flow as a function of distance from the perturbation decaying as a power law. The power law exponent is generally around -2 in 2D, but we find that it varies due to edge effects, initial edge conductivity, and local topology. We expect that these network flow findings, directly applicable to plant and animal veins, will have analogues in electrical grids, traffic flow and other transport networks.
Universality Results for Multi-phase Hele-Shaw Flows
NASA Astrophysics Data System (ADS)
Daripa, Prabir
2013-03-01
Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
Revisiting low-fidelity two-fluid models for gas-solids transport
NASA Astrophysics Data System (ADS)
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-08-01
Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
Transport phenomena in porous media
NASA Astrophysics Data System (ADS)
Bear, Jacob; Corapcioglu, M. Yavuz
The Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media, held July 14-23, 1985 in Newark, Del. and directed by Jacob Bear (Israel Institute of Technology, Haifa) and M. Yavuz Corapcioglu (City College of New York), under the auspices of NATO, was a sequel to the NATO Advanced Study Institute (ASI) held in 1982 (proceedings published as Fundamentals of Transport Phenomena in Porous Media, J. Bear, and M.Y. Corapcioglu (Ed.), Martinus Nijhoff, Dordrecht, the Netherlands, 1984). The meeting was attended by 106 participants and lecturers from 21 countries.As in the first NATO/ASI, the objective of this meeting—which was a combination of a conference of experts and a teaching institute— was to present and discuss selected topics of transport in porous media. In selecting topics and lecturers, an attempt was made to bridge the gap that sometimes exists between research and practice. An effort was also made to demonstrate the unified approach to the transport of mass of a fluid phase, components of a fluid phase, momentum, and heat in a porous medium domain. The void space may be occupied by a single fluid phase or by a number of such phases; each fluid may constitute a multicomponent system; the solid matrix may be deformable; and the whole process of transport in the system may take place under nonisothermal conditions, with or without phase changes. Such phenomena are encountered in a variety of disciplines, e.g., petroleum engineering, civil engineering (in connection with groundwater flow and contamination), soil mechanics, and chemical engineering. One of the goals of the 1985 NATO/ASI, as in the 1982 institute, was to bring together experts from all these disciplines and enhance communication among them.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
NASA Astrophysics Data System (ADS)
Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling
2018-06-01
Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.
Effect of particle velocity fluctuations on the inertia coupling in two-phase flow
NASA Technical Reports Server (NTRS)
Drew, Donald A.
1989-01-01
Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed.
Mixing and reactions in multiphase flow through porous media
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.
2016-12-01
The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.
NASA Astrophysics Data System (ADS)
Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai
2018-03-01
The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.
NASA Astrophysics Data System (ADS)
Sawadogo, Teguewinde
This study focuses on the modeling of fluidelastic instability induced by two-phase cross-flow in tube bundles of steam generators. The steam generators in CANDU type nuclear power plants for e.g., designed in Canada by AECL and exploited worldwide, have thousands of tubes assembled in bundles that ensure the heat exchange between the internal circuit of heated heavy water coming from the reactor core and the external circuit of light water evaporated and directed toward the turbines. The main objective of this research project is to extend the theoretical models for fluidelastic instability to two-phase flow, validate the models and develop a computer program for simulating flow induced vibrations in tube bundles. The quasi-steady model has been investigated in scope of this research project. The time delay between the structure motion and the fluid forces generated thereby has been extensively studied in two-phase flow. The study was conducted for a rotated triangular tube array. Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subject to two-phase flow were conducted. Quasi-static fluid force coefficients were measured at the same Reynolds number, Re = 2.8x104, for void fractions ranging from 0% to 80%. The derivative of the lift coefficient with respect to the quasi-static dimensionless displacement in the lift direction was deduced from the experimental measurements. This derivative is one of the most important parameters of the quasi-steady model because this parameter, in addition to the time delay, generates the fluid negative damping that causes the instability. This derivative was found to be positive in liquid flow and negative in two-phase flow. It seemed to vanish at 5% of void fraction, challenging the ability of the quasi-steady model to predict fluidelastic instability in this case. However, stability tests conducted at 5% void fraction clearly showed fluidelastic instability. Stability tests were conducted in the second stage of the project to validate the theoretical model. The two phase damping, the added mass and the critical velocity for fluidelastic instability were measured in two-phase flow. A viscoelastic damper was designed to vary the damping of the flexible tube and thus measure the critical velocity for a certain range of the mass-damping parameter. A new formulation of the added mass as a function of the void fraction was proposed. This formulation has a better agreement with the experimental results because it takes into account the reduction of the void fraction in the vicinity of the tubes in a rotated triangular tube array. The experimental data were used to validate the theoretical results of the quasi-steady model. The validity of the quasi-steady model for two-phase flow was confirmed by the good agreement between its results and the experimental data. The time delay parameter determined in the first stage of the project has improved significantly the theoretical results, especially for high void fractions (90%). However, the model could not be verified for void fractions lower or equal to 50% because of the limitation of the water pump capability. Further studies are consequently required to clarify this point. However, this model can be used to simulate the flow induced vibrations in steam generators' tube bundles as their most critical parts operate at high void fractions (≥ 60%). Having verified the quasi-steady model for high void fractions in two-phase flow, the third and final stage of the project was devoted to the development of a computer code for simulating flow induced vibrations of a steam generator tube subjected to fluidelastic and turbulence forces. This code was based on the ABAQUS finite elements code for solving the equation of motion of the fluid-structure system, and a development of a subroutine in which the fluid forces are calculated and applied to the tube. (Abstract shortened by UMI.)
This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...
Microgravity Fluid Separation Physics: Experimental and Analytical Results
NASA Technical Reports Server (NTRS)
Shoemaker, J. Michael; Schrage, Dean S.
1997-01-01
Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.
Fluid-dynamic design optimization of hydraulic proportional directional valves
NASA Astrophysics Data System (ADS)
Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo
2014-10-01
This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N.
2016-01-12
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N
2014-02-04
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts
NASA Technical Reports Server (NTRS)
Johnson, D. L.; McAllister, T. N.; Frangos, J. A.
1996-01-01
Interstitial fluid flow may mediate skeletal remodeling in response to mechanical loading. Because nitric oxide (NO) has been shown to be an osteoblast mitogen and inhibitor of osteoclastic resorption, we investigated and characterized the role of fluid shear on the release of NO in osteoblasts. Rat calvarial cells in a stationary culture produced undetectable levels of NO. Fluid shear stress (6 dyn/cm2) rapidly increased NO release rate to 9.8 nmol.h-1.mg protein-1 and sustained this production for 12 h of exposure to flow. Cytokine treatment also induced NO synthesis after a 12-h lag phase of zero production, followed by a production rate of 0.6 nmol.h-1.mg protein-1. Flow-induced NO production was blocked by the NO synthase (NOS) inhibitor NG-amino-L-arginine, but not by dexamethasone, which suggests that the flow stimulated a constitutive NOS isoform. This is the first time that a functional constitutively present NOS isoform has been identified in osteoblasts. Moreover, fluid flow represents the most potent stimulus of NO release in osteoblasts reported to date. Fluid flow-induced NO production may therefore play a primary role in bone maintenance and remodeling.
NASA Astrophysics Data System (ADS)
Mannattil, Manu; Pandey, Ambrish; Verma, Mahendra K.; Chakraborty, Sagar
2017-12-01
Constructing simpler models, either stochastic or deterministic, for exploring the phenomenon of flow reversals in fluid systems is in vogue across disciplines. Using direct numerical simulations and nonlinear time series analysis, we illustrate that the basic nature of flow reversals in convecting fluids can depend on the dimensionless parameters describing the system. Specifically, we find evidence of low-dimensional behavior in flow reversals occurring at zero Prandtl number, whereas we fail to find such signatures for reversals at infinite Prandtl number. Thus, even in a single system, as one varies the system parameters, one can encounter reversals that are fundamentally different in nature. Consequently, we conclude that a single general low-dimensional deterministic model cannot faithfully characterize flow reversals for every set of parameter values.
NASA Astrophysics Data System (ADS)
Ul Haq, Rizwan; Nadeem, Sohail; Khan, Z. H.; Noor, N. F. M.
2015-01-01
In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT.
Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions
NASA Astrophysics Data System (ADS)
Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul
2018-05-01
We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.
Ultrasonic velocity profiling rheometry based on a widened circular Couette flow
NASA Astrophysics Data System (ADS)
Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi
2015-08-01
We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.
Gas-Liquid Flows and Phase Separation
NASA Technical Reports Server (NTRS)
McQuillen, John
2004-01-01
Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
Experimental Investigation of two-phase nitrogen Cryo transfer line
NASA Astrophysics Data System (ADS)
Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.
2017-02-01
A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.
On compressible and piezo-viscous flow in thin porous media.
Pérez-Ràfols, F; Wall, P; Almqvist, A
2018-01-01
In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.
Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model
NASA Astrophysics Data System (ADS)
Doup, Benjamin Casey
Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.
Non-Newtonian fluid flow in 2D fracture networks
NASA Astrophysics Data System (ADS)
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
NASA Astrophysics Data System (ADS)
Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca
2017-04-01
Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Goldburg, Walter I.
2002-01-01
A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.
A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities
NASA Astrophysics Data System (ADS)
Dedè, Luca; Garcke, Harald; Lam, Kei Fong
2017-07-01
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids
NASA Astrophysics Data System (ADS)
Anders, Denis; Weinberg, Kerstin
2018-04-01
The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis
Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less
Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis
2017-04-20
Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less
NASA Astrophysics Data System (ADS)
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
NASA Astrophysics Data System (ADS)
Bolet, A. J. S.; Linga, G.; Mathiesen, J.
2017-12-01
Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.
NASA Astrophysics Data System (ADS)
Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi
2018-04-01
To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Astrophysics Data System (ADS)
Duh, J. C.; Yang, Wen-Jei
1989-09-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Technical Reports Server (NTRS)
Duh, J. C.; Yang, Wen-Jei
1989-01-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Contact Angle Influence on Geysering Jets in Microgravity Investigated
NASA Technical Reports Server (NTRS)
Chato, David J.
2004-01-01
Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquid-free vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, surface tension forces must be used to contain jets. To model this phenomenon, a numerical method that tracks the fluid motion and the surface tension forces is required. Jacqmin has developed a phase model that converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation were criticized for smearing the interface. This can be overcome by sharpening the phase function, double gridding the fluid function, and using a higher-order solution for the fluid function. The solution of this equation can be rewritten as two coupled Poisson equations that also include the velocity.
Large eddy simulation of turbulent cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, A.; Mahesh, K.
2015-12-01
Large Eddy Simulation is employed to study two turbulent cavitating flows: over a cylinder and a wedge. A homogeneous mixture model is used to treat the mixture of water and water vapor as a compressible fluid. The governing equations are solved using a novel predictor- corrector method. The subgrid terms are modeled using the Dynamic Smagorinsky model. Cavitating flow over a cylinder at Reynolds number (Re) = 3900 and cavitation number (σ) = 1.0 is simulated and the wake characteristics are compared to the single phase results at the same Reynolds number. It is observed that cavitation suppresses turbulence in the near wake and delays three dimensional breakdown of the vortices. Next, cavitating flow over a wedge at Re = 200, 000 and σ = 2.0 is presented. The mean void fraction profiles obtained are compared to experiment and good agreement is obtained. Cavity auto-oscillation is observed, where the sheet cavity breaks up into a cloud cavity periodically. The results suggest LES as an attractive approach for predicting turbulent cavitating flows.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander
2004-08-03
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J [Livermore, CA; Franklin, Elizabeth [Rolla, MO; Prickett, Zane T [Golden, CO; Artau, Alexander [Pleasanton, CA
2006-05-30
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun
2016-06-15
A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.« less
NASA Technical Reports Server (NTRS)
Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2013-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)
2017-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)
2016-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
Interaction of in-phase and out-of-phase flexible filament in fish schooling
NASA Astrophysics Data System (ADS)
Ud Din, Emad; Sung, Hyung
2011-11-01
Fish schooling is not merely a social behavior; schooling improves the efficiency of movement within the fluid environment. Inspired by the schooling from a hydrodynamic perspective, a group of aquatic animals is modeled as a collection of individuals arranged in a combination of tandem and side-by-side (diamond) formation. The downstream bodies are strongly influenced by the vortices shed by the upstream body shown by vortex-vortex and vortex-body interactions. Trailing fish takes advantage of this flow pattern for energy economy. To investigate the interactions between flexible bodies and vortices, in the present study three flexible flags in viscous flow are solved by numerical simulation using an improved version of the immersed boundary method for in-phase and out-of-phase filaments. The drag coefficient of the downstream filaments drops even below the value of a single flag. Such drag variations are influenced by the interactions between vortices shed by the upstream flexible body and vortices surrounding the downstream filaments. Interaction of the flexible flags is investigated as a function of the gap distance between flags and different bending coefficients, for in-phase and out-of-phase cases at intermediate Reynolds numbers. This study was supported by the Creative Research Initiatives of NRF/MEST (No. 2011-0000423) of Korea.
Experimental Investigations of Two-Phase Cooling in Microgap Channel
2011-04-25
several classification of micro to macro channel. In general, a microchannel is a channel for which the heat transfer characteristics deviate from...examined the heat transfer and fluid flow characteristics of two-phase flow in microchannels with hydraulic diameters of 150 - 450 micrometers for...inherent with two-phase microchannel heat sinks. Bar- Cohen and Rahim [5] performed a detailed analysis of microchannel /microgap heat transfer data
A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation
NASA Astrophysics Data System (ADS)
Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.
2014-11-01
In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Astrophysics Data System (ADS)
Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Technical Reports Server (NTRS)
Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.
1992-01-01
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Technical Reports Server (NTRS)
Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.
1992-01-01
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Astrophysics Data System (ADS)
Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.
1992-07-01
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
NASA Astrophysics Data System (ADS)
Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi
2016-10-01
Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.
Numerical evaluation of a single ellipsoid motion in Newtonian and power-law fluids
NASA Astrophysics Data System (ADS)
Férec, Julien; Ausias, Gilles; Natale, Giovanniantonio
2018-05-01
A computational model is developed for simulating the motion of a single ellipsoid suspended in a Newtonian and power-law fluid, respectively. Based on a finite element method (FEM), the approach consists in seeking solutions for the linear and angular particle velocities using a minimization algorithm, such that the net hydrodynamic force and torque acting on the ellipsoid are zero. For a Newtonian fluid subjected to a simple shear flow, the Jeffery's predictions are recovered at any aspect ratios. The motion of a single ellipsoidal fiber is found to be slightly disturbed by the shear-thinning character of the suspending fluid, when compared with the Jeffery's solutions. Surprisingly, the perturbation can be completely neglected for a particle with a large aspect ratio. Furthermore, the particle centroid is also found to translate with the same linear velocity as the undisturbed simple shear flow evaluated at particle centroid. This is confirmed by recent works based on experimental investigations and modeling approach (1-2).
Direct observation of the evolution of a seafloor 'black smoker' from vapor to brine
Von Damm, Karen L.; Buttermore, L.G.; Oosting, S.E.; Bray, A.M.; Fornari, D.J.; Lilley, M.D.; Shanks, Wayne C.
1997-01-01
A single hydrothermal vent, 'F' vent, occurring on very young crust at 9??16.8???N, East Pacific Rise, was sampled in 1991 and 1994. In 1991, at the measured temperature of 388??C and seafloor pressure of 258 bar, the fluids from this vent were on the two-phase curve for seawater. These fluids were very low in chlorinity and other dissolved species, and high in gases compared to seawater and most sampled seafloor hydrothermal vent fluids. In 1994, when this vent was next sampled, it had cooled to 351??C and was venting fluids ???1.5 times seawater chlorinity. This is the first reported example of a single seafloor hydrothermal vent evolving from vapor to brine. The 1991 and 1994 fluids sampled from this vent are compositionally conjugate pairs to one another. These results support the hypothesis that vapor-phase fluids vent in the early period following a volcanic eruption, and that the liquid-phase brines are stored within the oceanic crust, and vent at a later time, in this case 3 years. These results demonstrate that the venting of brines can occur in the same location, in fact from the same sulfide edifice, where the vapor-phase fluids vented previously.
NASA Technical Reports Server (NTRS)
Justak, John
2010-01-01
An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.