Embedding the dynamics of a single delay system into a feed-forward ring.
Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir
2017-10-01
We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.
NASA Astrophysics Data System (ADS)
Smith, David Eugene
Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for solutions of mixtures of these sugars at concentrations to 0.9m could be calculated with accuracy. Each sugar contributed independently to structure of solution and sound velocity values. At solute concentrations greater than 0.9m, there appeared to be some interaction among mixed solute molecules in solution.
Gadkari, Varun V; Harvey, Sophie R; Raper, Austin T; Chu, Wen-Ting; Wang, Jin; Wysocki, Vicki H; Suo, Zucai
2018-01-01
Abstract Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions. PMID:29529283
NASA Astrophysics Data System (ADS)
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-01
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08632a
Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study
NASA Astrophysics Data System (ADS)
Skorepova, Eliska; Čerňa, Igor; Vlasáková, Růžena; Zvoníček, Vít; Tkadlecová, Marcela; Dušek, Michal
2017-11-01
Ixazomib citrate is a very recently approved anti-cancer drug. Until now, to the best of our knowledge, no one has been able to solve any crystal structures of this compound. In this work, we present the crystal structures of two isostructural solvates of ixazomib citrate. In all currently available literature, the molecule is characterized as containing a single optically active carbon atom and a borate cycle formed when ixazomib is reacted with citric acid to form a stabilized ixazomib citrate that can be administered orally. However, the crystal structures revealed that none of the up-to-date presented structural formulas of ixazomib citrate are fully accurate. In addition to the citrate ring, another 5-membered ring is formed. These two rings are connected by the boron atom, making this compound a spirocyclic borate. By spirocyclization, the boron atom becomes tetrahedral and therefore optically active. In the crystal structures, ixazomib citrate was found to be in forms of two RR and RS stereoisomers. The results are supported by solid-state and solution NMR and DFT quantum mechanical calculations.
Structures with negative index of refraction
Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA
2011-11-08
The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.
Caffeine and Sugars Interact in Aqueous Solutions: A Simulation and NMR Study
Tavagnacco, Letizia; Engström, Olof; Schnupf, Udo; Saboungi, Marie-Louise; Himmel, Michael; Widmalm, Göran; Cesàro, Attilio; Brady, John W.
2012-01-01
Molecular dynamics simulations were carried out on several systems of caffeine interacting with simple sugars. These included a single caffeine molecule in a 3 molal solution of α-D-glucopyranose, at a caffeine concentration of 0.083 molal; a single caffeine in a 3 molal solution of β-D-glucopyranose, and a single caffeine molecule in a 1.08 molal solution of sucrose (table sugar). Parallel Nuclear Magnetic Resonance titration experiments were carried out on the same solutions under similar conditions. Consistent with previous thermodynamic experiments, the sugars were found to have an affinity for the caffeine molecules in both the simulations and experiments, and that the binding in these complexes occurs by face-to-face stacking of the hydrophobic triad of protons of the pyranose rings against the caffeine face, rather than by hydrogen bonding. For the disaccharide, the binding occurs via stacking of the glucose ring against the caffeine, with a lesser affinity for the fructose observed. These findings are consistent with the association being driven by hydrophobic hydration, and are similar to the previously observed binding of glucose rings to various other planar molecules, including indole, serotonin, and phenol. PMID:22897449
Caffeine and sugars interact in aqueous solutions: a simulation and NMR study.
Tavagnacco, Letizia; Engström, Olof; Schnupf, Udo; Saboungi, Marie-Louise; Himmel, Michael; Widmalm, Göran; Cesàro, Attilio; Brady, John W
2012-09-27
Molecular dynamics simulations were carried out on several systems of caffeine interacting with simple sugars. These included a single caffeine molecule in a 3 m solution of α-D-glucopyranose, at a caffeine concentration of 0.083 m, a single caffeine in a 3 m solution of β-D-glucopyranose, and a single caffeine molecule in a 1.08 m solution of sucrose (table sugar). Parallel nuclear magnetic resonance titration experiments were carried out on the same solutions under similar conditions. Consistent with previous thermodynamic experiments, the sugars were found to have an affinity for the caffeine molecules in both the simulations and experiments, and the binding in these complexes occurs by face-to-face stacking of the hydrophobic triad of protons of the pyranose rings against the caffeine face, rather than by hydrogen bonding. For the disaccharide, the binding occurs via stacking of the glucose ring against the caffeine, with a lesser affinity for the fructose observed. These findings are consistent with the association being driven by hydrophobic hydration and are similar to the previously observed binding of glucose rings to various other planar molecules, including indole, serotonin, and phenol.
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-28
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.
NASA Astrophysics Data System (ADS)
Gibbons, Gary W.; Volkov, Mikhail S.
2017-05-01
We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.
NASA Astrophysics Data System (ADS)
Zhao, Wenwu
2017-08-01
A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.
Kusaka, Ryoji; Zhang, Di; Walsh, Patrick S; Gord, Joseph R; Fisher, Brian F; Gellman, Samuel H; Zwier, Timothy S
2013-10-24
The capped α/γ-peptide foldamers Ac-γACHC-Ala-NH-benzyl (γα) and Ac-Ala-γACHC-NH-benzyl (αγ) were studied in the gas phase under jet-cooled conditions using single-conformation spectroscopy. These molecules serve as models for local segments of larger heterogeneous 1:1 α/γ-peptides that have recently been synthesized and shown to form a 12-helix composed of repeating C12 H-bonded rings both in crystalline form and in solution [Guo, L.; et al. J. Am. Chem. Soc. 2009, 131, 16018]. The γα and αγ peptide subunits are structurally constrained at the Cβ-Cγ bond of the γ-residue with a cis-cyclohexyl ring and by an ethyl group at the Cα position. These triamides are the minimum length necessary for the formation of the C12 H-bond. Resonant two-photon ionization (R2PI) provides ultraviolet spectra that have contributions from all conformational isomers, while IR-UV hole-burning (IR-UV HB) and resonant ion-dip infrared (RIDIR) spectroscopies are used to record single-conformation UV and IR spectra, respectively. Four and six conformers are identified in the R2PI spectra of the γα and αγ peptides, respectively. RIDIR spectra in the NH stretch, amide I (C═O stretch), and amide II (NH bend) regions are compared with the predictions of density functional theory (DFT) calculations at the M05-2X/6-31+G* level, leading to definite assignments for the H-bonding architectures of the conformers. While the C12 H-bond is present in both γα and αγ, C9 rings are more prevalent, with seven of ten conformers incorporating a C9 H-bond involving in the γ-residue. Nevertheless, comparison of the assigned structures of gas-phase γα and αγ with the crystal structures for γα and larger α/γ-peptides reveals that the constrained γ-peptide backbone formed by the C9 ring is structurally similar to that formed by the larger C12 ring present in the 12-helix. These results confirm that the ACHC/ethyl constrained γ-residue is structurally preorganized to play a significant role in promoting C12 H-bond formation in larger α/γ-peptides.
Evaporation-Induced Assembly of Quantum Dots into Nanorings
Chen, Jixin; Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Wark, Stacey E.; Son, Dong Hee; Batteas, James D.; Cremer, Paul S.
2011-01-01
Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings. PMID:19206264
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai
2017-12-01
In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.
Stacking interactions of hydrogen-bridged rings – stronger than the stacking of benzene molecules.
Blagojević, Jelena P; Zarić, Snežana D
2015-08-21
Analysis of crystal structures from the Cambridge Structural Database showed that 27% of all planar five-membered hydrogen-bridged rings, possessing only single bonds within the ring, form intermolecular stacking interactions. Interaction energy calculations show that interactions can be as strong as -4.9 kcal mol(-1), but dependent on ring structure.
Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.
Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji
2003-07-01
The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.
Nardozzi, Jonathan D; Wang, Xiaowen; Mbantenkhu, MacMillan; Wilkens, Stephan; Chen, Xin Jie
2012-10-26
Mgm101 is a Rad52-type recombination protein of bacteriophage origin required for the repair and maintenance of mitochondrial DNA (mtDNA). It forms large oligomeric rings of ∼14-fold symmetry that catalyze the annealing of single-stranded DNAs in vitro. In this study, we investigated the structural elements that contribute to this distinctive higher order structural organization and examined its functional implications. A pair of vicinal cysteines, Cys-216 and Cys-217, was found to be essential for mtDNA maintenance. Mutations to the polar serine, the negatively charged aspartic and glutamic acids, and the hydrophobic amino acid alanine all destabilize mtDNA in vivo. The alanine mutants have an increased propensity of forming macroscopic filaments. In contrast, mutations to aspartic acid drastically destabilize the protein and result in unstructured aggregates with severely reduced DNA binding activity. Interestingly, the serine mutants partially disassemble the Mgm101 rings into smaller oligomers. In the case of the C216S mutant, a moderate increase in DNA binding activity was observed. By using small angle x-ray scattering analysis, we found that Mgm101 forms rings of ∼200 Å diameter in solution, consistent with the structure previously established by transmission electron microscopy. We also found that the C216A/C217A double mutant tends to form broken rings, which likely provide free ends for seeding the growth of the super-stable but functionally defective filaments. Taken together, our data underscore the importance of a delicately maintained ring structure critical for Mgm101 activity. We discuss a potential role of Cys-216 and Cys-217 in regulating Mgm101 function and the repair of damaged mtDNA under stress conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, Gary W.; Volkov, Mikhail S., E-mail: gwg1@cam.ac.uk, E-mail: volkov@lmpt.univ-tours.fr
We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes inmore » flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.« less
NASA Astrophysics Data System (ADS)
Wang, Fang; Lu, Heng; Wang, Xu; Liu, Yufang
2018-03-01
Fiber-loop ring-down spectroscopy (FLRDS) technique can be used for measurement by indirectly measuring the ring-down time. This is advantageous because it is free from fluctuations of the light source and has a high sensitivity. A novel sensing system for measuring the concentration and temperature based on the FLRDS technique and Mach-Zehnder interferometer (MZI) is proposed in this work. The intra-cavity losses were compensated, which depended on the erbium-doped fiber amplifier. The sensor head was a section of 4 cm single-mode fiber that was spliced into the fiber loop ring cavity in a core-offset way, and its characteristics were tested by experimenting with different solution concentrations and temperatures. The experimental results showed that the detection limit of this system is 0.0014 g/ml, in the range of 0.010-0.400 g/ml. In the temperature sensing experiment, when the temperature varied from 30-200 °C, a sensitivity of 1.83 μs/°C was achieved. This research demonstrated that the MZI-based FLRDS sensing system has a clear response to the solution and temperature; therefore, it provides a reference for the measurement of stress, pressure, curvature, and other physical quantities.
Cameron, Alan J; Squire, Christopher J; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi
2017-12-14
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H 2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Burinskii, A.
2015-08-01
The Kerr-Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag-string-quark system.
Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H Peter
2017-07-01
Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.
NASA Astrophysics Data System (ADS)
Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H. Peter
2017-07-01
Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.
Janosi, Lorant; Keer, Harindar; Cogdell, Richard J; Ritz, Thorsten; Kosztin, Ioan
2011-07-01
Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods. Copyright © 2011 Wiley-Liss, Inc.
Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie
2010-09-13
The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200-300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.
Ferron, François; Li, Zongli; Danek, Eric I.; Luo, Dahai; Wong, Yeehwa; Coutard, Bruno; Lantez, Violaine; Charrel, Rémi; Canard, Bruno; Walz, Thomas; Lescar, Julien
2011-01-01
Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs. PMID:21589902
NASA Technical Reports Server (NTRS)
Hoff, N J; Libby, Paul A; Klein, Bertran
1946-01-01
This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by the methods described in the present report is practically independent of the degree of redundancy of the structure. For this reason the methods are recommended for use particularly in problems of rings having one or more internal bracing elements.
A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna
NASA Astrophysics Data System (ADS)
Xu, Lei-jun; Guan, Jia-ning; Bai, Xue; Li, Qin; Mao, Han-ping
2017-10-01
To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.
NASA Astrophysics Data System (ADS)
Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.
2017-05-01
We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnuvardhan, J.; Muralidharan, Ajith; Balasubramaniam, Krishnan
A full ring STMR array patch had been used for Structural Health Monitoring (SHM) of anisotropic materials where the elastic moduli, correspond to the virgin sample, were used in the calculations. In the present work an in-situ SHM has been successfully demonstrated using a novel compact sensor patch (Double ring single quadrant small footprint STMR array) through simultaneous reconstruction of the elastic moduli, material symmetry, orientation of principal planes and defect imaging. The direct received signals were used to measure Lamb wave velocities, which were used in a slowness based reconstructed algorithm using Genetic Algorithm to reconstruct the elastic moduli,more » material symmetry and orientation of principal planes. The measured signals along with the reconstructed elastic moduli were used in the phased addition algorithm for imaging the damages present on the structure. To show the applicability of the method, simulations were carried out with the double ring single quadrant STMR array configuration to image defects and are compared with the images obtained using simulation data of the full ring STMR array configuration. The experimental validation has been carried out using 3.15 mm quasi-isotropic graphite-epoxy composite. The double ring single quadrant STMR array has advantages over the full ring STMR array as it can carry out in-situ SHM with limited footprint on the structure.« less
A nonlinear plasmonic waveguide based all-optical bidirectional switching
NASA Astrophysics Data System (ADS)
Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong
2018-01-01
In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.
Jurasekova, Z; Domingo, C; Garcia-Ramos, J V; Sanchez-Cortes, S
2014-07-07
In this work we report the study of the chemical modifications undergone by flavonoids, especially by quercetin (QUC), under alkaline conditions by UV-visible absorption, Raman and surface-enhanced Raman scattering (SERS) spectroscopy, the study was performed in aqueous solution and also on Ag nanoparticles (AgNPs). Several processes are involved in the effect of alkaline pH both in solution and on AgNPs: autoxidation affecting mainly the C-ring of the molecule and giving rise to the molecular fragmentation leading to simpler molecular products, and/or the dimerization and further polymerization leading to species with a higher molecular weight. In addition, there exists a clear structure-instability correlation concerning mainly particular groups in the molecule: the C3-OH group in the C-ring, the catechol moiety in the B-ring and the C2=C3 bond also existing in the C-ring. QUC possesses all these groups and exhibits high instability in alkaline solution. The SERS spectra registered at different pH revealed a change in the dimerization protocol of QUC going from the A- and C-rings-like-condensation to B-ring-like-condensation. Increasing the knowledge of the chemical properties of these compounds and determining the structure-activity relationship under specific environmental factors allow us to improve their beneficial properties for health as well as the preservation of Cultural Heritage objects, for example, by preventing their degradation.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
Structure, spectroscopy, and dynamics of the phenol-(water)2 cluster at low and high temperatures
NASA Astrophysics Data System (ADS)
Samala, Nagaprasad Reddy; Agmon, Noam
2017-12-01
Aqueous solutions are complex due to hydrogen bonding (HBing). While gas-phase clusters could provide clues on the solution behavior, most neutral clusters were studied at cryogenic temperatures. Recent results of Shimamori and Fujii provide the first IR spectrum of warm phenol-(H2O)2 clusters. To understand the temperature (T) effect, we have revisited the structure and spectroscopy of phenol-(H2O)2 at all T. While older quantum chemistry work concluded that the cyclic isomers are the most stable, the inclusion of dispersion interactions reveals that they are nearly isoenergetic with isomers forming π-HBs with the phenyl ring. Whereas the OH-stretch bands were previously assigned to purely local modes, we show that at low T they involve a concerted component. We have calculated the (static) anharmonic IR spectra for all low-lying isomers, showing that at the MP2 level, one can single out one isomer (udu) as accounting for the low-T spectrum to 3 cm-1 accuracy. Yet no isomer can explain the substantial blueshift of the phenyl-OH band at elevated temperatures. We describe the temperature effect using ab initio molecular dynamics with a density functional and basis-set (B3LYP-D3/aug-cc-pVTZ) that provide a realistic description of OH⋯O vs. OH⋯π HBing. From the dipole moment autocorrelation function, we obtain good description for both low- and high-T spectra. Trajectory visualization suggests that the ring structure remains mostly intact even at high T, with intermittent switching between OH⋯O and OH⋯π HBing and lengthening of all 3 HBs. The phenyl-OH blueshift is thus attributed to strengthening of its OH bond. A model for three beads on a ring suggests that this shift is partly offset by the elimination of coupling to the other OH bonds in the ring, whereas for the two water molecules these two effects nearly cancel.
Self-assembly of InAs ring complexes on InP substrates by droplet epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, T.; Mano, T.; Jo, M.
We report the self-assembly of InAs ring complexes on InP (100) substrates by droplet epitaxy. Single-ring, ring-disk complex, and concentric double-ring structures were formed by controlling the As beam flux and substrate temperature. A clear photoluminescence signal was detected in a sample where InAs rings were embedded in InGaAs.
Mechanical seal having a single-piece, perforated mating ring
Khonsari, Michael M [Baton Rouge, LA; Somanchi, Anoop K [Fremont, CA
2007-08-07
A mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) with reduced contact surface temperature, reduced contact surface wear, or increased life span. The mechanical seal comprises a rotating ring and a single-piece, perforated mating ring, which improves heat transfer by controllably channeling coolant flow through the single-piece mating ring such that the coolant is in substantially uniform thermal contact with a substantial portion of the interior surface area of the seal face, while maintaining the structural integrity of the mechanical seal and minimizing the potential for coolant flow interruptions to the seal face caused by debris or contaminants (e.g., small solids and trash) in the coolant.
Plenoptic particle image velocimetry with multiple plenoptic cameras
NASA Astrophysics Data System (ADS)
Fahringer, Timothy W.; Thurow, Brian S.
2018-07-01
Plenoptic particle image velocimetry was recently introduced as a viable three-dimensional, three-component velocimetry technique based on light field cameras. One of the main benefits of this technique is its single camera configuration allowing the technique to be applied in facilities with limited optical access. The main drawback of this configuration is decreased accuracy in the out-of-plane dimension. This work presents a solution with the addition of a second plenoptic camera in a stereo-like configuration. A framework for reconstructing volumes with multiple plenoptic cameras including the volumetric calibration and reconstruction algorithms, including: integral refocusing, filtered refocusing, multiplicative refocusing, and MART are presented. It is shown that the addition of a second camera improves the reconstruction quality and removes the ‘cigar’-like elongation associated with the single camera system. In addition, it is found that adding a third camera provides minimal improvement. Further metrics of the reconstruction quality are quantified in terms of a reconstruction algorithm, particle density, number of cameras, camera separation angle, voxel size, and the effect of common image noise sources. In addition, a synthetic Gaussian ring vortex is used to compare the accuracy of the single and two camera configurations. It was determined that the addition of a second camera reduces the RMSE velocity error from 1.0 to 0.1 voxels in depth and 0.2 to 0.1 voxels in the lateral spatial directions. Finally, the technique is applied experimentally on a ring vortex and comparisons are drawn from the four presented reconstruction algorithms, where it was found that MART and multiplicative refocusing produced the cleanest vortex structure and had the least shot-to-shot variability. Filtered refocusing is able to produce the desired structure, albeit with more noise and variability, while integral refocusing struggled to produce a coherent vortex ring.
Permanent magnet design for high-speed superconducting bearings
Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.
1996-01-01
A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Handschuh, Robert F.
2015-01-01
The space shuttle orbiter's body flap actuator gearing was assessed as a case study of the stresses for very heavily loaded external-internal gear pairs (meshing pinion and ring gear). For many applications, using the high point of single tooth contact (HPSTC) to locate the position of the tooth force is adequate for assessing the maximum tooth root stress condition. But for aerospace gearing such an approach may be inadequate for assessing the stress condition while also simultaneously minimizing mass. In this work specialized contact analyses and finite element methods were used to study gear tooth stresses of body flap actuator gears. The analytical solutions considered the elastic deformations as an inherent part of the solutions. The ratio for the maximum tooth stresses using the HPSTC approach solutions relative to the contact analysis and finite element solutions were 1.40 for the ring gear and 1.28 for the pinion gear.
NASA Astrophysics Data System (ADS)
Gord, Joseph R.; Walsh, Patrick S.; Zwier, Timothy S.; Fisher, Brian F.; Gellman, Samuel H.
2013-06-01
In order to further understand the intramolecular forces governing secondary structure formation in peptides and to provide benchmarks for the computational community, conformation-specific spectroscopy techniques have been applied to several model systems provided by Dr. Sam Gellman's research group at the University of Wisconsin-Madison. In the present work, two model β/γ-peptides, Ac-β_{ACPC}-γ_{ACHC}-NHBz and Ac-γ_{ACHC}-β_{ACPC}-NHBz have been investigated using single and double resonance ultraviolet and infrared spectroscopy to elucidate their intrinsic folding propensities. The β-peptide is constrained by a five-membered ring spanning the β^{3}-β^{2} positions (β_{ACPC}) and the γ-peptide is constrained by a six-membered ring spanning the γ^{4}-γ^{3} positions with an additional ethyl group at γ^{2} (γ_{ACHC}). Resonant two-photon ionization (R2PI) spectra from 37250 to 37750 cm^{-1} were obtained and subsequently interrogated using UV-UV hole-burning to reveal the presence of three conformations for Ac-β_{ACPC}-γ_{ACHC}-NHBz, and a single conformation for Ac-γ_{ACHC}-β_{ACPC}-NHBz. Resonant ion-dip infrared (RIDIR) spectra were obtained in the NH stretch region from 3300 to 3500 cm^{-1} and in both the amide I and II regions from 1400 to 1800 cm^{-1}. These spectra were compared to computational predictions given by DFT calculations using the M05-2X functional with a 6-31G+(d) basis set revealing two slightly varied iterations of a bifurcated C-8/13 double ring structure for Ac-β_{ACPC}-γ_{ACHC}-NHBz and one bifurcated C-9/13 double ring structure for Ac-γ_{ACHC}-β_{ACPC}-NHBz. The appearance of C-13 rings was also seen in solution phase studies. This work is a complement to studies performed on pure γ-peptides and α/γ-peptides. L. Guo, A. M. Almeida, W. Zhang, A. G. Reidenbach, S. H. Choi, I.. A. Guzei, and S. H. Gellman J. Am. Chem. Soc. 2010, 132, 7868-7869
The chemistry of (ring)Ru sup 2+ (ring = tetramethylthiophene, p-cymene)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganja, E.A.; Rauchfuss, T.B.; Stern, C.L.
1991-01-01
Described are the compounds ((ring)Ru(OTf){sub 2}){sub x}, where ring = 2,3,4,5-tetramethylthiophene (TMT, 1), and p-cymene (2). These electrophilic reagents serve as precursors to ((ring)RuL{sub 3}){sup 2+}, where L{sub 3} = (H{sub 2}O){sub 3}, (NH{sub 3}){sub 3}, and (PH{sub 3}){sub 3}. Solutions of 1 and 2 react with carbon monoxide to give (ring)Ru(CO)(OTf){sub 2}. The addition of thiophenes to CH{sub 2}Cl{sub 2} solutions of 1 or 2 leads to the precipitation of the sandwich compounds ((ring)(SC{sub 4}R{sub 4})Ru)(OTf){sub 2}, where SC{sub 4}R{sub 4} = thiophene, 2,5-dimethylthiophene, and TMT. ((TMT)Ru(H{sub 2}O){sub 3})(OTf){sub 2} was characterized by single-crystal X-ray crystallography, which established amore » piano-stool geometry with a planar TMT ligand. ((TMT)Ru(D{sub 2}O){sub 3})(OTf){sub 2} decomposes in D{sub 2}O solution at 150C to give ((TMT){sub 2}Ru){sup 2+}, which undergoes selective deuteration at the 2,5-methyl groups. D{sub 2}O solutions of ((TMT){sub 2}Ru){sup 2+} undergo photochemical loss of one TMT ligand in water to give ((TMT)Ru(H{sub 2}O){sub 3}){sup 2+}. A procedure is described for the reversible loading of 1 onto {gamma}-alumina, which in turn was characterized by {sup 13}C CP-MAS NMR spectroscopy.« less
Crystal structure of a two-subunit TrkA octameric gating ring assembly
Deller, Marc C.; Johnson, Hope A.; Miller, Mitchell D.; ...
2015-03-31
The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K⁺ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K⁺ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K⁺ ions acrossmore » the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K⁺ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K⁺ gating ring assemblies.« less
Water and solute transport parameterization form a soil of semi-arid region of northeast of Brazil
NASA Astrophysics Data System (ADS)
Netto, A. M.; Antonino, A. C. D.; Lima, L. J. S.; Angulo-Jaramillo, R.; Montenegro, S. M. G.
2003-04-01
Water and solute transfer modeling needs the transport parameters as input data. Classical theory, Fickian advection-dispersion, is not successfully applied to account for solute transport along with preferential flow pathways. This transport may be operating at scales smaller than spatial discretization used in a field scale numerical model. An axisymetric infiltration using a single ring infiltrometer along with a conservative tracer (Cl^-) is an efficient and easy method to use in fields tools. Two experiments were accomplished on a Yellow Oxissol in a 4,0 ha area in Centro de Ciências Agrárias, UFPB, Areia City, Paraíba State, Brazil (6^o 58'S, 35o 41'W and 645 m), in a 50 × 50 m grid (16 points): a) cultivated with beans (Vigna Unguinculata (L.) Walp.), and b) bare soil after harvest. The unsaturated hydraulic conductivity K and sorptivity S were estimated from short time or long time analysis of cumulative three dimensional infiltration. Single tracer technique was used for the calculation of mobile water fraction f by measuring the solute concentration underneath the ring infiltrometer, at the end of infiltration. A solute transfer numerical model, based on the mobile-immobile water concept, was used for the determination of the solute transport parameters. The mobile water fraction f, the dispersion coefficient D, and the mass transfer coefficient α, were estimated from both the measured infiltration depth and concentration profile underneath the ring infiltrometer. The presence of preferential flow was due to the soil nature (aggregated soil, macropores, flux instabilities and heterogeneity). The lateral solute transfer is not only diffusive but also convective. The parameters deduced from the numerical model associated to the solute profile concentration are representative of this phenomenon.
Permanent magnet design for high-speed superconducting bearings
Hull, J.R.; Uherka, K.L.; Abdoud, R.G.
1996-09-10
A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.
Polêto, Marcelo D; Rusu, Victor H; Grisci, Bruno I; Dorn, Marcio; Lins, Roberto D; Verli, Hugo
2018-01-01
The identification of lead compounds usually includes a step of chemical diversity generation. Its rationale may be supported by both qualitative (SAR) and quantitative (QSAR) approaches, offering models of the putative ligand-receptor interactions. In both scenarios, our understanding of which interactions functional groups can perform is mostly based on their chemical nature (such as electronegativity, volume, melting point, lipophilicity etc.) instead of their dynamics in aqueous, biological solutions (solvent accessibility, lifetime of hydrogen bonds, solvent structure etc.). As a consequence, it is challenging to predict from 2D structures which functional groups will be able to perform interactions with the target receptor, at which intensity and relative abundance in the biological environment, all of which will contribute to ligand potency and intrinsic activity. With this in mind, the aim of this work is to assess properties of aromatic rings, commonly used for drug design, in aqueous solution through molecular dynamics simulations in order to characterize their chemical features and infer their impact in complexation dynamics. For this, common aromatic and heteroaromatic rings were selected and received new atomic charge set based on the direction and module of the dipole moment from MP2/6-31G * calculations, while other topological terms were taken from GROMOS53A6 force field. Afterwards, liquid physicochemical properties were simulated for a calibration set composed by nearly 40 molecules and compared to their respective experimental data, in order to validate each topology. Based on the reliance of the employed strategy, we expanded the dataset to more than 100 aromatic rings. Properties in aqueous solution such as solvent accessible surface area, H-bonds availability, H-bonds residence time, and water structure around heteroatoms were calculated for each ring, creating a database of potential interactions, shedding light on features of drugs in biological solutions, on the structural basis for bioisosterism and on the enthalpic/entropic costs for ligand-receptor complexation dynamics.
Electronic structures of GaAs/AlxGa1-xAs quantum double rings
Xia, Jian-Bai
2006-01-01
In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.
1976-01-01
A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.
Microwave-assisted one-step patterning of aqueous colloidal silver.
Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N
2012-07-05
A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.
NASA Astrophysics Data System (ADS)
Novikov, Dmitrii K.; Diligenskii, Dmitrii S.
2018-01-01
The article considers the work of some squeeze film damper with elastic rings parts. This type of damper is widely used in gas turbine engines supports. Nevertheless, modern analytical solutions have a number of limitations. The article considers the behavior of simple hydrodynamic damping systems. It describes the analysis of fluid-solid interaction simulation applicability for the defying properties of hydrodynamic damper with elastic rings (“allison ring”). There are some recommendations on the fluid structural interaction analysis of the hydrodynamic damper with elastic rings.
Gropp, Cornelius; Trapp, Nils
2018-04-25
Single crystal X-ray diffraction is a powerful method to unambiguously characterize the structure of molecules with atomic resolution. Herein, we review the molecular recognition of the (di)axial conformers of Mono- and (±)-trans-1,2-disubstituted cyclohexanes by enantiopure alleno-acetylenic cage receptors in solution and in the solid state. Single crystals of the host-guest complexes suitable for X-ray diffraction allow for the first time to study the dihedral angles of a series of Mono- and (±)-trans-1,2-disubstituted cyclohexanes in their (di)axial chair conformation. Theoretical studies indicate negligible influence of the host structure on the guest conformation, suggesting that the structural information obtained from the host-guest complexes give insight into the innate structures of Mono- and (±)-trans-1,2-disubstituted cyclohexanes. Strong deviation of the dihedral angles a,a(X-C(1)-C(2)-X) from the idealized 180° are observed, accompanied by substantial flattening of the ring dihedral angles ρ(X-C(1)-C(2)-C(3)).
Controllable continuous evolution of electronic states in a single quantum ring
NASA Astrophysics Data System (ADS)
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David
2018-02-01
An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.
Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...
2014-04-23
Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less
NASA Astrophysics Data System (ADS)
Glikson, Andrew
2018-01-01
Ring, dome and crater features on the Australian continent and shelf include (A) 38 structures of confirmed or probable asteroid and meteorite impact origin and (B) numerous buried and exposed ring, dome and crater features of undefined origin. A large number of the latter include structural and geophysical elements consistent with impact structures, pending test by field investigations and/or drilling. This paper documents and briefly describes 43 ring and dome features with the aim of appraising their similarities and differences from those of impact structures. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes require field work and/or drilling. Where crater-like morphological patterns intersect pre-existing linear structural features and contain central morphological highs and unique thrust and fault patterns an impact connection needs to tested in the field. Hints of potential buried impact structures may be furnished by single or multi-ring TMI patterns, circular TMI quiet zones, corresponding gravity patterns, low velocity and non-reflective seismic zones.
Conformation and Dynamics of Human Urotensin II and Urotensin Related Peptide in Aqueous Solution.
Haensele, Elke; Mele, Nawel; Miljak, Marija; Read, Christopher M; Whitley, David C; Banting, Lee; Delépée, Carla; Sopkova-de Oliveira Santos, Jana; Lepailleur, Alban; Bureau, Ronan; Essex, Jonathan W; Clark, Timothy
2017-02-27
Conformation and dynamics of the vasoconstrictive peptides human urotensin II (UII) and urotensin related peptide (URP) have been investigated by both unrestrained and enhanced-sampling molecular-dynamics (MD) simulations and NMR spectroscopy. These peptides are natural ligands of the G-protein coupled urotensin II receptor (UTR) and have been linked to mammalian pathophysiology. UII and URP cannot be characterized by a single structure but exist as an equilibrium of two main classes of ring conformations, open and folded, with rapidly interchanging subtypes. The open states are characterized by turns of various types centered at K 8 Y 9 or F 6 W 7 predominantly with no or only sparsely populated transannular hydrogen bonds. The folded conformations show multiple turns stabilized by highly populated transannular hydrogen bonds comprising centers F 6 W 7 K 8 or W 7 K 8 Y 9 . Some of these conformations have not been characterized previously. The equilibrium populations that are experimentally difficult to access were estimated by replica-exchange MD simulations and validated by comparison of experimental NMR data with chemical shifts calculated with density-functional theory. UII exhibits approximately 72% open:28% folded conformations in aqueous solution. URP shows very similar ring conformations as UII but differs in an open:folded equilibrium shifted further toward open conformations (86:14) possibly arising from the absence of folded N-terminal tail-ring interaction. The results suggest that the different biological effects of UII and URP are not caused by differences in ring conformations but rather by different interactions with UTR.
Self-assembly of single "square" quantum rings in gold-free GaAs nanowires.
Zha, Guowei; Shang, Xiangjun; Su, Dan; Yu, Ying; Wei, Bin; Wang, Li; Li, Mifeng; Wang, Lijuan; Xu, Jianxing; Ni, Haiqiao; Ji, Yuan; Sun, Baoquan; Niu, Zhichuan
2014-03-21
Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time. By tuning the deposition temperature, As overpressure and amount of gallium-droplets, we were able to control the density and morphology of the structure, yielding novel single quantum dots, QR, coupled QRs, and nano-antidots. A proposed model based on a strain-driven, transport-dependent nucleation of gallium droplets at high temperature accounts for the formation mechanism of these structures. We achieved a single-QR-in-NW structure, of which the optical properties were analyzed using micro-photoluminescence at 10 K and a spatially resolved cathodoluminescence technique at 77 K. The spectra show sharp discrete peaks; of these peaks, the narrowest linewidth (separation) was 578 μeV (1-3 meV), reflecting the quantized nature of the ring-type electronic states.
Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J
2013-06-14
Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.
Piggot, Thomas J; Sessions, Richard B; Burston, Steven G
2012-02-28
GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL. Despite numerous previous studies, the precise mechanisms of allosteric communication and the associated structural changes remain elusive. In this paper, we describe a series of all-atom, unbiased, molecular dynamics simulations over relatively long (50-100 ns) time scales of a single, isolated GroEL subunit and also a heptameric GroEL ring, in the presence and absence of ATP. Combined with results from a distance restraint-biased simulation of the single ring, the atomistic details of the earliest stages of ATP-driven structural changes within this complex molecule are illuminated. Our results are in broad agreement with previous modeling studies of isolated subunits and with a coarse-grained, forcing simulation of the single ring. These are the first reported all-atom simulations of the GroEL single-ring complex and provide a unique insight into the role of charged residues K80, K277, R284, R285, and E388 at the subunit interface in transmission of the allosteric signal. These simulations also demonstrate the feasibility of performing all-atom simulations of very large systems on sufficiently long time scales on typical high performance computing facilities to show the origins of the earliest events in biologically relevant processes.
NASA Astrophysics Data System (ADS)
Burinskii, Alexander
2016-01-01
It is known that gravitational and electromagnetic fields of an electron are described by the ultra-extreme Kerr-Newman (KN) black hole solution with extremely high spin/mass ratio. This solution is singular and has a topological defect, the Kerr singular ring, which may be regularized by introducing the solitonic source based on the Higgs mechanism of symmetry breaking. The source represents a domain wall bubble interpolating between the flat region inside the bubble and external KN solution. It was shown recently that the source represents a supersymmetric bag model, and its structure is unambiguously determined by Bogomolnyi equations. The Dirac equation is embedded inside the bag consistently with twistor structure of the Kerr geometry, and acquires the mass from the Yukawa coupling with Higgs field. The KN bag turns out to be flexible, and for parameters of an electron, it takes the form of very thin disk with a circular string placed along sharp boundary of the disk. Excitation of this string by a traveling wave creates a circulating singular pole, indicating that the bag-like source of KN solution unifies the dressed and point-like electron in a single bag-string-quark system.
Yucelen, G Ipek; Choudhury, Rudra Prosad; Vyalikh, Anastasia; Scheler, Ulrich; Beckham, Haskell W; Nair, Sankar
2011-04-13
We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. © 2011 American Chemical Society
Kuter, David; Streltsov, Victor; Davydova, Natalia; Venter, Gerhard A; Naidoo, Kevin J; Egan, Timothy J
2016-01-01
The interaction of chloroquine (CQ) and the μ-oxo dimer of iron(III) protoporphyrin IX (ferriheme) in aqueous solution was modeled using molecular dynamics (MD) simulations. Two models of the CQ-(μ-oxo ferriheme) complex were investigated, one involving CQ π-stacked with an unligated porphyrin face of μ-oxo ferriheme and the other in which CQ was docked between the two porphyrin rings. The feasibility of both models was tested by fitting computed structures to the experimental extended X-ray absorption fine structure (EXAFS) spectrum of the CQ-(μ-oxo ferriheme) complex in frozen aqueous solution. The docked model produced better agreement with experimental data, suggesting that this is the more likely structure in aqueous solution. The EXAFS fit indicated a longer than expected Fe-O bond of 1.87Å, accounting for the higher than expected magnetic moment of the complex. As a consequence, the asymmetric Fe-O-Fe stretch shifts much lower in frequency and was identified in the precipitated solid at 744cm(-1) with the aid of the O(18) isomer shift. Three important CQ-ferriheme interactions were identified in the docked structure. These were a hydrogen bond between the oxide bridge of μ-oxo ferriheme and the protonated quinolinium nitrogen atom of CQ; π-stacking between the quinoline ring of CQ and the porphyrin rings; and a close contact between the 7-chloro substituent of CQ and the porphyrin methyl hydrogen atoms. These interactions can be used to rationalize previously observed structure-activity relationships for quinoline-ferriheme association. Copyright © 2015 Elsevier Inc. All rights reserved.
Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo
2011-04-11
We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America
Crystal structure and vibrational spectra of melaminium arsenate
NASA Astrophysics Data System (ADS)
Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.
2015-01-01
The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).
Structure of the human DNA-repair protein RAD52 containing surface mutations.
Saotome, Mika; Saito, Kengo; Onodera, Keiichi; Kurumizaka, Hitoshi; Kagawa, Wataru
2016-08-01
The Rad52 protein is a eukaryotic single-strand DNA-annealing protein that is involved in the homologous recombinational repair of DNA double-strand breaks. The isolated N-terminal half of the human RAD52 protein (RAD52(1-212)) forms an undecameric ring structure with a surface that is mostly positively charged. In the present study, it was found that RAD52(1-212) containing alanine mutations of the charged surface residues (Lys102, Lys133 and Glu202) is highly amenable to crystallization. The structure of the mutant RAD52(1-212) was solved at 2.4 Å resolution. The structure revealed an association between the symmetry-related RAD52(1-212) rings, in which a partially unfolded, C-terminal region of RAD52 extended into the DNA-binding groove of the neighbouring ring in the crystal. The alanine mutations probably reduced the surface entropy of the RAD52(1-212) ring and stabilized the ring-ring association observed in the crystal.
Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin
2014-01-28
In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium.
Biosensing based on magnetically induced self-assembly of particles in magnetic colloids.
Yang, Ye; Morimoto, Yoshitaka; Takamura, Tsukasa; Sandhu, Adarsh
2012-03-01
Superparamagnetic beads and nonmagnetic beads of different sizes were assembled to form a "ring-structure" in a magnetorheological (MR) fluid solution by the application of external magnetic fields. For superparamagnetic beads and non-magnetic beads functionalized with probe and target molecules, respectively, the ring-structure was maintained even after removing the external magnetic field due to biomolecular bonding. Several experiments are described, including the formation process of ring-structures with and without molecular interactions, the accelerating effect of external magnetic fields, and the effect of biotin concentration on the structures of the rings. We define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. The number of remnant ring petals was a function of the concentration of target molecules in the concentration range of 0.0768 ng/ml-3.8419 ng/ml which makes this protocol a promising method for biosensing. Not only was the formation process rapid, but the resulting two-dimensional colloidal system also offers a simple method for reducing reagent consumption and waste generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggavarapu, Kiran; Bulusu, Satya; Zhai, Hua JIN.
Experimental and computational simulations revealed that boron clusters, which favor planar (2D) structures up to 18 atoms, prefer three-dimensional (3D) structures beginning at 20 atoms. Using global optimization methods, we found that the B20 neutral cluster has a double-ring tubular structure with a diameter of 5.2 ?. In the B20- anion, the tubular structure is shown to be isoenergetic to 2D structures, which were observed and confirmed by photoelectron spectroscopy. The 2D to 3D structural transition observed at B20, reminiscent to the ring-to-fullerene transition at C20 in carbon clusters, suggests it may be considered as the embryo of the thinnestmore » single-walled boron nanotubes.« less
Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasmuth, Elizabeth V.; Januszyk, Kurt; Lima, Christopher D.
The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on topmore » of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.« less
Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments
NASA Astrophysics Data System (ADS)
Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.
2018-06-01
At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mountassif, Driss; Fabre, Lucien; Zaid, Younes
Single amino acid mutations in valosin containing protein (VCP/p97), a highly conserved member of the ATPases associated with diverse cellular activities (AAA) family of ATPases has been linked to a severe degenerative disease affecting brain, muscle and bone tissue. Previous studies have demonstrated the role of VCP mutations in altering the ATPase activity of the D2 ring; however the structural consequences of these mutations remain unclear. In this study, we report the three-dimensional (3D) map of the pathogenic VCP variant, R155P, as revealed by single-particle Cryo-Electron Microscopy (EM) analysis at 14 Å resolution. We show that the N-terminal R155P mutation inducesmore » a large structural reorganisation of the D2 ATPase ring. Results from docking studies using crystal structure data of available wild-type VCP in the EM density maps indicate that the major difference is localized at the interface between two protomers within the D2 ring. Consistent with a conformational change, the VCP R155P variant shifted the isoelectric point of the protein and reduced its interaction with its well-characterized cofactor, nuclear protein localization-4 (Npl4). Together, our results demonstrate that a single amino acid substitution in the N-terminal domain can relay long-range conformational changes to the distal D2 ATPase ring. Our results provide the first structural clues of how VCP mutations may influence the activity and function of the D2 ATPase ring. - Highlights: • p97{sub R155P} and p97{sub A232E} decrease the ability of p97 to bind to its co-factor Npl4. • p97{sub R155P} has a different isoelectric point than that of p97{sub R95G}, p97{sub A232E} and p97{sub WT}. • Mutation R155P changes principally the conformation of the D2 ring. • Mutation R155P modifies the interface between two protomers within the D2 ring.« less
Quasi-one-dimensional density of states in a single quantum ring.
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-05
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.
Exact wave functions of two-electron quantum rings.
Loos, Pierre-François; Gill, Peter M W
2012-02-24
We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.
NASA Astrophysics Data System (ADS)
Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.
Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.
Thermoelectric effect in Aharonov-Bohm structures.
Lu, Xin; Wang, Jian-Sheng; Morrel, William G; Ni, Xiaoxi; Wu, Chang-Qin; Li, Baowen
2015-01-28
The thermoelectric effects of a single Aharonov-Bohm (SAB) ring and coupled double Aharonov-Bohm (DAB) rings have been investigated on a theoretical basis, taking into account the contributions of both electrons and phonons to the transport process by using the nonequilibrium Green's function technique. The thermoelectric figure of merit of the coupled DAB rings cannot be predicted directly by combining the values of two SAB ring systems due to the contribution of electron-phonon interaction to coupling between the two sites connecting the rings. We find that thermoelectric efficiency can be optimized by modulating the phases of the magnetic flux threading the two rings.
Structure and assembly of the essential RNA ring component of a viral DNA packaging motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fang; Lu, Changrui; Zhao, Wei
2011-07-25
Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNAmore » cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.« less
Jiang, Yongkang; Mao, Hailei; Yang, Xi; Zhou, Shengbo; Ni, Feng; Xu, Qiming; Wang, Bin
2016-07-01
The purpose of this study was to determine the feasibility of single-stage resection for type II congenital constriction rings by means of histologic examination of resected specimens and imaging examination of affected extremities, and to evaluate the appearance and function of the extremities after single-stage surgery. The features of the skin on the constriction rings and the subcutaneous tissues were identified through continuous sectioning, hematoxylin and eosin staining, and immunohistologic staining of specimens of type II constriction rings obtained by means of surgery. The relationship between the constriction rings and the deep main blood vessels was evaluated using magnetic resonance imaging. Single-stage resection of the constriction band, reduction of the fascial flap, and triangular flap-plasty were performed for 21 patients. The appearance, lymphedema, and movement of the extremities were compared before and after the operation. Type II constriction rings in the extremities had normal full-layer skin structures. Collagen was found deposited densely at the base of the grooves, but the normal subcutaneous tissue space remained, and the vital nerves and blood vessels were unaffected. Complete resection of the constriction rings was achieved in all 21 patients, and lymphedema subsided 2 months after the operation. No episode of recurrence was found, and limb function was not affected at 26-month follow-up. Type II congenital constriction rings in limbs possess normal subcutaneous tissue spaces. A single-stage operation, which includes complete resection of the rings, fascial flap reduction, and triangular flap-plasty, could achieve a satisfactory appearance and good function. Therapeutic, III.
Numerical simulation of eigenmodes of ring and race-track optical microresonators
NASA Astrophysics Data System (ADS)
Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.
2017-11-01
We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.
Interaction of a vortex ring and a bubble
NASA Astrophysics Data System (ADS)
Jha, Narsing K.; Govardhan, Raghuraman N.
2014-11-01
Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.
Vedyaykin, Alexey D; Vishnyakov, Innokentii E; Polinovskaya, Vasilisa S; Khodorkovskii, Mikhail A; Sabantsev, Anton V
2016-06-01
FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors.
Fard, Sahba Talebi; Murray, Kyle; Caverley, Michael; Donzella, Valentina; Flueckiger, Jonas; Grist, Samantha M; Huante-Ceron, Edgar; Schmidt, Shon A; Kwok, Ezra; Jaeger, Nicolas A F; Knights, Andrew P; Chrostowski, Lukas
2014-11-17
A resonance-enhanced, defect-mediated, ring resonator photodetector has been implemented as a single unit biosensor on a silicon-on-insulator platform, providing a cost effective means of integrating ring resonator sensors with photodetectors for lab-on-chip applications. This method overcomes the challenge of integrating hybrid photodetectors on the chip. The demonstrated responsivity of the photodetector-sensor was 90 mA/W. Devices were characterized using refractive index modified solutions and showed sensitivities of 30 nm/RIU.
Thermoelastic damping effect of the micro-ring resonator with irregular mass and stiffness
NASA Astrophysics Data System (ADS)
Kim, Jung-Hwan; Kim, Ji-Hwan
2016-05-01
Fundamentally, vibration characteristic is a main factor for the stability of structures. In this regard, the irregularity of mass and stiffness distributions for the structure have been an interesting issue for many years. Recently, the Micro Electro Mechanical Systems (MEMS) are developed for various applications such as gyro sensors. In the present work, in-plane vibration of micro-ring structure with multiple finite-sized imperfections is investigated. Then, the unbalance of the structure is represented using Heaviside Step Function for the inextensional modeling of the ring. Also, thermoelastic damping (TED) due to internal friction is studied based on Fourier's one-dimensional heat conduction equation using Laplace Transform. To obtain the quality-factors (Q-factors) for imperfect micro-ring, analytical solutions are calculated from governing equations of motion with TED. And then, the natural frequencies and the Q-factors are observed to separate into lower and higher modes. Additionally, the vibration mode shapes are presented, and the frequency trimming concept due to attached imperfections is investigated.
Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther
2010-03-07
The reaction of NP(3) (tris[2-(diphenylphosphino)ethyl]amine and PP(3) (tris[2-(diphenylphosphino)ethyl]phosphine) with the five-coordinate complexes [PdCl(NP(3))]Cl (1) and [MX(PP(3))]X [M = Pd: X = Cl(2), Br(3), I(4); M = Pt: X = Cl(5), Br(6), I(7)], respectively, followed by (31)P{(1)H}NMR when X = Cl, led to the formation of unprecedented four-coordinate halides in a 1 : 2 metal to ligand ratio, [M(AP(3))(2)]X(2) [A = N, M = Pd: X = Cl(8); A = P, M = Pd: X = Cl(9), Br(10), I(11); A = P, M = Pt: X = Cl(12), Br(13), I (14)], containing reactive dangling phosphorus. Given the non characterised precursors [M(ONO(2))(PP(3))](NO(3))], the interaction between the heteronuclear species [MAg(NO(3))(3)(PP(3))] [M = Pd(15), Pt(16)] and PP(3) was explored. It was found that the addition of 1 equivalent of phosphine afforded [MAg(NO(3))(PP(3))(2)](NO(3))(2) [M = Pd(15*), Pt(16*)] containing Ag(I) bound to two dangling phosphorus while the reaction with 2 equivalents led to the complexes [M(PP(3))(2)](NO(3))(2) [M = Pd (17), Pt (18)] in coexistence with [Ag(2)(mu-PP(3))(2)](NO(3))(2). The fate of Ag(I) on the reaction of the mixed metal compounds with excess PP(3) consisted of preventing dissociation, observed in solution for halides, and acting as an assistant for crystallization. Colourless single crystals of 18 and 10, studied by X-ray diffraction, were afforded by reaction of 16 with 4 equivalents of PP(3) and from solutions of 10 in chloroform coexisting with red crystals of 3, respectively. The structures revealed the presence of dications [M(PP(3))(2)](2+) that show two five-membered chelate rings to M(II) in a square-planar arrangement and four uncoordinated phosphine arms with the counter anions being symmetrically placed at 4.431 (Br(-)) and 13.823 (NO(3)(-)) A from M(II) above and below its coordination, MP(4), plane. Complexes 9 and 12 were shown to undergo an interesting reactivity in solution versus group 11 monocations. The reactions consisted of conversions of the two five-membered chelate rings to M into three (structure I) or two (structure II) fused five-membered chelate rings, formation of species where Pt(II) retained its square-planar environment with the two dangling phosphine arms of each PP(3) bound to Cu(I) or Ag(I) (structure III) and complexes bearing distorted square-planar (P(2)MCl(2)) and presumably tetrahedral (AuP(4)+ P(2)AuCl(2)) arrangements (structure IV). The processes with Ag(I) salts also gave mixtures of I+III (chloride and nitrate) or II+III (nitrate).
Energy-efficient rings mechanism for greening multisegment fiber-wireless access networks
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Hou, Weigang; Zhang, Lincong
2013-07-01
Through integrating advantages of optical and wireless communications, the Fiber-Wireless (FiWi) has become a promising solution for the "last-mile" broadband access. In particular, greening FiWi has attained extensive attention, because the access network is a main energy contributor in the whole infrastructure. However, prior solutions of greening FiWi shut down or sleep unused/minimally used optical network units for a single segment, where we deploy only one optical linear terminal. We propose a green mechanism referred to as energy-efficient ring (EER) for multisegment FiWi access networks. We utilize an integer linear programming model and a generic algorithm to generate clusters, each having the shortest distance of fully connected segments of its own. Leveraging the backtracking method for each cluster, we then connect segments through fiber links, and the shortest distance fiber ring is constructed. Finally, we sleep low load segments and forward affected traffic to other active segments on the same fiber ring by our sleeping scheme. Experimental results show that our EER mechanism significantly reduces the energy consumption at the slightly additional cost of deploying fiber links.
Structural studies on a high-pressure polymorph of NaYSi 2O 6
NASA Astrophysics Data System (ADS)
Kahlenberg, Volker; Konzett, Jürgen; Kaindl, Reinhard
2007-06-01
High-pressure synthesis experiments in the system Na 2O-Y 2O 3-SiO 2 revealed the existence of a previously unknown polymorph of NaYSi 2O 6 or Na 3Y 3[Si 3O 9] 2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi 2O 6 crystallizes in the centrosymmetric space group C2/ c with 12 formula units per cell ( a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å 3, R(| F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si 3O 9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up ( U) or down ( D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.
NASA Astrophysics Data System (ADS)
Munera, Hector A.
Following the discovery of quantum phenomena at laboratory scale (Couder & Fort 2006), de Broglie pilot wave theory (De Broglie 1962) has been revived under a hydrodynamic guise (Bush 2015). Theoretically, it boils down to solving the transport equations for the energy and linear momentum densities of a postulated fundamental fluid in terms of classical wave equations, which inherently are Lorentz-invariant and scale-invariant. Instead of the conventional harmonic solutions, for astronomical and gravitational problems the novel solutions for the homogeneous wave equation in spherical coordinates are more suitable (Munera et al. 1995, Munera & Guzman 1997, and Munera 2000). Two groups of solutions are particularly relevant: (a) The inherently-quantized helicoidal solutions that may be applicable to describe spiral galaxies, and (b) The non-harmonic solutions with time (t) and distance (r) entangled in the single variable q = Ct/r (C is the two-way local electromagnetic speed). When these functions are plotted against 1/q they manifestly depict quantum effects in the near field, and Newtonian-like gravity in the far-field. The near-field predicts quantized effects similar to ring structures and to Titius-Bode structures, both in our own solar system and in exoplanets, the correlation between predicted and observed structures being typically larger than 99 per cent. In the far-field, some non-harmonic functions have a rate of decrement with distance slower than inverse-square thus explaining the flat rotation rate of galaxies. Additional implications for Trojan orbits, and quantized effects in photon deflection were also noted.
Shimizu, Hideyuki; Park, Kyu Hyung; Otani, Hiroyuki; Aoyagi, Shinobu; Nishinaga, Tohru; Aso, Yoshio; Kim, Dongho; Iyoda, Masahiko
2018-03-12
A Saturn-like 1:1 complex composed of macrocyclic oligothiophene E-8T7A and C 60 fullerene (C 60 ) was synthesized to investigate the interaction between macrocyclic oligothiophenes and C 60 in solution and the solid state. Because the Saturn-like 1:1 complex E-8T7A⋅C 60 is mainly stabilized by van der Waals interactions between C 60 and the sulfur atoms of the E-8T7A macrocycle, C 60 is rather weakly incorporated inside the macro-ring in solution. However, in the solid state the Saturn-like 1:1 complex preferentially formed single crystals or nanostructured polymorphs. Interestingly, X-ray analysis and theoretical calculations exhibited hindered rotation of C 60 in the Saturn-like complex due to interactions between C 60 and the sulfur atoms. Furthermore, the photoinduced charge transfer (CT) interaction between E-8T7A and C 60 in solution was investigated by using femtosecond transient absorption (TA) spectroscopy. The ultrafast TA spectral changes in the photoinduced absorption bands were attributed to the CT process in the Saturn-like structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Zhi-bo; Yin, Bin; Liang, Xiao; Bai, Yunlong; Tan, Zhongwei; Liu, Shuo; Li, Yang; Liu, Yan; Jian, Shuisheng
2014-06-01
This paper experimentally demonstrated a singlemode-coreless-singlemode (SCS) fiber structure-based fiber ring cavity laser for strain and temperature measurement. The basis of the sensing system is the multimodal interference occurs in coreless fiber, and the transmission spectrum is sensitive to the ambient perturbation. In this sensing system, the SCS fiber structure not only acts as the sensing head of the sensor but also the band-pass filter of the ring laser. Blue shift with strain sensitivity of ˜ -2 pm/μɛ ranging from 0 to 730 μɛ and red shift with temperature sensitivity of ˜ 11 pm/°C ranging from 5 to 75 °C have been achieved. Experimental results also show the proposal has great potential in using long-distance operation. The fiber ring laser sensing system has a optical signal to noise ratio (OSNR) more than 50 and 3 dB bandwidth less than 0.05 nm. The result shows that the coreless fiber has no improvement of the temperature and axial strain sensitivity. However, compared to the common singlemode-multimode-singlemode fiber structure sensors, the laser sensing system has the additional advantages of high OSNR, high intensity and narrow 3 dB bandwidth, and thus improves the accuracy.
NASA Astrophysics Data System (ADS)
Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2018-06-01
In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.
Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.
Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R
2018-02-06
The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.
Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing
2018-06-01
A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.
Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity
Zhang, Qingzhou; Jiang, Fan; Zhao, Bingchuan; Lin, Huacan; Tian, Yuan; Xie, Mingsheng; Bai, Guoyun; Gilbert, Adam M.; Goetz, Gilles H.; Liras, Spiros; Mathiowetz, Alan A.; Price, David A.; Song, Kun; Tu, Meihua; Wu, Yujie; Wang, Tao; Flanagan, Mark E.; Wu, Yun-Dong; Li, Zigang
2016-01-01
Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity. PMID:27934919
NASA Astrophysics Data System (ADS)
Wang, Zhi; Long, Zheng-wen; Long, Chao-yun; Teng, Jing
2015-05-01
We study the Schrödinger equation with a Coulomb ring-shaped potential in the spacetime of a cosmic string, and the solutions of the system are obtained by using the generalized parametric Nikiforov-Uvarov (NU) method. They show that the quantum dynamics of a physical system depend on the non-trivial topological features of the cosmic string spacetime and the energy levels of the considered quantum system depend explicitly on the angular deficit α which characterizes the global structure of the metric in the cosmic string spacetime.
Selection of lasing direction in single mode semiconductor square ring cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin-Woong; Kim, Kyoung-Youm; Moon, Hee-Jong
We propose and demonstrate a selection scheme of lasing direction by imposing a loss imbalance structure into the single mode square ring cavity. The control of the traveling direction is realized by introducing a taper-step section in one of the straight waveguides of the square ring cavity. It was shown by semi-analytic calculation that the taper-step section in the cavity provides effective loss imbalance between two travelling directions as the round trip repeats. Various kinds of square cavities were fabricated using InGaAsP/InGaAs multiple quantum well semiconductor materials in order to test the direction selectivity while maintaining the single mode. Wemore » also measured the pump power dependent lasing spectra to investigate the maintenance property of the lasing direction. The experimental results demonstrated that the proposed scheme is an efficient means for a unidirectional lasing in a single mode laser.« less
Otaki, Joji M
2011-06-01
Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.
Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.
Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi
2014-02-10
This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.
NASA Astrophysics Data System (ADS)
Kabak, Mehmet; Şenöz, Hülya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dušek, Michal; Fejfarová, Karla
2010-12-01
The title compound, C29H23NO2, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (Mo K α and Cu K α). The non-centrosymmetric hexagonal crystal structure contains four-membered planar β-lactam ring with an unusually long C-C bond. The β-lactam ring is almost planar.
Suzaku Observations of the Monogem Ring and the Origin of the Gemini Hα Ring
NASA Astrophysics Data System (ADS)
Knies, Jonathan R.; Sasaki, Manami; Plucinsky, Paul P.
2018-04-01
We present the analysis of Suzaku X-ray observations of the Galactic supernova remnant (SNR) 'Monogem Ring', a large structure observed in X-rays with an extent of ≈ 25°, located at an anti-centre position. One observation close to the shock also coincides with a large ring-like structure observed in Hα, which is called the 'Gemini Hα ring'. We investigate the origin of the ring-like structure and also possible interactions with the SNR. We show that the SNR is expanding in a region with a density gradient, which has an effect on the morphology of the SNR and the properties of the plasma. The X-ray spectra are fit well with a collisional ionisation equilibrium (CIE) model with a temperature of kT ≈ 0.3 keV. The spectra obtained at a position where the SNR coincides with the Gemini Hα ring are better described with non-equilibrium ionisation (NEI) with a temperature of kT ≈ 1.0 keV. Based on the spectral analysis results, we estimate an age of t ≈ 6.8 × 104 yr for a distance of ≈300 pc, using the Sedov-Taylor solution. We have identified several early-type stars in the Hipparcos catalogue at a distance of 200- 300pc, which have most likely formed the 'Gemini Hα ring' by their powerful stellar winds.
He, Lei; Ma, Dongxin; Duan, Lian; Wei, Yongge; Qiao, Juan; Zhang, Deqiang; Dong, Guifang; Wang, Liduo; Qiu, Yong
2012-04-16
Intramolecular π-π stacking interaction in one kind of phosphorescent cationic iridium complexes has been controlled through fluorination of the pendant phenyl rings on the ancillary ligands. Two blue-green-emitting cationic iridium complexes, [Ir(ppy)(2)(F2phpzpy)]PF(6) (2) and [Ir(ppy)(2)(F5phpzpy)]PF(6) (3), with the pendant phenyl rings on the ancillary ligands substituted with two and five fluorine atoms, respectively, have been synthesized and compared to the parent complex, [Ir(ppy)(2)(phpzpy)]PF(6) (1). Here Hppy is 2-phenylpyridine, F2phpzpy is 2-(1-(3,5-difluorophenyl)-1H-pyrazol-3-yl)pyridine, F5phpzpy is 2-(1-pentafluorophenyl-1H-pyrazol-3-yl)-pyridine, and phpzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine. Single crystal structures reveal that the pendant phenyl rings on the ancillary ligands stack to the phenyl rings of the ppy ligands, with dihedral angles of 21°, 18°, and 5.0° between least-squares planes for complexes 1, 2, and 3, respectively, and centroid-centroid distances of 3.75, 3.65, and 3.52 Å for complexes 1, 2, and 3, respectively, indicating progressively reinforced intramolecular π-π stacking interactions from complexes 1 to 2 and 3. Compared to complex 1, complex 3 with a significantly reinforced intramolecular face-to-face π-π stacking interaction exhibits a significantly enhanced (by 1 order of magnitude) photoluminescent efficiency in solution. Theoretical calculations reveal that in complex 3 it is unfavorable in energy for the pentafluorophenyl ring to swing by a large degree and the intramolecular π-π stacking interaction remains on the lowest triplet state. © 2012 American Chemical Society
A remarkable solvent effect on the nuclearity of neutral titanium(IV)-based helicate assemblies.
Weekes, David Michael; Diebold, Carine; Mobian, Pierre; Huguenard, Clarisse; Allouche, Lionel; Henry, Marc
2014-04-22
The spontaneous self-assembly of a neutral circular trinuclear Ti(IV) -based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n-pentane into a solution with dichloromethane. The circular helicate has been characterized by using single-crystal X-ray diffraction study, (13) C CP-MAS NMR and (1) H NMR DOSY solution spectroscopic, and positive electrospray ionization mass-spectrometric analysis. These analytical data were compared with those obtained from a previously reported double-stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double-stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double-stranded helicates was characterized by ΔH(toluene)=-30 kJ mol(-1) and ΔS(toluene)=+357 J K(-1) mol(-1) , whereas these values were ΔH(CH2 Cl2 )=-75 kJ mol(-1) and ΔS(CH2 Cl2 )=-37 J K(-1) mol(-1) for the ring helicate. The transformation of the ring helicate into the double-stranded helicate was a strongly endothermic process characterized by ΔH(CH2 Cl2 )=+127 kJ mol(-1) and ΔH(n-pentane)=+644 kJ mol(-1) associated with a large positive entropy change ΔS=+1115 J K(-1) ⋅mol(-1) . Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n-pentane. Suggestions for increasing the stability of the ring helicate are given. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schroeder, Charles
Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.
Fujino, Shota; Yamaji, Minoru; Okamoto, Hideki; Mutai, Toshiki; Yoshikawa, Isao; Houjou, Hirohiko; Tani, Fumito
2017-06-14
We studied the photoproducts of 1-(n-phenanthryl)-2-(m-phenanthryl)ethenes (nEm; n, m = 1, 3 and 9) for understanding photocyclization patterns based on NMR spectroscopy. The crystal structures of the photoproducts were analyzed by X-ray crystallography, and the photophysical features of the photocyclized molecules were investigated based on emission and transient absorption measurements. Phenanthrene derivatives substituted at the 1- and 3-positions were prepared for synthesizing nEm by photocyclization of stilbene derivatives. We obtained four types of primary photoproducts (n@m) from the corresponding nEm. Two of them were found to have racemic molecular structures in the single crystal determined by X-ray crystallography. Besides the primary photoproducts, two types of secondary photoproducts (n@mPP) were isolated. Fluorescence quantum yields and lifetimes of the obtained photoproducts were determined in solution whereas the definite fluorescence quantum yields were obtained in the powder. Observation of the triplet-triplet absorption spectra in solution by laser photolysis techniques showed that intersystem crossing to the triplet state competes with the fluorescence process.
Universal size properties of a star-ring polymer structure in disordered environments
NASA Astrophysics Data System (ADS)
Haydukivska, K.; Blavatska, V.
2018-03-01
We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.
Negative plant soil feedback explaining ring formation in clonal plants.
Cartenì, Fabrizio; Marasco, Addolorata; Bonanomi, Giuliano; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco
2012-11-21
Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hydrogen bonding in hydrates with one acetic acid molecule.
Pu, Liang; Sun, Yueming; Zhang, Zhibing
2010-10-14
Hydrogen bonding (H-bond) interaction significantly influences the separation of acetic acid (HAc) from the HAc/H(2)O mixtures, especially the dilute solution, in distillation processes. It has been examined from the HAc mono-, di-, tri-, and tetrahydrates by analyzing the structures, binding energies, and infrared vibrational frequencies from quantum chemical calculations. For the first coordinate shell the 6-membered head-on ring is surely the most favorable structure because it has (1) the most favorable H-bonding parameters, (2) almost the largest binding energy per H-bond, (3) the biggest wavenumber shifts, and (4) the highest ring distribution (the AIMD simulations). Moreover, the comparison of the calculations with the experiments (the X-ray scattering data and IR frequencies) suggests that the possible structures in dilute aqueous solution are those involving two or more coordinate shells. The H-bonding in these water-surrounded HAc hydrates are the origin of the low-efficiency problem of isolating HAc from the dilute HAc/H(2)O mixtures. It is apparently a tougher work to break the H-bonds among HAc and the surrounded H(2)O molecules with respect to the case of more concentrated solutions, where the dominant structures are HAc or H(2)O aggregates.
NASA Astrophysics Data System (ADS)
Hua, Yunfeng; Deng, Zhenyu; Jiang, Yangwei; Zhang, Linxi
2017-06-01
Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.
Self-organized pattern on the surface of a metal anode in low-pressure DC discharge
NASA Astrophysics Data System (ADS)
Yaqi, YANG; Weiguo, LI
2018-03-01
Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.
NASA Astrophysics Data System (ADS)
Udhaya Kumar, C.; Sethukumar, A.; Agilandeshwari, R.; Arul Prakasam, B.; Vidhyasagar, T.; Sillanpää, Mika
2014-02-01
An efficient and multifunctional three component synthetic protocol was developed to synthesize ethyl 6-amino-4-aryl-5-cyano-2-propyl-4H-pyran-3-carboxylates from ethyl 3-oxohexanoate, malononitrile and corresponding aldehydes (1a-11a) using K2CO3 as a catalyst under water solvent in good yields. The derived compounds have been analyzed by IR and NMR (1D and 2D) spectra. Single crystal X-ray structural analysis of 2a, evidences the flattened-boat conformation of pyran ring and the phenyl group is nearly perpendicular to the pyran ring.
Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E
2014-02-07
High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.
NASA Astrophysics Data System (ADS)
Banon, J.-P.; Hetland, Ø. S.; Simonsen, I.
2018-02-01
By the use of both perturbative and non-perturbative solutions of the reduced Rayleigh equation, we present a detailed study of the scattering of light from two-dimensional weakly rough dielectric films. It is shown that for several rough film configurations, Selényi interference rings exist in the diffusely scattered light. For film systems supported by dielectric substrates where only one of the two interfaces of the film is weakly rough and the other planar, Selényi interference rings are observed at angular positions that can be determined from simple phase arguments. For such single-rough-interface films, we find and explain by a single scattering model that the contrast in the interference patterns is better when the top interface of the film (the interface facing the incident light) is rough than when the bottom interface is rough. When both film interfaces are rough, Selényi interference rings exist but a potential cross-correlation of the two rough interfaces of the film can be used to selectively enhance some of the interference rings while others are attenuated and might even disappear. This feature may in principle be used in determining the correlation properties of interfaces of films that otherwise would be difficult to access.
NASA Astrophysics Data System (ADS)
Gurzhiy, Vladislav V.; Tyumentseva, Olga S.; Britvin, Sergey N.; Krivovichev, Sergey V.; Tananaev, Ivan G.
2018-01-01
Three novel uranyl selenate and sulfate oxysalts templated by protonated azetidine molecules, [AzH]+, and its ring-opened counterpart 1-azetidinepropanamine, [AzH(CH2)3NH3]2+, have been prepared and studied by X-ray structural analysis. Conformations of azetidinium cations were analysed by means of infrared vibrational assignments supported by the DFT calculations. Crystallization of [AzH]2 [(UO2)2(SeO4)3(H2O)] (I) from highly acidic solutions suggests that low pH does not necessarily result in the opening of azetidine ring. [AzH(CH2)3NH3][(UO2)2(SeO4)3(H2O)](H2O) (II) and [AzH(CH2)3NH3](H5O2)[(UO2)2(SO4)3(HSO4)] (III) are the first structurally characterized crystalline compounds bearing isolated ring-opened azetidine moiety.
Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.
2014-12-29
Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe 3+ to activate O 2 and catecholic substrates for reaction. The inability of Fe 3+ to directly bind O 2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated in this paper using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surroundingmore » solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe 3+ species, and the anhydride-Fe 3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe 2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe 2+ intermediate that could bind O 2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Finally, structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.« less
Five dimensional microstate geometries
NASA Astrophysics Data System (ADS)
Wang, Chih-Wei
In this thesis, we discuss the possibility of exploring the statistical mechanics description of a black hole from the point view of supergravity. Specifically, we study five dimensional microstate geometries of a black hole or black ring. At first, we review the method to find the general three-charge BPS supergravity solutions proposed by Bena and Warner. By applying this method, we show the classical merger of a black ring and black hole on [Special characters omitted.] base space in general are irreversible. On the other hand, we review the solutions on ambi-polar Gibbons-Hawking (GH) base which are bubbled geometries. There are many possible microstate geometries among the bubbled geometries. Particularly, we show that a generic blob of GH points that satisfy certain conditions can be either microstate geometry of a black hole or black ring without horizon. Furthermore, using the result of the entropy analysis in classical merger as a guide, we show that one can have a merger of a black-hole blob and a black-ring blob or two black-ring blobs that corresponds to a classical irreversible merger. From the irreversible mergers, we find the scaling solutions and deep microstates which are microstate geometries of a black hole/ring with macroscopic horizon. These solutions have the same AdS throats as classical black holes/rings but instead of having infinite throats, the throat is smoothly capped off at a very large depth with some local structure at the bottom. For solutions that produced from U (1) × U (1) invariant merger, the depth of the throat is limited by flux quantization. The mass gap is related with the depth of this throat and we show the mass gap of these solutions roughly match with the mass gap of the typical conformal-field-theory (CFT) states. Therefore, based on AdS/CFT correspondence, they can be dual geometries of the typical CFT states that contribute to the entropy of a black hole/ring. On the other hand, we show that for the solutions produced from more general merger (without U (1) × U (1) invariance), the throat can be arbitrarily deep. This presents a puzzle from the point view of AdS/CFT correspondence. We propose that this puzzle may be solved by some quantization of the angle or promoting the flux vectors to quantum spins. Finally, we suggest some future directions of further study including the puzzle of arbitrary long AdS throat and a general coarse-graining picture of microstate geometries.
The Structure of Chariklo’s Rings from Stellar Occultations
NASA Astrophysics Data System (ADS)
Bérard, D.; Sicardy, B.; Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Ortiz, J.-L.; Duffard, R.; Morales, N.; Meza, E.; Leiva, R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Gomes Júnior, A.-R.; Assafin, M.; Colas, F.; Dauvergne, J.-L.; Kervella, P.; Lecacheux, J.; Maquet, L.; Vachier, F.; Renner, S.; Monard, B.; Sickafoose, A. A.; Breytenbach, H.; Genade, A.; Beisker, W.; Bath, K.-L.; Bode, H.-J.; Backes, M.; Ivanov, V. D.; Jehin, E.; Gillon, M.; Manfroid, J.; Pollock, J.; Tancredi, G.; Roland, S.; Salvo, R.; Vanzi, L.; Herald, D.; Gault, D.; Kerr, S.; Pavlov, H.; Hill, K. M.; Bradshaw, J.; Barry, M. A.; Cool, A.; Lade, B.; Cole, A.; Broughton, J.; Newman, J.; Horvat, R.; Maybour, D.; Giles, D.; Davis, L.; Paton, R. A.; Loader, B.; Pennell, A.; Jaquiery, P.-D.; Brillant, S.; Selman, F.; Dumas, C.; Herrera, C.; Carraro, G.; Monaco, L.; Maury, A.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Richichi, A.; Irawati, P.; De Witt, C.; Schoenau, P.; Prager, R.; Colazo, C.; Melia, R.; Spagnotto, J.; Blain, A.; Alonso, S.; Román, A.; Santos-Sanz, P.; Rizos, J.-L.; Maestre, J.-L.; Dunham, D.
2017-10-01
Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo’s system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ˜5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper limit of ˜20 m is derived for the equivalent width of narrow (physical width < 4 km) rings up to distances of 12,000 km, counted in the ring plane.
Pérez-Torralba, Marta; Ángeles García, M; López, Concepción; Torralba, M Carmen; Rosario Torres, M; Alkorta, Ibon; Elguero, José
2013-01-01
Summary Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P−1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p) level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state. PMID:24204428
Mosalkova, Anastasiya P; Voitekhovich, Sergei V; Lyakhov, Alexander S; Ivashkevich, Ludmila S; Lach, Jochen; Kersting, Berthold; Gaponik, Pavel N; Ivashkevich, Oleg A
2013-02-28
For the first time, a representative of the 2,5-disubstituted tetrazoles, namely, 2-tert-butyl-5-(2-pyridyl)-2H-tetrazole (L), has been found to participate in oxidative dissolution of copper powder in homometalic systems Cu0–L–NH4X–DMSO (X = Cl, SCN, ClO4) and heterobimetallic ones Cu0–Mn(OAc)2–L–NH4OAc–Solv (Solv = DMSO, DMF), providing the formation of molecular homometallic complexes [CuL2Cl2] (1), [CuL2(SCN)2] (2), and [CuL2(H2O)](ClO4)2 (3), heterobimetallic complex [Cu2MnL2(OAc)6] (4) from DMF solution and its mixture with complex [Cu2MnL2(OAc)6]·2DMSO (5) from DMSO solution. Free ligand L and complexes 1–4 were characterized by elemental analysis, IR spectroscopy, thermal and X-ray single crystal analyses, whereas complex 5 was characterized by X-ray analysis only. Compounds 1–3 are mononuclear complexes, with chelating coordination mode of L via the tetrazole ring N4 and pyridine ring N7 atoms. Heterobimetallic complexes 4 and 5 possess trinuclear structures, with a linear Cu–Mn–Cu arrangement of the metal atoms, linked by the acetate anions; each copper(II) atom is decorated by a chelating unit of L via the tetrazole ring N1 and pyridine ring N7 atoms in complex 4, and via the N4, N7 atoms in complex 5. Temperature-dependent magnetic susceptibility measurements of complex 4 revealed a weak antiferromagnetic coupling between the paramagnetic copper(II) and manganese(II) ions (J = −2.5 cm(−1), g(Cu) = 2.25 and g(Mn) = 2.01), with magnetic exchange through the acetato bridges.
NASA Astrophysics Data System (ADS)
Yamase, T.; Prokop, P.; Arai, Y.
2003-08-01
The chemically induced dynamic electron-spin-polarization technique is employed in order to investigate the primary steps of the photoredox reaction between polyoxomolybdates and alkylammonium cations as both proton and electron-donors in solutions. An observation of emissive electron-spin-polarization signals of alkylamino radical cations for the photoredox reaction between polyoxomolybdates and alkylammonium cations in solutions reveals that the O→Mo ligand-to-metal charge-transfer triplet states are involved in the transfers of both proton and electron from alkylammonium cation to polyoxomolybdate anions. Prolonged photolysis of aqueous solutions containing [Mo36O112(H2O)16]8-, [iPrNH3]+, and LaCl3 at pH 1.0 leads to formation of two kinds of {Mo154} molybdenum-blues, [Mo28VMo126VIO462H28(H2O)70]·156.5H2O (1) and [iPrNH3]8 [Mo28VMo126VIO458H12(H2O)66]·127H2O (2), which were X-ray crystallographically characterized. The former exhibits the intact car-tire-shaped {Mo154} ring structure (with thickness of about 1.1 nm and with outer- and inner-rings of approximately 3.5- and 2.3-nm diameters, respectively) derived formally from the dehydrated cyclic heptamerization of four-electron reduced building blocks of {Mo22} (≡[Mo4VMo18VIO70H12(H2O)10]) with overall symmetry of D7d. The anion for the latter, [Mo28VMo126VIO458H12(H2O)66]8- (2a), exhibits a nanotube structure of {Mo154} rings, each inner ring of which contains a bis(μ-oxo)-linkaged [MoO2(μ-O)(μ-H2O)MoO2]2+ unit replacing one of seven [Mo(H2O)O2(μ-O)Mo(H2O)O2]2+linker units. The neighboring {Mo154} rings are connected by six Mo-O-Mo bridge between inner-rings consisting of 7 head- and 14 linkers-MoO6 octahedra for each.
Turbine nozzle/nozzle support structure
Boyd, Gary L.; Shaffer, James E.
1997-01-01
An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.
Turbine nozzle/nozzle support structure
Boyd, G.L.; Shaffer, J.E.
1997-01-07
An axial flow turbine`s nozzle/nozzle support structure is described having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse. 6 figs.
Turbine nozzle/nozzle support structure
Boyd, Gary L.; Shaffer, James E.
1996-01-01
An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.
Turbine nozzle/nozzle support structure
Boyd, G.L.; Shaffer, J.E.
1996-09-10
An axial flow turbine`s nozzle/nozzle support structure is described having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse. 6 figs.
Turbine nozzle/nozzle support structure
Boyd, Gary L.; Shaffer, James E.
1995-01-01
An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.
Turbine nozzle/nozzle support structure
Boyd, G.L.; Shaffer, J.E.
1995-08-15
An axial flow turbine`s nozzle/nozzle support structure is described having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahlenberg, Volker; Konzett, Juergen; Kaindl, Reinhard
High-pressure synthesis experiments in the system Na{sub 2}O-Y{sub 2}O{sub 3}-SiO{sub 2} revealed the existence of a previously unknown polymorph of NaYSi{sub 2}O{sub 6} or Na{sub 3}Y{sub 3}[Si{sub 3}O{sub 9}]{sub 2} which was quenched from 3.0 GPa and 1000 deg. C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi{sub 2}O{sub 6} crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) A, b=10.3983(14) A, c=17.6542(21) A, {beta}=100.804(9){sup o}, V=1481.0(3) A{sup 3}, R(|F|)=0.033 formore » 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si{sub 3}O{sub 9}] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed. - Graphical abstract: Projection of the whole structure of high-P NaYSi{sub 2}O{sub 6} parallel to [100].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang
2016-03-31
Following the discovery of the redox-active 1,4- bis-BF 3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF 3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1Dmore » and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF 3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burinskii, A., E-mail: burinskii@mail.ru
The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitationalmore » and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.« less
Zhang, Hengzhong; Waychunas, Glenn A.; Banfield, Jillian F.
2015-07-29
Nucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics. Here, we used classical molecular dynamics simulations to investigate nucleation of iron hydroxide/oxyhydroxide nanoparticles in aqueous solutions. Results show that in a solution containing ferric ions and hydroxyl groups, iron–hydroxyl molecular clusters form by merging ferric monomers, dimers, and other oligomers, driven by strong affinity of ferric ions to hydroxyls. When deprotonation reactions are not considered in the simulations, these clusters aggregate tomore » form small iron hydroxide nanocrystals with a six-membered ring-like layered structure allomeric to gibbsite. By comparison, in a solution containing iron chloride and sodium hydroxide, the presence of chlorine drives cluster assembly along a different direction to form long molecular chains (rather than rings) composed of Fe–O octahedra linked by edge sharing. Further, in chlorine-free solutions, when deprotonation reactions are considered, the simulations predict ultimate formation of amorphous iron oxyhydroxide nanoparticles with local atomic structure similar to that of ferrihydrite nanoparticles. Overall, our simulation results reveal that nucleation of iron oxyhydroxide nanoparticles proceeds via a cluster aggregation-based nonclassical pathway.« less
Oscillatory persistent currents in self-assembled quantum rings.
Kleemans, N A J M; Bominaar-Silkens, I M A; Fomin, V M; Gladilin, V N; Granados, D; Taboada, A G; García, J M; Offermans, P; Zeitler, U; Christianen, P C M; Maan, J C; Devreese, J T; Koenraad, P M
2007-10-05
We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural properties determined by cross-sectional scanning tunneling microscopy measurements. The observed oscillation magnitude of the magnetic moment per electron is remarkably large for the topology of our nanostructures, which are singly connected and exhibit a pronounced shape asymmetry.
High sensitivity rotation sensing based on tunable asymmetrical double-ring structure
NASA Astrophysics Data System (ADS)
Gu, Hong; Liu, Xiaoqing
2017-05-01
A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.
Modification of vortex ring formation using dilute polymer solution
NASA Astrophysics Data System (ADS)
Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold
2006-11-01
This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.
Surgical anatomy and morphologic variations of umbilical structures.
Fathi, Amir H; Soltanian, Hooman; Saber, Alan A
2012-05-01
The umbilicus is the main access route to the abdominal cavity in laparoscopic surgeries. However, its anatomical configuration is rarely studied in the surgical and anatomical literature. With introduction of laparoendoscopic single-site surgery and considering the significant number of primary and postoperative umbilical hernias, we felt the necessity to comprehensively study the umbilical structures and analyze their protective function against hernias. Twenty-four embalmed cadavers were studied in the anatomy laboratory of Case Western Reserve University. Round hepatic, median and medial ligaments, umbilical ring, umbilical and umbilicovesicular fasciae, and pattern of attachment to the ring were dissected and measured. Mean age was 82.1 years, ranging between 56 and 96 years, with a male-to-female ratio of 1.4:1. Ninety-two per cent was white and 8 per cent black adults. According to shape and attachment pattern of ligaments, umbilical ring is classified into five types. Hernia incidence was 25 per cent. All hernia cases lacked the umbilical fascia and the round hepatic ligament was not attached to the inferior border of the ring. The umbilical ring and its morphologic relation with adjacent ligaments are described and classified into five types. In contrary to sparse existing literature, we propose that umbilical fascia is continuation and condensation of umbilicovesicular rather than transversalis fascia. It was absent in cadavers forming conjoined median and medial ligaments with a single insertion site to the ring. Round ligament insertion to the inferior border of the ring provides another protective factor. These two protective measures were absent in all the observed umbilical hernias.
Fully localized post-buckling states of cylindrical shells under axial compression
NASA Astrophysics Data System (ADS)
Kreilos, Tobias; Schneider, Tobias M.
2017-09-01
We compute nonlinear force equilibrium solutions for a clamped thin cylindrical shell under axial compression. The equilibrium solutions are dynamically unstable and located on the stability boundary of the unbuckled state. A fully localized single dimple deformation is identified as the edge state-the attractor for the dynamics restricted to the stability boundary. Under variation of the axial load, the single dimple undergoes homoclinic snaking in the azimuthal direction, creating states with multiple dimples arranged around the central circumference. Once the circumference is completely filled with a ring of dimples, snaking in the axial direction leads to further growth of the dimple pattern. These fully nonlinear solutions embedded in the stability boundary of the unbuckled state constitute critical shape deformations. The solutions may thus be a step towards explaining when the buckling and subsequent collapse of an axially loaded cylinder shell is triggered.
Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K
2015-11-15
In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.
Spielmann, H P; Wemmer, D E; Jacobsen, J P
1995-07-11
We have used two-dimensional 1H NMR spectroscopy to determine the solution structure of the DNA oligonucleotide d(5'-CGCTAGCG-3')2 complexed with the bis-intercalating dye 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)bis[4-(3-methyl -2,3- dihydrobenzo-1,3-thiazolyl-2-methylidene)qui nolinium] tetraiodide (TOTO). The determination of the structure was based on total relaxation matrix analysis of the NOESY cross-peak intensities using the program MARDIGRAS. Improved procedures to consider the experimental "noise" in NOESY spectra during these calculations have been employed. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the TOTO complex from both A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 1.45 A. The local DNA structure is distorted in the complex. The helix is unwound by 60 degrees and has an overall helical repeat of 12 base pairs, caused by bis-intercalation of TOTO. The poly(propylenamine) linker chain is located in the minor groove of dsDNA. Calculations indicate that the benzothiazole ring system is twisted relative to the quinoline in the uncomplexed TOTO molecule. The site selectivity of TOTO for the CTAG-CTAG site is explained by its ability to adapt to the base pair propeller twist of dsDNA to optimize stacking and the hydrophobic interaction between the thymidine methyl group and the benzothiazole ring. There is a 3000-fold fluorescence enhancement upon binding of TOTO to dsDNA. Rotation about the cyanine methine bonds is possible in free TOTO, allowing relaxation nonradiatively. When bound to dsDNA, the benzothiazole ring and the quinolinium ring are clamped by the nucleobases preventing this rotation, and the chromophore loses excitation energy by fluorescence instead.
Decay of helical and nonhelical magnetic knots
NASA Astrophysics Data System (ADS)
Candelaresi, Simon; Brandenburg, Axel
2011-07-01
We present calculations of the relaxation of magnetic field structures that have the shape of particular knots and links. A set of helical magnetic flux configurations is considered, which we call n-foil knots of which the trefoil knot is the most primitive member. We also consider two nonhelical knots; namely, the Borromean rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated and compared with previous calculations of helical and nonhelical triple-ring configurations. Unlike earlier nonhelical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring. For the n-foil knots the decay is described by power laws that range form t-2/3 to t-1/3, which can be as slow as the t-1/3 behavior for helical triple-ring structures that were seen in earlier work. The two nonhelical configurations decay like t-1, which is somewhat slower than the previously obtained t-3/2 behavior in the decay of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local structures that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound imposed by the realizability condition. We show that net magnetic helicity can be produced resistively as a result of a slight imbalance between mutually canceling helical pieces as they are being driven apart. We speculate that higher order topological invariants beyond magnetic helicity may also be responsible for slowing down the decay of the two more complicated nonhelical structures mentioned above.
Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate
NASA Astrophysics Data System (ADS)
Abid Ali, Ferdos; Renault, Ludovic; Gannon, Julian; Gahlon, Hailey L.; Kotecha, Abhay; Zhou, Jin Chuan; Rueda, David; Costa, Alessandro
2016-02-01
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.
Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry
2016-01-26
Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Awada, Hawraà; Grison, Claire M; Charnay-Pouget, Florence; Baltaze, Jean-Pierre; Brisset, François; Guillot, Régis; Robin, Sylvie; Hachem, Ali; Jaber, Nada; Naoufal, Daoud; Yazbeck, Ogaritte; Aitken, David J
2017-05-05
A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.
Formation of rings from segments of HeLa-cell nuclear deoxyribonucleic acid
Hardman, Norman
1974-01-01
Duplex segments of HeLa-cell nuclear DNA were generated by cleavage with DNA restriction endonuclease from Haemophilus influenzae. About 20–25% of the DNA segments produced, when partly degraded with exonuclease III and annealed, were found to form rings visible in the electron microscope. A further 5% of the DNA segments formed structures that were branched in configuration. Similar structures were generated from HeLa-cell DNA, without prior treatment with restriction endonuclease, when the complementary polynucleotide chains were exposed by exonuclease III action at single-chain nicks. After exposure of an average single-chain length of 1400 nucleotides per terminus at nicks in HeLa-cell DNA by exonuclease III, followed by annealing, the physical length of ring closures was estimated and found to be 0.02–0.1μm, or 50–300 base pairs. An almost identical distribution of lengths was recorded for the regions of complementary base sequence responsible for branch formation. It is proposed that most of the rings and branches are formed from classes of reiterated base sequence with an average length of 180 base pairs arranged intermittenly in HeLa-cell DNA. From the rate of formation of branched structures when HeLa-cell DNA segments were heat-denatured and annealed, it is estimated that the reiterated sequences are in families containing approximately 2400–24000 copies. ImagesPLATE 2PLATE 1 PMID:4462738
Managing Network Partitions in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif
Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.
Sequence-specific unusual (1-->2)-type helical turns in alpha/beta-hybrid peptides.
Prabhakaran, Panchami; Kale, Sangram S; Puranik, Vedavati G; Rajamohanan, P R; Chetina, Olga; Howard, Judith A K; Hofmann, Hans-Jörg; Sanjayan, Gangadhar J
2008-12-31
This article describes novel conformationally ordered alpha/beta-hybrid peptides consisting of repeating l-proline-anthranilic acid building blocks. These oligomers adopt a compact, right-handed helical architecture determined by the intrinsic conformational preferences of the individual amino acid residues. The striking feature of these oligomers is their ability to display an unusual periodic pseudo beta-turn network of nine-membered hydrogen-bonded rings formed in the forward direction of the sequence by 1-->2 amino acid interactions both in solid-state and in solution. Conformational investigations of several of these oligomers by single-crystal X-ray diffraction, solution-state NMR, and ab initio MO theory suggest that the characteristic steric and dihedral angle restraints exerted by proline are essential for stabilizing the unusual pseudo beta-turn network found in these oligomers. Replacing proline by the conformationally flexible analogue alanine (Ala) or by the conformationally more constrained alpha-amino isobutyric acid (Aib) had an adverse effect on the stabilization of this structural architecture. These findings increase the potential to design novel secondary structure elements profiting from the steric and dihedral angle constraints of the amino acid constituents and help to augment the conformational space available for synthetic oligomer design with diverse backbone structures.
Quantum interference in multi-branched molecules: The exact transfer matrix solutions.
Jiang, Yu
2017-12-07
We present a transfer matrix formalism for studying quantum interference in a single molecule electronic system with internal branched structures. Based on the Schrödinger equation with the Bethe ansatz and employing Kirchhoff's rule for quantum wires, we derive a general closed-form expression for the transmission and reflection amplitudes of a two-port quantum network. We show that the transport through a molecule with complex internal structures can be reduced to that of a single two-port scattering unit, which contains all the information of the original composite molecule. Our method allows for the calculation of the transmission coefficient for various types of individual molecular modules giving rise to different resonant transport behaviors such as the Breit-Wigner, Fano, and Mach-Zehnder resonances. As an illustration, we first re-derive the transmittance of the Aharonov-Bohm ring, and then we apply our formulation to N identical parity-time (PT)-symmetric potentials, connected in series as well as in parallel. It is shown that the spectral singularities and PT-symmetric transitions of single scattering cells may be observed in coupled systems. Such transitions may occur at the same or distinct values of the critical parameters, depending on the connection modes under which the scattering objects are coupled.
In silico-generated hypothetical interactions of a ring-closing metathesis-macrocylized peptide bound to the amino terminal SH3 domain of the growth factor receptor bound protein 2 (Grb2). The complex was derived from the NMR solution structure of the bound parent peptide, Ac-V-P-P-P-V-P-P-R-R-R-amide (Protein Data Bank: 3GBQ). The protein surface is shown as electrostatic
A numerical study of viscous vortex rings using a spectral method
NASA Technical Reports Server (NTRS)
Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.
1988-01-01
Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
Subbarao, Udumula; Peter, Sebastian C
2012-06-04
High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.
Choi, Sun; Birarda, Giovanni
2017-08-03
During natural drying process, all solutions and suspensions tend to form the so-called "coffee-ring" deposits. This phenomenon, by far, has been interpreted by the hydrodynamics of evaporating fluids. However, in this study, by applying Fourier transform infrared imaging (FTIRI), it is possible to observe the segregation and separation of a protein mixture at the "ring", hence we suggest a new way to interpret "coffee-ring effect" of solutions. The results explore the dynamic process that leads to the ring formation in case of model plasma proteins, such as BGG (bovine γ globulin), BSA (bovine serum albumin), and Hfib (human fibrinogen), and also report fascinating discovery of the segregation at the ring deposits of two model proteins BGG and BSA, which can be explained by an energy kinetic model, only. The investigation suggests that the coffee-ring effect of solute in an evaporating solution drop is driven by an energy gradient created from change of particle-water-air interfacial energy configuration.
Woo, Eamor M; Nurkhamidah, Siti; Chen, Yu-Fan
2011-10-21
Top-surface and three-dimensional views of Type-1 and Type-2 of ring-banded spherulites in poly(nonamethylene terephthalate) (PNT) in thicker bulk crystallized on a nucleating potassium bromide (KBr) substrate were examined using various microscopy techniques: scanning electron microscopy (SEM), polarized-optical microscopy (POM), and atomic-force microscopy (AFM). In PNT crystallized at higher crystallization temperature (T(c)) with heterogeneous nucleating substrate, typically two types of ring-banded spherulites are present that differ significantly in patterns and ring spacings: Type-1 Type-2 (single- and double-ring-banded spherulites). Three-dimensional view on fractured spherulites in bulk PNT samples reveals that the single-ring-banded spherulite (Type-1) tends to be well-rounded spheres as they are nucleated homogeneously from bulk; the double-ring-banded spherulite (Type-2) is concentric hemisphere or truncated sphere shells owing to be nucleated from bottom. With confined thickness of films, the 3-D hemispheres in PNT may become truncated into multi-shell annular cones or arcs when thickness or growth is restricted. Based on the top-surface vs. interior views of banded lamellar assembly, origins and inner structures of dual types of ring bands in PNT were examined in greater details. This journal is © the Owner Societies 2011
The varieties of symmetric stellar rings and radial caustics in galaxy disks
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Lotan, Pnina
1990-01-01
Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.
Georgescu, Roxana; Yuan, Zuanning; Bai, Lin; de Luna Almeida Santos, Ruda; Sun, Jingchuan; Zhang, Dan; Yurieva, Olga; Li, Huilin; O’Donnell, Michael E.
2017-01-01
The eukaryotic CMG (Cdc45, Mcm2–7, GINS) helicase consists of the Mcm2–7 hexameric ring along with five accessory factors. The Mcm2–7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5′-3′ through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin. PMID:28096349
Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor; Guzmán, Plinio
2018-01-01
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.
Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor
2018-01-01
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes. PMID:29324855
Expansion of epicyclic gear dynamic analysis program
NASA Technical Reports Server (NTRS)
Boyd, Linda Smith; Pike, James A.
1987-01-01
The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.
NASA Astrophysics Data System (ADS)
Rai, Buddhi; McGurn, Arthur R.
2015-02-01
Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies. It extends the two guided mode treatment by McGurn [Organ. Electron. 8, 227 (2007), 10.1016/j.orgel.2006.06.008] which was limited to a special case of one of the photonic crystal systems considered here.
CaB2 S4 O16 : A Borosulfate Exhibiting a New Structure Type with Phyllosilicate Analogue Topology.
Bruns, Jörn; Podewitz, Maren; Schauperl, Michael; Joachim, Bastian; Liedl, Klaus R; Huppertz, Hubert
2017-11-27
The reaction of Ca(CO 3 ) with H 3 BO 3 in oleum (20 % SO 3 ) yielded colorless single-crystals of CaB 2 S 4 O 16 (monoclinic, P2 1 /c, a=5.5188(2), b=15.1288(6), c=13.2660(6) Å, β=92.88(1)°, V=1106.22(8) Å 3 ). X-ray single-crystal structure analysis revealed a phyllosilicate-analogue anionic sub-structure, forming 2D infinite anionic layers, which exhibit an unprecedented arrangement of condensed twelve-membered (zwölfer) and four-membered (vierer) rings of corner-shared (SO 4 ) and (BO 4 ) tetrahedra. Charge compensation is achieved by Ca 2+ cations, residing exclusively above the centers of the twelve-membered rings. DFT investigations on the solid-state structure corroborate the experimental findings and allow for a detailed valuation of charge distribution within the anionic network and an assignment of vibrational frequencies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation of collisional transport processes and the stability of planetary rings
NASA Technical Reports Server (NTRS)
Brophy, Thomas G.; Esposito, Larry W.
1989-01-01
The utility of the phase-space fluid method for the study of planetary ring dynamics is presently demonstrated through the numerical solution of a model kinetic equation for a flattened Keplerian disk. Attention is given to ringlets composed of single-sized particles, as well as to ringlets composed of two different-sized particles; in the latter case, the ringlets evolve in such a way that the lighter particles are confined by the heavier ones. The results obtained indicate that some natural process may sharpen the optical depth profile of edges even without an external forcing mechanism, and that intermediate optical depths are dynamically preferred in some cases.
Deployable Soft Composite Structures.
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-02-19
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.
Deployable Soft Composite Structures
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-01-01
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762
Charge transport through molecular rods with reduced pi-conjugation.
Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike
2008-10-24
A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.
Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.
Heitmann, Stewart; Ermentrout, G Bard
2015-06-01
Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.
Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.
1978-01-01
A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.
Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.
1978-01-01
A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.
Circular lasers for telecommunications and rf/photonics applications
NASA Astrophysics Data System (ADS)
Griffel, Giora
2000-04-01
Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.
Morphological Diversity in Crystal Growth of l-Ascorbic Acid Dissolved in Methanol
NASA Astrophysics Data System (ADS)
Ito, Miho; Izui, Machiko; Yamazaki, Yoshihiro; Matsushita, Mitsugu
2003-06-01
Morphological diagram with respect to crystal growth of l-ascorbic acid (C6H8O6; so-called vitamin C) from methanol solution on a flat glass dish is presented. Varying humidity and initial concentration of l-ascorbic acid in methanol solution, the following three distinct kinds of growing patterns have been observed: homogeneous disk, concentric ring and dendrite. In addition, in higher concentration clearly faceted small single crystals grow in any humidity less than 90%. Crossovers from one pattern to another were observed, too.
Baker, Eddie G.; Elliott, Douglas C.
1993-01-01
The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.
Baker, E.G.; Elliott, D.C.
1993-01-19
The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.
Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J
2015-11-09
This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Hongmin; Hao, Jingcheng
2011-11-01
Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011
A new method for spatial structure detection of complex inner cavities based on 3D γ-photon imaging
NASA Astrophysics Data System (ADS)
Xiao, Hui; Zhao, Min; Liu, Jiantang; Liu, Jiao; Chen, Hao
2018-05-01
This paper presents a new three-dimensional (3D) imaging method for detecting the spatial structure of a complex inner cavity based on positron annihilation and γ-photon detection. This method first marks carrier solution by a certain radionuclide and injects it into the inner cavity where positrons are generated. Subsequently, γ-photons are released from positron annihilation, and the γ-photon detector ring is used for recording the γ-photons. Finally, the two-dimensional (2D) image slices of the inner cavity are constructed by the ordered-subset expectation maximization scheme and the 2D image slices are merged to the 3D image of the inner cavity. To eliminate the artifact in the reconstructed image due to the scattered γ-photons, a novel angle-traversal model is proposed for γ-photon single-scattering correction, in which the path of the single scattered γ-photon is analyzed from a spatial geometry perspective. Two experiments are conducted to verify the effectiveness of the proposed correction model and the advantage of the proposed testing method in detecting the spatial structure of the inner cavity, including the distribution of gas-liquid multi-phase mixture inside the inner cavity. The above two experiments indicate the potential of the proposed method as a new tool for accurately delineating the inner structures of industrial complex parts.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Nan; Yin, He-Mei; Zhang, Yu; Zhang, Da-Jun; Su, Xin; Kuang, Hai-Xue
2017-02-01
With an aim to explore the interactions of Osbnd H⋯N between hydroxyl moiety of the flavonoids and the pyridyl ring of N-containing aromatic amines, three flavonols with varying B-ring-hydroxyl groups (kaempferol, quercetin, and myricetin) were selected to combine with 4,4‧-bipyridine. As a result, three new cocrystals of flavonols were obtained with a solution evaporation approach. These three cocrystals were characterized by single crystal X-ray diffraction, XPRD, IR and NMR methods. The resulting cocrystals were kaempferol: 4,4‧-bipyridine (2:1) (KAE·BPY·2H2O), quercetin: 4,4‧-bipyridine (1:1.5) (QUE·BPY), and myricetin: 4,4‧-bipyridine (1:2) (MYR·BPY·H2O). Structural analyses show that an array of hydrogen bonds and π-π stacking interactions interconnect the molecules to form a two-dimensional (2D) supramolecular layer in KAE·BPY·2H2O, QUE·BPY, and MYR·BPY·H2O. In the three cocrystals, they present as three different synthons-ⅠR88(58), Ⅳ R44(42) and, Ⅶ R66(29) with 4,4‧-bipyridine, respectively-which may yield a strategy for constructing the supramolecule. Cocrystals of flavonols combined with N-containing aromatic amines, 7-OH, B-ring-hydroxyl number and/or the location of the flavonols to play a significant part in extending the dimensionality of the cocrystals. The resulting motif formation and crystal packing in these flavonols cocrystals has combined with N-containing aromatic amines. Additionally, the antibacterial properties of the three cocrystals against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been investigated.
Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion
NASA Astrophysics Data System (ADS)
Ma, Yusha; Mei, Jing; Bai, Jianliang; Chen, Xu; Ren, Lili
2018-05-01
A novel ratiometric fluorescent nanosensor based on carbon dots has been synthesized via bonding rhodamine B hydrazide to the carbon dots surface by an amide reaction. The ratiometric fluorescent nanosensor showed only a single blue fluorescence emission around 450 nm. While, as mercury ion was added, due to the open-ring of rhodamine moiety bonded on the CDs surface, the orange emission of the open-ring rhodamine would increase obviously according to the concentration of mercury ion, resulting in the distinguishable dual emissions at 450 nm and 575 nm under a single 360 excitation wavelength. Meanwhile, the ratiometric fluorescent nanosensor based on carbon dots we prepared is more sensitive to qualitative and semi-quantitative detection of mercury ion in the range of 0–100 μM, because fluorescence changes gradually from blue to orange emission under 365 nm lamp with the increasing of mercury ion in the tested solution.
Kuang, Qie; Purhonen, Pasi; Jegerschöld, Caroline; Koeck, Philip J B; Hebert, Hans
2015-01-06
The ligand-gated potassium channels are stimulated by various kinds of messengers. Previous studies showed that ligand-gated potassium channels containing RCK domains (the regulator of the conductance of potassium ion) form a dimer of tetramer structure through the RCK octameric gating ring in the presence of detergent. Here, we have analyzed the structure of Kch, a channel of this type from Escherichia coli, in a lipid environment using electron crystallography. By combining information from the 3D map of the transmembrane part of the protein and docking of an atomic model of a potassium channel, we conclude that the RCK domains face the solution and that an RCK octameric gating ring arrangement does not form under our crystallization condition. Our findings may be applied to other potassium channels that have an RCK gating ring arrangement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains
NASA Astrophysics Data System (ADS)
Nahali, Negar; Rosa, Angelo
2018-05-01
We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.
NASA Astrophysics Data System (ADS)
Suman, G. R.; Bubbly, S. G.; Gudennavar, S. B.; Muthu, S.; Roopashree, B.; Gayatri, V.; Nanje Gowda, N. M.
2017-07-01
The Schiff base 2-[(3‧-N-salicylidenephenyl)benzimidazole] (Spbzl) was characterized by FT-Raman, 1H NMR, 13C NMR and single crystal X-ray diffraction technique. Crystallographic studies reveal the presence of two water molecules in the asymmetry unit which aid the intermolecular hydrogen bonding with imidazole ring, and the trans-conformation of the azomethine bond. Theoretical computations conducted using density functional theory (DFT) analysis support the experimental facts. Energy levels estimated by DFT studies are in good agreement with the values obtained from cyclic voltammetry technique. Frontier molecular orbital analysis shows that charge transfer has taken place from donor to acceptor moiety, which is also supported by the high hyperpolarizability values in both gaseous and solution phases, indicating high charge transfer capability of the molecule. A comparative theoretical study of Spbzl with derivative 4-((3-(1H-benzimidazol-2-yl)phenylimino)methyl)-3-hydroxybenzoic acid (Pbzlb) having an added anchor group COOH substituted at para position in the acceptor ring has been made. The result shows the feasibility of charge transfer to the semiconductor surface in dye sensitized solar cell (DSSC) applications for Pbzlb.
Strain distribution and band structure of InAs/GaAs quantum ring superlattice
NASA Astrophysics Data System (ADS)
Mughnetsyan, Vram; Kirakosyan, Albert
2017-12-01
The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matera, I.; Ferraroni, M.; Bürger, S.
2006-06-01
Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain P. salicylatoxidans, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. The crystals obtained give diffraction data to 2.9 Å resolution which could assist in the elucidation of the catalytic mechanism of this peculiar dioxygenase. Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. Diffraction-quality crystals of salicylate 1,2-dioxygenase were obtained using the sitting-drop vapour-diffusion method at 277 K from a solution containing 10%(w/v) ethanol, 6%(w/v) PEG 400,more » 0.1 M sodium acetate pH 4.6. Crystals belong to the primitive tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = 133.3, c = 191.51 Å. A complete data set at 100 K extending to a maximum resolution of 2.9 Å was collected at a wavelength of 0.8423 Å. Molecular replacement using the coordinates of known extradiol dioxygenases structures as a model has so far failed to provide a solution for salicylate 1,2-dioxygenase. Attempts are currently being made to solve the structure of the enzyme by MAD experiments using the anomalous signal of the catalytic Fe{sup II} ions. The salicylate 1,2-dioxygenase structural model will assist in the elucidation of the catalytic mechanism of this ring-fission dioxygenase from P. salicylatoxidans, which differs markedly from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate with high catalytic efficiency.« less
Besenyei, Gábor; Párkányi, László; Szalontai, Gábor; Holly, Sándor; Pápai, Imre; Keresztury, Gábor; Nagy, Andrea
2004-07-07
Benzoyl azides, ArC(O)N3, 2, (Ar = phenyl or substituted phenyl), react with [Pd2Cl2(dppm)2], 1, [dppm = bis(diphenylphosphino)methane] with the formation of novel [Pd2Cl2(mu-NC(O)Ar)(dppm)2], 3, benzoylnitrene complexes that were structurally characterised by multinuclear magnetic resonance and IR spectroscopy and, in several instances, by single crystal X-ray diffraction. As shown by crystallographic studies, the C2P4Pd2 rings adopt extended twist-boat conformations with methylene groups bending towards the bridging benzoylimido moieties. X-ray diffraction studies have revealed the chiral nature of the imido complexes, the chiral element being the propeller-like C2P4Pd2 ring. Structural data accumulated on complexes 3 such as short C-N distances (1.32 A), elongated C=O bonds (1.30 A) as well as the outstandingly high barrier to internal rotation around the N-C(O) linkage (88.3 kJ mol(-1)) are in line with extensive ppi-ppi interaction between the bridging nitrogen and the carbonyl carbon atoms. Theoretical calculations indicate an electron shift from the dimer towards the apical nitrogen atom, which, in turn, facilitates the donation of electrons towards the carbonyl moiety. To elucidate the structure-reactivity relationship of benzoyl azides towards 1, crystallographic and solution IR spectroscopic studies were carried out on a series of para-substituted benzoyl azides. The reaction obeys the Hammett equation. The large positive value of the reaction constant indicates that the azides act as electrophiles in the reaction studied. The enhanced reactivity of 2-nitrobenzoyl azide has been attributed to a decreased conjugation of the phenyl and carbonyl moieties in this reagent.
Fastest Formation Routes of Nanocarbons in Solution Plasma Processes.
Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro
2016-11-14
Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C-H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma-solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C 2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene.
Fastest Formation Routes of Nanocarbons in Solution Plasma Processes
Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro
2016-01-01
Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C–H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma–solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene. PMID:27841288
Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties
O'Hara, John F.; Smirnova, Evgenya; Azad, Abul K.; ...
2007-01-01
The properties of planar, single-layer metamaterials, or metafilms, are studied by varying the structural components of the split-ring resonators used to comprise the overall medium. Measurements and simulations reveal how minor design variations in split-ring resonator structures can result in significant changes in the macroscopic properties of the metafilm. A transmission-line/circuit model is also used to clarify some of the behavior and design limitations of the metafilms. Though our results are illustrated in the terahertz frequency range, the work has broader implications, particularly with respect to filtering, modulation, and switching devices.
Discovery of B ring propellers in Cassini UVIS and ISS
NASA Astrophysics Data System (ADS)
Sremcevic, M.; Stewart, G.; Albers, N.; Esposito, L. W.
2011-12-01
One of the successes of the planetary ring theory has been the theoretical prediction of gravitational signatures of bodies embedded in the rings, and their subsequent detection in Cassini data. Bodies within the rings perturb the nearby ring material, and the orbital shear forms a two-armed structure -- dubbed a ``propeller'' -- which is centered at the embedded body. Although direct evidence of the present body or moonlet is still lacking, the observations of their propeller signatures has proved as an indispensable method to extend our knowledge about ring structure and dynamics. So far, propellers have been successfully detected within Saturn's A ring in two populations: a group of small and numerous propellers interior to the Encke gap forming belts, and by far less numerous but larger propellers exterior to Pan's orbit. Although there have been hints of propellers present within the B ring, or even C ring, their detection is less certain (e.g. neither has a single propeller been seen twice, nor has the ubiquitous two armed structure been observed). In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. A single object is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe the feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at a=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between high and relatively low optical depth. From the radial separation of the propeller wings we estimate that the embedded body is about 1.5km in size. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. Since the discovered body sits at an edge of a dense ringlet within the B ring this suggests a novel mechanism for the up to now illusive B ring irregular shape of alternating high and low optical depth ringlets. We propose that the long standing search for the mechanism that maintains the B ring irregular shape may have its explanation in the presence of many embedded bodies that shepherd the individual B ring ringlets.
High Temperature Stability of Binary Microstructures Derived from Liquid Precursors
1994-06-30
isopropoxide , Ti(OC3H7 )4 was stirred into the solution under nitrogen to produce a composition with a 1:1 Pb:Ti ratio. The solution was then boiled and...This program has emphasized two topics: 1) the crystallization of metastable, solid- solution structures, their partitioning into equilibrium structures...structural ceramics and their composites, and 2) the formation of single crystal thin films via spin coating single crystal substrates with solution
Electronic properties of superlattices on quantum rings.
da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R
2017-04-26
We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.
Electronic properties of superlattices on quantum rings
NASA Astrophysics Data System (ADS)
da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.
2017-04-01
We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, N.R.; Nettesheim, D.G.; Klevit, R.E.
1989-02-21
The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C{sup alpha}H, C{sup beta}H{prime}, H{double prime}, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current inducedmore » shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.« less
Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Rottas, K. M.; Houghton, B. F.
2010-12-01
The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R
2013-10-01
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.
2013-01-01
Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130
Passive Vibration Control of Airborne Equipment using a Circular Steel Ring
NASA Technical Reports Server (NTRS)
Ellison, Joseph; Ahmadi, Goodarz; Kehoe, Mike
1997-01-01
Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration environments. Passive isolation is the simplest means to achieve this goal. The system used here consists of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the acceleration response spectra at the top of the ring are computed. An experiment is performed to identify the natural frequencies and modal damping of the circular ring. Comparison is made between the analytical and experimental results and good agreement is observed. The ring response is also evaluated with a concentrated mass attached to the top of the ring. The effectiveness of the ring in isolating the equipment from base excitation is studied. The acceleration response spectra of a single degree of freedom system attached to the top of the ring are evaluated and the results are compared with those exposed directly to the base excitation. It is shown that a properly designed ring could effectively protect the avionics from possible damaging excitation levels.
One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases.
Cunningham, F X; Gantt, E
2001-02-27
Carotenoids in the photosynthetic membranes of plants typically contain two beta-rings (e.g., beta-carotene and zeaxanthin) or one epsilon- and one beta-ring (e.g., lutein). Carotenoids with two epsilon-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene epsilon-cyclase (LCYe) adds one epsilon-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene beta-cyclase (LCYb) adds two beta-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two epsilon-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic epsilon-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis epsilon-cyclases involved in the determination of ring number were mapped by analysis of chimeric epsilon-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one epsilon-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two epsilon-rings. An R residue in this position also yields a bi-epsilon-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.
One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases
Cunningham, Francis X.; Gantt, Elisabeth
2001-01-01
Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures. PMID:11226339
NASA Astrophysics Data System (ADS)
Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans
2017-01-01
Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.
Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.
Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J
2016-03-14
Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.
Ougham, H J; Taylor, D G; Trudgill, P W
1983-01-01
Previously, Pseudomonas putida was shown to degrade (+)-camphor, and cleavage of the first ring of the bicyclic structure involved two monooxygenases (a hydroxylase and a ring oxygen-inserting enzyme), a dehydrogenase, and spontaneous cleavage of an unstable oxygenation product (lactone). Cleavage of the second ring was not demonstrated but was assumed also to occur by ring oxygen insertion, since the predicted oxygenation product was extracted from whole-cell incubation systems. Our investigation established that metabolism of the first ring cleavage intermediate, 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid, occurred through the sequential action of two inducible enzymes, a coenzyme A ester synthetase and an oxygenase. The oxygenase was purified to homogeneity and had a molecular weight of 106,000. This enzyme carried a single molecule of flavin adenine dinucleotide and consisted of two identical subunits. Iron was not present at a significant level. The oxygenase was specific for NADPH as the electron donor and absolutely specific for the coenzyme A ester of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid as the substrate. The reaction stoichiometry was compatible with this enzyme being a monooxygenase, and a mass spectral analysis of the methyl ester of the product confirmed the insertion of a single oxygen atom. The enzyme appeared to be analogous to, although distinct from. 2,5-diketocamphane 1,2-monooxygenase in catalyzing a "biological Baeyer-Villiger" reaction with the formation of a lactone. Structural analogy suggested that this lactone, like the first, was also unstable and susceptible to spontaneous ring opening, although this was not experimentally established. Images PMID:6848481
Ougham, H J; Taylor, D G; Trudgill, P W
1983-01-01
Previously, Pseudomonas putida was shown to degrade (+)-camphor, and cleavage of the first ring of the bicyclic structure involved two monooxygenases (a hydroxylase and a ring oxygen-inserting enzyme), a dehydrogenase, and spontaneous cleavage of an unstable oxygenation product (lactone). Cleavage of the second ring was not demonstrated but was assumed also to occur by ring oxygen insertion, since the predicted oxygenation product was extracted from whole-cell incubation systems. Our investigation established that metabolism of the first ring cleavage intermediate, 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid, occurred through the sequential action of two inducible enzymes, a coenzyme A ester synthetase and an oxygenase. The oxygenase was purified to homogeneity and had a molecular weight of 106,000. This enzyme carried a single molecule of flavin adenine dinucleotide and consisted of two identical subunits. Iron was not present at a significant level. The oxygenase was specific for NADPH as the electron donor and absolutely specific for the coenzyme A ester of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid as the substrate. The reaction stoichiometry was compatible with this enzyme being a monooxygenase, and a mass spectral analysis of the methyl ester of the product confirmed the insertion of a single oxygen atom. The enzyme appeared to be analogous to, although distinct from. 2,5-diketocamphane 1,2-monooxygenase in catalyzing a "biological Baeyer-Villiger" reaction with the formation of a lactone. Structural analogy suggested that this lactone, like the first, was also unstable and susceptible to spontaneous ring opening, although this was not experimentally established.
P J, Arathi; Gupta, Parth; Babu N, Jagadeesh; C N, Sundaresan; Venkatnarayan, Ramanathan
2016-03-15
The subject of the study is the structure and conformation of 1″,4″-Dispiro-cyclohexane-6,6'-bis(benzothiazoline), a dispiro compound that has a cyclohexyl ring flanked by two benzothiazoline rings on either side. Using single crystal X-ray diffraction measurements, Infra-red absorption, and Raman spectroscopy techniques, it is found that the central cyclohexyl ring assumes the chair conformation and the sulfur, nitrogen atoms in both the benzothiazole rings are in the trans configurations. The experimental findings are further corroborated by geometry optimization and frequency calculations at B3LYP/6-311++G** level of theory using Gaussian 09 suite of program. Copyright © 2015 Elsevier B.V. All rights reserved.
2016-01-01
A new way of developing novel synthesis strategies for the construction of monocyclic rings found in organic molecules is presented. The method is based on the visual application of integer partitioning to chemical structures. Two problems are addressed: (1) the determination of the total number of possible ways to construct a given ring by 2-, 3-, and 4-component couplings; and (2) the systematic enumeration of those possibilities. The results of the method are illustrated using cyclohexanone, pyrazole, and the Biginelli adduct as target ring systems with a view to discover new and greener strategies for their construction using multicomponent reactions. The application of the method is also extended to various heterocycles found in many natural products and pharmaceuticals. PMID:28144310
Two semiconductor ring lasers coupled by a single-waveguide for optical memory operation
NASA Astrophysics Data System (ADS)
Van der Sande, Guy; Coomans, Werner; Gelens, Lendert
2014-05-01
Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. Hence, information can be coded into the emission direction. This bistable operation allows SRLs to be used in systems for all-optical switching and as all-optical memories. For the demonstration of fast optical flip-flop operation, Hill et al. [Nature 432, 206 (2004)] fabricated two SRLs coupled by a single waveguide, rather than a solitary SRL. Nevertheless, the literature shows that a single SRL can also function perfectly as an all-optical memory. In our recent paper [W. Coomans et al., Phys. Rev. A 88, 033813, (2013)], we have raised the question whether coupling two SRLs to realize a single optical memory has any advantage over using a solitary SRL, taking into account the obvious disadvantage of a doubled footprint and power consumption. To provide the answer, we have presented in that paper a numerical study of the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We have provided a detailed analysis of the multistable landscape in the coupled system, analyzed the stability of all solutions and related the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We have shown which coupling phases generally promote instabilities and therefore need to be avoided in the design. Regarding all-optical memory operation, we have demonstrated that there is no real advantage for bistable memory operation compared to using a solitary SRL. An increased power suppression ratio has been found to be mainly due to the destructive interference of the SRL fields at the low power port. Also, multistability between several modal configurations has been shown to remain unavoidable.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-05
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures
NASA Astrophysics Data System (ADS)
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-01
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Recommendations for numerical solution of reinforced-panel and fuselage-ring problems
NASA Technical Reports Server (NTRS)
Hoff, N J; Libby, Paul A
1949-01-01
Procedures are recommended for solving the equations of equilibrium of reinforced panels and isolated fuselage rings as represented by the external loads and the operations table established according to Southwell's method. From the solution of these equations the stress distribution can be easily determined. The method of systematic relaxations, the matrix-calculus method, and several other methods applicable in special cases are discussed. Definite recommendations are made for obtaining the solution of reinforced-panel problems which are generally designated as shear lag problems. The procedures recommended are demonstrated in the analysis of a number of panels. In the case of fuselage rings it is not possible to make definite recommendations for the solution of the equilibrium equations for all rings and loadings. However, suggestions based on the latest experience are made and demonstrated on several rings.
NASA Astrophysics Data System (ADS)
Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng
2016-10-01
A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.
NASA Astrophysics Data System (ADS)
Wysocka, Waleria; Brukwicki, Tadeusz
1992-01-01
13C NMR and IR spectra of minor alkaloids of Lupinus albus such as multiflorine ( I), 13α-hydroxymultiflorine ( IV) and their monoperchlorates, 13α-hydroxy-5-dehydromultiflorine ( V) and 5-dehydromultiflorine ( VI) were taken. I and IV in CDCl 3, their monoperchlorates in CD 3CN and V in CD 3OD solution occur in conformational equilibrium. The share of the conformation with a boat ring C in I is about 74%, in IV 67%, in I · HClO 4 20%, in IV·HClO 43% and in V 3%. The change in conformational preference results mainly from a decreasing destabilization of the conformation with a chair ring C caused by an increase in the distance between the interacting hydrogen atom pairs 5α-17α, 8β-12β, 12β-17β and 14β-17β, due to protonation induced lengthening of the N (16)-C α bonds. VI and most of the molecules of V remain in solution in conformation with a chair ring C. This conformation in V and VI is less destabilized than in I and IV because of a lower steric hindrance for the chair ring C, as a consequence of the planarity of ring A and a part of fragment B and because of the absence of the 5α-17α interaction.
Earth Rings for Planetary Environment Control
NASA Astrophysics Data System (ADS)
Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph
2002-01-01
For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance. Earth, lunar, and asteroidal material sources are evaluated; asteroid retrieval is addressed, along with techniques for processing and forming the ring to the proper thickness and density. The ring could consist of particles, or fabricated satellite structures. Environmental concerns and effects on existing satellites in various Earth orbits are addressed. There are uncertainties in our understanding of climate and its control. But it appears that the Earth ring could control the Earth's temperature and its latitudinal variation, make dangerous asteroids useful, reduce the intensity of the Van Allen radiation belts, provide nighttime illumination without power, and create an artificial ionosphere for radio communication.
Arifin; Puripat, Maneeporn; Yokogawa, Daisuke; Parasuk, Vudhichai; Irle, Stephan
2016-01-30
Isomerization and transformation of glucose and fructose to 5-hydroxymethylfurfural (HMF) in both ionic liquids (ILs) and water has been studied by the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method coupled with ab initio electronic structure theory, namely coupled cluster single, double, and perturbative triple excitation (CCSD(T)). Glucose isomerization to fructose has been investigated via cyclic and open chain mechanisms. In water, the calculations support the cyclic mechanism of glucose isomerization; with the predicted activation free energy is 23.8 kcal mol(-1) at experimental condition. Conversely, open ring mechanism is more favorable in ILs with the energy barrier is 32.4 kcal mol(-1) . Moreover, the transformation of fructose into HMF via cyclic mechanism is reasonable; the calculated activation barriers are 16.0 and 21.5 kcal mol(-1) in aqueous and ILs solutions, respectively. The solvent effects of ILs could be explained by the decomposition of free energies and radial distribution functions of solute-solvent that are produced by RISM-SCF-SEDD. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xing, Dongye; Hou, Yanjun; Niu, Haijun
2018-03-01
A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.
Analysis of a single ring resonator with 2×2 90-degree multimode waveguide turning couplers
NASA Astrophysics Data System (ADS)
Chiu, C. L.; Liao, Yen-Hsun
2016-02-01
A novel design of a single ring resonator with two low-loss 2×2 90-degree multimode waveguide turning mirror couplers based on a InP structure. The coupling factor of the 2×2 90-degree multimode waveguide turning mirror coupler is inversed for K=0.85 to K=0.15 when one folding is achieved. The 2×2 90-degree turning mirror coupler for K=0.15 is (3/4)Lπ in length. Its length is reduced 3 times than the conventional straight 2×2 multimode waveguide interference coupler (9/4)Lπ in length for K=0.15. The cavity length of the curve waveguide (90-degree arc length) in this ring resonator with two 2×2 90-degree multimode waveguide turning couplers is decreased 1/2 times than with two 2×2 MMI couplers (180-degree arc length). The free spectral range (FSR) is increased 2 times. The output spectral response gets a FSR of 82 GHz for the device and a contrast of 4 dB and FWHM of 0.24 nm for the drop port. The results of numerical analysis calculated by the transfer functions in a single ring resonator are agreement with the experimental results.
Kao, Yung-Yuan; Chao, Paul C.-P.
2011-01-01
A new liquid crystal lens design is proposed to improve the recovery time with a ring-and-pie electrode pattern through a suitable driving scheme and using dual-frequency liquid crystals (DFLC) MLC-2048. Compared with the conventional single hole-type liquid crystal lens, this new structure of the DFLC lens is composed of only two ITO glasses, one of which is designed with the ring-and-pie pattern. For this device, one can control the orientation of liquid crystal directors via a three-stage switching procedure on the particularly-designed ring-and-pie electrode pattern. This aims to eliminate the disclination lines, and using different drive frequencies to reduce the recovery time to be less than 5 seconds. The proposed DFLC lens is shown effective in reducing recovery time, and then serves well as a potential device in places of the conventional lenses with fixed focus lengths and the conventional LC lens with a single circular-hole electrode pattern. PMID:22163906
DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M
2014-05-16
Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.
Sun, Haiyan; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E
2008-08-08
To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.
Cassini Radio Occultations of Saturn's Rings: Scattered Signal and Particle Sizes
NASA Astrophysics Data System (ADS)
Thomson, F.; Wong, K.; Marouf, E.; French, R.; Rappaport, N.; McGhee, C.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.
2005-08-01
Eight Cassini radio occultations of Saturn's rings were conducted from May 3 to September 5, 2005. During any given occultation, Cassini transmits Ka-, X-, and S-band sinusoidal signals (0.94, 3.6, and 13 cm-wavelength) through the rings. Spectral analysis of the perturbed signals received at stations of the Deep Space Network (DSN) reveals two distinct signal components. The first is the direct signal, a narrowband component representing the incident sinusoid emerging from the rings reduced in amplitude and changed in phase. The second is the scattered signal, a broadband component, representing near-forward scattering by ring particles. After reconstruction to remove diffraction effects, time history of the direct signal yields profiles of ring structure at resolution approaching ˜50 m. Of primary concern here is the broadband component. For the first time ever, clearly detectable scattered signals were observed at all three (Ka/X/S) bands. A single X/S radio occultation by Voyager 1 in 1980 detected scattered signal at X-band only, primarily because of the small ring opening angle B=5.9o at the time, compared with 19.1 ≤ B ≤ 23.6o for Cassini. Time histories of the observed spectra (spectrograms) and their dependence on wavelength provide important information about physical ring properties, including abundance of meter-size particles, particle crowding, clustering, spatial anisotropy, vertical ring profile and thickness. Cassini occultation orbits were optimized to map scattering by individual ring features into nearly non-overlapping spectral bands, allowing unambiguous identification of the contribution of ring features to the computed spectrograms. We present Ka/X/S spectrograms over the full extent of the ring system and relate their behavior to observed ring structure. The spectrograms imply presence of meters-size particles throughout the ring system. Preliminary results regarding the particle size distribution and vertical ring profile of selected ring features are presented. Contributions of personnel of the DSN are gratefully acknowledged.
Lee, Eun Cheol; Kim, Dongwook; Jurecka, Petr; Tarakeshwar, P; Hobza, Pavel; Kim, Kwang S
2007-05-10
Interactions involving aromatic rings are important in molecular/biomolecular assembly and engineering. As a consequence, there have been a number of investigations on dimers involving benzene or other substituted pi systems. In this Feature Article, we examine the relevance of the magnitudes of their attractive and repulsive interaction energy components in governing the geometries of several pi-pi systems. The geometries and the associated binding energies were evaluated at the complete basis set (CBS) limit of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using a least biased scheme for the given data set. The results for the benzene dimer indicate that the floppy T-shaped structure (center-to-center distance: 4.96 A, with an axial benzene off-centered above the facial benzene) is isoenergetic in zero-point-energy (ZPE) corrected binding energy (D0) to the displaced-stacked structure (vertical interplanar distance: 3.54 A). However, the T-shaped structure is likely to be slightly more stable (D0 approximately equal to 2.4-2.5 kcal/mol) if quadruple excitations are included in the coupled cluster calculations. The presence of substituents on the aromatic ring, irrespective of their electron withdrawing or donating nature, leads to an increase in the binding energy, and the displaced-stacked conformations are more stabilized than the T-shaped conformers. This explains the wide prevalence of displaced stacked structures in organic crystals. Despite that the dispersion energy is dominating, the substituent as well as the conformational effects are correlated to the electrostatic interaction. This electrostatic origin implies that the substituent effect would be reduced in polar solution, but important in apolar media, in particular, for assembling processes.
Thioanalogues of N-1-methylanabasine and nicotine - Synthesis and structure
NASA Astrophysics Data System (ADS)
Wojciechowska-Nowak, Marzena; Boczoń, Władysław; Warżajtis, Beata; Rychlewska, Urszula; Jasiewicz, Beata
2011-03-01
The synthesis, spectral characteristics and structures of N-1-methyl-6-(pyridin-3-yl)piperidine-2-thione ( 1) (thioanalogue of N-1-methylanabasine) and N-1-methyl-(5-pyridin-3-yl)pyrrolidine-2-thione ( 2) (thioanalogue of nicotine) are reported. Both compounds were obtained using Lawesson's reagent. The structures of compounds 1 and 2 are confirmed by NMR, IR, UV and mass spectroscopy, as well as, by X-ray diffraction analysis. Pyridine ring of compound 1 adopts a pseudo-axial orientation in solution, as well as in a solid state. A substantial lengthening of the C dbnd S bond in the crystals of 1 is interpreted as a sign of an enhanced electron delocalization within the thiolactam group due to the presence of several C sbnd H groups in the nearest vicinity of the sulfur atom. In the crystals of 2, which differ from 1 in that the relatively puckered piperidine-2-thione moiety is replaced by the flat pyrrolidine-2-thione ring, no short CH⋯S( dbnd C) contacts are observed. Instead, the packing is governed by stacking interactions between pyridine rings. The pyrrolidine and pyridine rings in 2 are nearly perpendicular to each other and the pyrrolidine moiety adopts a flattened half-chair conformation.
The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.
Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki
2017-12-01
Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.
Fischer-Friedrich, Elisabeth; Gov, Nir
2011-04-01
The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.
Boroxol rings from diffraction data on vitreous boron trioxide.
Soper, Alan K
2011-09-14
There has been a considerable debate about the nature of the short range atomic order in vitreous B(2)O(3). Some authorities state that it is not possible to build a model of glassy boron oxide of the correct density containing a large number of six-membered rings which also fits experimental diffraction data, but recent computer simulations appear to overrule that view. To discover which view is correct I use empirical potential structure refinement (EPSR) on existing neutron and x-ray diffraction data to build two models of vitreous B(2)O(3). One of these consists only of single boron and oxygen atoms arranged in a network to reproduce the diffraction data as closely as possible. This model has less than 10% of boron atoms in boroxol rings. The second model is made up of an equimolar mixture of B(3)O(3) hexagonal ring 'molecules' and BO(3) triangular molecules, with no free boron or oxygen atoms. This second model therefore has 75% of the boron atoms in boroxol rings. It is found that both models give closely similar diffraction patterns, suggesting that the diffraction data in this case are not sensitive to the number of boroxol rings present in the structure. This reinforces recent Raman, ab initio, and NMR claims that the percentage of boroxol rings in this material may be as high as 75%. The findings of this study probably explain why some interpretations based on different simulation techniques only find a small fraction of boroxol rings. The results also highlight the power of EPSR for the extraction of accurate atomistic representations of amorphous structures, provided adequate additional, non-scattering data (such as Raman and NMR in this case) are available.
Modelling of propagation and scintillation of a laser beam through atmospheric turbulence
NASA Astrophysics Data System (ADS)
Shugaev, Fedor V.; Shtemenko, Ludmila S.; Dokukina, Olga I.; Nikolaeva, Oxana A.; Suhareva, Natalia A.; Cherkasov, Dmitri Y.
2017-09-01
The investigation was fulfilled on the basis of the Navier-Stokes equations for viscous heat-conducting gas. The Helmholtz decomposition of the velocity field into a potential part and a solenoidal one was used. We considered initial vorticity to be small. So the results refer only to weak turbulence. The solution has been represented in the form of power series over the initial vorticity, the coefficients being multiple integrals. In such a manner the system of the Navier- Stokes equations was reduced to a parabolic system with constant coefficients at high derivatives. The first terms of the series are the main ones that determine the properties of acoustic radiation at small vorticity. We modelled turbulence with the aid of an ensemble of vortical structures (vortical rings). Two problems have been considered : (i) density oscillations (and therefore the oscillations of the refractive index) in the case of a single vortex ring; (ii) oscillations in the case of an ensemble of vortex rings (ten in number). We considered vortex rings with helicity, too. The calculations were fulfilled for a wide range of vortex sizes (radii from 0.1 mm to several cm). As shown, density oscillations arise. High-frequency oscillations are modulated by a low-frequency signal. The value of the high frequency remains constant during the whole process excluding its final stage. The amplitude of the low-frequency oscillations grows with time as compared to the high-frequency ones. The low frequency lies within the spectrum of atmospheric turbulent fluctuations, if the radius of the vortex ring is equal to several cm. The value of the high frequency oscillations corresponds satisfactorily to experimental data. The results of the calculations may be used for the modelling of the Gaussian beam propagation through turbulence (including beam distortion, scintillation, beam wandering). A method is set forth which describes the propagation of non-paraxial beams. The method admits generalization to the case of inhomogeneous medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bena, Iosif; Kraus, Per; Warner, Nicholas P.
We construct the most generic three-charge, three-dipole-charge, BPS black-ring solutions in a Taub-NUT background. These solutions depend on seven charges and six moduli, and interpolate between a four-dimensional black hole and a five-dimensional black ring. They are also instrumental in determining the correct microscopic description of the five-dimensional BPS black rings.
Lower Current Large Deviations for Zero-Range Processes on a Ring
NASA Astrophysics Data System (ADS)
Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea
2017-04-01
We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang
2013-12-10
It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase andmore » the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.« less
Integral finite element analysis of turntable bearing with flexible rings
NASA Astrophysics Data System (ADS)
Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng
2018-03-01
This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Eliason, William K.; Steitz, Thomas A.
2013-09-19
During the assembly of the bacterial loader-dependent primosome, helicase loader proteins bind to the hexameric helicase ring, deliver it onto the oriC DNA and then dissociate from the complex. Here, to provide a better understanding of this key process, we report the crystal structure of the ~570-kDa prepriming complex between the Bacillus subtilis loader protein and the Bacillus stearothermophilus helicase, as well as the helicase-binding domain of primase with a molar ratio of 6:6:3 at 7.5 Å resolution. The overall architecture of the complex exhibits a three-layered ring conformation. Moreover, the structure combined with the proposed model suggests that themore » shift from the ‘open-ring’ to the ‘open-spiral’ and then the ‘closed-spiral’ state of the helicase ring due to the binding of single-stranded DNA may be the cause of the loader release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Custelcean, Radu; Bartsch, Richard A.
Two series of novel mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations are synthesized. In one series, the proton-ionizable group (PIG) is attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether ring cavity. In the other series, the PIG is a substituent on the benzo group in the polyether ring. This orients the PIG away from the crown ether cavity. In addition to carboxylic acid functions, the PIGs include N-(X)sulfonyl carboxamide groups. With X group variation from methyl to phenyl to 4-nitrophenyl to trifluoromethyl, the acidity of the PIG is 'tuned'. Solventmore » extraction of Ag{sup +} from aqueous solutions into chloroform is used to probe the influence of structural variation within the mono-ionizable calixcrown ligand on metal ion extraction efficiency, including the identity and acidity of the PIG and its orientation with respect to the polyether ring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karayel, A., E-mail: matchlessjimmy@163.com, E-mail: yccaoh@hotmail.com; Özbey, S.; Ayhan-Kılcıgil, G.
2015-12-15
The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.
Cryo-EM structure of the gasdermin A3 membrane pore.
Ruan, Jianbin; Xia, Shiyu; Liu, Xing; Lieberman, Judy; Wu, Hao
2018-05-01
Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel β-barrel is formed by two β-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning β-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.
Ground state structure of high-energy-density polymeric carbon monoxide
NASA Astrophysics Data System (ADS)
Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.
2017-04-01
Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.
Wu, Hsin-Pin; Huang, Chia-Chi; Cheng, Tian-Lu; Tseng, Wei-Lung
2008-07-15
A sensor for detecting cysteine (Cys) in a solution of fluorosurfactant (FSN)-capped gold nanoparticles (AuNPs) has been developed. Under acidic conditions, FSN-capped AuNPs are aggregated in the presence of homocysteine (HCys) and Cys but not in the presence of cysteinylglycine, glutathione, and gamma-glutamycysteine. When adding NaOH to a solution of HCys, the five-membered ring transition state is formed through intramolecular hydrogen abstraction. By contrast, it is difficult for Cys to form a four-membered ring transition state after Cys has been pretreated with NaOH. As a result, the HCys-induced aggregation of the FSN-capped AuNPs is suppressed because the five-membered ring transition state exhibits relatively larger steric hindrance and has stronger interaction with the FSN molecules. Thus, we can discriminate between Cys and HCys on the basis of different aggregation kinetics. Under the optimum condition, the selectivity of the probe for Cys in aqueous solutions is remarkably high over the other aminthiols. Note that HCys and Cys have very similar structure and pK(a) value. We have validated the applicability of our method through the analyses of Cys in urine samples. It is believed that this approach has great potential for the detection of Cys in biological samples.
Copper nanocoils synthesized through solvothermal method
Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang
2015-01-01
Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10–35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices. PMID:26607386
Novel azepino-perylenebisimides: synthesis, structure, and properties.
Mishra, Ruchika; Panini, Piyush; Sankar, Jeyaraman
2014-08-01
The first example of an azepine ring formation by counterintuitive nucleophilic participation of DBU was observed at the sterically crowded bay area of electron-deficient perylenebisimide (PBI). This is also a rare example of the formation of a seven-membered ring via two consecutive C-N bond formations in a single step. Azepino-PBIs reveal panchromatic absorption covering the whole visible region. Further novelty of these PBIs lies within the fact that their photophysical characteristics can easily be modulated by suitable substituents.
2009-11-01
maintaining (PM) fibre, utilising polarisation hole-burning ( PHB ) effect to reduce homogeneous linewidth of the EDFL. In our work, we demonstrate a stable...loss filter which will induce some loss to the cavity around its paired attenuation band region, thus imposing PHB effect to the gain medium. The...polarisation-hole-burning ( PHB ) effect to realise multi-wavelength switchable function in proposed fibre ring laser system. In the proposed fibre ring laser
Persistent pattern speeds in Saturn's D ring
NASA Astrophysics Data System (ADS)
Chancia, Robert; Hedman, Matthew M.
2016-05-01
Saturn's D ring is the innermost part of Saturn's ring system. Due to its close proximity to the planet, it is sensitive to perturbing forces caused by asymmetries in Saturn's interior and magnetic field. Using high-phase-angle images obtained by the Imaging Science Subsystem (ISS) over the course of the entire Cassini mission we investigate the region between 71000-73000 km from Saturn's center. Previous studies have shown that this region contains azimuthal brightness variations generated by periodic perturbing forces with frequencies close to Saturn's rotation rate (nearly twice the local orbital period). These structures are not due to a single resonance, but instead involve a complex network of patterns drifting past one another over time. Some of these could be caused by asymmetries in Saturn's magnetosphere, which have rotation rates that have been observed to change over the course of the Cassini mission. However, some patterns may be generated by perturbations from long-lived gravitational anomalies inside the planet that move at speeds comparable to Saturn's winds. By comparing observations taken over several years we can distinguish the patterns caused by each phenomenon. We identify multiple structures with nearly constant pattern speeds that would appear to be due to persistent structures inside the planet. Strangely, the rotation rates required to produce these D ring structures are different from those responsible for generating waves in the C ring (where the local orbital rate is roughly 3/2 Saturn's rotation rate).
Aqueous solution dispersement of carbon nanotubes
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2011-01-01
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
Shimizu, Soji; Zhu, Hua; Kobayashi, Nagao
2010-09-24
Mixed-condensation reaction of 1,8-naphthalenedicarbonitrile and a 4,5-disubstituted phthalonitrile provided a series of phthalocyanine (Pc) analogues with azaphenalene (AP) moieties in place of the isoindole moieties. Monosubstituted species, APPc, and the two structural isomers of disubstituted species, adj-AP(2)Pc and opp-AP(2)Pc, were successfully isolated by gel-permeation chromatography on HPLC apparatus. Their structures were elucidated by (1)H NMR spectroscopy and X-ray crystallographic analysis. Replacement of the isoindole moieties with azaphenalene moieties created six-membered-ring units in the core and caused distortion of the molecular structures. The Q-band absorption shifted to the red upon an increase in the number of azaphenalene units; the shape of the absorption spectra depended on the molecular symmetries. APPc and opp-AP(2)Pc showed a large splitting of the Q band, whereas adj-AP(2)Pc exhibited a single broad Q band. These changes in the absorption spectra, as well as the unique electronic structures, are discussed in detail, based on magnetic circular dichroism spectra, electrochemical measurements, and density functional theory calculations.
NASA Technical Reports Server (NTRS)
King, Guy L.; Schneider, William C.
1989-01-01
A pyrotechnic actuated structural release device is disclosed which is mechanically two fault tolerant for release. The device comprises a fastener plate and fastener body each attachable to one of a pair of structures to be joined. The fastener plate and the fastener body are fastened by a dual swivel toggle member. The toggle member is supported at one end on the fastener plate and mounted for universal pivotal movement thereon. Its other end is received in a central opening in the fastener body, and has a universally mounted retainer ring member. The toggle member is restrained by three retractable latching pins symmetrically disposed in equiangular spacing about the axis of the toggle member and positionable in latching engagement with the retainer ring member on the toggle member. Each pin is retractable by a pyrotechnic charge, the expanding gases of which are applied to a pressure receiving face on the latch pins to effect retraction from the ring member. While retraction of all three pins releases the ring member, the fastener is mechanically two fault tolerant since the failure of any single one or pair of the latch pins to retract results in an asymmetrical loading on the ring member and its dual pivotal movement ensures a release.
Group invariant solutions of the Ernst equation of general relativity theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryse, P.V.
The local symmetry group of the Ernst Equation for stationary, axisymmetric, vacuum space-time manifolds is computed by application of the method of Olver. Several implicit solutions of the equation are found by use of this group. Each of these solutions is given in terms of a function defined as a solution of an ordinary differential equation. One of these equations is integrated by quadratures by use of its own local symmetry group, the result being three explicit solutions of the Ernst Equation. For one of these solutions the metric of the space-time manifold is constructed and studied. The solutions hasmore » a ring curvature singularity and it is asymptotically flat in the sense that the curvature invariants approach zero at spatial infinity. The timelike and null geodesics on the symmetry axis and in the plane of the ring singularity are described. The test particles following these geodesics are seen to be repelled by the ring, which suggests the interpretation of this solution as representing the exterior gravitational field of a rotating ring of matter with negative gravitational mass.« less
Cho, B P; Kadlubar, F F; Culp, S J; Evans, F E
1990-01-01
The favored tautomeric and ionic structures were examined for the oxidative DNA damage adduct 8-hydroxy-2'-deoxyguanosine and its RNA analogue 8-hydroxyguanosine by 15N NMR spectroscopy. In addition, 15N chemical shifts and coupling constants from 13 different guanine nucleosides, including a wide variety of C8 substitutions (OH, SH, Br, OCH2C6H5, OCH3, SCH3, and SO2CH3), have been analyzed with respect to their tautomeric structures. A -98.5-Hz proton-nitrogen coupling constant observed for the N7 resonance of 8-hydroxyguanosine in dimethyl sulfoxide was evidence for 8-keto substitution, which is contrary to the structure implied by the generally used nomenclature. The pH dependence of 15N NMR spectra of 8-hydroxyguanosine in aqueous solution showed downfield shifts of the N1 and N7 resonances that were greater than 50 ppm, which indicated the conversion from a neutral 6,8-diketo to a 6-enolate-8-keto (pKa1 = 8.6) and finally to a 6,8-dienolate structure (pKa2 = 11.7). There was no evidence of an 8-enol substituent in the absence of ionization. It is proposed that the syn conformation of these oxidized bases in duplex DNA and RNA can be further stabilized by abnormal hydrogen bonding or mispairing that involves N7-H. The combined data show that 15N NMR is a sensitive probe to examine tautomerism of the guanine ring system. The analysis indicates that the change from a single to a double bond for the C8 substituent, and the accompanying removal of the normal double bond between N7 and C8 on the imidazole ring system, has no detectable effect on the tautomerism at the N1-O6 site of the pyrimidine ring system for both the 8-keto and 8-thio substitutions. In addition, large differences in electronegativity of the C8 substituents do not alter the N1-O6 tautomerism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falzone, C.J.; Benkovic, S.J.; Wright, P.E.
1991-02-26
Two-dimensional {sup 1}H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike thosemore » of the folate complex, are severally broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. Many of the side chains with clearly doubled resonances were located in the {beta}-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.« less
The Gemini NICI Planet-Finding Campaign: asymmetries in the HD 141569 disc
NASA Astrophysics Data System (ADS)
Biller, Beth A.; Liu, Michael C.; Rice, Ken; Wahhaj, Zahed; Nielsen, Eric; Hayward, Thomas; Kuchner, Marc J.; Close, Laird M.; Chun, Mark; Ftaclas, Christ; Toomey, Douglas W.
2015-07-01
We report here the highest resolution near-IR imaging to date of the HD 141569A disc taken as part of the NICI (near infrared coronagraphic imager) Science Campaign. We recover four main features in the NICI images of the HD 141569 disc discovered in previous Hubble Space Telescope (HST) imaging: (1) an inner ring/spiral feature. Once deprojected, this feature does not appear circular. (2) An outer ring which is considerably brighter on the western side compared to the eastern side, but looks fairly circular in the deprojected image. (3) An additional arc-like feature between the inner and outer ring only evident on the east side. In the deprojected image, this feature appears to complete the circle of the west side inner ring and (4) an evacuated cavity from 175 au inwards. Compared to the previous HST imaging with relatively large coronagraphic inner working angles (IWA), the NICI coronagraph allows imaging down to an IWA of 0.3 arcsec. Thus, the inner edge of the inner ring/spiral feature is well resolved and we do not find any additional disc structures within 175 au. We note some additional asymmetries in this system. Specifically, while the outer ring structure looks circular in this deprojection, the inner bright ring looks rather elliptical. This suggests that a single deprojection angle is not appropriate for this system and that there may be an offset in inclination between the two ring/spiral features. We find an offset of 4 ± 2 au between the inner ring and the star centre, potentially pointing to unseen inner companions.
Observation of a nodal chain with Dirac surface states in Ti B2
NASA Astrophysics Data System (ADS)
Yi, C.-J.; Lv, B. Q.; Wu, Q. S.; Fu, B.-B.; Gao, X.; Yang, M.; Peng, X.-L.; Li, M.; Huang, Y.-B.; Richard, P.; Shi, M.; Li, G.; Yazyev, Oleg V.; Shi, Y.-G.; Qian, T.; Ding, H.
2018-05-01
Topological nodal-line semimetals (TNLSMs) are characterized by symmetry-protected band crossings extending along one-dimensional lines in momentum space. The nodal lines exhibit a variety of possible configurations, such as nodal ring, nodal link, nodal chain, and nodal knot. Here, using angle-resolved photoemission spectroscopy, we observe nodal rings on the orthogonal kz=0 and kx=0 planes of the Brillouin zone in Ti B2 . The nodal rings connect with each other on the intersecting line Γ-K of the orthogonal planes forming a remarkable nodal-chain structure. Furthermore, we observe surface states (SSs) on the (001) cleaved surface, which are consistent with the calculated SSs considering the contribution from both Ti and B terminations. The calculated SSs have novel Dirac-cone-like band structures, which are distinct from the usual drumhead SSs with a single flatband proposed in other TNLSMs.
Kumar, K Shiva; Rambabu, D; Prasad, Bagineni; Mujahid, Mohammad; Krishna, G Rama; Rao, M V Basaveswara; Reddy, C Malla; Vanaja, G R; Kalle, Arunasree M; Pal, Manojit
2012-06-28
Regioselective construction of a fused 2-ylidene chromene ring was achieved for the first time by using AlCl(3)-induced C-C bond formation followed by Pd/C-Cu mediate coupling-cyclization strategy. A number of chromeno[4,3-b]quinoxaline derivatives were prepared by using this strategy. Single crystal X-ray diffraction study of a representative compound e.g. 6-(2,2-dimethylpropylidene)-4-methyl-6H-chromeno[4,3-b]quinoxalin-3-ol confirmed the presence of an exocyclic C-C double bond with Z-geometry. The crystal structure analysis and hydrogen bonding patterns of the same compound along with its structure elaboration via propargylation followed by Sonogashira coupling of the resulting terminal alkyne is presented. A probable mechanism for the formation of 2-ylidene chromene ring is discussed. Some of the compounds synthesized showed anticancer properties when tested in vitro.
Morphology and Structures of Nearby Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Seo, Mira; Ann, H. B.
2016-08-01
We applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dE bc , and dE blue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.
Electro-optical hybrid slip ring
NASA Astrophysics Data System (ADS)
Hong, En
2005-11-01
The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.
On the plasmonic properties of a symmetry-breaking silver nanoring structure
NASA Astrophysics Data System (ADS)
Jiang, Bozhi; Sun, Cheng
2018-07-01
This work reports on a study regarding the plasmonic properties of a symmetry-breaking silver nanoring structure, in the wavelength range of 0.6-4.5 μm. A broken silver ring with a certain angle, as well as a full ring composed of silver and other metallic/dielectric materials, are proposed. The extinction efficiencies of the nanostructure are numerically calculated with several parameters being varied, including the broken angle, the inner and outer radii, and the thickness of the broken ring, as well as the material in the composite full ring. Multiple plasmonic resonances are observed in the extinction efficiency curves, which are attributed to the quadrupolar, octupolar, and hexadecapolar resonance modes that are revealed by the electric field distributions. The results demonstrate that the high-order modes can be altered, by varying the value of the broken angle of the ring. It is also illustrated that the resonance wavelength and the full width at half maximum of certain high-order plasmonic resonance peaks can be tuned in the wavelength range studied, by adjusting the values of the geometrical parameters of the nanoring. The plasmonic characteristics of the symmetry-breaking nanoring structure revealed in this study, provide a great platform for the designs of plasmonic devices utilizing the high-order plasmonic resonances. Besides, it is also proposed a scheme to switch the device between the multi-wavelength and single-wavelength modes.
Epitaxial BiFeO3 thin films fabricated by chemical solution deposition
NASA Astrophysics Data System (ADS)
Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.
2006-04-01
Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.
Berber, Hatice; Lameiras, Pedro; Denhez, Clément; Antheaume, Cyril; Clayden, Jonathan
2014-07-03
Terpenylation reactions of substituted phenols were used to prepare cannabidiol and linderatin derivatives, and their structure and conformational behavior in solution were investigated by NMR and, for some representative examples, by DFT. VT-NMR spectra and DFT calculations were used to determine the activation energies of the conformational change arising from restricted rotation about the aryl-Csp(3) bond that lead to two unequally populated rotameric epimers. The NBO calculation was applied to explain the electronic stabilization of one conformer over another by donor-acceptor charge transfer interactions. Conformational control arises from a combination of stereoelectronic and steric effects between substituents in close contact with each other on the two rings of the endocyclic epoxide atropisomers. This study represents the first exploration of the stereoelectronic origins of atropisomerism around C(sp(2))-C(sp(3)) single bonds through theoretical calculations.
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Berti, Guido A.
2017-10-01
In this paper, a statically determined slip-line solution algorithm is proposed for the calculation of the axial forming force in the radial-axial ring rolling process of flat rings. The developed solution is implemented in an Excel spreadsheet for the construction of the slip-line field and the calculation of the pressure factor to be used in the force model. The comparison between analytical solution and authors' FE simulation allows stating that the developed model supersedes the previous literature ones and proves the reliability of the proposed approach.
Crystallization, structure and dynamics of the proton-translocating P-type ATPase.
Scarborough, G A
2000-01-01
Large single three-dimensional crystals of the dodecylmaltoside complex of the Neurospora crassa plasma membrane H(+)-ATPase (H(+) P-ATPase) can be grown in polyethylene-glycol-containing solutions optimized for moderate supersaturation of both the protein surfaces and detergent micellar region. Large two-dimensional H(+) P-ATPase crystals also grow on the surface of such mixtures and on carbon films located at such surfaces. Electron crystallographic analysis of the two-dimensional crystals grown on carbon films has recently elucidated the structure of the H(+) P-ATPase at a resolution of 0.8 nm in the membrane plane. The two-dimensional crystals comprise two offset layers of ring-shaped ATPase hexamers with their exocytoplasmic surfaces face to face. Side-to-side interactions between the cytoplasmic regions of the hexamers in each layer can be seen, and an interaction between identical exocytoplasmic loops in opposing hexamer layers holds the two layers together. Detergent rings around the membrane-embedded region of the hexamers are clearly visible, and detergent-detergent interactions between the rings are also apparent. The crystal packing forces thus comprise both protein-protein and detergent-detergent interactions, supporting the validity of the original crystallization strategy. Ten transmembrane helices in each ATPase monomer are well-defined in the structure map. They are all relatively straight, closely packed, moderately tilted at various angles with respect to a plane normal to the membrane surface and average approximately 3.5 nm in length. The transmembrane helix region is connected in at least three places to the larger cytoplasmic region, which comprises several discrete domains separated by relatively wide, deep clefts. Previous work has shown that the H(+) P-ATPase undergoes substantial conformational changes during its catalytic cycle that are not changes in secondary structure. Importantly, the results of hydrogen/deuterium exchange experiments indicate that these conformational changes are probably rigid-body interdomain movements that lead to cleft closure. When interpreted within the framework of established principles of enzyme catalysis, this information on the structure and dynamics of the H(+) P-ATPase molecule provides the basis of a rational model for the sequence of events that occurs as the ATPase proceeds through its transport cycle. The forces that drive the sequence can also be clearly stipulated. However, an understanding of the molecular mechanism of ion transport catalyzed by the H(+) P-ATPase awaits an atomic resolution structure.
Fault Tolerant Parallel Implementations of Iterative Algorithms for Optimal Control Problems
1988-01-21
p/.V)] steps, but did not discuss any specific parallel implementation. Gajski [51 improved upon this result by performing the SIMD computation in...N = p2. our approach reduces to that of [51, except that Gajski presents the coefficient computation and partial solution phases as a single...8217>. the SIMD algo- rithm presented by Gajski [5] can be most efficiently mapped to a unidirec- tional ring network with broadcasting capability. Based
Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation
NASA Astrophysics Data System (ADS)
Yuan, Luqi; Xiao, Meng; Lin, Qian; Fan, Shanhui
2018-03-01
We show that a single ring resonator undergoing dynamic modulation can be used to create a synthetic space with an arbitrary dimension. In such a system, the phases of the modulation can be used to create a photonic gauge potential in high dimensions. As an illustration of the implication of this concept, we show that the Haldane model, which exhibits nontrivial topology in two dimensions, can be implemented in the synthetic space using three rings. Our results point to a route toward exploring higher-dimensional topological physics in low-dimensional physical structures. The dynamics of photons in such synthetic spaces also provides a mechanism to control the spectrum of light.
Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.
Namekawa, S; Suda, S; Uyama, H; Kobayashi, S
1999-01-01
Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.
Larson, Steven B; Day, John S; Nguyen, Chieugiang; Cudney, Robert; McPherson, Alexander
2010-02-01
Bovine pancreatic ribonuclease A (RNase A) was crystallized from a mixture of small molecules containing basic fuchsin, tobramycin and uridine 5'-monophosphate (U5P). Solution of the crystal structure revealed that the enzyme was selectively bound to U5P, with the pyrimidine ring of U5P residing in the pyrimidine-binding site at Thr45. The structure was refined to an R factor of 0.197 and an R(free) of 0.253.
Response of a shell structure subject to distributed harmonic excitation
NASA Astrophysics Data System (ADS)
Cao, Rui; Bolton, J. Stuart
2016-09-01
Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires.
Saita, Maria Grazia; Aleo, Danilo; Melilli, Barbara; Mangiafico, Sergio; Cro, Melina; Sanfilippo, Claudia; Patti, Angela
2018-05-28
The degradation profile of azithromycin in buffered solutions was investigated using HPLC and found to be pH dependent in the range of 6.0-7.2. Desosaminylazitromycin, derived from hydrolytic loss of cladinose of the parent molecule, was the major degradation product at pH 6.0 but its amount progressively decreased moving toward pH 7.2. Two additional unreported degradation products were also observed and their structures were fully elucidated by MS- and NMR-spectroscopy to be associated with opening of the macrocyclic lactone ring. Copyright © 2018. Published by Elsevier B.V.
The Nonbarred Double-Ringed Galaxy, PGC 1000714
NASA Astrophysics Data System (ADS)
Seigar, Marc; Mutlu Pakdil, Burcin; Mangedarage, Mithila; Treuthardt, Patrick M.
2017-01-01
Hoag-type galaxies are rare peculiar systems which bear strong resemblance to Hoag's Object with an elliptical-like core, a detached outer ring, and no signs of a bar or stellar disk. They represent extreme cases and help us understand the formation of galaxies in general by providing clues on formation mechanisms. The nature of outer rings in Hoag-type galaxies is still debated and may be related either to slow secular evolution, such as dissolution of a barlike structure or to environmental processes, such as galaxy-galaxy interactions or gas infall. Due to a fairly superficial resemblance to Hoag's Object, PGC 1000714 is a good target for detailed study of the peculiar structure of this type. We present the first photometric study of PGC 1000714 that has not yet been described in the literature. Our aim is to evaluate its structure and properties as well as understand the origin of outer rings in such galaxies. Surface photometry of the central body is performed using near-UV, BVRI and JHK images. Based on the photometric data, the nearly round central body follows a de Vaucouleurs profile almost all the way to the center. The detailed photometry reveals a reddish inner ring-shaped structure that shares the same center as the central body. However, no sign of a bar or stellar disk is detected. The outer ring appears as a bump in the surface brightness profile with a peak brightness of 25.8 mag/arcsec^{2} in the B-band and shows no sharp outer boundary. By reconstructing the observed SED for the central body and the rings, we recover the stellar population properties of the galaxy components. Our work suggests different formation histories for the inner and outer rings. We rule out the secular evolution model as being a formation mechanism for the outer ring. The colors of the outer ring are consistent with a feature that may have experienced a burst of star formation due to a possible recent accretion event. In addition, our work supports that the central body may be formed by a relatively dry major merger or in a single, short and highly effective star formation burst, and the inner ring may be formed as a result of intergalactic medium accretion or secular evolution of a possible gaseous disk
NASA Astrophysics Data System (ADS)
Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.
1998-02-01
The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.
The Chloroplast Division Protein ARC6 Acts to Inhibit Disassembly of GDP-bound FtsZ2.
Sung, Min Woo; Shaik, Rahamthulla; TerBush, Allan D; Osteryoung, Katherine W; Vitha, Stanislav; Holzenburg, Andreas
2018-05-16
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z-ring stabilization is not well understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission electron microscopy. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures, and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Sedlmaier, Stefan J; Döblinger, Markus; Oeckler, Oliver; Weber, Johannes; auf der Günne, Jörn Schmedt; Schnick, Wolfgang
2011-08-10
A novel oxonitridophosphate, Ba(19)P(36)O(6+x)N(66-x)Cl(8+x) (x ≈ 4.54), has been synthesized by heating a multicomponent reactant mixture consisting of phosphoryl triamide OP(NH(2))(3), thiophosphoryl triamide SP(NH(2))(3), BaS, and NH(4)Cl enclosed in an evacuated and sealed silica glass ampule up to 750 °C. Despite the presence of side phases, the crystal structure was elucidated ab initio from high-resolution synchrotron powder diffraction data (λ = 39.998 pm) applying the charge flipping algorithm supported by independent symmetry information derived from electron diffraction (ED) and scanning transmission electron microscopy (STEM). The compound crystallizes in the cubic space group Fm ̅3c (no. 226) with a = 2685.41(3) pm and Z = 8. As confirmed by Rietveld refinement, the structure comprises all-side vertex sharing P(O,N)(4) tetrahedra forming slightly distorted 3(8)4(6)8(12) cages representing a novel composite building unit (CBU). Interlinked through their 4-rings and additional 3-rings, the cages build up a 3D network with a framework density FD = 14.87 T/1000 Å(3) and a 3D 8-ring channel system. Ba(2+) and Cl(-) as extra-framework ions are located within the cages and channels of the framework. The structural model is corroborated by (31)P double-quantum (DQ) /single-quantum (SQ) and triple-quantum (TQ) /single-quantum (SQ) 2D correlation MAS NMR spectroscopy. According to (31)P{(1)H} C-REDOR NMR measurements, the H content is less than one H atom per unit cell. © 2011 American Chemical Society
Tunable optical filter based on Sagnac phase-shift using single optical ring resonator
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Asghari, Fatemeh
2010-02-01
In this paper, a single optical ring resonator connected to a Sagnac loop is used to demonstrate theoretically a novel narrow band optical filter response that is based on Sagnac phase-shift Δ φ. The given filter structure permits the Sagnac rotation to control the filter response. It is shown that by changing the Sagnac rotation rate, we can tune the filter response for desired bandwidths. To increase the wavelength selectivity of the filter, the Sagnac phase-shift should be as small as possible that is limited by the loop length. For Δ φ=0.1 rad, the obtained FWHM is 2.63 MHz for tuning loop length of 2 m. The simulation response agrees fairly with the recently reported experimental result.
Friedl, Christian; Renger, Thomas; Berlepsch, Hans V; Ludwig, Kai; Schmidt Am Busch, Marcel; Megow, Jörg
2016-09-01
Cryogenic transmission electron microscopy (cryo-TEM) studies suggest that TTBC molecules self-assemble in aqueous solution to form single-walled tubes with a diameter of about 35 Å. In order to reveal the arrangement and mutual orientations of the individual molecules in the tube, we combine information from crystal structure data of this dye with a calculation of linear absorbance and linear dichroism spectra and molecular dynamics simulations. We start with wrapping crystal planes in different directions to obtain tubes of suitable diameter. This set of tube models is evaluated by comparing the resulting optical spectra with experimental data. The tubes that can explain the spectra are investigated further by molecular dynamics simulations, including explicit solvent molecules. From the trajectories of the most stable tube models, the short-range ordering of the dye molecules is extracted and the optimization of the structure is iteratively completed. The final structural model is a tube of rings with 6-fold rotational symmetry, where neighboring rings are rotated by 30° and the transition dipole moments of the chromophores form an angle of 74° with respect to the symmetry axis of the tube. This model is in agreement with cryo-TEM images and can explain the optical spectra, consisting of a sharp red-shifted J-band that is polarized parallel to to the symmetry axis of the tube and a broad blue-shifted H-band polarized perpendicular to this axis. The general structure of the homogeneous spectrum of this hybrid HJ-aggregate is described by an analytical model that explains the difference in redistribution of oscillator strength inside the vibrational manifolds of the J- and H-bands and the relative intensities and excitation energies of those bands. In addition to the particular system investigated here, the present methodology can be expected to aid the structure prediction for a wide range of self-assembled dye aggregates.
NASA Astrophysics Data System (ADS)
Khalilov, Leonard M.; Tulyabaev, Arthur R.; Mescheryakova, Ekaterina S.; Akhmadiev, Nail S.; Timirov, Yulai I.; Skaldin, Oleg A.; Akhmetova, Vnira R.
2015-09-01
The relationships between structural features and crystallization of the С1-С6 α,ω-bis-(pentane-2,4-dione-3-ylmethylsulfanyl)alkanes are considered. It was shown that the conjugated enol bis-pentadiones which form pseudo six-membered rings and stabilized by intramolecular hydrogen bonds favor the crystallization. Using a polarized optical technique, it has been found that crystallization rate of the melts of crystalline compounds decreases with elongation of the aliphatic chain between sulfur atoms. It is assumed that one of the main factors that contributes to probability to form single crystals is a small twist angle between two pseudo six-membered rings.
Minati, Ludovico
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
Tenth NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the NASTRAN computer program, a general purpose finite element computer code for structural analysis, was discussed. The application and development of NASTRAN is presented in the following topics: improvements and enhancements; developments of pre and postprocessors; interactive review system; the use of harmonic expansions in magnetic field problems; improving a dynamic model with test data using Linwood; solution of axisymmetric fluid structure interaction problems; large displacements and stability analysis of nonlinear propeller structures; prediction of bead area contact load at the tire wheel interface; elastic plastic analysis of an overloaded breech ring; finite element solution of torsion and other 2-D Poisson equations; new capability for elastic aircraft airloads; usage of substructuring analysis in the get away special program; solving symmetric structures with nonsymmetric loads; evaluation and reduction of errors induced by Guyan transformation.
Planetary rings as relics of plasma pre-rings
NASA Astrophysics Data System (ADS)
Rabinovich, B. I.
2007-02-01
A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.
Application of Newton's method to the postbuckling of rings under pressure loadings
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1989-01-01
The postbuckling response of circular rings (or long cylinders) is examined. The rings are subjected to four types of external pressure loadings; each type of pressure is defined by its magnitude and direction at points on the buckled ring. Newton's method is applied to the nonlinear differential equations of the exact inextensional theory for the ring problem. A zeroth approximation for the solution of the nonlinear equations, based on the mode shape corresponding to the first buckling pressure, is derived in closed form for each of the four types of pressure. The zeroth approximation is used to start the iteration cycle in Newton's method to compute numerical solutions of the nonlinear equations. The zeroth approximations for the postbuckling pressure-deflection curves are compared with the converged solutions from Newton's method and with similar results reported in the literature.
Single chain technology: Toward the controlled synthesis of polymer nanostructures
NASA Astrophysics Data System (ADS)
Lyon, Christopher
A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.
Kozerski, L; Sierzputowska-Gracz, H; Krzyzosiak, W; Bratek-Wiewiórowska, M; Jaskólski, M; Wiewiórowski, M
1984-01-01
The 1H, 13C, 15N NMR spectra of cytidine /Cyd/, ethenocytidine /epsilon Cyd/ and their hydrochlorides /Cyd X HC1/ and /epsilon Cyd X HC1/ have been analysed to compare structural differences observed in solution with those existing in the crystalline state. The effects of ethenobridging and protonation of the hertero-aromatic base on the intramolecular stereochemistry, intermolecular interactions and electronic structure of the whole molecule are discussed on the basis of the NMR studies in DMSO solutions. Particular interest is devoted to the discussion of the conformation of the ribose ring, the presence of the intramolecular C-5'-0...H-6-C hydrogen bond, unambiguous assignment of the site of protonation, the mechanism of the 5C-H deuterium exchange in Cyd X HC1, and the intermolecular interactions in solution. PMID:6701098
Systematics in lensing reconstruction: dark matter rings in the sky?
NASA Astrophysics Data System (ADS)
Ponente, P. P.; Diego, J. M.
2011-11-01
Context. Non-parametric lensing methods are a useful way of reconstructing the lensing mass of a cluster without making assumptions about the way the mass is distributed in the cluster. These methods are particularly powerful in the case of galaxy clusters with a large number of constraints. The advantage of not assuming implicitly that the luminous matter follows the dark matter is particularly interesting in those cases where the cluster is in a non-relaxed dynamical state. On the other hand, non-parametric methods have several limitations that should be taken into account carefully. Aims: We explore some of these limitations and focus on their implications for the possible ring of dark matter around the galaxy cluster CL0024+17. Methods: We project three background galaxies through a mock cluster of known radial profile density and obtain a map for the arcs (θ map). We also calculate the shear field associated with the mock cluster across the whole field of view (3.3 arcmin). Combining the positions of the arcs and the two-direction shear, we perform an inversion of the lens equation using two separate methods, the biconjugate gradient, and the quadratic programming (QADP) to reconstruct the convergence map of the mock cluster. Results: We explore the space of the solutions of the convergence map and compare the radial density profiles to the density profile of the mock cluster. When the inversion matrix algorithms are forced to find the exact solution, we encounter systematic effects resembling ring structures, that clearly depart from the original convergence map. Conclusions: Overfitting lensing data with a non-parametric method can produce ring-like structures similar to the alleged one in CL0024.
Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk
Lippert, Lisa G.; Dadosh, Tali; Hadden, Jodi A.; Karnawat, Vishakha; Diroll, Benjamin T.; Murray, Christopher B.; Holzbaur, Erika L. F.; Schulten, Klaus; Reck-Peterson, Samara L.; Goldman, Yale E.
2017-01-01
The force-generating mechanism of dynein differs from the force-generating mechanisms of other cytoskeletal motors. To examine the structural dynamics of dynein’s stepping mechanism in real time, we used polarized total internal reflection fluorescence microscopy with nanometer accuracy localization to track the orientation and position of single motors. By measuring the polarized emission of individual quantum nanorods coupled to the dynein ring, we determined the angular position of the ring and found that it rotates relative to the microtubule (MT) while walking. Surprisingly, the observed rotations were small, averaging only 8.3°, and were only weakly correlated with steps. Measurements at two independent labeling positions on opposite sides of the ring showed similar small rotations. Our results are inconsistent with a classic power-stroke mechanism, and instead support a flexible stalk model in which interhead strain rotates the rings through bending and hinging of the stalk. Mechanical compliances of the stalk and hinge determined based on a 3.3-μs molecular dynamics simulation account for the degree of ring rotation observed experimentally. Together, these observations demonstrate that the stepping mechanism of dynein is fundamentally different from the stepping mechanisms of other well-studied MT motors, because it is characterized by constant small-scale fluctuations of a large but flexible structure fully consistent with the variable stepping pattern observed as dynein moves along the MT. PMID:28533393
NASA Astrophysics Data System (ADS)
Fujisawa, Ikuhide; Kitamura, Yuji; Kato, Ryo; Murayama, Kazutaka; Aoki, Katsuyuki
2014-01-01
Resorcin[4]arene (resorcinol cyclic tetramer, abbreviated as RCT) or pyrogallol[4]arene (pyrogallol cyclic tetramer, PCT) form host-guest 1:1 complexes with DL-pipecolinic acid (DL-pipeH), RCT·DL-pipeH·EtOH·8H2O (1), PCT DL-pipeH·EtOH·4H2O (2), and PCT·DL-pipeH·3H2O (3), whose crystal structures have been determined. In each complex, the pipeH ligand is incorporated into the bowl-shaped cavity of the RCT or PCT host molecules through C-H⋯π interactions between alkyl protons of the piperidine ring of pipeH and π-rings of RCT or PCT, forming an [(RCT/PCT)·pipeH] structural fragment. In 1 and 3, two [(RCT/PCT) pipeH] fragments self-associate across an inversion center to form a guest-mediated, obliquely declined dimeric structure [(RCT/PCT)·L-pipeH·D-pipeH (RCT/PCT)]. In 2, each PCT-capped pipeH ligand bridges to two adjacent PCT molecules to form guest-mediated, optically-discrete helical polymers [PCT·L-pipeH]n or [PCT·D-pipeH]n. An 1H NMR experiment shows that the complexation through C-H⋯π interaction between the piperidine ring of pipeH and π-rings of RCT or PCT occurs also in solution, with the binding constants of 9.7 ± 0.6 M-1 for RCT and 26.5 ± 1.5 M-1 for PCT. These complexes provide a synthetic model for the recognition of the pipecolinyl-ring moiety, a key constituent of immunosuppressant drugs such as FK506, FK520 or rapamycin, by their binding proteins through C-H⋯π interaction.
Approximate solution of the multiple watchman routes problem with restricted visibility range.
Faigl, Jan
2010-10-01
In this paper, a new self-organizing map (SOM) based adaptation procedure is proposed to address the multiple watchman route problem with the restricted visibility range in the polygonal domain W. A watchman route is represented by a ring of connected neuron weights that evolves in W, while obstacles are considered by approximation of the shortest path. The adaptation procedure considers a coverage of W by the ring in order to attract nodes toward uncovered parts of W. The proposed procedure is experimentally verified in a set of environments and several visibility ranges. Performance of the procedure is compared with the decoupled approach based on solutions of the art gallery problem and the consecutive traveling salesman problem. The experimental results show the suitability of the proposed procedure based on relatively simple supporting geometrical structures, enabling application of the SOM principles to watchman route problems in W.
NASA Astrophysics Data System (ADS)
Coppi, B.
2012-03-01
Field and plasma configurations that can be the distinguishing feature of and surround ``shining'' black holes have been identified. Considering the observation of the Quasi Periodic Oscillations that can be associated with inhomogeneous rotating plasmas, tri-dimensional rotating configurations have been looked for and found under special conditions. One is that these configurations are radially localized, such as narrow plasma ring pairs. Another is that the rotation frequency is nearly constant over the rings. Only axisymmetric local configurations consisting of solitary plasma rings or periodic sequences of rings are found when the gradient of the rotation frequency is (locally) significant. Assuming that the plasma pressure is scalar the problem is reduced to the solution of two coupled non-linear differential equations. One, the ``Master Equation'' [1], relates the magnetic surface function to the plasma rotation frequency that is connected to the gravity field. The other, the Vertical Equilibrium Equation, relates the plasma pressure gradient to both the Lorentz force and to the plasma density profile through the gravitational force.[4pt] [1] B. Coppi, Phys. Plasmas 18, 032901 (2011).
Cavity ring-down spectroscopy in the liquid phase
NASA Astrophysics Data System (ADS)
Xu, Shucheng; Sha, Guohe; Xie, Jinchun
2002-02-01
A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.
NASA Astrophysics Data System (ADS)
Meng, Xi; Nguyen, William H.; Nowick, James S.; Shaka, A. J.
2010-03-01
A new selective heteronuclear Hartmann-Hahn (SHEHAHA) multiple-pulse mixing sequence is proposed for the solution structure elucidation of milligram amounts of peracetylated oligosaccharides in which the acetyl groups are enriched in carbon-13, so-called “isotags”. SHEHAHA accomplishes exclusive in-phase magnetization transfer between the isotag carbonyl 13C and the proximal proton on the sugar ring. Relayed transfer around the sugar rings by proton-proton TOCSY is suppressed, while the heteronuclear transfer from the labeled carbonyl carbon to the proximal ring proton is maintained. The sequence is broadband in the sense that all acetyl groups simultaneously give good signal transfer to their respective nearest proton neighbors. The 1H-detected spectra have decent sensitivity and excellent resolution, giving patterns that unambiguously identify common structural subunits in human glycans. Peracetylated maltitol is shown as a test case of the method. Lineshapes are pure absorption, allowing facile measurement of vicinal proton-proton couplings. Linkage points can be deduced, and the 2D correlation spectra may be useful for more ambitious prediction algorithms and machine identification by a spectral database.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body
NASA Astrophysics Data System (ADS)
Rabinovich, B.
2007-08-01
A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some
NASA Astrophysics Data System (ADS)
Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.
2017-12-01
Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate
Osuna, Reyes Malavé; Zhang, Xinnan; Matzger, Adam Jay; Hernandez, Víctor; López Navarrete, Juan Teodomiro
2006-04-20
In this article, we report the characterization of novel oligothienoacenes with five and seven fused thiophene rings, materials with potential applications in organic electronics. In contrast to usual alpha-linked oligothiophenes, these fused oligothiophenes have a larger band gap than most semiconductors currently used in the fabrication of organic field-effect transistors (OFETs) and therefore they are expected to be more stable in air. The synthesis of these fused-ring oligomers was motivated by the notion that a more rigid and planar structure should reduce defects (such as torsion about single bonds between alpha-linked units or S-syn defects) and thus improve conjugation for better charge-carrier mobility. The conjugational properties of these two molecular materials have been investigated by means of FT-Raman spectroscopy, revealing that conjugation still increases in passing from the five-ring oligomer to that with seven-rings. DFT and TDDFT quantum chemical calculations have been performed, at the B3LYP/6-31G level, to assess information regarding the minimum-energy molecular structure, topologies, and absolute energies of the frontier molecular orbitals (MOs.) around the gap, vibrational normal modes related to the main Raman features, and vertical one-electron excitations giving rise to the main optical absorptions.
Supramolecular interactions in carboxylate and sulfonate salts of 2,6-diamino-4-chloropyrimidinium.
Mohana, Marimuthu; Thomas Muthiah, Packianathan; Butcher, Ray J
2017-07-01
Two new salts, namely 2,6-diamino-4-chloropyrimidinium 2-carboxy-3-nitrobenzoate, C 4 H 6 ClN 4 + ·C 8 H 4 NO 6 - , (I), and 2,6-diamino-4-chloropyrimidinium p-toluenesulfonate monohydrate, C 4 H 6 ClN 4 + ·C 7 H 7 O 3 S - ·H 2 O, (II), have been synthesized and characterized by single-crystal X-ray diffraction. In both crystal structures, the N atom in the 1-position of the pyrimidine ring is protonated. In salt (I), the protonated N atom and the amino group of the pyrimidinium cation interact with the carboxylate group of the anion through N-H...O hydrogen bonds to form a heterosynthon with an R 2 2 (8) ring motif. In hydrated salt (II), the presence of the water molecule prevents the formation of the familiar R 2 2 (8) ring motif. Instead, an expanded ring [i.e. R 3 2 (8)] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon [R 2 2 (8) ring motif] through N-H...N hydrogen bonds. The molecular structures are further stabilized by π-π stacking, and C=O...π, C-H...O and C-H...Cl interactions.
NASA Astrophysics Data System (ADS)
Dertinger, Jennifer J.; Walker, Amy V.
2013-08-01
The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.
Malo, Gabrielle D; Pouwels, Lauren J; Wang, Meitian; Weichsel, Andrzej; Montfort, William R; Rizzo, Mark A; Piston, David W; Wachter, Rebekka M
2007-09-04
The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 A. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10-15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (+/-2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.
Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios
2009-12-01
The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.
Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.
Worrall, L J; Hong, C; Vuckovic, M; Deng, W; Bergeron, J R C; Majewski, D D; Huang, R K; Spreter, T; Finlay, B B; Yu, Z; Strynadka, N C J
2016-12-14
The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.
NASA Astrophysics Data System (ADS)
Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng
2015-05-01
An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.
Lv, Y; Cui, J; Jiang, Z M; Yang, X J
2013-02-15
Atomic force microscopy imaging combined with selective chemical etching is employed to quantitatively investigate three-dimensional (3D) composition distributions of single GeSi quantum rings (QRs). In addition, the 3D quantitative composition distributions and the corresponding conductance distributions are simultaneously obtained on the same single GeSi QRs by conductive atomic force microscopy combined with selective chemical etching, allowing us to investigate the correlations between the conductance and composition distributions of single QRs. The results show that the QRs' central holes have higher Ge content, but exhibit lower conductance, indicating that the QRs' conductance distribution is not consistent with their composition distribution. By comparing the topography, composition and conductance profiles of the same single QRs before and after different etching processes, it is found that the conductance distributions of GeSi QRs do not vary with the change of composition distribution. Instead, the QRs' conductance distributions are found to be consistent with their topographic shapes, which can be supposed to be due to the shape determined electronic structures.
González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F
2017-02-07
By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.
Wang, Junpeng; Ong, Mitchell T.; Kouznetsova, Tatiana B.; ...
2015-08-31
The dynamics of reactions at or in the immediate vicinity of transition states are critical to reaction rates and product distributions, but direct experimental probes of those dynamics are rare. In this paper, s-trans, s-trans 1,3-diradicaloid transition states are trapped by tension along the backbone of purely cis-substituted gem-difluorocyclopropanated polybutadiene using the extensional forces generated by pulsed sonication of dilute polymer solutions. Once released, the branching ratio between symmetry-allowed disrotatory ring closing (of which the trapped diradicaloid structure is the transition state) and symmetry-forbidden conrotatory ring closing (whose transition state is nearby) can be inferred. Finally, net conrotatory ring closingmore » occurred in 5.0 ± 0.5% of the released transition states, in excellent agreement with ab initio molecular dynamics simulations.« less
Takizawa, Yuumi; Shimomura, Takeshi; Miura, Toshiaki
2013-05-23
We study the initial nucleation dynamics of poly(3-hexylthiophene) (P3HT) in solution, focusing on the relationship between the ordering process of main chains and that of side chains. We carried out Langevin dynamics simulation and found that the initial nucleation processes consist of three steps: the ordering of ring orientation, the ordering of main-chain vectors, and the ordering of side chains. At the start, the normal vectors of thiophene rings aligned in a very short time, followed by alignment of main-chain end-to-end vectors. The flexible side-chain ordering took almost 5 times longer than the rigid-main-chain ordering. The simulation results indicated that the ordering of side chains was induced after the formation of the regular stack structure of main chains. This slow ordering dynamics of flexible side chains is one of the factors that cause anisotropic nuclei growth, which would be closely related to the formation of nanofiber structures without external flow field. Our simulation results revealed how the combined structure of the planar and rigid-main-chain backbones and the sparse flexible side chains lead to specific ordering behaviors that are not observed in ordinary linear polymer crystallization processes.
Wu, C D; Wang, L; Hu, C X; He, M H
2013-01-01
The single-solute and bisolute sorption behaviour of phenol and trichloroethylene, two organic compounds with different structures, onto cetyltrimethylammonium bromide (CTAB)-montmorillonite was studied. The monolayer Langmuir model (MLM) and empirical Freundlich model (EFM) were applied to the single-solute sorption of phenol or trichloroethylene from water onto monolayer or multilayer CTAB-montmorillonite. The parameters contained in the MLM and EFM were determined for each solute by fitting to the single-solute isotherm data, and subsequently utilized in binary sorption. The extended Langmuir model (ELM) coupled with the single-solute MLM and the ideal adsorbed solution theory (IAST) coupled with the single-solute EFM were used to predict the binary sorption of phenol and trichloroethylene onto CTAB-montmorillonite. It was found that the EFM was better than the MLM at describing single-solute sorption from water onto CTAB-montmorillonite, and the IAST was better than the ELM at describing the binary sorption from water onto CTAB-montmorillonite.
Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A
2010-10-14
The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.
Analyzing Bleriot's propeller gaps in Cassini NAC images
NASA Astrophysics Data System (ADS)
Hoffmann, Holger; Chen, Cheng; Seiß, Martin; Albers, Nicole; Spahn, Frank; Nic
2016-10-01
Among the great discoveries of the Cassini mission are the propeller-shaped structures created by small moonlets embedded in Saturn's dense rings. These moonlets are not massive enough to counteract the viscous ring diffusion to open and maintain circumferential gaps, distinguishing them from ring-moons like Pan and Daphnis.Although one of the defining features of propeller structures, well-formed partial gaps have been resolved by the Imaging Science Subsystem Narrow Angle Camera onboard the Cassini spacecraft only for the largest known propeller named Bleriot. We analyze images of the sunlit side of Saturn's outer A ring showing the propeller Bleriot with clearly visible gaps. By fitting a Gaussian to radial brightness profiles at different azimuthal locations, we obtain the evolution of gap minimum and gap width downstream of the moonlet.We report two findings:1) Numerical simulations indicate that the radial separation of the partial propeller gaps is expected to be 4 Hill radii (Spahn and Sremcevic, 2000, A&A). We infer Bleriot's Hill radius to be a few hundred meters, consistent with values given by Sremcevic et al. (2014, DPS) and Hoffmann et al. (2015, Icarus).2) In order to estimate the ring viscosity in the region of Saturn's outer A ring, where Bleriot orbits, we fit several model functions (one example being the analytic solution derived by Sremcevic, Spahn and Duschl, 2002, MNRAS) describing the azimuthal evolution of the surface density in the propeller gap region to the data obtained from the image analysis. We find viscosity values consistent with the parameterization of ring viscosity by Daisaka et al. (2001, Icarus), but significantly lower than the upper limit given by Esposito et al. (1983, Icarus)
Magnetic edge states in Aharonov-Bohm graphene quantum rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E.; Saffarzadeh, A.
2013-12-07
The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zeromore » and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.« less
Natural product-like virtual libraries: recursive atom-based enumeration.
Yu, Melvin J
2011-03-28
A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.
Huang, Chi; Wang, Jie; Lv, Xiaobo; Liu, Liu; Liang, Ling; Hu, Wei; Luo, Changliang; Wang, Fubing; Yuan, Quan
2018-05-21
The "coffee ring effect" is a natural phenomenon where sessile drops leave ring-shaped structures on solid surfaces upon drying. It drives non-uniform deposition of suspended compounds on substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in uniform disc-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As proof-of-concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability, and sensitivity.
Time domain analysis of coherent terahertz synchrotron radiation
NASA Astrophysics Data System (ADS)
Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.
2005-10-01
The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.
Singular patterns for an aggregation model with a confining potential
NASA Astrophysics Data System (ADS)
Kolokolnikov, Theodore; Huang, Yanghong; Pavlovski, Mark
2013-10-01
We consider the aggregation equation with an attractive-repulsive force law. Recent studies (Kolokolnikov et al. (2011) [22]; von Brecht et al. (2012) [23]; Balague et al. (2013) [15]) have demonstrated that this system exhibits a very rich solution structure, including steady states consisting of rings, spots, annuli, N-fold symmetries, soccer-ball patterns etc. We show that many of these patterns can be understood as singular perturbations off lower-dimensional equilibrium states. For example, an annulus is a bifurcation from a ring; soccer-ball patterns bifurcate off solutions that consist of delta-point concentrations. We apply asymptotic methods to classify the form and stability of many of these patterns. To characterize spot solutions, a class of “semi-linear” aggregation problems is derived, where the repulsion is described by a nonlinear term and the attraction is linear but non-symmetric. For a special class of perturbations that consists of a Newtonian repulsion, the spot shape is shown to be an ellipse whose precise dimensions are determined via a complex variable method. For annular shapes, their width and radial density profile are described using perturbation techniques.
Complexes of monocationic Group 13 elements with pentaphospha- and pentaarsaferrocene.
Fleischmann, Martin; Welsch, Stefan; Krauss, Hannes; Schmidt, Monika; Bodensteiner, Michael; Peresypkina, Eugenia V; Sierka, Marek; Gröger, Christian; Scheer, Manfred
2014-03-24
Reactions of the sandwich complexes [Cp*Fe(η(5)-E5)] (Cp*=η(5)-C5Me5; E=P (1), As (2)) with the monovalent Group 13 metals Tl(+), In(+), and Ga(+) containing the weakly coordinating anion [TEF] ([TEF]=[Al{OC(CF3)3}4](-)) are described. Here, the one-dimensional coordination polymers [M(μ,η(5):η(1 -E5 FeCp*)3]n [TEF]n (E=P, M=Tl (3 a), In (3 b), Ga (3 c); E=As, M=Tl (4 a), In (4 b)) are obtained as sole products in good yields. All products were analyzed by single-crystal X-ray diffraction, revealing a similar assembly of the products with η(5)-bound E5 ligands and very weak σ-interactions between one P or As atom of the ring to the neighbored Group 13 metal cation. By exchanging the [TEF] anion of 4 a for the larger [FAl] anion ([FAl]=[FAl{OC6F10(C6F5)}3](-)), the coordination compound [Tl{(η(5)-As5)FeCp*}3][FAl] (5) without any σ-interactions of the As5-ring is obtained. All products are readily soluble in CH2 Cl2 and exhibit a dynamic coordination behavior in solution, which is supported by NMR spectroscopy and ESI-MS spectrometry as well as by osmometric molecular-weight determination. For a better understanding of the proceeding equilibrium DFT calculations of the cationic complexes were performed for the gas phase and in solution. Furthermore, the (31)P{(1)H} magic-angle spinning (MAS) NMR spectra of 3 a-c are presented and the first crystal structure of the starting material 2 was determined. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin
2014-07-28
Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to presentmore » significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.« less
Che, Yuliang; Yang, Hua; Wang, Zhimin; Jin, Hongxiao; Lu, Chunxin; Zuo, Tianming; Beavers, Christine M.
2009-01-01
The structures of two newly synthesized endohedral fullerenes - Tm@C3v-C94 and Ca@C3v-C94 - have been determined by single crystal X-ray diffraction on samples co-crystallized with NiII(octaethylporphyrin). Both compounds exhibit the same cage geometry and conform to the isolated pentagon rule (IPR). The metal ions within these rather large cages are localized near one end and along the C3 axis. While the calcium ion is situated over a C-C bond at a 6:6 ring junction, the thulium ion is positioned above a six-membered ring of the fullerene. PMID:19507844
NASA Astrophysics Data System (ADS)
Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.
2014-02-01
Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.
NASA Technical Reports Server (NTRS)
Minner, G. L.; Homyak, L.
1976-01-01
An inlet noise suppressor for a TF-34 engine designed to have three acoustically treated rings was tested with several different ring arrangements. The configurations included: all three rings; two outer rings; single outer ring; single intermediate ring, and finally no rings. It was expected that as rings were removed, the acoustic performance would be degraded considerably. While a degradation occurred, it was not as large as predictions indicated. The prediction showed good agreement with the data only for the full-ring inlet configuration. The underpredictions which occurred with ring removal were believed a result of ignoring the presence of spinning modes which are known to damp more rapidly in cylindrical ducts than would be predicted by least attenuated mode or plane wave analysis.
Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Brullot, Ward; Bloemen, Maarten; Volodin, Alexander; Song, Kai; Van Dorpe, Pol; Verellen, Niels; Clays, Koen
2016-04-27
We report a new type of nanosphere colloidal lithography to directly fabricate monodisperse silica (SiO2) nanorings by means of reactive ion etching of hollow SiO2 spheres. Detailed TEM, SEM, and AFM structural analysis is complemented by a model describing the geometrical transition from hollow sphere to ring during the etching process. The resulting silica nanorings can be readily redispersed in solution and subsequently serve as universal templates for the synthesis of ring-shaped core-shell nanostructures. As an example we used silica nanorings (with diameter of ∼200 nm) to create a novel plasmonic nanoparticle topology, a silica-Au core-shell nanoring, by self-assembly of Au nanoparticles (<20 nm) on the ring's surface. Spectroscopic measurements and finite difference time domain simulations reveal high quality factor multipolar and antibonding surface plasmon resonances in the near-infrared. By loading different types of nanoparticles on the silica core, hybrid and multifunctional composite nanoring structures could be realized for applications such as MRI contrast enhancement, catalysis, drug delivery, plasmonic and magnetic hyperthermia, photoacoustic imaging, and biochemical sensing.
Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.
Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko
2016-04-14
The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters.
The Coulomb Branch of 3d N= 4 Theories
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide
2017-09-01
We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.
Detection and direction discrimination of single vortex rings by harbour seals (Phoca vitulina).
Krüger, Yvonne; Hanke, Wolf; Miersch, Lars; Dehnhardt, Guido
2018-04-25
Harbour seals possess highly sensitive vibrissae that enable them to track hydrodynamic trails left behind by a swimming fish. Most of these trails contain vortex rings as a main hydrodynamic component. They may reveal information about their generator as the trails differ depending on the fish species, the fish's body shape, size and swimming style. In addition, fish generate single vortex rings in diverse natural situations. In this study, the ability of blindfolded stationary harbour seals to detect and analyse single vortex rings regarding directional information has been investigated. In three different behavioural experiments, the animals were trained to respond to single artificially generated vortex rings. The results show that harbour seals are able to respond to a variety of different vortex rings upon vibrissal stimulation. The investigation of the minimum hydrodynamically perceivable angle revealed that it is at least as small as 5.7 deg, which was the smallest adjustable angle. Moreover, harbour seals are capable of analysing the travel direction of a vortex ring perceived by the mystacial vibrissae irrespective of whether the vibrissae were stimulated ipsilaterally or contralaterally. In situations in which no complex hydrodynamic trail is available, it is advantageous for a hunting seal to be able to extract information from a single vortex ring. © 2018. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Yeghiayan, R. P.; Leech, J. W.; Witmer, E. A.
1973-01-01
An analysis method termed TEJ-JET is described whereby measured transient elastic and inelastic deformations of an engine-rotor fragment-impacted structural ring are analyzed to deduce the transient external forces experienced by that ring as a result of fragment impact and interaction with the ring. Although the theoretical feasibility of the TEJ-JET concept was established, its practical feasibility when utilizing experimental measurements of limited precision and accuracy remains to be established. The experimental equipment and the techniques (high-speed motion photography) employed to measure the transient deformations of fragment-impacted rings are described. Sources of error and data uncertainties are identified. Techniques employed to reduce data reading uncertainties and to correct the data for optical-distortion effects are discussed. These procedures, including spatial smoothing of the deformed ring shape by Fourier series and timewise smoothing by Gram polynomials, are applied illustratively to recent measurements involving the impact of a single T58 turbine rotor blade against an aluminum containment ring. Plausible predictions of the fragment-ring impact/interaction forces are obtained by one branch of this TEJ-JET method; however, a second branch of this method, which provides an independent estimate of these forces, remains to be evaluated.
Al-Omary, Fatmah A M; El-Emam, Ali A; Ghabbour, Hazem A; Chidan Kumar, C S; Quah, Ching Kheng; Fun, Hoong-Kun
2015-03-01
The title 1,3,4-oxa-diazole-2-thione derivative, C18H20N4OS2, crystallized with two independent mol-ecules (A and B) in the asymmetric unit. The 2-thienyl rings in both mol-ecules are rotationally disordered over two orientations by approximately 180° about the single C-C bond that connects it to the oxa-diazole thione ring; the ratios of site occupancies for the major and minor components were fixed in the structure refinement at 0.8:0.2 and 0.9:0.1 in mol-ecules A and B, respectively. The 1,3,4-oxa-diazole-2-thione ring forms dihedral angles of 7.71 (16), 10.0 (11) and 77.50 (12)° (mol-ecule A), and 6.5 (3), 6.0 (9) and 55.30 (12)° (mol-ecule B) with the major and minor parts of the disordered thio-phene ring and the mean plane of the adjacent piperazine ring, respectively, resulting in approximately V-shaped conformations for the mol-ecules. The piperazine ring in both mol-ecules adopts a chair conformation. The terminal benzene ring is inclined towards the mean plane of the piperazine ring with N-C-C-C torsion angles of -58.2 (3) and -66.2 (3)° in mol-ecules A and B, respectively. In the crystal, no inter-molecular hydrogen bonds are observed. The crystal packing features short S⋯S contacts [3.4792 (9) Å] and π-π inter-actions [3.661 (3), 3.664 (11) and 3.5727 (10) Å], producing a three-dimensional network.
Keeping the Edges Sharp I: Honing the Theory of Narrow Rings
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.; Rimlinger, Thomas; Hahn, Joseph M.
2016-05-01
Most of the rings that encircle Saturn, Uranus, and Neptune are very narrow structures with typical radial widths of just a few kilometers. Such extreme sharpness is surprising, as even slightly different orbital periods should allow ring particles to continually jostle one another in collisions that preserve angular momentum whileinexorably draining energy. Sharp edges should blur as rings spread in response to collisions and yet they do not. The generally accepted solution to this dilemma is to bracket each narrow ring with a pair of shepherding satellites that can pump energy back into the ring to replace that lost by collisions. But only a disappointing two of roughly twenty narrow rings actually have known attendant satellites. We present a compelling alternative in which the slight eccentricities and inclinations of narrow ringlets act as internal energy sources that can be tapped to prevent ring spreading. When unattended circular rings dissipate energy they must spread radially in order to preserve angular momentum. By contrast, eccentric or inclined rings have an extra degree of freedom that can be exploited to prevent radial spreading; energy is dissipated while keeping z-component of angular momentum, sqrt(a(1-e^2))cos(i), constant by simply decreasing the overall eccentricity (e) and/or inclination (i) of the entire ring. A real narrow ring moves inward as a unit, circularizes, and drops into the equatorial plane in a process that deters radial spreading for millions or billions of years. Using secular theory with dissipation (Zhang et al. 2013), we show that narrow rings are secular eigenstates in which ellipses are nested with pericenters almost, but not exactly aligned. The misalignment of pericenters is crucial in allowing energy dissipation to be shared evenly across the ring. We predict ring surface densities that are roughly constant across the ring's width, in contrast to profiles expected for shepherded rings. Rimlinger et al. (this meeting) present numerical simulations that critically test these findings.
Exact solutions for mass-dependent irreversible aggregations.
Son, Seung-Woo; Christensen, Claire; Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya
2011-10-01
We consider the mass-dependent aggregation process (k+1)X→X, given a fixed number of unit mass particles in the initial state. One cluster is chosen proportional to its mass and is merged into one, either with k neighbors in one dimension, or--in the well-mixed case--with k other clusters picked randomly. We find the same combinatorial exact solutions for the probability to find any given configuration of particles on a ring or line, and in the well-mixed case. The mass distribution of a single cluster exhibits scaling laws and the finite-size scaling form is given. The relation to the classical sum kernel of irreversible aggregation is discussed.
Bolligarla, Ramababu; Reddy, Samala Nagaprasad; Durgaprasad, Gummadi; Sreenivasulu, Vudagandla; Das, Samar K
2013-01-07
We describe the synthesis, crystal structures, electronic absorption spectra, and electrochemistry of a series of square-planar nickel-bis(quinoxaline-6,7-dithiolate) complexes with the general formula [Bu(4)N](2)[Ni(X(2)6,7-qdt)(2)], where X = H (1a), Ph (2a), Cl (3), and Me (4). The solution and solid-state electronic absorption spectral behavior and electrochemical properties of these compounds are strongly dependent on the electron donating/accepting nature of the substituent X, attached to the quinoxaline-6,7-dithiolate ring in the system [Bu(4)N](2)[Ni(X(2)6,7-qdt)(2)]. Particularly, the charge transfer (CT) transition bands observed in the visible region are greatly affected by the electronic nature of the substituent. A possible explanation for this influence of the substituents on electronic absorption and electrochemistry is described based on highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gaps, which is further supported by ground-state electronic structure calculations. In addition to this, the observed CT bands in all the complexes are sensitive to the solvent polarity. Interestingly, compounds 1a, 2a, 3, and 4 undergo reversible oxidation at very low oxidation potentials appearing at E(1/2) = +0.12 V, 0.033 V, 0.18 V, and 0.044 V vs Ag/AgCl, respectively, in MeOH solutions, corresponding to the respective couples [Ni(X(2)6,7-qdt)(2)](-)/[Ni(X(2)6,7-qdt)(2)](2-). Compounds 1a, 3, and 4 have been characterized unambiguously by single crystal X-ray structural analysis; compound 2a could not be characterized by single crystal X-ray structure determination because of the poor quality of the concerned crystals. Thus, we have synthesized the tetraphenyl phosphonium salt of the complex anion of 2a, [PPh(4)](2)[Ni(Ph(2)6,7-qdt)(2)]·3DMF (2b) for its structural characterization.
Single-ring magnetic cusp low gas pressure ion source
Bacon, Frank M.; Brainard, John P.; O'Hagan, James B.; Walko, Robert J.
1985-01-01
A single-ring magnetic cusp low gas pressure ion source designed for use in a sealed, nonpumped neutron generator utilizes a cathode and an anode, three electrically floating electrodes (a reflector behind the cathode, a heat shield around the anode, and an aperture plate), together with a single ring-cusp magnetic field, to establish and energy-filtering mechanism for producing atomic-hydrogen ions.
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning
2010-09-30
Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.
Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A
2016-10-01
The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.
Rapid structural analysis of nanomaterials in aqueous solutions
NASA Astrophysics Data System (ADS)
Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji
2017-04-01
Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less
Magnetic moment of single layer graphene rings
NASA Astrophysics Data System (ADS)
Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.
2018-01-01
Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.
Monomolecular Siloxane Film as a Model of Single Site Catalysts
Martynowycz, Michael W.; Hu, Bo; Kuzmenko, Ivan; ...
2016-09-06
Achieving structurally well-defined catalytic species requires a fundamental understanding of surface chemistry. Detailed structural characterization of the catalyst binding sites in situ, such as single site catalysts on silica supports, is technically challenging or even unattainable. Octadecyltrioxysilane (OTOS) monolayers formed from octadecyltrimethoxysilane (OTMS) at the air-liquid interface after hydrolysis and condensation at low pH were chosen as a model system of surface binding sites in silica-supported Zn 2+ catalysts. We characterize the system by grazing incidence X-ray diffraction, X-ray reflectivity (XR), and X-ray fluorescence spectroscopy (XFS). Previous X-ray and infrared surface studies of OTMS/OTOS films at the airliquid interface proposedmore » the formation of polymer OTOS structures. According to our analysis, polymer formation is inconsistent with the X-ray observations and structural properties of siloxanes; it is energetically unfavorable and thus highly unlikely. We suggest an alternative mechanism of hydrolysis/condensation in OTMS leading to the formation of structurally allowed cyclic trimers with the six-membered siloxane rings, which explain well both the X-ray and infrared results. XR and XFS consistently demonstrate that tetrahedral [Zn(NH 3) 4] 2+ ions bind to hydroxyl groups of the film at a stoichiometric ratio of OTOS:Zn ~ 2:1. The high binding affinity of zinc ions to OTOS trimers suggests that the six-membered siloxane rings are binding locations for single site Zn/SiO 2 catalysts. Finally, our results show that OTOS monolayers may serve as a platform for studying silica surface chemistry or hydroxyl-mediated reactions.« less
Effect of chain stiffness on the structure of single-chain polymer nanoparticles
NASA Astrophysics Data System (ADS)
Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.
2018-01-01
Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.
Performance of a junction termination extension avalanche photodiode for use with scintillators
NASA Astrophysics Data System (ADS)
Gramsch, E.; Pcheliakov, O.; Chistokhin, Igor B.
2008-11-01
An avalanche photodiode with a ring structure called junction termination extension (JTE) was built and tested. It has three diffused rings around the main junction to avoid early breakdown at the surface. The ITE rings have less doping than the main junction and can be built by well controlled single ion-implantation through a single mask. Avalanche photodiodes with two mm diameter active area have been have been built by implantation of boron with a dose of 2, 3, 4 and 5 × 1012 cm-2, followed by deep diffusion of the junction up to 14 μm. The dark current is strongly dependent on the implantation dose, decreasing with decreasing charge. For the APDs with implanted dose of 5 × 1012 cm-2 a gain of 8 is obtained at 1120 V. The energy resolution from a 137Cs source was measured to be 24.4% FWHM with a 2 × 2 × 2 mm3 BGO scintillator. We have also performed simulations of the gain and breakdown voltage that correlate well with the results.
Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution
NASA Astrophysics Data System (ADS)
Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn
2014-07-01
We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.
Mechanical deformation of carbon nanotube nano-rings on flat substrate
NASA Astrophysics Data System (ADS)
Zheng, Meng; Ke, Changhong
2011-04-01
We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.
Sohlberg, Karl; Bazargan, Gloria; Angelo, Joseph P; Lee, Choongkeun
2017-01-01
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391-5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100-200 pN range, consistent with published experimental estimates. Graphical Abstract A single surface-mounted switchable rotaxane.
Global structure of forked DNA in solution revealed by high-resolution single-molecule FRET.
Sabir, Tara; Schröder, Gunnar F; Toulmin, Anita; McGlynn, Peter; Magennis, Steven W
2011-02-09
Branched DNA structures play critical roles in DNA replication, repair, and recombination in addition to being key building blocks for DNA nanotechnology. Here we combine single-molecule multiparameter fluorescence detection and molecular dynamics simulations to give a general approach to global structure determination of branched DNA in solution. We reveal an open, planar structure of a forked DNA molecule with three duplex arms and demonstrate an ion-induced conformational change. This structure will serve as a benchmark for DNA-protein interaction studies.
Concentric superlattice pattern in dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jianyu; Dong, Lifang, E-mail: donglfhbu@163.com; Wei, Lingyan
2016-09-15
The concentric superlattice pattern with three sub-lattices is observed in the dielectric barrier discharge in air/argon for the first time. Its spatiotemporal structure investigated by an intensified charge-coupled device shows that it is an interleaving of three different sub-lattices, which are concentric-ring, concentric-framework, and concentric-dot, respectively. The images of single-frame indicate that the concentric-ring and concentric-framework are composed of individual filaments. By using the optical emission spectrum method, it is found that plasma parameters of the concentric-dot are different from those of the concentric-ring and concentric-framework. The spatiotemporal dynamics of the concentric superlattice pattern is dependent upon the effective fieldmore » of the distribution of the wall charges field and the applied field.« less
NASA Astrophysics Data System (ADS)
Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin
2015-05-01
We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.
Sohns, Christian; Bergau, Leonard; Seegers, Joachim; Lüthje, Lars; Vollmann, Dirk; Zabel, Markus
2014-10-01
In ablation of atrial fibrillation, the single-ring method aims for isolation of the posterior wall of the left atrium (LA) including the pulmonary veins (PVs) but avoiding posterior LA lesions. The aim of this randomized prospective study was to evaluate safety and efficacy of remote magnetic navigation (RMN)-guided single-ring ablation strategy as compared to standard RMN-guided circumferential PV ablation (PVA). Eighty consecutive patients undergoing PVA were enrolled prospectively and randomized equally into two study groups. RMN using the Stereotaxis system and open-irrigated 3.5-mm ablation catheters were used with a 3D mapping system in all procedures. Forty patients underwent RMN-guided single-ring ablation, and 40 patients received RMN-guided circumferential PVA. In the circumferential group, 3.3 ± 1.1 PVs were successfully isolated at the end of the procedure as compared to 3.1 ± 1.3 in the single-ring (box) group (p=0.38). All patients in the box group required additional posterior lesions in order to achieve electrical isolation of the PVs. Single-ring ablation was associated with longer procedure duration (p=0.01) and ablation time (p=0.001). After a single procedure, the proportion of patients free of any atrial tachycardia (AT)/atrial fibrillation (AF) episode at 12-month follow-up was 57 % in the box group and 58 % in the circ group. Using RMN, only minor complications have been observed. RMN-guided single-ring PVA provides comparable acute and long-term success rates as compared to RMN-guided circumferential PVA but requires additional posterior lesions to achieve PV isolation and increased procedure and ablation time. Procedural complication rates are low when using RMN.
Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene
NASA Astrophysics Data System (ADS)
Gonçalves, Norberto S.; Noda, Lúcia. K.
2017-10-01
In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.
Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring
NASA Astrophysics Data System (ADS)
Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud
2018-06-01
In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.
Quéméner, Bernard; Désiré, Cédric; Debrauwer, Laurent; Rathahao, Estelle
2003-01-17
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.
Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA.
Sorace-Agaskar, Cheryl; Leu, Jonathan; Watts, Michael R; Stojanovic, Vladimir
2015-10-19
We present a Cadence toolkit library written in VerilogA for simulation of electro-optical systems. We have identified and described a set of fundamental photonic components at the physical level such that characteristics of composite devices (e.g. ring modulators) are created organically - by simple instantiation of fundamental primitives. Both the amplitude and phase of optical signals as well as optical-electrical interactions are simulated. We show that the results match other simulations and analytic solutions that have previously been compared to theory for both simple devices, such as ring resonators, and more complicated devices and systems such as single-sideband modulators, WDM links and Pound Drever Hall Locking loops. We also illustrate the capability of such toolkit for co-simulation with electronic circuits, which is a key enabler of the electro-optic system development and verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenoff, T.M.; Parise, J.B.; Jones, G.A.
This is an extensive study of the non-aluminosilicate analogs of the zeolite RHO. This molecular sieve is of great interest commercially because of its catalytic properties. In the absence of rigid supporting structural subunits (smaller cages or channels), the aluminosilicate RHO exhibits atypical framework flexibility with large displacivere arrangements. The beryllophosphate and beryalloarsenate analogs are easily synthesized under very mild reaction conditions and therefore maybe of interest for inexpensive and rapid commercial production. However,t hey have decreased thermal stability. In an effort to increase thermal stability and explore framework flexibility, we have synthesized and characterized a series of analogs ofmore » the non-aluminosilicate RHO framework. All materials crystallize in the space group I23, ranging from a = 13.584-(2) A for Li-BePO RHO to a = 14.224(4) A for Ba-RbBeAsO RHO for hydrated phases. The extra framework cations are distributed over the double 8-ring, single 8-ring, and two single 6-ring sites. Partially and fully dehydrated phases were also studied for changes in framework stability. Predictive trends based on the type of cation exchanged into the framework were determined by {sup 9}Be and {sup 31}P MAS NMR. 50 refs., 8 figs., 6 tabs.« less
Determination of ion mobility in EHD flow zone of plasma generator
NASA Astrophysics Data System (ADS)
Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik
2015-12-01
Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility
Near Infrared Photometry of the Jovian Ring and Adrastea
NASA Astrophysics Data System (ADS)
Meier, Roland; Smith, Bradford A.; Owen, Tobias C.; Becklin, E. E.; Terrile, Richard J.
1999-10-01
The near IR spectral reflectance of the Jupiter dust ring is poorly known because of problems with scattered light from the planet. Here we report colors for the jovian ring and one of the two ring satellites, Adrastea, using observations from the near-IR camera NICMOS on the Hubble Space Telescope. Near the time when the Earth crossed the jovian ring plane in the fall of 1997, we recorded broad-band images at ˜1.1 (F110W), ˜1.6 (F160W), and ˜2.05 μm (F205W) and derived a single-pass, in radial direction measured ring brightness of 19.19±0.07, 18.76±0.06, and 18.49±0.04 mag linear arcsec -1, respectively. These single-pass radial ring brightnesses were derived from the observable part of the ring at a projected distance of >1.2 RJ using a model to remove projection effects. The corresponding apparent magnitudes for Adrastea are 18.30±0.10 (F110W), 17.73±0.09 (F160W), and 17.57±0.07 mag (F205W), obtained at a phase angle of φ=11.3°. The relative spectral reflectance of the ring and that of Adrastea turn out to be nearly identical, slightly reddish with a slope of about 15-20% between 1 and 2 μm. No evidence for transient ice crystals to be present in the main ring is seen. Our data are also in reasonable agreement with earlier ground-based measurements by Neugebauer et al. (1981), if we take their relatively large errors into account. The similarities of the colors of all inner satellites, including Io, are striking. The measured ring color provides evidence that the backscattered light from the ring is due to grains with mean particle sizes in excess of several micrometers. We were also able to infer a spatial particle distribution for the main ring. Its radial surface-density profile peaks sharply near the outer edge of the ring at the orbit of Adrastea, suggesting a strong dynamical relationship between the satellite and the ring particles. Our radial profile of the main ring is in excellent agreement with the results from Voyager images in backscattered light at visible wavelengths, except that we could not resolve any fine structures. The halo above and below the ring plane with a peak brightness near the inner edge of the ring appears to have a blue color compared to the main ring, but due to the low surface brightness of the halo the statistical significance of this color trend is only marginal. Such a color trend would be consistent with a dust population dominated by particles smaller than those in the main ring.
Storage-ring Electron Cooler for Relativistic Ion Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less
Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.
Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome
2017-01-04
The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.
Structure and Oxidation of Pyrrole Adducts Formed between Aflatoxin B2a and Biological Amines.
Rushing, Blake R; Selim, Mustafa I
2017-06-19
Aflatoxin B 2a has been shown to bind to proteins through a dialdehyde intermediate under physiological conditions. The proposed structure of this adduct has been published showing a Schiff base interaction, but adequate verification using structural elucidation instrumental techniques has not been performed. In this work, we synthesized the aflatoxin B 2a amino acid adduct under alkaline conditions, and the formation of a new product was determined using high performance liquid chromatography-time-of-flight mass spectrometry. The resulting accurate mass was used to generate a novel proposed chemical structure of the adduct in which the dialdehyde forms a pyrrole ring with primary amines rather than the previously proposed Schiff base interaction. The pyrrole structure was confirmed using 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation NMR and tandem mass spectrometry. Reaction kinetics show that the reaction is overall second order and that the rate increases as pH increases. Additionally, this study shows for the first time that aflatoxin B 2a dialdehyde forms adducts with phosphatidylethanolamines and does so through pyrrole ring formation, which makes it the first aflatoxin-lipid adduct to be structurally identified. Furthermore, oxidation of the pyrrole adduct produced a product that was 16 m/z heavier. When the aflatoxin B 2a -lysine (ε) adduct was oxidized, it gave a product with an accurate mass, mass fragmentation pattern, and 1 H NMR spectrum that match aflatoxin B 1 -lysine, which suggest the transformation of the pyrrole ring to a pyrrolin-2-one ring. These data give new insight into the fate and chemical properties of biological adducts formed from aflatoxin B 2a as well as possible interferences with known aflatoxin B 1 exposure biomarkers.
Hernández Linares, María-Guadalupe; Bernès, Sylvain; Flores-Alamo, Marcos; Guerrero-Luna, Gabriel; Martínez-Gallegos, Anselmo A.
2012-01-01
Diosgenin [or (22R,25R)-spirost-5-en-3β-ol] is the starting material of the Marker degradation, a cheap semi-synthesis of progesterone, which has been designated as an International Historic Chemical Landmark. Thus far, a single X-ray structure for diosgenin is known, namely its dimethyl sulfoxide solvate [Zhang et al. (2005 ▶). Acta Cryst. E61, o2324–o2325]. We have now determined the structure of the hemihydrate, C27H42O3·0.5H2O. The asymmetric unit contains two diosgenin molecules, with quite similar conformations, and one water molecule. Hydroxy groups in steroids and water molecules form O—H⋯O hydrogen-bonded R 5 4(10) ring motifs. Fused edge-sharing R(10) rings form a backbone oriented along [100], which aggregates the diosgenin molecules in the crystal structure. PMID:22904823
Formation of moon induced gaps in dense planetary rings
NASA Astrophysics Data System (ADS)
Grätz, F.; Seiß, M.; Spahn, F.
2017-09-01
Recent works have shown that bodies embedded in planetary rings create S-shaped density modula- tions called propellers if their mass deceeds a certain threshold or cause a gap around the entire circumference of the disc if the embedded bodies mass exceeds it. Two counteracting physical processes govern the dynamics and determine what structure is created: The gravitational disturber excerts a torque on nearby disc particles, sweeping them away from itself on both sides thus depleting the discs density and forming a gap. Diffusive spreading of the disc material due to collisions counteracts the gravitational scattering and has the tendency to fill the gap. We develop a nonlinear diffusion model that accounts for those two counteracting processes and describes the azimutally averaged surface density profile an embedded moon creates in planetary rings. The gaps width depends on the moons mass, its radial position and the rings viscosity allowing us to estimate the rings viscosity in the vicinity of the Encke and Keeler gap in Saturns A-Ring and compare it to previous measurements. We show that for the Keeler gap the time derivative of the semi-major axis as derived by Goldreich and Tremaine 1980 is underestimated yielding an underestimated viscosity for the ring. We therefore derive a corrected expression for said time derivative by fitting the solutions of Hill's equations for an ensemble of test particles. Furthermore we estimate the masses for potentionally unseen moonlets in the C-Ring and Cassini division.
Interaction of Humic Acids with Organic Toxicants
NASA Astrophysics Data System (ADS)
Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.
2016-08-01
Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.
Morphology and variability of the Titan ringlet and Huygens ringlet edges
NASA Astrophysics Data System (ADS)
Jerousek, Richard G.; Colwell, Joshua E.; Esposito, Larry W.
2011-11-01
We present a forward modeling approach for determining, in part, the ring particle spatial distribution in the vicinity of sharp ring or ringlet edges. Synthetic edge occultation profiles are computed based on a two-parameter particle spatial distribution model. One parameter, h, characterizes the vertical extent of the ring and the other, δ, characterizes the radial scale over which the ring optical depth transitions from the background ring value to zero. We compare our synthetic occultation profiles to high resolution stellar occultation light curves observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) for occultations by the Titan ringlet and Huygens ringlet edges. More than 100 stellar occultations of the Huygens ringlet and Titan ringlet edges were studied, comprising 343 independent occultation cuts of the edges of these two ringlets. In 237 of these profiles the measured light-curve was fit well with our two-parameter edge model. Of the remaining edge occultations, 69 contained structure that could only be fit with extremely large values of the ring-plane vertical thickness ( h > 1 km) or by adopting a different model for the radial profile of the ring optical depth. An additional 37 could not be fit by our two-parameter model. Certain occultations at low ring-plane incidence angles as well as occultations nearly tangent to the ring edge allow the direct measurement of the radial scale over which the particle packing varies at the edge of the ringlet. In 24 occultations with these particular viewing geometries, we find a wide variation in the radial scale of the edge. We are able to constrain the vertical extent of the rings at the edge to less than ˜300 m in the 70% of the occultations with appropriate viewing geometry, however tighter constraints could not be placed on h due to the weaker sensitivity of the occultation profile to vertical thickness compared to its sensitivity to δ. Many occultations of a single edge could not be fit to a single value of δ, indicating large temporal or azimuthal variability, although the azimuthal variation in δ with respect to the longitudes of various moons in the system did not show any discernible pattern.
Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F
2009-04-30
Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma < 250 fs) modulation components arising from intermolecular modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile and dimethylsulfoxide. The results strongly support a structural assignment of the low-frequency modes that are coupled to the primary and secondary electron-transfer reactions in photosynthetic reaction centers to intermolecular modes between the redox-active chromophores and first-solvation shell groups from the surrounding protein, and an important additional function of the intermolecular modes in the stabilization of charged intermediates is suggested.
NASA Astrophysics Data System (ADS)
Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.
2016-11-01
EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE
Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)
1995-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
[A comparative study of three types of IUD].
Lai, K R; Chen, Q B
1991-11-01
In Zhejiang Province, China, there are 2.7 million IUD users. 90% of them use stainless steel single ring. In order to evaluate the effectiveness of the IUDs, the Provincial Family Planning Commission organized a prospective comparative study on 3 kinds of IUDs: the single ring made in Wuxi, the metal ring with plastic core made in Beijing, and the copper TCU 220c made in Tianjin. Between October 1985 and March 1986 1199 healthy women aged 20-39 who had 2 or fewer normal deliveries and without previous history of ectopic pregnancy were screened and recruited to the study. They were randomly assigned to be inserted with the IUDs. 400 women had single ring, 402 women had metal with plastic core, and 397 had TCu 220c. 8 postinsertion follow-up visits were conducted up to 3 years, and menstruations were recorded every month. During the study, 4 cases were lost to follow-up. In the single-ring group, the cumulative continuation rates at 12, 24, and 36 months were 73.4, 66.7, and 65.7% respectively. For the metal-plastic ring group, it was 80.9, 72.3, and 69.3% and for the TCu 220c group, it was 94.5, 88.4, and 83.1%, respectively. The expulsion rates among the 3 kinds of IUDs were statistically significant at 12, 24, and 36 months. The highest expulsion rates were the single ring and TCu 220c were the lowest. The pregnancy rates were highest among metal-plastic ring users and lowest among TCu 220c users. The differences were not statistically significant between single ring and metal-plastic ring users. Discontinuation due to excessive menstrual bleeding were similar among the 3 methods probably due to treatment of the users who experienced excessive bleeding. Younger women and women who experienced fewer pregnancies were found to have higher expulsion and pregnancy rates. But the occurrence of side effects such as prolonged menstrual periods, spotting, and back pain were highest among TCu 220c users. It was recommended that the more effective TCu 220c should be promoted to replace the single ring. Since different sizes of TCu IUDs have been developed, it would be possible to reduce excessive menstrual bleeding and its side effects.
Illán-Cabeza, Nuria A; Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Peña-Ruiz, Tomás; Quirós-Olozábal, Miguel; Moreno-Carretero, Miguel N
2016-11-28
2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X 2 ]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(ii) to Zn(ii) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ-π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.
Kuck, Dietmar; Linke, Jens; Teichmann, Lisa Christin; Barth, Dieter; Tellenbröker, Jörg; Gestmann, Detlef; Neumann, Beate; Stammler, Hans-Georg; Bögge, Hartmut
2016-04-28
The solid-state molecular structure of centrohexaindane (), a unique hydrocarbon comprising six benzene rings clamped to each other in three dimensions around a neopentane core, and the molecular packing in crystals of ·CHCl3 are reported. The molecular Td-symmetry and the Cartesian orientation of the six indane wings of in the solid state have been confirmed. The course and limitation of electrophilic aromatic substitution of are demonstrated for the case of nitration. Based on nitration experiments of a lower congener of , tribenzotriquinacene , the six-fold nitrofunctionalisation of has been achieved in excellent yield, giving four constitutional isomers, two nonsymmetrical ( and ) and two C3-symmetrical ones ( and ), all of which contain one single nitro group in each of the six benzene rings. The relative yields of the four isomers (∼3 : 1 : 1 : 3) point to a random electrophilic attack of the electrophiles at the twelve formally equivalent outer positions of the aromatic periphery of , suggesting electronic independence of its six aromatic π-electron systems. In turn, the pronounced conformational rigidity of the centrohexacyclic framework of enables the unequivocal structural identification of the isomeric hexanitrocentrohexaindanes by (1)H NMR spectroscopy.
Diez-Silva, Monica; Park, YongKeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra
2012-01-01
Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host. PMID:22937223
NASA Astrophysics Data System (ADS)
Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra
2012-08-01
Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.
Novel wearable and wireless ring-type pulse oximeter with multi-detectors.
Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh
2014-09-19
The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter.
Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors
Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh
2014-01-01
The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter. PMID:25244586
Spin flip in single quantum ring with Rashba spin–orbit interation
NASA Astrophysics Data System (ADS)
Liu, Duan-Yang; Xia, Jian-Bai
2018-03-01
We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin–orbit interaction. It is shown that when Rashba spin–orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious. Howerver if a giant Rashba spin–orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability. Project supported by the National Natural Science Foundation of China (Grant No. 11504016).
Gross, Vladimir; Mayer, Georg
2015-01-01
The tardigrades (water bears) are a cosmopolitan group of microscopic ecdysozoans found in a variety of aquatic and temporarily wet environments. They are members of the Panarthropoda (Tardigrada + Onychophora + Arthropoda), although their exact position within this group remains contested. Studies of embryonic development in tardigrades have been scarce and have yielded contradictory data. Therefore, we investigated the development of the nervous system in embryos of the tardigrade Hypsibius dujardini using immunohistochemical techniques in conjunction with confocal laser scanning microscopy in an effort to gain insight into the evolution of the nervous system in panarthropods. An antiserum against acetylated α-tubulin was used to visualize the axonal processes and general neuroanatomy in whole-mount embryos of the eutardigrade H. dujardini. Our data reveal that the tardigrade nervous system develops in an anterior-to-posterior gradient, beginning with the neural structures of the head. The brain develops as a dorsal, bilaterally symmetric structure and contains a single developing central neuropil. The stomodeal nervous system develops separately and includes at least four separate, ring-like commissures. A circumbuccal nerve ring arises late in development and innervates the circumoral sensory field. The segmental trunk ganglia likewise arise from anterior to posterior and establish links with each other via individual pioneering axons. Each hemiganglion is associated with a number of peripheral nerves, including a pair of leg nerves and a branched, dorsolateral nerve. The revealed pattern of brain development supports a single-segmented brain in tardigrades and challenges previous assignments of homology between tardigrade brain lobes and arthropod brain segments. Likewise, the tardigrade circumbuccal nerve ring cannot be homologized with the arthropod 'circumoral' nerve ring, suggesting that this structure is unique to tardigrades. Finally, we propose that the segmental ganglia of tardigrades and arthropods are homologous and, based on these data, favor a hypothesis that supports tardigrades as the sister group of arthropods.
[Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].
Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun
2016-03-01
Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.
The Coulomb Branch of 3d $${\\mathcal{N}= 4}$$ N = 4 Theories
Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide
2017-06-03
We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on themore » Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.« less
Nanoscopic compartmentalization of membrane protein motion at the axon initial segment.
Albrecht, David; Winterflood, Christian M; Sadeghi, Mohsen; Tschager, Thomas; Noé, Frank; Ewers, Helge
2016-10-10
The axon initial segment (AIS) is enriched in specific adaptor, cytoskeletal, and transmembrane molecules. During AIS establishment, a membrane diffusion barrier is formed between the axonal and somatodendritic domains. Recently, an axonal periodic pattern of actin, spectrin, and ankyrin forming 190-nm-spaced, ring-like structures has been discovered. However, whether this structure is related to the diffusion barrier function is unclear. Here, we performed single-particle tracking time-course experiments on hippocampal neurons during AIS development. We analyzed the mobility of lipid-anchored molecules by high-speed single-particle tracking and correlated positions of membrane molecules with the nanoscopic organization of the AIS cytoskeleton. We observe a strong reduction in mobility early in AIS development. Membrane protein motion in the AIS plasma membrane is confined to a repetitive pattern of ∼190-nm-spaced segments along the AIS axis as early as day in vitro 4, and this pattern alternates with actin rings. Mathematical modeling shows that diffusion barriers between the segments significantly reduce lateral diffusion along the axon. © 2016 Albrecht et al.
Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.
Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T
2016-05-05
Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.
Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei
2014-12-01
To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keto-enol tautomerism in asymmetric Schiff bases derived from p-phenylenediamine
NASA Astrophysics Data System (ADS)
Užarević, Krunoslav; Rubčić, Mirta; Stilinović, Vladimir; Kaitner, Branko; Cindrić, Marina
2010-12-01
Reaction of dehydroacetic acid and p-phenylenediamine afforded a monosubstituted Schiff base, I, with the other amino group free. In further reactions with various salicylaldehyde derivatives, I served as a precursor for synthesis of asymmetric bis-Schiff bases. The synthesized compounds are thus comprised of two subunits, dehydroacetic ( dha) and salicylidene ( sal), which are bridged by the phenylene linker. All products were investigated by means of elemental analysis, FT-IR and NMR spectroscopy, thermal methods, powder X-ray diffraction and, when possible, by single crystal X-ray crystallography. Structural and spectroscopic studies revealed that in the bis-products, the dha subunit adopts the keto-amino tautomeric form, while the sal subunit adopts the enol-imino form. Tautomeric forms were not affected if a methoxo group was introduced on the salicylidene ring. Both tautomeric subunits are stabilized by strong resonance-assisted hydrogen bonds, RAHB. The two subunits of the prepared bis-Schiff bases predominantly retain in solution the same tautomeric forms as found in the solid state.
NASA Astrophysics Data System (ADS)
E. K., El-Shewy; M. I. Abo el, Maaty; H. G., Abdelwahed; M. A., Elmessary
2011-01-01
Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nh0, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nh0, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.
Sonti, Rajesh; Rai, Rajkishor; Ragothama, Srinivasarao; Balaram, Padmanabhan
2012-12-13
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel β-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-LFV(D)P(L)PLFV-OMe (peptide 1) favors the β-hairpin conformation nucleated by the type II' β-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded β-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C(α)-C(β)(χ(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinkel, L.J.; Altona, C.
1987-02-01
A graphical method is presented for the conformational analysis of the sugar ring in DNA fragments by means of proton-proton couplings. The coupling data required for this analysis consist of sums of couplings, which are referred to as sigma 1' (= J1'2' + J1'2''), sigma 2' (= J1'2' + J2'3' + J2'2''), sigma 2'' (= J1'2'' + J2''3' + J2'2'') and sigma 3' (= J2'3' + J2''3' + J3'4'). These sums of couplings correspond to the distance between the outer peaks of the H1', H2', H2'' and H3' (31P) resonances, respectively, (except for sigma 2' and sigma 2'' in themore » case of a small chemical shift difference between the H2' and H2'' resonances) and can often be obtained from 1H-NMR spectra via first-order measurement, obviating the necessity of a computer-assisted simulation of the fine structure of these resonances. Two different types of graphs for the interpretation of the coupling data are discussed: the first type of graph serves to probe as to whether or not the sugar ring occurs as a single conformer, and if so to analyze the coupling data in terms of the geometry of this sugar ring. In cases where the sugar ring does not occur as a single conformer, but as a blend of N- and S-type sugar puckers, the second type of graph is used to analyze the coupling data in terms of the geometry and population of the most abundant form. It is shown that the latter type of analysis can be carried out on the basis of experimental values for merely sigma 1',sigma 2' and sigma 2'', without any assumptions or restrictions concerning a relation between the geometry of the N- and S-type conformer. In addition, the question is discussed as to how insight can be gained into the conformational purity of the sugar ring from the observed fine structure of the H1' resonance.« less
Out-of-plane (SH) soil-structure interaction: a shear wall with rigid and flexible ring foundation
NASA Astrophysics Data System (ADS)
Le, Thang; Lee, Vincent W.; Luo, Hao
2016-02-01
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.
Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution
NASA Astrophysics Data System (ADS)
Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick
2013-09-01
A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and pharmaceutical applications.A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and pharmaceutical applications. Electronic supplementary information (ESI) available: 1H-NMR, DOSY, FTIR, and GPC measurements, methods and results of the copolymers in PEG-PLA-PEG synthesis. See DOI: 10.1039/c3nr02899b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo
Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
McCauley Sinks: A compound breccia pipe in evaporite karst, Holbrook Basin, Arizona, U.S.A
Neal, J.T.; Johnson, K.S.
2002-01-01
The McCauley Sinks, in the Holbrook basin of northeastern Arizona, are comprised of some 50 individual sinkholes within a 3-km-wide depression. The sinks are grouped in a semi-concentric pattern of three nested rings. The outer ring is an apparent tension zone containing ring fractures. The two inner rings are semi-circular chains of large sinkholes, ranging up to 100 m across and 50 m deep. Several sub-basins within the larger depression show local downwarping and possible incipient sinkholes. Permian Kaibab Formation limestone is the principal surface lithology; the limestone here is less than 15 m thick and is near its easternmost limit. Although surface rillenkarren are present, and the sinks are seen in the Kaibab limestone outcrops, the Kaibab is mainly a passive rock unit that has collapsed into solution cavities developed in underlying salt beds. Beneath the Kaibab is Coconino Sandstone, which overlies the Permian Schnebly Hill Formation, the unit containing the evaporite rocks-principally halite in the Corduroy Member. Evaporite karst in this part of the Holbrook basin is quite different from the eastern part, probably because of the westward disappearance of the Holbrook anticline, a structure that has major joint systems that help channel water down to the salt beds farther to the east. Also, the McCauley Sinks are near the western limits of the evaporites. The structure at McCauley Sinks suggests a compound breccia pipe, with multiple sinks contributing to the inward-dipping major depression. The Richards Lake depression, 5 km southeast of McCauley Sinks, is similar in form and size but contains only a single, central sinkhole. An apparent difference in hydrogeology at McCauley Sinks is their proximity to the adjacent, deeply incised, Chevelon Canyon drainage, but the hydrologic connections are unknown. The 3-km-wide McCauley Sinks karst depression, along with five other nearby depressions, provide substantial hydrologic catchment. Because of widespread piping into karst features and jointed bedrock at shallow depth, runoff water does not pond easily at the surface. There appears to be a greater recharge efficiency here than in alluvial areas; thus concern exists for groundwater users downgradient from the karst area. Accordingly, sinkholes and open fissures should not be used for waste disposal.
Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying
2017-01-01
We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow. PMID:28901145
Gravitational lensing by ring-like structures
NASA Astrophysics Data System (ADS)
Lake, Ethan; Zheng, Zheng
2017-02-01
We study a class of gravitational lensing systems consisting of an inclined ring/belt, with and without an added point mass at the centre. We show that a common feature of such systems are so-called pseudo-caustics, across which the magnification of a point source changes discontinuously and yet remains finite. Such a magnification change can be associated with either a change in image multiplicity or a sudden change in the size of a lensed image. The existence of pseudo-caustics and the complex interplay between them and the formal caustics (which correspond to points of infinite magnification) can lead to interesting consequences, such as truncated or open caustics and a non-conservation of total image parity. The origin of the pseudo-caustics is found to be the non-differentiability of the solutions to the lens equation across the ring/belt boundaries, with the pseudo-caustics corresponding to ring/belt boundaries mapped into the source plane. We provide a few illustrative examples to understand the pseudo-caustic features, and in a separate paper consider a specific astronomical application of our results to study microlensing by extrasolar asteroid belts.
Solitary Ring Pairs and Non-Thermal Regimes in Plasmas Connected with Black Holes*
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2011-10-01
The two-dimensional plasma and field configurations that can be associated with compact objects such as black holes are described, (in the limit where assuming a scalar pressure can be justified), by two characteristic non-linear equations: i) one that connects the plasma density profile to that of the relevant magnetic surfaces and is called the ``master equation'': ii) the other, the ``vertical equilibrium equation,'' connects the plasma pressure to the density and the magnetic surfaces and is closely related to the G-S equation for magnetically confined laboratory plasmas. Two kinds of solutions are found that consist of: i) a periodic sequence of plasma rings; ii) solitary pairs of rings. Experimental observations support the presence of rings around collapsed objects. Tridimensional configuration are found in the linear approximation as consisting of trailing spirals. Observations of High Frequency Quasi-Periodic oscillations implies that they originate from 3-dimentional structures. The existing theory is extended to involve non-thermal particle distributions in order to comply with relevant experimental observations. *Sponsored in part by the U.S. DOE.
Single-pass BPM system of the Photon Factory storage ring.
Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y
1998-05-01
At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.
Herberg, Samuel; Varghai, Daniel; Cheng, Yuxuan; Dikina, Anna D.; Dang, Phuong N.; Rolle, Marsha W.; Alsberg, Eben
2018-01-01
Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating in vitro endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects. PMID:29577017
Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines
NASA Astrophysics Data System (ADS)
Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George
2013-09-01
Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.
Ring-opening of {sigma}-thienyl and {sigma}-furyl ligands at ditungsten (M=M) centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chisholm, M.H.; Haubrich, S.T.; Huffman, J.C.
1997-02-19
A series of compounds of formula 1,2-M{sub 2}({sigma}-Th){sub 2}(NMe{sub 2}){sub 4}, 1,has been prepared, where M = Mo and/or W and Th = 2-thienyl[2-Th], 3-thienyl[3-Th], 5-methyl-2-thienyl[2,5-MeTh], and 2-benzothienyl[2-BTh]. Addition of {sup t}BuOH or CF{sub 3}Me{sub 2}COH to hydrocarbon solutions of 1, where M = W, lead to ring-opened products, 2, when the thienyl ligand is attached via the 2-carbon position. No ring-opening occurs for 3-thienyl derivatives. W{sub 2}(OR){sub 5}({mu}-CCH{sub 2}CHCHS)({sigma}-2-Th), 2, where one of the 2-thienyl rings has been opened, has been fully characterized and shown to be derived from a ring-opened {mu}-vinylidene intermediate W{sub 24}/(O{sup t}Bu){sub 4}({mu}-CCHCHCHS)({sigma}-2-Th). The compoundmore » W{sub 2}({sigma}-2-Fu){sub 2}(NMe{sub 2}){sub 4} was prepared and characterized (2-Fu = 2-furyl) and shown to undergo ring-opening in its reaction with {sup t}BuOH to give W{sub 2}(O{sup t}Bu){sub 5}({mu}-CCH{sub 2}CHCHO)({sigma}-2-Fu), 4, in an analogous manner to the 2-Th complex. The complexes 1 (M = W, 2-Th), 2, 3, and 4 have been characterized by single crystal X-ray studies. The results described herein are compared to other ring-opening reactions of S, N, and O organic heterocyclic compounds as models for the activation of S, N, and O containing fossil fuels in hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and hydrodeoxygenation (HDO) processes. 36 refs., 7 figs., 5 tabs.« less
Development of alternative plasma sources for cavity ring-down measurements of mercury.
Duan, Yixiang; Wang, Chuji; Scherrer, Susan T; Winstead, Christopher B
2005-08-01
We have been exploring innovative technologies for elemental and hyperfine structure measurements using cavity ring-down spectroscopy (CRDS) combined with various plasma sources. A laboratory CRDS system utilizing a tunable dye laser is employed in this work to demonstrate the feasibility of the technology. An in-house fabricated sampling system is used to generate aerosols from solution samples and introduce the aerosols into the plasma source. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Several microwave plasma discharge devices are tested for mercury CRDS measurement. Various discharge tubes have been designed and tested to reduce background interference and increase the sample path length while still controlling turbulence generated from the plasma gas flow. Significant background reduction has been achieved with the implementation of the newly designed tube-shaped plasma devices, which has resulted in a detection limit of 0.4 ng/mL for mercury with the plasma source CRDS. The calibration curves obtained in this work readily show that linearity over 2 orders of magnitude can be obtained with plasma-CRDS for mercury detection. In this work, the hyperfine structure of mercury at the experimental plasma temperatures is clearly identified. We expect that plasma source cavity ring-down spectroscopy will provide enhanced capabilities for elemental and isotopic measurements.
Ring-Down Spectroscopy for Characterizing a CW Raman Laser
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2007-01-01
.A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to abrupt switch-off, G1 is the initial rate of decay of the pump field, and G2 is the final rate of decay of the pump field. Hence, it is possible to determine all the parameters from a single ring-down scan, provided that the measurements taken in that scan are sufficiently accurate and complete.
Elliptic-type soliton combs in optical ring microresonators
NASA Astrophysics Data System (ADS)
Dikandé Bitha, Rodrigues D.; Dikandé, Alain M.
2018-03-01
Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a 2 ×2 -matrix Lamé-type eigenvalue problem, the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical simulations of the Lugiato-Lefever equation are also carried out seeking for stationary-wave solutions, and the numerical results are in very good agreement with the collective-coordinate approach.
NASA Astrophysics Data System (ADS)
Kyrazis, Demos T.; Eaton, Frank D.; Black, Don G.; Black, Wiley T.; Black, Alastair
2009-08-01
Balloons, similar to those used for meteorological observations, are commonly used to carry a small instrumentation package for measuring optical turbulence in the atmosphere as a function of altitude. Two temperature sensors, one meter apart, measure a single point of the temperature structure function. The raw data is processed to provided the value of CT2, and the results transmitted to a ground receiving site. These data are converted to the index of refraction structure constant, Cn2. The validity of these measurements depend on the correctness of a number of assumptions. These include local isotropy of the turbulence and the existence of the Kolmogorov inertial subrange, and that the data is not contaminated by the wake of the ascending balloon. A variety of experiments on other platforms, and in the laboratory, demonstrate that the assumptions upon which these balloon measurements are made are not valid for a large percentage of the above described flights. In order to collect data whose interpretation did not require preconceived assumptions, the balloon ring instrumentation system was developed. The ring is 8.69 meters in diameter, with a cross-sectional diameter of 14 cm. The ring is hung just below the balloon, so that the wake goes through the center of the ring, and the sensors are mounted tangent to the circumference of the ring. The raw data is transmitted to the ground with a bandwidth extending to 1.25 kHz. A sample of the measurements taken during a flight at Vandenberg Air Force Base, Calif. is presented.
The Dynamics of a Viscous Gas Ring around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Riffert, H.
2000-01-01
The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.
Dynamic apical surface rings in superficial layer cells of koi Cyprinus carpio scale epidermis.
DePasquale, J A
2016-09-01
This study examined the novel ring-shaped structures found in the apical surface of individual cells of the scale epidermis of koi Cyprinus carpio. These apical rings are highly dynamic structures with lifetimes ranging from a few to several minutes. While several ring forms were observed, the predominant ring morphology is circular or oval. Two distinct ring forms were identified and designated type I and type II. Type I rings have a well-defined outer border that encircles the surface microridges. Type II rings are smooth-surfaced, dinner-plate-like structures with membranous folds or compressed microridges in the centre. Type II rings appear less frequently than type I rings. Type I rings form spontaneously, arising from swollen or physically interrupted microridges but without initially perturbing the encircled microridges. After persisting for up to several minutes the ring closes in a centripetal movement to form a circular or irregular-shaped structure, the terminal disc. The terminal disc eventually disappears, leaving behind a submembranous vesicle-like structure, the terminal body. Type I rings can undergo multiple cycles of formation and closing. Recycling epidermal apical rings form through centrifugal expansion from the terminal disc followed by apparent contraction back to the disc structure, whereupon the cycle may repeat or cease. The findings demonstrate a novel skin surface structure in fishes and are discussed with respect to communication with the external aqueous environment. © 2016 The Fisheries Society of the British Isles.
Super Star Clusters and H II Regions in Nuclear Rings
NASA Astrophysics Data System (ADS)
Filippenko, Alex
1996-07-01
We propose to obtain WFPC2 optical broad-band {F547M and F814W} and narrow-band Halpha+ionN2 {F658N} images of nuclear starburst rings in four nearby galaxies for which we already have ultraviolet {F220W} FOC data. Nuclear rings {or ``hot- spot'' regions} in barred spirals are some of the nearest and least obscured starburst regions, and HST images of nuclear rings in several galaxies show that the rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. These compact clusters, many having luminosities exceeding that of the R136 cluster in 30 Doradus, represent a violent mode of star formation distinct from that seen in ordinary disk ionH2 regions, and the nuclear rings present us with an opportunity to study large numbers of these extreme clusters in relatively unobscured starburst environments. It has been suggested that super star clusters are present-day versions of young globular clusters. To evaluate this hypothesis, it is important to understand the physical properties and stellar contents of the clusters, but previous HST studies of nuclear ring galaxies have only used single-filter observations. Together with our UV data, new WFPC2 images will enable us to determine the H II region and cluster luminosity functions within nuclear rings, measure cluster radii, derive age and mass estimates for the clusters by comparison with evolutionary synthesis models, and study the structure and evolution of nuclear rings.
2015-01-01
The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID:24617538
The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome
Pevala, Vladimír; Truban, Dominika; Bauer, Jacob A.; Košťan, Július; Kunová, Nina; Bellová, Jana; Brandstetter, Marlene; Marini, Victoria; Krejčí, Lumír; Tomáška, Ľubomír; Nosek, Jozef; Kutejová, Eva
2016-01-01
To study the mechanisms involved in the maintenance of a linear mitochondrial genome we investigated the biochemical properties of the recombination protein Mgm101 from Candida parapsilosis. We show that CpMgm101 complements defects associated with the Saccharomyces cerevisiae mgm101–1ts mutation and that it is present in both the nucleus and mitochondrial nucleoids of C. parapsilosis. Unlike its S. cerevisiae counterpart, CpMgm101 is associated with the entire nucleoid population and is able to bind to a broad range of DNA substrates in a non-sequence specific manner. CpMgm101 is also able to catalyze strand annealing and D-loop formation. CpMgm101 forms a roughly C-shaped trimer in solution according to SAXS. Electron microscopy of a complex of CpMgm101 with a model mitochondrial telomere revealed homogeneous, ring-shaped structures at the telomeric single-stranded overhangs. The DNA-binding properties of CpMgm101, together with its DNA recombination properties, suggest that it can play a number of possible roles in the replication of the mitochondrial genome and the maintenance of its telomeres. PMID:26743001
SIBYLS - a SAXS and Protein Crystallography Beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, C.; MacDowell, A.A.; Celestre, R.S.
2004-05-12
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{delta}E{approx}1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec through a 100{mu}m pinhole at 12.4KeV. For SAXS the flux is up to 3x1013photons/sec at 10KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
Spatial self-organization of macroscopic quantum states of exciton-polaritons in acoustic lattices
NASA Astrophysics Data System (ADS)
Buller, J. V. T.; Cerda-Méndez, E. A.; Balderas-Navarro, R. E.; Biermann, K.; Santos, P. V.
2016-07-01
Exciton-polariton systems can sustain macroscopic quantum states (MQSs) under a periodic potential modulation. In this paper, we investigate the structure of these states in acoustic square lattices by probing their wave functions in real and momentum spaces using spectral tomography. We show that the polariton MQSs, when excited by a Gaussian laser beam, self-organize in a concentric structure, consisting of a single, two-dimensional gap-soliton (GS) state surrounded by one dimensional (1D) MQSs with lower energy. The latter form at hyperbolical points of the modulated polariton dispersion. While the size of the GS tends to saturate with increasing particle density, the emission region of the surrounding 1D states increases. The existence of these MQSs in acoustic lattices is quantitatively supported by a theoretical model based on the variational solution of the Gross-Pitaevskii equation. The formation of the 1D states in a ring around the central GS is attributed to the energy gradient in this region, which reduces the overall symmetry of the lattice. The results broaden the experimental understanding of self-localized polariton states, which may prove relevant for functionalities exploiting solitonic objects.
Vunakis, Helen Van; Farrow, John T.; Gjika, Hilda B.; Levine, Lawrence
1971-01-01
Antibodies to D-lysergic acid have been produced in rabbits and guinea pigs and a radioimmunoassay for the hapten was developed. The specificity of this lysergamide-antilysergamide reaction was determined by competitive binding with unlabeled lysergic acid diethylamide (LSD), psychotomimetic drugs, neurotransmitters, and other compounds with diverse structures. LSD and several related ergot alkaloids were potent competitors, three to seven times more potent than lysergic acid itself. The N,N-dimethyl derivatives of several compounds, including tryptamine, 5-hydroxytryptamine, 4-hydroxytryptamine, 5-methoxytryptamine, tyramine, and mescaline, were only about ten times less effective than lysergic acid, even though these compounds lack some of the ring systems of lysergic acid. The pattern of inhibition by related compounds with various substituents suggests that the antibody receptor site recognizes structural features resembling the LSD molecule. In particular, the aromatic nucleus and the dimethylated ethylamine side chain in phenylethylamine and tryptamine derivatives may assume in solution a conformation resembling ring A and the methylated nitrogen in ring C of LSD. Among the tryptamine derivatives, a large percentage of the most potent competitors are also psychotomimetic compounds. PMID:5283939
Fiber ring laser based on SMF-TCF-SMF structure for strain and refractive index sensing
NASA Astrophysics Data System (ADS)
Yu, Fen; Xu, Ben; Zhang, Yixin; Wang, Dongning
2017-12-01
An erbium-doped fiber ring laser with embedded Mach-Zehnder interferometer (MZI) is constructed and experimentally demonstrated for strain and refractive index (RI) measurement. The MZI consists of a segment of thin-core fiber sandwiched between two single-mode fibers and acts as both the sensing component as well as a bandpass filter to select the lasing wavelength. The strain sensitivity of ˜-0.97 pm/μɛ and RI sensitivity of ˜44.88 nm/RIU are obtained in the range of 0 to 1750 μɛ and 1.3300 to 1.3537, respectively. The high-optical signal-to-noise ratio of >50 dB and narrow 3-dB bandwidth of <0.11 nm obtained indicate that the fiber ring laser sensor is promising for high-precision strain and RI measurement.
Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.
2007-01-01
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256
Gelbrich, Thomas; Braun, Doris E.; Oberparleiter, Stefan; Schottenberger, Herwig; Griesser, Ulrich J.
2017-01-01
The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH) displays an H-bonded layer structure which is based on N–H⋯O=C, N–H⋯O(MeOH) and (MeOH)O–H⋯O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid) 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H⋯O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me) have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms. PMID:28670485
Biomolecular Doping of Single-Walled Carbon Nanotubes by Thyroid Hormone
NASA Astrophysics Data System (ADS)
Rojas, Enrique; Paulson, Scott; Stern, Mike; Staii, Cristian; Dratman, Mary; Johnson, Alan
2004-03-01
Electron doping of semiconducting single-walled carbon nanotubes (SWNTs) by the thyroid hormone triiodothyronine (T3) is observed. T3 is applied locally, in solution, to SWNT field effect transistors (FETs) and binds along the length of the nanotube. T3 acts as an electron donor, shifting the I-V gate characteristics towards negative values of gate voltage. Shifts in the characteristics are measured as a function of the concentration of the solution. The effect is nearly reversible by rinsing the FETs with the solvent. Several days after application of T3, with no solvent rinsing, the gate characteristics are also nearly reversed. Experiments with a similar molecule for which the phenol ring is brominated as well as experiments with the de-iodinated molecule (T0) are performed to inform the effect of the iodine. The interaction of T3 with SWNTs may suggest a electronic interaction of T3 with other one-dimensional systems such as DNA.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
Smith, N L; Coukouma, A; Dubnik, S; Asher, S A
2017-12-06
We fabricate 2D photonic crystals (2DPC) by spreading a dispersion of charged colloidal particles (diameters = 409, 570, and 915 nm) onto the surface of electrolyte solutions using a needle tip flow method. When the interparticle electrostatic interaction potential is large, particles self-assemble into highly ordered hexagonal close packed (hcp) monolayers. Ordered 2DPC efficiently forward diffract monochromatic light to produce a Debye ring on a screen parallel to the 2DPC. The diameter of the Debye ring is inversely proportional to the 2DPC particle spacing, while the Debye ring brightness and thickness depends on the 2DPC ordering. The Debye ring thickness increases as the 2DPC order decreases. The Debye ring ordering measurements of 2DPC attached to glass slides track measurements of the 2D pair correlation function order parameter calculated from SEM micrographs. The Debye ring method was used to investigate the 2DPC particle spacing, and ordering at the air-solution interface of NaCl solutions, and for 2DPC arrays attached to glass slides. Surprisingly, the 2DPC ordering does not monotonically decrease as the salt concentration increases. This is because of chloride ion adsorption onto the anionic particle surfaces. This adsorption increases the particle surface charge and compensates for the decreased Debye length of the electric double layer when the NaCl concentration is below a critical value.
Transparent megahertz circuits from solution-processed composite thin films.
Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei
2016-04-21
Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.
Near-infrared left-handed metamaterials made of arrays of upright split-ring pairs
NASA Astrophysics Data System (ADS)
Chan, Hsun-Chi; Sun, Shulin; Guo, Guang-Yu
2018-07-01
Electromagnetic metamaterials are man-made structures that have novel properties such as a negative refraction index, not attainable in naturally occurring materials. Although negative index materials (NIMs) in microwave frequencies were demonstrated in 2001, it is still challenging to design NIMs for optical frequencies especially those with both negative permittivity and negative permeability (known as left-handed metamaterials (LHMs)). Here, by going beyond the traditional concept of the combination of artificial electronic and magnetic meta-atoms to design NIMs, we propose a novel LHM composed of an array of upright split-ring pairs working in the near-infrared region. Our electromagnetic simulations reveal the underlying mechanism that the coupling of the two rings can stimulate simultaneously both the electric and magnetic resonances. The proposed structure has a highest refractive index of ‑2, a highest figure of merit of 21, good air-matched impedance and 180 nm double negative bandwidth, which excel the performances of many previous proposals. We also numerically demonstrate the negative refraction of this metamaterial in both the single-layer form and wedge-shaped lens.
First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride
NASA Astrophysics Data System (ADS)
Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun
2017-07-01
Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF3 ) as a novel spin-polarized Dirac material by using first-principles calculations. MnF3 exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF3 possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF3 , CrF3 , and FeF3 ). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.
First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride.
Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun
2017-07-07
Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF_{3}) as a novel spin-polarized Dirac material by using first-principles calculations. MnF_{3} exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF_{3} possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF_{3}, CrF_{3}, and FeF_{3}). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.
Circularly split-ring-resonator-based frequency-reconfigurable antenna
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.
2017-01-01
In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Superfluid qubit systems with ring shaped optical lattices
Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan
2014-01-01
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096
Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets
NASA Astrophysics Data System (ADS)
Jalbout, A. F.; Ortiz, Y. P.; Seligman, T. H.
2013-03-01
We study the adsorption of Li to graphene flakes simulated as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for boron-nitrogen sheets, and also for other light alkalines as adsorbants.
Desing of Digital Calliper for Control of Selected Parameters of Railway Wheels
NASA Astrophysics Data System (ADS)
Ticha, Šarka; Zelnak, Michal; Vavrina, Jan
2014-12-01
This contribution deals with new design of digital calliper for transferring of width dimension scale from the ring interface to tyre of railway wheel. Based on the problem definition were solved variants of design with possibility of improvement current measurement technique. For selected variant of production was developed calibration procedures for ensure of required accuracy. At the end solution that was significantly influenced by economic recession was realized variant for single production. Manufacturer and exclusive supplier of this digital calliper is UNIMETRA Company, Ltd.
NASA Astrophysics Data System (ADS)
Kilic, V. T.; Unal, E.; Demir, H. V.
2017-07-01
We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.
Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials
NASA Astrophysics Data System (ADS)
Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang
2018-06-01
A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.
Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria.
Zeng, Jun; Zhang, Dong-Bo; Zhou, Pan-Pan; Zhang, Qi-Li; Zhao, Lei; Chen, Jian-Jun; Gao, Kun
2017-08-04
Two unusual normonoterpenoid indole alkaloids rauvomine A (1) and rauvomine B (2), together with two known compounds peraksine (3) and alstoyunine A (4), were isolated from the aerial parts of Rauvolfia vomitoria. The structures with absolute configurations of 1 and 2 were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 2 is a novel C 18 normonoterpenoid indole alkaloid with a substituted cyclopropane ring that forms an unusual 6/5/6/6/3/5 hexcyclic rearranged ring system. The plausible biogenetic pathways of 1 and 2 were proposed. Compound 2 exhibited significant anti-inflammatory activity.
Zhao, Mei; Shao, Guang-Kui; Huang, Dan-Dan; Lv, Xue-Xin; Guo, Dian-Shun
2017-05-04
Ten ferrocenyl bis-amide derivatives were successfully synthesized via the Ugi four-component reaction by treating ferrocenecarboxylic acid with diverse aldehydes, amines, and isocyanides in methanol solution. Their chemical structures were fully characterized by IR, NMR, HR-MS, and X-ray diffraction analyses. They feature unique molecular morphologies and create a 14-membered ring motif in the centro-symmetric dimers generated in the solid state. Moreover, the electrochemical behavior of these ferrocenyl bis-amides was assessed by cyclic voltammetry.
Structure and Magnetic Properties of a Dodecanuclear Twisted-Ring Iron(III) Cluster.
Caneschi, Andrea; Cornia, Andrea; Fabretti, Antonio C; Gatteschi, Dante
1999-05-03
An unprecedented nonplanar structure characterizes the complex [Fe(OCH 3 ) 2 (dbm)] 12 (on the left in the picture), which contains the largest cyclic ferric cluster yet reported with chemically equivalent bridging units. It is made up of twelve high-spin, antiferromagnetically coupled iron(III) centers and neatly reacts with Na I or Li I templates in organic solution to give hexairon(III) coronates (right). Fe=•, O=○, NaI or LiI=• Hdbm=dibenzoylmethane. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris
2012-11-19
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.
Possibility designing XNOR and NAND molecular logic gates by using single benzene ring
NASA Astrophysics Data System (ADS)
Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.
2017-09-01
This study focused on examining electronic transport through single benzene ring and suggested how such ring can be employed to design XNOR and NAND molecular logic gates. The single benzene ring was threaded by a magnetic flux. The magnetic flux and applied gate voltages were considered as the key tuning parameter in the XNOR and NAND gates operation. All the calculations are achieved by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The transmission probability and the electric current are calculated as functions of electron energy and bias voltage, respectively. The application of the anticipated results can be a base for the progress of molecular electronics.
Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber
Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.
2013-01-01
The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542
Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.
Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H
2013-10-08
The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.
CORSS: Cylinder Optimization of Rings, Skin, and Stringers
NASA Technical Reports Server (NTRS)
Finckenor, J.; Rogers, P.; Otte, N.
1994-01-01
Launch vehicle designs typically make extensive use of cylindrical skin stringer construction. Structural analysis methods are well developed for preliminary design of this type of construction. This report describes an automated, iterative method to obtain a minimum weight preliminary design. Structural optimization has been researched extensively, and various programs have been written for this purpose. Their complexity and ease of use depends on their generality, the failure modes considered, the methodology used, and the rigor of the analysis performed. This computer program employs closed-form solutions from a variety of well-known structural analysis references and joins them with a commercially available numerical optimizer called the 'Design Optimization Tool' (DOT). Any ring and stringer stiffened shell structure of isotropic materials that has beam type loading can be analyzed. Plasticity effects are not included. It performs a more limited analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a large class of structures. This report briefly describes the optimization theory, outlines the development and use of the program, and describes the analysis techniques that are used. Examples of program input and output, as well as the listing of the analysis routines, are included.
NASA Astrophysics Data System (ADS)
Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang
2017-08-01
This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.
3-Fluorosalicylaldoxime at 6.5 GPa
Wood, Peter A.; Forgan, Ross S.; Parsons, Simon; Pidcock, Elna; Tasker, Peter A.
2009-01-01
3-Fluorosalicylaldoxime, C7H6FNO2, unlike many salicylaldoxime derivatives, forms a crystal structure containing hydrogen-bonded chains rather than centrosymmetric hydrogen-bonded ring motifs. Each chain interacts with two chains above and two chains below via π–π stacking contacts [shortest centroid–centroid distance = 3.295 (1) Å]. This structure at 6.5 GPa represents the final point in a single-crystal compression study. PMID:21583672
Rotational spectroscopy of antipyretics: Conformation, structure, and internal dynamics of phenazone
NASA Astrophysics Data System (ADS)
Écija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Fernández, José A.; Caminati, Walther; Castaño, Fernando
2013-03-01
The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two 14N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol-1). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol-1. The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H⋯N and C-H⋯O weak hydrogen bonds.
High-sensitivity sucrose erbium-doped fiber ring laser sensor
NASA Astrophysics Data System (ADS)
Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.
2017-02-01
We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu
Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less
Crystal structure of (2E)-3-[4-(di-methyl-amino)-phen-yl]-1-(thio-phen-2-yl)prop-2-en-1-one.
de Oliveira, Gabriela Porto; Bresolin, Leandro; Flores, Darlene Correia; de Farias, Renan Lira; de Oliveira, Adriano Bof
2017-04-01
The equimolar reaction between 4-(di-methyl-amino)-benzaldehyde and 2-acetyl-thio-phene in basic ethano-lic solution yields the title compound, C 15 H 15 NOS, whose mol-ecular structure matches the asymmetric unit. The mol-ecule is not planar, the dihedral angle between the aromatic and the thio-phene rings being 11.4 (2)°. In the crystal, mol-ecules are linked by C-H⋯O and weak C-H⋯S inter-actions along [100], forming R 2 2 (8) rings, and by weak C-H⋯O inter-actions along [010], forming chains with a C (6) graph-set motif. In addition, mol-ecules are connected into centrosymmetric dimers by weak C-H⋯π inter-actions, as indicated by the Hirshfeld surface analysis. The most important contributions for the crystal structure are the H⋯H (46.50%) and H⋯C (23.40%) inter-actions. The crystal packing resembles a herringbone arrangement when viewed along [100]. A mol-ecular docking calculation of the title compound with the neuraminidase enzyme was carried out. The enzyme shows ( ASN263 )N-H⋯O, ( PRO245 )C-H⋯ Cg (thio-phene ring) and ( AGR287 )C-H⋯N inter-molecular inter-actions with the title compound. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0181 (8).
Comprehensively Surveying Structure and Function of RING Domains from Drosophila melanogaster
Wu, Yuehao; Wan, Fusheng; Huang, Chunhong; Jie, Kemin
2011-01-01
Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold and formation of catalytic core in which related residues and regions exhibit preferential evolutionary conservation. PMID:21912646
The case for 6-component ground motion observations in planetary seismology
NASA Astrophysics Data System (ADS)
Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner
2017-04-01
The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.
Theoretical modeling of electronic transport in molecular devices
NASA Astrophysics Data System (ADS)
Piccinin, Simone
In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a simple two level model. Finally the transport properties of alkanethiol monolayers are analyzed by means of the local density of states at the Fermi energy: we find an exponential dependence of the current on the length of the chain, in quantitative agreement with the corresponding experiments.
NASA Astrophysics Data System (ADS)
Yu, H. P.; Luo, H.; Liu, T. T.; Jing, G. Y.
2015-04-01
The formation of organic semiconductor layer is the key procedure in the manufacture of organic photovoltaic solar cell, in which the natural evaporation of the solvent from the polymer solution plays the essential role for the conversion efficiency. Here, poly(3-hexylthiophene) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), as two types of semiconductor polymers, were selected as the active layer to form the deposit by drying the blend solution drops on the substrate. We explored the influences of droplet size and solute concentration on the homogeneity of the deposit. Additionally, the spatial distribution of molecular chains and grains and the instability of the droplet morphology during the drying were investigated. The results showed that the "coffee-ring" phenomenon occurred forming an annular deposit at the outermost edge and the width of the annular ring increased linearly with the concentration of the P3HT solution, until a saturation plateau is approached. On the other hand, the PCBM deposition presented a circular disk at low concentration, but displayed a sudden instability for an irregular perimeter at a critical concentration and there existed a second critical concentration above which the deposit exhibited the return of the stable circular shape. The results have an instructive impact on the performance of the device and the formation of fine structures during the process of printing, film preparation and painting.
Nanokit for single-cell electrochemical analyses.
Pan, Rongrong; Xu, Mingchen; Jiang, Dechen; Burgess, Jame D; Chen, Hong-Yuan
2016-10-11
The development of more intricate devices for the analysis of small molecules and protein activity in single cells would advance our knowledge of cellular heterogeneity and signaling cascades. Therefore, in this study, a nanokit was produced by filling a nanometer-sized capillary with a ring electrode at the tip with components from traditional kits, which could be egressed outside the capillary by electrochemical pumping. At the tip, femtoliter amounts of the kit components were reacted with the analyte to generate hydrogen peroxide for the electrochemical measurement by the ring electrode. Taking advantage of the nanotip and small volume injection, the nanokit was easily inserted into a single cell to determine the intracellular glucose levels and sphingomyelinase (SMase) activity, which had rarely been achieved. High cellular heterogeneities of these two molecules were observed, showing the significance of the nanokit. Compared with the current methods that use a complicated structural design or surface functionalization for the recognition of the analytes, the nanokit has adapted features of the well-established kits and integrated the kit components and detector in one nanometer-sized capillary, which provides a specific device to characterize the reactivity and concentrations of cellular compounds in single cells.
Lubrication of 35-millimeter-bore ball bearings of several designs to 2.5 million DN
NASA Technical Reports Server (NTRS)
Schuller, F. T.
1983-01-01
Parametric tests were conducted with 35mm bore, angular contact ball bearings with either a single or double outer and guided cage. The bearings were either lubricated by oil jets or employed inner ring lubrication. Outer ring cooling was added in selected tests. Lubricant flow to the bearing ranged from 300 to 1900 cc/min. All bearings were successfully run at speeds to 2.5 million DN. Increasing the lubricant flow decreased bearing ring temperatures but increased bearing power lines. The power loss and race temperatures of a jet lubricated with double outer land guided cage were always higher than those of the single land guided design at similar test conditions. The lowest bearing operating temperatures were achieved when inner ring lubrication and outer ring cooling were combined. It is found that cage slip of a double outer land guided cage is approximately twice that of a single outer land guided cage.
NASA Astrophysics Data System (ADS)
Karuppasamy, Ayyanar; Udhaya kumar, Chandran; Karthikeyan, Subramanian; Velayutham Pillai, Muthiah Pillai; Ramalingan, Chennan
2017-11-01
A novel conjugated octylcarbazole ornamented 3-phenothiazinal, 10-(9-octyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde (OCPTC) was synthesized and fully characterized by 1H-NMR, 13C-NMR, elemental and single crystal XRD analyses. The optimized geometrical structure, vibrational frequencies and NMR have been computed with M06-2X method using 6-31+G(d,p) basis set. Total electronic energies and HOMO-LUMO energy gaps in gas phase are discussed. The geometrical parameters of the title compound obtained from single crystal XRD studies have been found in accord with the calculated (DFT) values. The experimental and theoretical FT-IR and NMR results of the title molecule have been investigated. The experimentally observed vibrational frequencies have been compared with the calculated ones, which are in good agreement with each other. Single crystal X-ray structural analysis of OCPTC, evidences the ''butterfly conformation'' of phenothiazine ring with nearly perpendicular orientation of the carbazole structural motif to the phenothiazine moiety.
Ab initio electronic structure of the progestogen norethisterone and its 5 alpha-derivatives.
Kubli-Garfias, Carlos; Vázquez, Ricardo; Cooney, Austin J; Larrea, Fernando
2002-11-01
The steroid 17 alpha-ethynyl-19-nor-4-androsten-17 beta-ol, 3-one (Norethisterone; NET) and its 5 alpha-dihydro (5 alpha-NET), 3 alpha- and 3 beta-tetrahydro derivatives (3 alpha,5 alpha- and 3 beta,5 alpha-NET), were comparatively studied by the ab initio quantum mechanics theory. Additionally, 5 alpha-androstan-3 beta,17 beta-diol (ADIOL) was also studied. The Hartree-Fock method and the 6-31G(*) basis set were used to obtain the lowest energy conformation, geometries, electronic structure and physicochemical properties of the steroids. The results showed bond distances and valence angles similar among all steroids, but some differences in dihedral angles in the A-B-ring system were observed. The electronic structure analysis showed that NET has both frontier orbitals that is, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) located at the C4-C5 pi-bond. In A-ring reduced derivatives, the HOMO was found at the 17 beta-OH and ethynyl groups. In the case of 5 alpha-NET, the LUMO was confined to the A-ring and its C3 carbonyl group while the two NET tetrahydro-reduced derivatives showed the LUMO at the 17 beta-OH and ethynyl groups. The energy changes of the rotational barrier of the 17 beta-OH group suggest that its movement is somewhat restricted by the 17 alpha-ethynyl group. Interestingly both groups at C17 form a single electrostatic potential with high electronic density. On the other side, the 19-nor condition increases the A-ring mobility. However, the 3 beta-OH group of 3 beta,5 alpha-NET may rotate without significant energy differences as compared to the same group in ADIOL. The electronic structure of NET and its A-ring reduced derivatives explains in some extent their interaction with androgen and progesterone receptors as well as their selectivity for the estrogen alpha-receptor.
Chen, Kai; Zhu, Zi-Zhong; Liu, Jia-Xin; Tang, Xiang-Ying; Wei, Yin; Shi, Min
2016-01-07
Rh(II)-catalyzed diversified ring expansions controlled by single-electron-transfer (SET) have been disclosed in this communication, producing a series of indole-fused azetidines and 1H-carbazoles or related derivatives in moderate to good yields via Rh2(III,II) nitrene radical intermediates. The direction of ring expansion branches according to different ring sizes of methylenecycloalkanes.
NASA Astrophysics Data System (ADS)
Bosh, A. S.; Olkin, C. B.
1996-06-01
On 21 November 1995, Saturn and its rings occulted the star GSC5249-01240 (Bosh & McDonald 1992, Astron. J. 103, 983). Although the star is relatively faint (V = 11.9), other circumstances conspired to make this an excellent event: (i) the normally-bright rings were dark because the sun was crossing through the ring plane, reducing the amount of ring contribution to the background noise and therefore increasing the observed S/N, (ii) the ring opening angle was small (B ~ 3deg ), enhancing detection of low-optical-depth material, and (iii) the low sky-plane velocity allowed longer integration times without loss of spatial resolution. Thus this occultation was particularly well-suited to produce high S/N detections of low-tau ring material. We observed this atmosphere and ring occultation with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope. Using the FOS in its high-speed mode, we sampled the starlight with the G650L grating, recording the stellar signal as a function of both wavelength and time. For the initial analysis of these data, the spectral information was sacrificed by binning all wavelengths together; this in turn increased the detected S/N. We performed a geometric solution for the event, using the known locations of circular ring features as fiducials (Elliot et al., Astron. J. 106, 2544). The scattered light from Saturn and the rings was modelled and subtracted from the light curves to obtain line-of-sight optical depth as a function of ring-plane radius. With these processed data we have made the first occultation detection of Saturn's innermost and very tenuous D ring. We find a line-of-sight optical depth for the thickest part of this ring of tau_ {obs} ~ 0.02. The location and morphology of this feature will be discussed. Comparison of the observed structure will be made with the previous Voyager imaging detection of this ring (Smith et al. 1981, Science 212, 163; Marley & Porco 1993, Icarus 106, 508).
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
Yamase, Toshihiro; Kumagai, Shun; Prokop, Petra V; Ishikawa, Eri; Tomsa, Adrian-Raul
2010-10-18
The prolonged UV-photolysis of aqueous solutions containing [Mo(7)O(24)](6-) and C(2)H(5)CO(2)H (as electron donor) at pH 3.9-4.1 generates the carboxylate-coordinated {Mo(132)} Keplerate (1a) isolated as a formamidinium/ammonium-mixed salt, [HC(NH(2))(2)](26)(NH(4))(28)[Mo(V)(60)Mo(VI)(72)O(372)(H(2)O)(48)(C(2)H(5)CO(2))(36)((i)C(3)H(7)CO(2))(6)]·16H(2)O (1), through the Mo-blue intermediate (2). The coordination of 2 to La(3+) gives rise to the formation of the chain structure of the C(2)-symmetric {Mo(96)La(8)} eggshell rings, formulated by H(22)[Mo(V)(20)Mo(VI)(76)O(301)(H(2)O)(29){La(H(2)O)(6)}(2)]{La(H(2)O)(5)}(6)]·54.5H(2)O (3). The eggshell-ring geometry results from the insertion of [Mo(VI)(2)O(7)(H(2)O)](2-) (spacer) into the equator outer ring of the wheel-shaped Mo-blue, and 10 {(Mo(VI))(Mo(VI)(5))} pentagonal subunits alternately above and below the equator outer ring are connected by eight La(3+) and two {Mo(VI)(2)} linkers within two inner rings. The neighboring eggshell rings are linked through two Mo-O-Mo bonds formed by dehydrative condensation between the {Mo(VI)(2)} linkers to result in the chain structure. Together with the results of the elemental analysis and IR, electronic absorption, (13)C NMR, and ESI-MS spectra for 2, the ring profile analysis of 3 let us identify 2 with a carbolylate-coordinated Mo-blue ring of high nuclearity. The Mo(VI)→Mo(V) photoreductive change of 2 to the 60-electron reduced Keplerate in the presence of C(2)H(5)CO(2)H involves both degradation of the outer ring and splitting of the binuclear linkers, which leads to the formation of [(Mo(VI))Mo(VI)(5)O(21)(H(2)O)(4)(carboxylate)](7-) pentagonal subunits and [Mo(V)(2)O(4)(carboxylate)](+)/[Mo(V)O(2)(carboxylate)(1/2)](0.5+)-mixed linkers for 1.
PAM4 silicon photonic microring resonator-based transceiver circuits
NASA Astrophysics Data System (ADS)
Palermo, Samuel; Yu, Kunzhi; Roshan-Zamir, Ashkan; Wang, Binhao; Li, Cheng; Seyedi, M. Ashkan; Fiorentino, Marco; Beausoleil, Raymond
2017-02-01
Increased data rates have motivated the investigation of advanced modulation schemes, such as four-level pulseamplitude modulation (PAM4), in optical interconnect systems in order to enable longer transmission distances and operation with reduced circuit bandwidth relative to non-return-to-zero (NRZ) modulation. Employing this modulation scheme in interconnect architectures based on high-Q silicon photonic microring resonator devices, which occupy small area and allow for inherent wavelength-division multiplexing (WDM), offers a promising solution to address the dramatic increase in datacenter and high-performance computing system I/O bandwidth demands. Two ring modulator device structures are proposed for PAM4 modulation, including a single phase shifter segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Transmitter circuits which utilize segmented pulsed-cascode high swing output stages are presented for both device structures. Output stage segmentation is utilized in the single-segment device design for PAM4 voltage level control, while in the two-segment design it is used for both independent MSB/LSB voltage levels and impedance control for output eye skew compensation. The 65nm CMOS transmitters supply a 4.4Vppd output swing for 40Gb/s operation when driving depletion-mode microring modulators implemented in a 130nm SOI process, with the single- and two-segment designs achieving 3.04 and 4.38mW/Gb/s, respectively. A PAM4 optical receiver front-end is also described which employs a large input-stage feedback resistor transimpedance amplifier (TIA) cascaded with an adaptively-tuned continuous-time linear equalizer (CTLE) for improved sensitivity. Receiver linearity, critical in PAM4 systems, is achieved with a peak-detector-based automatic gain control (AGC) loop.
Optimal control of quantum rings by terahertz laser pulses.
Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U
2007-04-13
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.
Synchronization properties of network motifs: Influence of coupling delay and symmetry
NASA Astrophysics Data System (ADS)
D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.
2008-09-01
We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.
Charged black rings at large D
NASA Astrophysics Data System (ADS)
Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi
2017-04-01
We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.
A conserved MCM single-stranded DNA binding element is essential for replication initiation.
Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J
2014-04-01
The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.
A conserved MCM single-stranded DNA binding element is essential for replication initiation
Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J
2014-01-01
The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001 PMID:24692448
Photochemically Switching Diamidocarbene Spin States Leads to Reversible Büchner Ring Expansions.
Perera, Tharushi A; Reinheimer, Eric W; Hudnall, Todd W
2017-10-18
The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ 1 p π 1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.
Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul
2011-02-03
A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.
2011-01-01
A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules. PMID:21711652
Structure of a eukaryotic cyclic nucleotide-gated channel
Li, Minghui; Zhou, Xiaoyuan; Wang, Shu; Michailidis, Ioannis; Gong, Ye; Su, Deyuan; Li, Huan; Li, Xueming; Yang, Jian
2018-01-01
Summary Cyclic nucleotide-gated (CNG) channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5 Å-resolution single-particle electron cryomicroscopy structure of a CNG channel from C. elegans in the cGMP-bound open state. The channel has an unusual voltage-sensor-like domain (VSLD), accounting for its deficient voltage dependence. A C-terminal linker connecting S6 and the cyclic nucleotide-binding domain interacts directly with both the VSLD and pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of CNG channels and cyclic nucleotide modulation of related channels. PMID:28099415
Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C
2013-10-21
Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.
NASA Astrophysics Data System (ADS)
Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio
1990-10-01
The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.
Coriolis effects on nonlinear oscillations of rotating cylinders and rings
NASA Technical Reports Server (NTRS)
Padovan, J.
1976-01-01
The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.
NASA Astrophysics Data System (ADS)
Groehn, Franziska; Duering, Jasmin; Moldenhauer, Daniel; Interdisciplinary CenterMolecular Materials Team
2013-03-01
Recently we have introduced a novel type of self-assembled ``nano-objects'' in solution: From the association of macroions and multivalent counterions well-defined and stable structures in the shape of spheres, rod, rings, hollow spheres and networks can form in solution. Using light-addressable counterions, it is possible to switch the particle size through UV irradiation. Building blocks can be of organic or inorganic nature: Using gold or cadmium sulphide nanoclusters results in hybrid assemblies which also functionally combine nanoparticle and dye. Thermodynamic studies in combination with a detailed structural characterization yield insight into driving forces and structural control in the self-assembly process. Crucial is the delicate interplay of ionic, π - π , and Hamaker interaction. The concept is particularly attractive, as it relies on general physical effects - that is the combination of different non-covalent interactions - and hence is very versatile. Great potential of the structures presented lies in areas such as catalysis and energy conversion.
A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; ...
2016-05-03
Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Alvarez, Laurent; Almadori, Yann; Belhboub, Anouar; Le Parc, Rozenn; Aznar, Raymond; Dieudonné-George, Philippe; Rahmani, Abdelali; Hermet, Patrick; Fossard, Frédéric; Loiseau, Annick; Jousselme, Bruno; Campidelli, Stéphane; Saito, Takeshi; Wang, Guillaume; Bantignies, Jean-Louis
2016-03-01
Photoactive pi-conjugated molecules (quaterthiophene and phthalocyanine) are either encapsulated into the hollow core of single-walled carbon nanotubes or noncovalently stacked at their outer surface in order to elaborate hybrid nanosystems with new physical properties, providing practical routes to fit different requirements for potential applications. We are interested in the relationship between the structure and the optoelectronic properties. The structural properties are investigated mainly by x-ray diffraction and/or transmission electron microscopy and Raman spectroscopy. We show that the supramolecular organizations of confined quaterthiophenes depend on the nanocontainer size, whereas phthalocyanine encapsulation leads to the formation of a one-dimensional phase for which the angle between the molecule ring and the nanotube axis is close to 32 deg. Confined phthalocyanine molecules display Raman spectra hardly altered with respect to the bulk phase, suggesting a rather weak interaction with the tubes. In contrast, the vibrational properties of the molecules stacked at the outer surface of tubes display important modifications. We assume a significant curvature of the phthalocyanine induced by the interaction with the tube walls and a change of the central atom position within the molecular ring, in good agreement with our density functional theory calculations.
Costa, Alessandro; Renault, Ludovic; Swuec, Paolo; Petojevic, Tatjana; Pesavento, James J; Ilves, Ivar; MacLellan-Gibson, Kirsty; Fleck, Roland A; Botchan, Michael R; Berger, James M
2014-01-01
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3′ single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase. DOI: http://dx.doi.org/10.7554/eLife.03273.001 PMID:25117490
Jung, Hwabin; Yoon, Won Byong
2017-12-01
The effect of water activity (a w ) or the relative humidity (RH) on the tensile rupture properties of dried laver (DL) associated with structures formed with phycocolloids was investigated. The morphological characteristics of tensile ruptured DL samples at various relative humidities were evaluated by multifractal analysis. The RH of the microclimate was controlled from 10% to 90% at 25 °C using supersaturated salt solutions. The sorption isotherm of DL was experimentally obtained and quantitatively analyzed using mathematical models. The monolayer moisture contents from the Guggenheim-Anderson-de Boer (GAB) model was 5.92% (w.b.). An increase in the RH resulted in increasing ring tensile stress and maintaining constant ring tensile strain up to 58% to 75% RH, whereas the ring tensile stress and the ring tensile strain rapidly decreased and increased, respectively, when the RH was higher than 75%. The general fractal dimensions and the multifractal spectra f(α) manifested that the patterns of the lowest and the highest moisture content of dried laver showed high irregularity. The different multifractal parameters obtained from the DL at various RHs well-represented the transient moment of the structures from the monolayer moisture to texture changes associated with RH. Overall, the ring tensile test and the multifractal analysis were useful tools to analyze the change of crispness of DL from its structural characteristics. In addition, the results of this study revealed that the integration and disintegration properties of DL occurred through the networks of phycocolloids at various moisture contents. Texture properties are the most important quality attributes for commercial dried laver (DL) products. The relative humidity influences the texture properties of DL during production, storage, shipping, and consuming. This study well characterized the effect of the relative humidity on the texture properties of DL using the tensile tests under microclimate conditions. This information is very practical and can be immediately applied to control the relative humidity of the packaging and the storage room for DL. © 2017 Institute of Food Technologists®.
Mascons - Progress toward a unique solution for mass distribution.
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Conel, J. E.; Abbott, E. A.; Sjogren, W. L.; Morton, J. B.
1972-01-01
Through a series of analyses with high-altitude Lunar Orbiter and low-altitude Apollo 15 Doppler gravity data, it is shown that the Serenity mascon is a thin body whose horizontal dimensions are well determined and show a strong correlation with circular wrinkle ridge structure. Analysis to date has not uniquely determined the depth of the anomalous mass. However, geological evidence strongly suggests that the mass excess is near the surface, because (1) the surface solution has a geometry highly suggestive of the partial filling of a ringed circular basin, and (2) the boundaries of the anomalous mass separate regions of shallow and deep mare flooding.
Solution structure of a modified 2′,5′-linked RNA hairpin involved in an equilibrium with duplex
Plevnik, Miha; Gdaniec, Zofia; Plavec, Janez
2005-01-01
The isomerization of phosphodiester functionality of nucleic acids from 3′,5′- to a less common 2′,5′-linkage influences the complex interplay of stereoelectronic effects that drive pseudorotational equilibrium of sugar rings and thus affect the conformational propensities for compact or more extended structures. The present study highlights the subtle balance of non-covalent forces at play in structural equilibrium of 2′,5′-linked RNA analogue, 3′-O-(2-methoxyethyl) substituted dodecamer *CG*CGAA*U*U*CG*CG, 3′-MOE-2′,5′-RNA, where all cytosines and uracils are methylated at C5. The NMR and UV spectroscopic studies have shown that 3′-MOE-2′,5′-RNA adopts both hairpin and duplex secondary structures, which are involved in a dynamic exchange that is slow on the NMR timescale and exhibits strand and salt concentration as well as pH dependence. Unusual effect of pH over a narrow physiological range is observed for imino proton resonances with exchange broadening observed at lower pH and relatively sharp lines observed at higher pH. The solution structure of 3′-MOE-2′,5′-RNA hairpin displays a unique and well-defined loop, which is stabilized by Watson–Crick A5·*U8 base pair and by n → π* stacking interactions of O4′ lone-pair electrons of A6 and *U8 with aromatic rings of A5 and *U7, respectively. In contrast, the stem region of 3′-MOE-2′,5′-RNA hairpin is more flexible. Our data highlight the important feature of backbone modifications that can have pronounced effects on interstrand association of nucleic acids. PMID:15788747
General Series Solutions for Stresses and Displacements in an Inner-fixed Ring
NASA Astrophysics Data System (ADS)
Jiao, Yongshu; Liu, Shuo; Qi, Dexuan
2018-03-01
The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.
Synthetic Motors and Nanomachines.
NASA Astrophysics Data System (ADS)
Flood, Amar
2006-03-01
A bistable and palindromically-constituted [3]rotaxane incorporating two mechanically-mobile rings interlocked around a linear dumbbell component, has been designed to operate like the sarcomeres of skeletal muscle. Contraction and extension occurs when the inter-ring distance of the two rings switch, ideally, between 4.2 and 1.4 nm upon redox stimulation either chemically or electrochemically in the solution phase. When the mobile rings of these artificial molecular muscles are bound onto the tops of gold-coated, micron-scale cantilever beams, their controllable nanometer motions have a chance to be amplified along the long axis of each cantilever. It turns out that ˜6 billion of the self-assembled [3]rotaxanes can bend the cantilevers in a bistable manner concomitant with the cycled addition of redox agents. The extent of bending is commensurate with 10's of pN of force per [3]rotaxane. Recent studies on a set of ``single-shot'' control [2]rotaxanes have provided additional evidence for the origins of the force generation as it arises from a molecule-based electrostatic repulsion energy of about 10 kcal/mol at 300 K. These findings will be presented in terms of the underlying thermodynamics and kinetics that have been utilized extensively to direct the design and synthesis of artificial molecular machines and which may also serve as a guide for the rational design of unidirectional molecular motors.
NASA Astrophysics Data System (ADS)
Saikiran, Maryala; Pandey, Shyam S.; Hayase, Shuzi; Kato, Tamaki
2017-11-01
A series of far-red sensitive symmetrical squaraine dyes bearing direct -COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations. These symmetrical squaraine dyes were then subjected to investigate their interaction with bovine serum albumin (BSA) in Phosphate buffer solutions. All the squaraine dyes under investigation exhibit intense and sharp optical absorption mainly in the far-red wavelength region from 550 nm -700 nm having very high molar extinction coefficients from 1.3 × 105 dm3.mol-1.cm-1. A very small Stokes shift of 10-17 nm indicates the rigid conformational structure of squaraine chromophore. Interaction of these dyes with BSA leads to not only enhanced emission intensity but also bathochromically shifted absorption maximum due to formation of dye-BSA conjugate. These dyes bind strongly with BSA having about an order of magnitude higher binding constant as compared to the reported squaraine dyes. Amongst the symmetrical squaraine dyes investigated in this work one bearing substituents like trifluorobutyl as alkyl chain at N-position of indole ring and carboxylic acid on benzene ring at the terminal (SQ-26) exhibited highest association with the BSA having very high binding constant 8.01 × 106 M-1.
Bond-equilibrium theory of liquid Se-Te alloys. II. Effect of singly attached ring molecules
NASA Astrophysics Data System (ADS)
Cutler, Melvin; Bez, Wolfgang G.
1981-06-01
A statistical-mechanical theory for bond equilibrium of chain polymers containing threefold (3F) and onefold (1F) bond defects is extended to include the effects of free ring molecules and ring molecules attached to chains by a single 3F atom. Positively charged singly attached rings are shown to play a key role in bond equilibrium in liquid Sex Te1-x by permitting the formation of ion pairs in which both constituents are effectively chain terminators, thus decreasing the average polymer size. The theory is applied to explain the behavior of the paramagnetic susceptibility, χp, and electronic transport as affected by the Fermi energy EF. It is found that the increase in χp with the concentration of Te is primarily the result of the smaller energy for breaking Te bonds. In addition, attached rings play an important role in determining the effect of temperature on χp. At x<~0.5, the concentrations of both free and attached rings becomes small at high T because of the high concentration of bond defects.
Non-Linear Dynamics of Saturn’s Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn’s rings a chaotic non-linear driven system?
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?
NASA Astrophysics Data System (ADS)
Pacheco, Fernando Estevão Rodrigues Crincoli; Caxito, Fabricio de Andrade; Moraes, Lucia Castanheira de; Marangoni, Yara Regina; Santos, Roberto Paulo Zanon dos; Pedrosa-Soares, Antonio Carlos
2018-04-01
The Serra Geral Formation constitutes a continental magmatic province on the southern part of South America within the Paraná basin. Basaltic magmatism of the Serra Geral Formation occurred as extrusions at around 134.5 to 131.5 My ago. The formation is part of the Paraná-Etendeka large igneous province, spanning South America and southwestern Africa. The main extrusion mechanism was probably through fissures related to extensional regime during the breakup of Gondwana in the Cretaceous. Basaltic ring structures (BRS) with tens of meters of diameter, cropping out downstream of Grande river at Água Vermelha hydroelectric dam in southern Triângulo Mineiro region, enable the study of the mechanism of extrusion. The origin of the BRS has been subject to differing interpretations in the past, either collapsed lava flows or central conduits. Detailed geological mapping at 1:1000 scale, stratigraphic, petrographic and gravimetric analysis of the most well preserved of the BRS, with a 200 m diameter, has enabled the description of thirteen different basalt lava flows, along with single a central lava lake and a ring dyke structure. The central flow, interpreted as a preserved lava lake, comprises vesicle- and amygdale-rich basalt, spatter, ropy and degassing structures. The most basal of the thirteen lava flows has massive basalt containing geodes filled with quartz. Above, the lava flows show massive basalt with vertical columnar jointing where is possible to identify the top and bottom of each individual flow, with gentle dips towards the perimeter of the structure. A prominent ring dyke dipping towards the lava lake presents horizontal columnar jointing and cuts the basal and central flows. The gravimetric analysis shows a weak negative Bouguer anomaly on the center of the BRS. The proposed model describes the volcanism of the region in three main steps: (1) fissure flow occurs with lava input; (2) this lava cools and crystallizes cementing most of the fissures, promoting the formation of localized central conduits; and (3) the presence of dissolved gas in lava produces ring and radial fractures around the solidified lava lake. The magma uses some of the ring fissures to ascend and the following lava flows assume the ring shape of the dyke vent. Thus, the BRS in Água Vermelha region can be interpreted as remnants of central conduits representing the late stage magmatism of the Serra Geral Formation.
High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.
2011-02-01
The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.
Burchell; Ferguson; Lough; Glidewell
2000-09-01
The 1:1 adduct of 1,4-diazabicyclo[2.2.2]octane and 5-hydroxyisophthalic acid is a salt, [H(C(6)H(12)N(2))](+). [HOC(6)H(3)(COOH)COO](-) or C(6)H(13)N(2)(+).C(8)H(5)O(5)(-). The ions are linked by three types of hydrogen bond, i.e. N-H.O, O-H.O and O-H.N, into continuous two-dimensional (4,4) nets built from a single type of R(10)(10)(58) ring. Six independent sheets of this type make up the structure and these are interwoven in sets of three.
Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators
NASA Astrophysics Data System (ADS)
Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu
2012-01-01
We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.
Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.
Ji, Wei; Liu, Guofeng; Li, Zijian; Feng, Chuanliang
2016-03-02
For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the ortho, meso, or para position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials.
NASA Astrophysics Data System (ADS)
Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Park, Sanghyuk
2018-02-01
Imidazole-based excited state intramolecular proton transfer (ESIPT) blue fluorescent molecules, 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Cl) and 2-(1-(4-bromophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Br) were designed and synthesized by Debus-Radziszewski method through a one-pot multicomponent reaction in high yield. The synthesized compounds were fully characterized by 1H NMR, 13C NMR, FT-IR, FT-Raman, GC-Mass, and elemental analysis. The molecular structures in single crystal lattice were studied by X-ray crystallographic analysis. Because of the intramolecular hydrogen bonding, hydroxyphenyl group is planar to the central imidazole ring, while the other phenyl rings gave distorted conformations to the central heterocyclic ring. BHPI-Cl and BHPI-Br molecules showed intense ESIPT fluorescence at 480 nm, because the two twisted phenyl rings on 4- and 5-positions have reduced intermolecular interaction between adjacent molecules in each crystal through a head-to-tail packing manner. Quantum chemical calculations of energies were carried out by (TD-)DFT using B3LYP/6-31G(d, p) basis set to predict the electronic absorption spectra of the compounds, and they showed good agreement between the computational and the experimental values. The thermal analyses of the synthesized molecules were also carried out by TGA/DSC method.
Liquid ``Coffee Rings'' and the Spreading of Volatile Liquid Mixtures
NASA Astrophysics Data System (ADS)
Wood, Clay; Pye, Justin; Burton, Justin
When a volatile liquid drop is placed on a wetting surface, it rapidly spreads and evaporates. The spreading dynamics and drop geometry are determined by a balance between thermal and interfacial forces, including Marangoni effects. However, this spreading behavior is drastically altered when drops contain a miniscule amount of a less-volatile miscible liquid (solute) in the bulk (solvent); contact line instabilities in the form of ``fingers'' develop. Characteristic finger size increases with increasing solute concentration and is apparent for concentrations as small as 0.1% by volume. Also, the spreading rate depends sensitively on the solute concentration, especially if the solute preferentially wets the substrate. At higher solute concentrations, the spreading droplet will form ``beads'' at the contact line, rather than fingers, and are deposited as the solvent recedes and evaporates, leaving behind a complex pattern of solute micro-droplets. Liquid ``coffee rings'' are often left behind after evaporation because there is a high evaporation rate of the solvent at the contact line, which increases the concentration of the solute, and the longevity of the rings depends on the solute vapor pressure. These results highlight the unusual sensitivity to contamination of volatile spreading, and the complex patterns of liquid contamination deposited following evaporation from a wetted surface. NSF 1455086.
NASA Astrophysics Data System (ADS)
Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi
2016-09-01
Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.
Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.
Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya
2018-01-01
Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.
Mix and match: templating chiral Schiff base ligands to suit the needs of the metal ion.
Constable, Edwin C; Zhang, Guoqi; Housecroft, Catherine E; Zampese, Jennifer A
2010-06-14
One-pot reactions of 2,2'-bipyridine-6-carbaldehyde, (1S,2S)-(-)-1,2-diphenyl-1,2-diaminoethane and FeCl(2).4H(2)O or Zn(OAc)(2).2H(2)O (2 : 1 : 1) at room temperature in MeOH lead to [Fe{(S,S)-5}(2)][PF(6)]Cl or [Zn{(S,S)-5}(2)][PF(6)](2) in which (S,S)-5 contains an imidazolidine ring, produced by intramolecular cyclization. This has been confirmed with the single-crystal structure of 2{P-[Fe{(S,S)-5}(2)][PF(6)]Cl}.H(2)O. The diastereoselectivity observed in the solid state has been confirmed by NMR spectroscopy for solutions of [Fe{(S,S)-5}(2)][PF(6)]Cl and [Zn{(S,S)-5}(2)][PF(6)](2). At room temperature, a minor product competes with the formation of [Fe{(S,S)-5}(2)][PF(6)]Cl, and the preference for these complexes is switched by carrying out the reaction in MeOH at reflux. In this case the major product is M-[Fe(2){(S,S)-4}(2)][PF(6)](4) in which (S,S)-4 is the hexadentate Schiff base ligand formed by condensation of two equivalents of 2,2'-bipyridine-6-carbaldehyde with (1S,2S)-(-)-1,2-diphenyl-1,2-diaminoethane; the single-crystal structure of 4{M-[Fe(2){(S,S)-4}(2)][PF(6)](4)}.8Me(2)CO.5MeCN.3H(2)O confirms the assembly of a double helicate. When pyridine-6-carbaldehyde replaces 2,2'-bipyridine-6-carbaldehyde in the iron(II)-templated reaction with (1S,2S)-(-)-1,2-diphenyl-1,2-diaminoethane, the product is [Fe{(S,S)-7}(2)][PF(6)](2) (3 : 2 mixture of diastereoisomers in solution) in which (S,S)-7 is an asymmetrical Schiff base, formed by reaction of only one of the amine groups in (1S,2S)-(-)-1,2-diphenyl-1,2-diaminoethane. The solid state structure of P-[Fe{(S,S)-7}(2)][PF(6)](2).MeCN is presented.
Jarzembska, Katarzyna N; Řlepokura, Katarzyna; Kamiński, Radosław; Gutmann, Matthias J; Dominiak, Paulina M; Woźniak, Krzysztof
2017-08-01
Uridine, a nucleoside formed of a uracil fragment attached to a ribose ring via a β-N1-glycosidic bond, is one of the four basic components of ribonucleic acid. Here a new anhydrous structure and experimental charge density distribution analysis of a uridine-5'-monophosphate potassium salt, K(UMPH), is reported. The studied case constitutes the very first structure of a 5'-nucleotide potassium salt according to the Cambridge Structural Database. The excellent crystal quality allowed the collection of charge density data at various temperatures, i.e. 10, 100, 200 and 300 K on one single crystal. Crystal structure and charge density data were analysed thoroughly in the context of related literature-reported examples. Detailed analysis of the charge density distribution revealed elevated anharmonic motion of part of the uracil ring moiety relatively weakly interacting with the neighbouring species. The effect was manifested by alternate positive and negative residual density patterns observed for these atoms, which `disappear' at low temperature. It also occurred that the potassium cation, quite uniformly coordinated by seven O atoms from all molecular fragments of the UMPH - anion, including the O atom from the ribofuranose ring, can be treated as spherical in the charge density model which was supported by theoretical calculations. Apart from the predominant electrostatic interactions, four relatively strong hydrogen bond types further support the stability of the crystal structure. This results in a compact and quite uniform structure (in all directions) of the studied crystal, as opposed to similar cases with layered architecture reported in the literature.
Sub-Fickean Diffusion in a One-Dimensional Plasma Ring
NASA Astrophysics Data System (ADS)
Theisen, W. L.
2013-12-01
A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.
Semiconductor ring lasers coupled by a single waveguide
NASA Astrophysics Data System (ADS)
Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.
2012-06-01
We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Synthesis of Potential Trypanocides
1987-12-01
0188 Ia. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION /AVAILABILITY OF...and the phenyl ring, ring structures 2 and 3 , introduction of a -CH:CII- group between the phenyl ring and its 4’-substituent, ring structure 4...imidazole (9, 15) thiazole (11) and pyridine (12-14) into ether-linked and vinyl-linked structures. 3 t % SCHEME 1 HETEROAROMATIC RINGS OHw Ch3 CH3 +1 N% f
Howerton, Samuel B; McGuffin, Victoria L
2003-07-15
The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.
Multidisciplinary Analysis of a Hypersonic Engine
NASA Technical Reports Server (NTRS)
Stewart, M. E. M.; Suresh, A.; Liou, M. S.; Owen, A. K.; Messitt, D. G.
2002-01-01
This paper describes implementation of a technique used to obtain a high fidelity fluid-thermal-structural solution of a combined cycle engine at its scram design point. Single-discipline simulations are insufficient here since interactions from other disciplines are significant. Using off-the-shelf, validated solvers for the fluid, chemistry, thermal, and structural solutions, this approach couples together their results to obtain consistent solutions.
Maximal analytic extension and hidden symmetries of the dipole black ring
NASA Astrophysics Data System (ADS)
Armas, Jay
2011-12-01
We construct analytic extensions across the Killing horizons of non-extremal and extremal dipole black rings in Einstein-Maxwell’s theory using different methods. We show that these extensions are non-globally hyperbolic, have multiple asymptotically flat regions and, in the non-extremal case, are also maximal and timelike complete. Moreover, we find that in both cases, the causal structure of the maximally extended spacetime resembles that of the four-dimensional Reissner-Nordström black hole. Furthermore, motivated by the physical interpretation of one of these extensions, we find a separable solution to the Hamilton-Jacobi equation corresponding to zero energy null geodesics and relate it to the existence of a conformal Killing tensor and a conformal Killing-Yano tensor in a specific dimensionally reduced spacetime.
Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi
2016-03-03
Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.
NASA Astrophysics Data System (ADS)
Cho, Heesook; Choi, Sinho; Kim, Jin Young; Park, Soojin
2011-12-01
We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films.We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films. Electronic supplementary information (ESI) available: AFM images of Au nanorings prepared from a mixed solvent and characterization of PS-b-P2VP micellar films. See DOI: 10.1039/c1nr11075f
Analytical theory of two-dimensional ring dark soliton in nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Chen, Wei; Wang, Qi; Shi, Jielong; Shen, Ming
2017-11-01
Completely stable two-dimensional ring dark soliton in nonlocal media with an arbitrary degree of nonlocality are investigated. The exact solution of the ring dark solitons is obtained with the variational method and a cylindrical nonlocal response function. The analytical results are confirmed by directly numerical simulations. We also analytically and numerically study the expansion dynamics of the gray ring dark solitons in detail.
Apse-Alignment of the Uranian Rings
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
An explanation of the dynamical mechanism for apse-alignment of the eccentric Uranian rings is necessary before observations can be used to determine properties such as ring masses, particle sizes, and elasticities. The leading model relies on the ring self-gravity to accomplish this task, yet it yields equilibrium masses which are not in accord with Voyager radio measurements. We explore possible solutions such that the self-gravity and the collisional terms are both involved in the process of apse-alignment. We consider limits that correspond to a hot and a cold ring, and show that pressure terms may play a significant role in the equilibrium conditions for the narrow Uranian rings. In the cold ring case, where the scale height of the ring near periapse is comparable to the ring particle size, we introduce a new pressure correction pertaining to a region of the ring where the particles are locked in their relative positions and jammed against their neighbors, and the velocity dispersion is so low that the collisions are nearly elastic. In this case, we find a solution such that the ring self-gravity maintains apse-alignment against both differential precession (m = 1 mode) and the fluid pressure. We apply this model to the Uranian alpha ring, and show that, compared to the previous self-gravity model, the mass estimate for this ring increases by an order of magnitude. In the case of a hot ring, where the scale height can reach a value as much as fifty times larger than a particle size, we find velocity dispersion profiles that result in pressure forces which act in such a way as to alter the ring equilibrium conditions, again leading to a ring mass increase of an order of magnitude; however, such a velocity dispersion profile would require a different mechanism than is currently envisioned for establishing heating/cooling balance in a finite-sized, inelastic particle ring. Finally, we introduce an important correction to the model of Chiang and Goldreich.
TALC: a new deployable concept for a 20m far-infrared space telescope
NASA Astrophysics Data System (ADS)
Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal
2014-08-01
TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This telescope may be launched with an Ariane 6 rocket up to 800 km altitude, and use a plasma stage to reach the Lagrange 2 point within 18 month. The plasma propulsion stage is a serial unit also used in commercial telecommunication satellites. When the plasma launch is completed, the solar panels will be used to provide the power for communication, orientation and power the cryo-coolers for the instruments. The guide-line for development of this telescope is to use similar techniques and serial subsystems developed for the satellite industry. This is the only way to design and manufacture a large telescope at a reasonable cost.
Biaxial flexure strength determination of endodontically accessed ceramic restorations.
Kelly, R D; Fleming, G J P; Hooi, P; Palin, W M; Addison, O
2014-08-01
To report analytic solutions capable of identifying failure stresses from the biaxial flexure testing of geometries representative of endodontic access cavities prepared through dental restorative materials. The ring-on-ring biaxial flexure strength of annular discs with a central circular hole supported peripherally by a knife-edge support and loaded evenly at the upper edge of the central hole were solved using general expressions of deformations, moments and shears for flat plates of a constant thickness. To validate the solutions, finite element analyses were performed. A three-dimensional one-quarter model of the test was generated using a linear P-code FEA software and the boundary conditions represented the experimental test configuration whereby symmetry planes defined the full model. To enable comparison of the maximum principal stresses with experimental derived data, three groups of nominally identical feldspathic ceramic disks (n=30) were fabricated. Specimens from Group A received a 4mm diameter representative endodontic access cavity and were tested in ring-on-ring. Group B and C specimens remained intact and were tested in ring-on-ring and ball-on-ring, respectively, to give insight into strength scaling effects. Fractography was used to confirm failure origins, and statistical analysis of fracture strength data was performed using one-way ANOVAs (P<0.05) and a Weibull approach. The developed analytical solutions were demonstrated to deviate <1% from the finite element prediction in the configuration studied. Fractography confirmed the failure origin of tested samples to coincide with the predicted stress maxima and the area where fracture is observed to originate clinically. Specimens from the three experimental groups A-C exhibited different strengths which correlated with the volume scaling effects on measured strength. The solutions provided will enable geometric and materials variables to be systematically studied and remove the need for load-to-failure 'crunch the crown' testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Harvey, David J
2005-01-01
Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.
A close look at Saturn's rings with Cassini VIMS
Nicholson, P.D.; Hedman, M.M.; Clark, R.N.; Showalter, M.R.; Cruikshank, D.P.; Cuzzi, J.N.; Filacchione, G.; Capaccioni, F.; Cerroni, P.; Hansen, G.B.; Sicardy, B.; Drossart, P.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Coradini, A.
2008-01-01
Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 ??m, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 ??m with similar profiles at a wavelength of 0.45 ??m assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with "self-gravity wakes" in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 ??m, while the steep decrease in visual reflectance shortward of 0.6 ??m is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ???7000 km, the near-IR band depths strengthen considerably. A very similar pattern is seen across the outer half of the Cassini Division and into the inner A ring, accompanied by a steepening of the red slope in the visible spectrum shortward of 0.55 ??m. We attribute these trends-as well as smaller-scale variations associated with strong density waves in the A ring-to differing grain sizes in the tholin-contaminated icy regolith that covers the surfaces of the decimeter-to-meter sized ring particles. On the largest scale, the spectral variations seen by VIMS suggest that the rings may be divided into two larger 'ring complexes,' with similar internal variations in structure, optical depth, particle size, regolith texture and composition. The inner complex comprises the C and B rings, while the outer comprises the Cassini Division and A ring. ?? 2007 Elsevier Inc. All rights reserved.
Lightweight acoustic treatments for aerospace applications
NASA Astrophysics Data System (ADS)
Naify, Christina Jeanne
2011-12-01
Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their acoustic response. Acoustic metamaterials with negative dynamic mass density have been shown to demonstrate a significant (5x) increase in TL over mass law predictions for a narrow band (100Hz) at low frequencies (100--1000Hz). The peak TL frequency can be tuned to specific values by varying the membrane and mass properties. TL magnitude as a function of frequency was measured for variations of the mass magnitude and membrane tension using an impedance tube setup. The dynamic properties of membranes constructed from different materials and thicknesses were measured and compared to the results of coupled field acoustic-structural finite element analysis (FEA) modeling to understand the role of tension and element quality factor. To better comprehend the mechanism(s) responsible for the TL peak, a laser vibrometer was used to map the out-of-plane dynamic response of the structure under acoustic loading at discrete frequencies. Negative dynamic mass was experimentally demonstrated at the peak TL frequency. The scale-up of the acoustic metamaterial structure was explored by examining the behavior of multiple elements arranged in arrays. Single membranes were stretched over rigid frame supports and masses were attached to the center of each divided cell. TL behavior was measured for multiple configurations with different magnitudes of mass distributed across each of the cell membranes in the array resulting in a multi-peak TL profile. To better understand scale-up issues, the effect of the frame structure compliance was evaluated, and more compliant frames resulted in a reduction in TL peak frequency bandwidth. In addition, displacement measurements of frames and membranes were performed using a laser vibrometer. The measured TL of the multi-celled structure was compared with TL behavior predicted by FEA to understand the role of non-uniform mass distribution and frame compliance. TL of membrane-type LRAM with added ring masses was analyzed using both finite element analysis and experimental techniques. The addition of a ring mass to the structure either increased the bandwidth of the TL peak, or introduced multiple peaks, depending on the number of rings, the distribution of mass between the center and ring masses, and radii of the rings. FEA was used to predict TL behavior of several ring configurations, and TL for these configurations was measured to validate the model predictions. Finally, FEA was used to predict the mode shapes of the structure under single-frequency excitation to understand the mechanisms responsible for the TL peaks.
Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.
Dugyala, Venkateshwar Rao; Basavaraj, Madivala G
2015-03-05
Liquid drops containing insoluble solutes when dried on solid substrates leave distinct ring-like deposits at the periphery or along the three-phase contact line-a phenomena popularly known as the coffee-ring or the coffee stain effect. The formation of such rings as well as their suppression is shown to have applications in particle separation and disease diagnostics. We present an experimental study of the evaporation of sessile drops containing silica rods to elucidate the structural arrangement of particles in the ring, an effect of the addition of surfactant and salt. To this end, the evaporation of aqueous sessile drops containing model rod-like silica particles of aspect ratio ranging from ∼4 to 15 on a glass slide is studied. We first show that when the conditions such as (1) solvent evaporation, (2) nonzero contact angle, (3) contact line pinning, (4) no surface tension gradient driven flow, and (5) repulsive particle-particle/particle-substrate interactions, that are necessary for the formation of the coffee-ring are met, the suspension drops containing silica rods upon evaporation leave a ring-like deposit. A closer examination of the ring deposits reveals that several layers of silica rods close to the edge of the drop are ordered such that the major axis of the rods are oriented parallel to the contact line. After the first few layers of ordered arrangement of particles, a random arrangement of particles in the drop interior is observed indicating an order-disorder transition in the ring. We monitor the evolution of the ring width and particle velocity during evaporation to elucidate the mechanism of the order-disorder transition. Moreover, when the evaporation rate is lowered, the ordering of silica rods is observed to extend over large areas. We demonstrate that the nature of the deposit can be tuned by the addition of a small quantity of surfactant or salt.
2012-01-01
The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497
de Villiers, Katherine A; Marques, Helder M; Egan, Timothy J
2008-08-01
The crystal structure of the complex formed between the antimalarial drug halofantrine and ferriprotoporphyrin IX (Fe(III)PPIX) has been determined by single crystal X-ray diffraction. The structure shows that halofantrine coordinates to the Fe(III) center through its alcohol functionality in addition to pi-stacking of the phenanthrene ring over the porphyrin. The length of the Fe(III)-O bond is consistent with an alkoxide and not an alcohol coordinating group. The iron porphyrin is five coordinate and monomeric. Changes in the electronic spectrum of Fe(III)PPIX upon addition of halofantrine base in acetonitrile solution are almost identical to those observed upon addition of quinidine free base in the same solvent. This suggests homologous binding. Molecular mechanics modeling of Fe(III)PPIX complexes of quinidine, quinine, 9-epiquinine and 9-epiquinidine based on this homology suggests that the antimalarially active quinidine and quinine can readily adopt conformations that permit formation of an intramolecular salt bridge between the protonated quinuclidine tertiary amino group and unprotonated heme propionate group, while the inactive epimers 9-epiquinidine and 9-epiquinine have to adopt high energy conformations in order to accommodate such salt bridge formation. We propose that salt bridge formation may interrupt formation of the hemozoin precursor dimer formed during the heme detoxification pathway and so account for the strong activity of the two active isomers.
Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy.
D'Amico, Francesco; Cammisuli, Francesca; Addobbati, Riccardo; Rizzardi, Clara; Gessini, Alessandro; Masciovecchio, Claudio; Rossi, Barbara; Pascolo, Lorella
2015-03-07
We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases.
Spectral properties of all-active InP-based microring resonator devices
NASA Astrophysics Data System (ADS)
Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.
2006-02-01
Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.
Ohta, Yasuhito; Okamoto, Yoshiko; Page, Alister J; Irle, Stephan; Morokuma, Keiji
2009-11-24
The atomic scale details of single-walled carbon nanotube (SWNT) nucleation on metal catalyst particles are elusive to experimental observations. Computer simulation of metal-catalyzed SWNT nucleation is a challenging topic but potentially of great importance to understand the factors affecting SWNT diameters, chirality, and growth efficiency. In this work, we use nonequilibrium density functional tight-binding molecular dynamics simulations and report nucleation of sp(2)-carbon cap structures on an iron particle consisting of 38 atoms. One C(2) molecule was placed every 1.0 ps around an Fe(38) cluster for 30 ps, after which a further 410 ps of annealing simulation without carbon supply was performed. We find that sp(2)-carbon network nucleation and annealing processes occur in three sequential and repetitive stages: (A) polyyne chains on the metal surface react with each other to evolve into a Y-shaped polyyne junction, which preferentially form a five-membered ring as a nucleus; (B) polyyne chains on the first five-membered ring form an additional fused five- or six-membered ring; and (C) pentagon-to-hexagon self-healing rearrangement takes place with the help of short-lived polyyne chains, stabilized by the mobile metal atoms. The observed nucleation process resembles the formation of a fullerene cage. However, the metal particle plays a key role in differentiating the nucleation process from fullerene cage formation, most importantly by keeping the growing cap structure from closing into a fullerene cage and by keeping the carbon edge "alive" for the addition of new carbon material.
Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi
2017-10-26
Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.
NASA Astrophysics Data System (ADS)
Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topalli, Kagan
2017-08-01
This paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mak, H.W.
The antibiotic ketomycin is formed from shikimic acid via chorismic acid and prephenic acid. Phenylalanine and 2',5'-dihydrophenylalanine derived from shikimic acid are not intermediates in the biosynthesis. Degradation of ketomycin derived from (1,6-/sup 14/C)shikimic acid showed that prephenic acid is converted into ketomycin with stereospecific discrimination between the two enantiotopic edges of the ring, the pro-S-R edge giving rise to the C-2', C-3' side of the cyclohexane ring of ketomycin. The resistance of pathogenic bacteria to the action of ..beta..-lactam antibiotics is mainly ascribed to their ability to produce ..beta..-lactamase to cleave the ..beta..-lactam ring. It is essential to understandmore » the molecular nature of ..beta..-lactamase-penicillin recognition for designing and formulating more effective ..beta..-lactam antibiotics. A biomimetic study of ..beta..-lactamase is therefore initiated. To meet the requirements of hydrophobic and serine protease characteristics of ..beta..-lactamase, ..cap alpha..-cyclodextrin is chosen as a biomimetic model for ..beta..-lactamase. The structural specificity and the chemical dynamics of ..cap alpha..-cyclodextrin-phenoxymethyl penicillin inclusion complex in solid state and in solution have been determined by IR and NMR spectroscopy. The spectral results strongly indicate that the phenyl portion of the phenoxymethyl penicillin forms a stable inclusion complex with the hydrophobic cavity of ..cap alpha..-cyclodextrin in solution as well as in the solid state. Kinetic studies followed by /sup 1/HNMR and HPLC analyses under alkaline condition have shown that the ..cap alpha..-cyclodextrin mimics the catalytic function of serine of ..beta..-lactamase in the stereospecific hydrolysis of the ..beta..-lactam ring of phenoxymethyl penicillin.« less
Large and small-scale structures in Saturn's rings
NASA Astrophysics Data System (ADS)
Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.
2017-09-01
Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).
NASA Astrophysics Data System (ADS)
Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia
2018-07-01
The potassium 2-isonicotinoyltrifluorborate salt has been characterized by using FT-IR, FT-Raman and UV-Visible spectroscopies while its structural properties were studied by using B3LYP/6-31G* and B3LYP/6-311++G** calculations in gas and aqueous solution phases. Four conformers with CS and C1 symmetries were found in the potential energy surfaces but only one of them presents the minimum energy. Two dimeric species of this salt were also optimized in accordance to the layered architectures suggested for trifluoroborate potassium salts in the solid phase. Here, the experimental Raman bands at 796, 748 and 676 cm-1 clearly support the presence of both dimers. On the other hand, the 2-isonicotinoyltrifluorborate anion was optimized because its presence is expected in solution. Reasonable correlations were observed between the predicted FTIR, Raman and UV-visible spectra with the corresponding experimental ones. The solvation energies for the salt in aqueous solution were predicted by using both methods. Here, it is observed that the change of furane by pyridine ring generates an increase in the solvation energies of the potassium 2-isonicotinoyltrifluorborate salt in relation to potassium 3-furoyltrifluoroborate salt. The study of the charges has revealed that there is an effect of the size of the basis set on the Mulliken charges while the AIM analyses suggest that the F⋯H and O⋯K interactions are also strongly dependent of the medium and the size of the basis sets. The bond orders for the F and K atoms evidence their higher ionic characteristics in solution with both basis sets. The NBO and AIM results clearly support the higher stability of this salt in both media. The studies by using the frontier orbitals indicate that the change of furane by pyridine ring decreases the reactivity of this salt by using 6-31G* basis set but increases when the other one is employed. Another effect of change of furane by pyridine ring is observed in the increase of the f(νCdbnd O) and f(νBF3) force constants. In addition, the force fields for the salt in both media were reported together to their complete vibrational assignments and force constants by using both levels of theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Derkach, I. K.; Dimitrova, O. V.
2013-05-15
Crystals of a new representative of ring-radical dodecaborates Pb{sub 6}(Li{sub 0.65}Na{sub 0.19})[B{sub 12}O{sub 24}]I{sub 0.84} {center_dot} 0.168H{sub 2}O, space group R3bar m , are obtained under hydrothermal conditions. The structure is determined with-out preliminary knowledge of the chemical formula. It is close to that of the Pb{sub 6}[B{sub 12}O{sub 24}] {center_dot} H{sub 2}O dodecaborate studied earlier, but unlike the latter structure it contains admixtures of iodide anion, lithium cation, and water molecule, which incompletely populate positions in channels. The formation of the second variety, which brings to light ion-exchange properties of the crystals, is due to mineralizing ions available inmore » the concen-trated solution in the course of crystallization. The new compound is compared with beryl and cordierite, which have close structures with channels capable of capturing various groups. Structures of synthetic Na and Ag dodecaborates with analogous but distorted ring dodecaborate radicals are discussed.« less
Molecular simulation of the adsorption of methane in Engelhard titanosilicate frameworks.
Pillai, Renjith S; Gomes, José R B; Jorge, Miguel
2014-07-01
Molecular simulations were carried out to elucidate the influence of structural heterogeneity and of the presence of extra-framework cations and water molecules on the adsorption of methane in Engelhard titanosilicates, ETS-10 and ETS-4. The simulations employed three different modeling approaches, (i) with fixed cations and water at their single crystal positions, (ii) with fixed cations and water at their optimized positions, and (iii) with mobile extra-framework cations and water molecules. Simulations employing the final two approaches provided a more realistic description of adsorption in these materials, and showed that at least some cations and water molecules are displaced from the crystallographic positions obtained from single crystal data. Upon methane adsorption in the case of ETS-10, the cations move to the large rings, while in the case of ETS-4, the water molecules and cations migrate to more available space in the larger 12-membered ring channels for better accommodation of the methane molecules. For ETS-4, we also considered adsorption in all possible pure polymorph structures and then combined these to provide an estimate of adsorption in a real ETS-4 sample. By comparing simulated adsorption isotherms to experimental data, we were able to show that both the mobility of extra-framework species and the structural heterogeneity should be taken into account for realistic predictions of adsorption in titanosilicate materials.
Soufo, Hervé Joël Defeu; Graumann, Peter L
2010-12-01
Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil; Bogdanov, Bogdan
2015-02-14
Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case ofmore » positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
NASA Astrophysics Data System (ADS)
Chandrahalim, Hengky; Fan, Xudong
2015-12-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
Chandrahalim, Hengky; Fan, Xudong
2015-01-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.
Chandrahalim, Hengky; Fan, Xudong
2015-12-17
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.
Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted
2017-10-06
Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.
Planetary rings: Structure and history
NASA Astrophysics Data System (ADS)
Esposito, L.
The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The processes of collisions, diffusion and transport should have homogenized the rings over the age of the solar system. Instead, these differences persist. The mass density in the Cassini division inferred from density waves is so low, that the material there would be ground to 1 dust in 30,000 years. The observed moons that cause such interesting structure in the rings have short lifetimes against disruption by cometary bombardment and against the angular momentum transfers that push them away from the rings. These rapid processes evident in the Cassini data have been taken as evidence that the rings were recently created, perhaps from a comet that passed too close to Saturn. Instead, an alternative is that primordial material may have been re-used and recycled. In the zone near the Roche limit where rings are found, limited accretion is possible, with the larger bodies able to recapture smaller fragments. The `propeller' structures, the self-gravity wakes, and the size distribution of clumps in Saturn's F ring are all indications of the accretion process. Recycling could extend the ring lifetime almost indefinitely. The variety evident in the latest observations and the low mass density inferred for the largest bodies are both consistent with extensive recycling of ring material as the explanation of the apparent youth of Saturn's rings. Similar processes are likely occurring tin the other ring systems and in the formation of planets around other stars. 2
Synthesis of 5/7-, 5/8- and 5/9-bicyclic lactam templates as constraints for external beta-turns.
Duggan, Heather M E; Hitchcock, Peter B; Young, Douglas W
2005-06-21
The 5/7-, 5/8- and 5/9-bicyclic lactams 3, 17, 5 and 6 have been synthesised as single diastereoisomers by a route involving ring closing olefin metathesis. The X-ray crystal structure of the amino acid hydrochloride has been carried out and compared to that of the saturated external beta-turn constraint 18.