Sample records for single-shell tank interim

  1. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  2. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  3. Sample Based Unit Liter Dose Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, L.

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new datamore » to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).« less

  4. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less

  5. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less

  7. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).« less

  8. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).« less

  9. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  10. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.« less

  11. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  12. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  13. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  14. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106.

  15. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  16. Evaluation of Hose in Hose Transfer Line Service Life for Hanfords Interim Stabilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TORRES, T.D.

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program (Torres, 2000a), defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of waste transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program (Torres, 2000b), has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications associated with Interim Stabilization. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will bemore » exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning, RPP-6028 Section 3.2.7. Performance Incentive Number ORP-05 requires that all the Single Shell Tanks be Interim Stabilized by September 30, 2003. The Tri-Party Agreement (TPA) milestone M-41-00, enforced by a federal consent decree, requires all the Single Shell Tanks to be Interim stabilized by September 30, 2004. By meeting the Performance Incentive the TPA milestone is met. Prudent engineering dictates that the equipment used to transfer waste have a life in excess of the forecasted operational time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer, published literature and calculations. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are the hose material's resistance to the harmful effects of process fluid characteristics, ambient environmental conditions, exposure to ionizing radiation and the manufacturer's stated shelf life. In order to determine the transfer line service life this evaluation examines the certification of shelf life, the certification of chemical compatibility with waste, catalog information of ambient ratings and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials. During initial hose procurements, the hose-in-hose transfer line vendor River Bend Hose Specialty (RBHS) submitted a letter, dated 6/8/00, which recommended the service and shelf life of the hose to be seven years. In submittals for later hose procurements, RBHS submitted a letter, dated 11/6/00, which recommended the service life of the hose to be three years. This submittal was followed by documentation, on 2/14/01, which submitted new storage requirements and restated the seven year shelf life. RBHS revised their original hose service life estimate to a more conservative three years due to concerns over the effects of chemicals in transferred waste. The above mentioned submittals from RBHS are the primary drivers of the three year service life limit established by this document.« less

  17. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Todd M.; Gunter, Jason R.; Boomer, Kayle D.

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  18. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  19. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  20. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Changemore » Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.« less

  1. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHL, P.C.

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  2. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closuremore » which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.« less

  3. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.

    1989-04-01

    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less

  4. Treatment options for tank farms long-length contaminated equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  5. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in waysmore » that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAMS TL; GUILLOT S

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  7. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  8. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  9. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.T.; Davis, J.R.

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less

  10. Mission analysis report for single-shell tank leakage mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.

    1994-09-01

    This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry outmore » the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work.« less

  11. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federalmore » Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.« less

  12. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  13. 2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shanklin

    2006-07-19

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities fro the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13,more » Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003.« less

  14. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. E. Shanklin

    2007-02-14

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action ismore » functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).« less

  15. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. Themore » first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.« less

  16. Criteria: waste tank isolation and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  17. Borehole Data Package for 1998 Wells Installed at Single-Shell Tank Waste Management Area TX-TY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DG Horton; FN Hodges

    1999-03-23

    Four new Resource Conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area (WMA) TX-TY during August through November of 1998 in fi,dfillment of Tri-Party Agreement (Eoology 1996) milestone M-24-38. The wells are 299-W1O-26, 299-W14-13, 299-W14-14, and 299-W15-40. Well 299-W1O-26 is located outside the east fence of the TY tank farm and replaces downgradient well299-W1O-18; well 299-W14-13 is located along the east fence near the northeast corner of the TX tank f- and replaces downgradient well 299-W14-12; well 299-W14-14 is located outside the east fence in the south ha.lfof the TX tankmore » fiirm and is anew downgradient well; and well 299-W15-40 is located on the west side of the TX tank farm and is anew upgradient well. The locations of all wells in the monitoring network are shown on Figure 1. The groundwater monitoring plan for WMA TX-TY (Caggiano and Goodwin 1991) describes the hydrogeology of the 200 West Area and WMA TX-TY. An Interim Change Notice to the groundwater monitoring plan provides justification for the new wells. The new wells were constructed to the speciii- cations and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303. This document compiles &fiormation on the drilling and construction, well development pump instal- latio~ groundwater sampling, and sediment testing applicable to wells 299-W1O-26, 299-W14-13, 299-W14-14, and 299-W15-40. Appendix A contains the geologist's log, the Well Construction Sum- mary Repo~ and Well Summary Sheet (as-built diagram); Appendix B contains results of laboratory analyses of particle size distribution, p~ conductivity, calcium carbonate conten~ major cation and anion concentrations from 1:1 water: sediment extracts, and moisture conten~ Appendix C contains geophysical logs; and Appendix D contains the analytical results from groundwater samples obtained during well construction. Aqutier tests (slug tests) were performed on all the new wells after well completions. Results of the aquifer tests will be reported elsewhere. Additiond documentation concerning well construction is on fde with Bechtel Hanfor& Inc., Richland, Washington.« less

  18. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent frommore » buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project`s cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion.« less

  19. Toxic chemical considerations for tank farm releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs weremore » not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.« less

  20. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  1. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  2. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  3. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY TH

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revisionmore » includes information on additional feed tanks.« less

  4. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  5. Technology development in support of the TWRS process flowsheet. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D.J.

    1995-10-11

    The Tank Waste Remediation System is to treat and dispose of Hanford`s Single-Shell and Double-Shell Tank Waste. The TWRS Process Flowsheet, (WHC-SD-WM-TI-613 Rev. 1) described a flowsheet based on a large number of assumptions and engineering judgements that require verification or further definition through process and technology development activities. This document takes off from the TWRS Process Flowsheet to identify and prioritize tasks that should be completed to strengthen the technical foundation for the flowsheet.

  6. Safety criteria for organic watch list tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E., Westinghouse Hanford

    1996-08-01

    This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

  7. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIRKBRIDE, R.A.

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  9. 46 CFR 153.482 - Stripping quantities and interim standards for Category C NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.482 Stripping quantities and interim standards for Category C NLS tanks on...

  10. 46 CFR 153.482 - Stripping quantities and interim standards for Category C NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.482 Stripping quantities and interim standards for Category C NLS tanks on...

  11. 46 CFR 153.482 - Stripping quantities and interim standards for Category C NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.482 Stripping quantities and interim standards for Category C NLS tanks on...

  12. 46 CFR 153.482 - Stripping quantities and interim standards for Category C NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.482 Stripping quantities and interim standards for Category C NLS tanks on...

  13. 46 CFR 153.482 - Stripping quantities and interim standards for Category C NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.482 Stripping quantities and interim standards for Category C NLS tanks on...

  14. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; LaMothe, M. E.; Lachut, J. S.

    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  15. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, C. L.; Harlow, D> G.

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Stephen P.; Chamness, Mickie A.

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The purpose of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Steve P.; Chamness, Mickie A.

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  18. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Stephen P.

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  1. Results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Bannochie, C. J.

    2017-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H and fulfills the requirements of Deliverable 3 of the Technical Task Request (TTR). Further work will report the results of the Extraction-Scrub-Strip (ESS) testing (Task 5 of the TTR) using the Tank 21H material. Task 4 of the TTR (MST Strike) will not be completed for Salt Batch 10.

  2. Recharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, Michael J.

    2008-01-17

    This chapter describes briefly the nature and measurement of recharge in support of the CH2M HILL Tank Farm Vadose Zone Project. Appendix C (Recharge) and the Recharge Data Package (Fayer and Keller 2007) provide a more thorough and extensive review of the recharge process and the estimation of recharge rates for the forthcoming RCRA Facility Investigation report for Hanford single-shell tank (SST) Waste Management Areas (WMAs).

  3. Method for Detecting Perlite Compaction in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert

    2010-01-01

    Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.

  4. 46 CFR 153.481 - Stripping quantities and interim standards for Category B NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.481 Stripping quantities and interim standards for Category B NLS tanks on... paragraph (b)(1) of this section and does not automatically control the flow rate must have— (i) Manual...

  5. 46 CFR 153.481 - Stripping quantities and interim standards for Category B NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.481 Stripping quantities and interim standards for Category B NLS tanks on... paragraph (b)(1) of this section and does not automatically control the flow rate must have— (i) Manual...

  6. 46 CFR 153.481 - Stripping quantities and interim standards for Category B NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.481 Stripping quantities and interim standards for Category B NLS tanks on... paragraph (b)(1) of this section and does not automatically control the flow rate must have— (i) Manual...

  7. 46 CFR 153.481 - Stripping quantities and interim standards for Category B NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.481 Stripping quantities and interim standards for Category B NLS tanks on... paragraph (b)(1) of this section and does not automatically control the flow rate must have— (i) Manual...

  8. 46 CFR 153.481 - Stripping quantities and interim standards for Category B NLS tanks on ships built before July 1...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.481 Stripping quantities and interim standards for Category B NLS tanks on... paragraph (b)(1) of this section and does not automatically control the flow rate must have— (i) Manual...

  9. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford SSTs is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65-year-old tank is being tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar testing ongoing. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide continuing indication of Hanford SST structural integrity.« less

  10. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Harlow, Donald G.

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  11. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  12. Preliminary Sizing Study of Ares-I and Ares-V Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Harper, David W.

    2012-01-01

    A preliminary sizing study of two cryogenic propellant tanks was performed using a FORTRAN optimization program to determine weight efficient orthogrid designs for the tank barrels sections only. Various tensile and compressive failure modes were considered, including general buckling of cylinders with a shell buckling knockdown factor. Eight independent combinations of three design requirements were also considered and their effects on the tanks weight. The approach was to investigate each design case with a variable shell buckling knockdown factor, determining the most weight efficient combination of orthogrid design parameters. Numerous optimization analyses were performed, and the results presented herein compare the effects of the different design requirements and shell buckling knockdown factor. Through a series of comparisons between design requirements or shell buckling knockdown factors, the relative change in overall tank barrel weights is shown. The findings indicate that the design requirements can substantually increase the tank weight while a less conservative shell buckling knockdown factor can modestly reduce the tank weight.

  13. Hanford Double-Shell Tank Inspection Annual Report Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petermann, Tasha M.; Boomer, Kayle D.; Washenfelder, D. J.

    2013-12-02

    The double-shell tanks (DSTs) were constructed between 1968 and 1986. They will have exceeded their design life before the waste can be removed and trasferred to the Waste Treatment and Immobilization Plant for vitrification. The Double-Shell Tank Integrity Project has been established to evaluate tank aging, and ensure that each tank is structurally sound for continued use. This is the first issue of the Double-Shell Tank Inspection Annual Report. The purpose of this issue is to summarize the results of DST inspections conducted from the beginnng of the inspection program through the end of CY2012. Hereafter, the report will bemore » updated annually with summaries of the past year's DST inspection activities.« less

  14. Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1993-07-16

    This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.

  15. 49 CFR 178.338-1 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...

  16. 49 CFR 178.338-1 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...

  17. 49 CFR 178.338-1 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...

  18. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  19. Novel Architecture for a Long-Life, Lightweight Venus Lander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugby, D.; Seghi, S.; Kroliczek, E.

    2009-03-16

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to:more » (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high performance insulation as a function of temperature and pressure; (3) a bench-top ambient pressure thermal test of the evaporation system; and (4) a higher fidelity test, to be conducted in a high pressure, high temperature inert gas test chamber, of a small-scale Venus lander prototype (made from two hemispherical interconnecting halves) that includes all of the aforesaid features.22 CFR 125.4(b)(13) applicable.« less

  20. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Individual specification requirements applicable to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section... within an outer shell. ...

  1. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  2. 40 CFR 63.685 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in paragraph (c)(2)(i) of this section when a tank is used as an interim transfer point to transfer... fixed-roof tank equipped with an internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the...

  3. National Aerospace Plane Integrated Fuselage/Cryotank Risk Reduction program

    NASA Astrophysics Data System (ADS)

    Dayton, K. E.

    1993-06-01

    The principal objectives and results of the National Aerospace Plane (NASP) Integrated Risk Reduction program are briefly reviewed. The program demonstrated the feasibility of manufacturing lightweight advanced composite materials for single-stage-to-orbit hypersonic flight vehicle applications. A series of combined load simulation tests (thermal, mechanical, and cryogenic) demonstrated proof of concept performance for an all unlined composite cryogenic fuel tank with flat end bulkheads and a high-temperature thin-shell advanced composite fuselage. Temperatures of the fuselage were as high as 1300 F, with 100 percent bending and shear loads applied to the tank while filled with 850 gallons of cryogenic fluid hydrogen (-425 F). Leak rates measured on and around the cryotank shell and bulkheads were well below acceptable levels.

  4. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...

  5. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...

  6. Long-Term High-Level Defense-Waste technology

    NASA Astrophysics Data System (ADS)

    1982-07-01

    In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.

  7. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  8. 49 CFR 179.220-25 - Stamping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Material ASTM A240-316L. Shell thickness Shell 0.167 in. Head thickness Head 0.150 in. Tank builders initials ABC. Date of original test 00-0000. Outer shell: Material ASTM A285-C. Tank builders initials WYZ...

  9. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Recknagle, K.P.

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPESTmore » simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.« less

  10. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  11. 33 CFR 157.510 - Operational measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Animal Fat or Vegetable Oil § 157.510 Operational measures. An owner or operator of a tank vessel that carries animal fat or vegetable...

  12. 33 CFR 157.510 - Operational measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Animal Fat or Vegetable Oil § 157.510 Operational measures. An owner or operator of a tank vessel that carries animal fat or vegetable...

  13. 33 CFR 157.510 - Operational measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Animal Fat or Vegetable Oil § 157.510 Operational measures. An owner or operator of a tank vessel that carries animal fat or vegetable...

  14. Engineering report for simulated riser installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  16. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  17. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  18. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  19. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  20. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  1. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  2. Soil load above Hanford waste storage tanks (2 volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianka, E.W.

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter formore » each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.« less

  3. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  4. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  5. 40 CFR 1045.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You may sell or install fuel tanks that do not meet the specified permeation standards without...: (1) You may earn an evaporative emission allowance from one fuel tank certified to EPA's evaporative... this evaporative emission allowance by selling one fuel tank that does not meet the specified...

  6. 78 FR 6149 - Final Interim Staff Guidance Assessing the Radiological Consequences of Accidental Releases of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...

  7. Removal of 137-Cs from Dissolved Hanford Tank Saltcake by Treatment with IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Sinkov, Sergei I.; Levitskaia, Tatiana G.

    2003-12-09

    The U.S. Department of Energy’s Richland Operations Office plans to accelerate the cleanup of the Hanford Site. Testing new technology for the accelerated cleanup will require dissolved saltcake from single-shell tanks. However, the 137Cs will need to be removed from the saltcake to alleviate radiation hazards. A saltcake composite constructed from archived samples from Hanford Site single-shell tanks 241-S-101, 241-S-109, 241-S-110, 241-S-111, 241-U-106, and 241-U-109 was dissolved in water, adjusted to 5 M Na, and transferred from the 222-S Laboratory to the Radiochemical Processing Laboratory (RPL). At the RPL, the approximately 5.5 liters of solution was passed through a 0.2-micronmore » polyethersulfone filter, collected, and homogenized. The filtered solution then was passed through an ion exchange column containing approximately 150 mL IONSIV® IE-911, an engineered form of crystalline silicotitanate available from UOP, at approximately 200 mL/hour in a continuous operation until all of the feed solution had been run through the column. An analysis of the 137Cs concentrations in the initial feed solution and combined column effluent indicates that > 99.999 percent of the Cs in the feed solution was removed by this operation. PNNR« less

  8. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  9. Software For Design And Analysis Of Tanks And Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Graham, Jerry B.

    1995-01-01

    Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.

  10. Investigation of residual stresses in tank car shells in the vicinity of weld ends

    DOT National Transportation Integrated Search

    1997-01-01

    A large number of cracks which develop in railroad tank car : shells form near the ends of skip welds which are used to attach : stiffeners to the tank. The development and growth of these cracks in : fatigue are affected by the presence of residual ...

  11. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  12. Tank tread assemblies with track-linking mechanism

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1986-01-01

    The proposed tank tread assembly has adjacent tank tread segments joined by a link bearing tapered pins retained by clips inserted through the tread shells perpendicular to the axes of the pin. It also has highway pads attached by a release rod bearing tapered, grooved cams which interlockingly engage tabs inserted into the tread shells.

  13. 49 CFR 178.345-1 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a fillet weld joining the tank shell to a flange shaped to fit the shell contour. (d) A manufacturer... be constructed with the cargo tanks made to the same specification or to different specifications...) Specification DOT 406, DOT 407 and DOT 412 cargo tank motor vehicles must conform to the requirements of this...

  14. Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Nurge, Mark

    2012-01-01

    Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.

  15. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’smore » remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.« less

  16. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.A., Westinghouse Hanford

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  18. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  19. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  20. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Christopher A.; Landon, Matthew R.; Hanson, Carl E.

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)« less

  1. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  2. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of weldable quality metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c...

  3. Study on collision resistance characteristics of the side tanks with water inside

    NASA Astrophysics Data System (ADS)

    Liu, Yuxi; Hu, Jinwen; Liu, Ting; Wu, Can

    2018-05-01

    When we evaluate the safety performance of ships against external events, one of the most important indicator is the collision resistance to which water inside the side tanks also make some contributions because of the water effect. To further analyze the interaction mechanism, different collision velocities and side tank waterlines are set for the analysis model. Results indicate the outside shell and the inner shell of the side structure significantly enhanced the collision resistance performance to a certain extension. The water effect on the failure of the outside shell is unobvious, while, it performs a great influence on the destructive reaction force of the inner shell. When the velocity of the coming bulbous bow gradually increases, the destructive reaction forces of the outside shell and the inner shell increase with a decreasing rate. Besides, water influence the collision characteristics of the inner shell a lot when the waterlines are below the upper rib of the strong frame.

  4. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...

  5. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...

  6. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...

  7. 33 CFR 157.500 - Purpose and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Animal Fat or... safety and operational requirements to reduce environmental damage resulting from the discharge of animal...

  8. 33 CFR 157.500 - Purpose and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Animal Fat or... safety and operational requirements to reduce environmental damage resulting from the discharge of animal...

  9. 33 CFR 157.500 - Purpose and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Animal Fat or... safety and operational requirements to reduce environmental damage resulting from the discharge of animal...

  10. Extraction-Scrub-Strip test results from the interim Salt Disposition Program Macrobatch 9 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2016-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). The Salt Batch 9 characterization results were previously reported. An Extraction-Scrub-Strip (ESS) test was performed to determine cesium distribution ratios (D (Cs)) and cesium concentration in the strip effluent and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a blend solvent prepared by SRNL that mimics the solvent composition currently being used atmore » the Modular Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D (Cs) value of 52.4. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This compares well against the predicted value of 56.5 from a recently created D (Cs) model« less

  11. Extraction, -scrub, -strip test results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). The Salt Batch 10 characterization results were previously reported.ii,iii An Extraction, -Scrub, -Strip (ESS) test was performed to determine cesium distribution ratios (D(Cs)) and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a sample of the NGS Blend solvent currently being used at the Modularmore » Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D(Cs) value of 110. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This is better than the predicted value of 39.8 from a recently created D(Cs) model.« less

  12. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the firstmore » three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.« less

  13. Semi-analytical approach to estimate railroad tank car shell puncture

    DOT National Transportation Integrated Search

    2011-03-16

    This paper describes the development of engineering-based equations to estimate the puncture resistance of railroad tank cars under a generalized shell or side impact scenario. Resistance to puncture is considered in terms of puncture velocity, which...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Bannochie, C. J.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of verification of Macrobatch (Salt Batch) 11 for the Interim Salt Disposition Program (ISDP) for processing. This document reports characterization data on the samples of Tank 21H and fulfills the requirements of Deliverable 3 of the Technical Task Request (TTR).

  15. Analysis of full-scale tank car shell impact tests

    DOT National Transportation Integrated Search

    2007-09-11

    This paper describes analyses of a railroad tank car : impacted at its side by a ram car with a rigid punch. This : generalized collision, referred to as a shell impact, is examined : using nonlinear finite element analysis (FEA) and threedimensional...

  16. Analysis report for 241-BY-104 Auger samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1994-11-10

    This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.

  17. Analysis of railroad tank car shell impacts using finite element method

    DOT National Transportation Integrated Search

    2008-04-22

    This paper examines impacts to the side of railroad tank : cars by a ram car with a rigid indenter using dynamic, : nonlinear finite element analysis (FEA). Such impacts are : referred to as shell impacts. Here, nonlinear means elasticplastic : mater...

  18. Application of welded steel sandwich panels for tank car shell impact protection.

    DOT National Transportation Integrated Search

    2013-04-01

    This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...

  19. Application of welded steel sandwich panels for tank car shell impact protection

    DOT National Transportation Integrated Search

    2013-04-30

    This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...

  20. AT on Buried LPG Tanks Over 13 m3: An Innovative and Practical Solution

    NASA Astrophysics Data System (ADS)

    Di Fratta, Crescenzo; Ferraro, Antonio; Tscheliesnig, Peter; Lackner, Gerald; Correggia, Vincenzo; Altamura, Nicola

    In Italy, since 2005, techniques based on Acoustic Emission have been introduced for testing of underground LPG tanks up to 13 m3, according to the European standard EN 12818:2004. The testing procedure for these tanks plans to install one or more pairs of sensors inside the "dome" suited for the access to the valves and fittings of the tank, directly on the accessible metal shell. This methodology is not applicable for the underground LPG buried tanks, where it is necessary to install a larger number of AE sensors, in order to cover at 100% the whole tank shell, even at very deep positions. Already in 2004, the European standard EN 12820 (Appendix C - Informative)give the possibility to use Acoustic Emission testing of LPG underground or buried tanks with a capacity exceeding 13 m3, but no technique was specified for the application. In 2008, TÜV AUSTRIA ITALIA - BLU SOLUTIONS srl - Italian company of TÜV AUSTRIA Group - has developed a technique to get access at tank shell, where tank capacity is greater than 13 m3 and its' diameter greater than 3,5 m. This methodology was fully in comply with the provisions of the European Standard EN 12819:2010, becoming an innovative solution widely appreciated and is used in Italy since this time. Currently, large companies and petrochemical plants, at the occurrence of the tank's requalification, have engaged TÜV AUSTRIA ITALIA - BLU SOLUTIONS to install such permanent predispositions, which allow access to the tank shell - test object - with diameters from 4 to 8 m. Through this access, you can install the AE sensors needed to cover at 100% the tank surface and then to perform AE test. In an economic crisis period, this technique is proving a valid and practically applicable answer, in order to reduce inspection costs and downtime by offering a technically advanced solution (AT), increasing the safety of the involved operators, protecting natural resources and the environment.

  1. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  2. Removal of 137Cs from Dissolved Hanford Tank Saltcake by Treatment with IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Sinkov, Serguei I.; Levitskaia, Tatiana G.

    2003-04-10

    The U.S. Department of Energy's Richland Operations Office plans to accelerate the cleanup of the Hanford Site. Testing new technology for the accelerated cleanup will require dissolved saltcake from single-shell tanks. However, the 137Cs will need to be removed from the saltcake to alleviate radiation hazards. A saltcake composite constructed from archived samples from Hanford Single Shell Tanks 241-S-101, 241-S-109, 241-S-110, 241-S-111, 241-U-106, and 241-U-109 was dissolved in water, adjusted to 5 M Na, and transferred from the 222-S building to the Radiochemical Processing Laboratory (RPL). At the RPL, the approximately 5.5 liters of solution was passed through a 0.2-micronmore » polyethersulfone filter, collected, and homogenized. The filtered solution then was passed through an ion exchange column containing approximately 150 mL IONSIV IE-911, an engineered form of crystalline silicotitanate available from UOP, at approximately 200 mL/hour in a continuous operation until all of the feed solution had been run through the column. An analysis of the 137Cs concentrations in the initial feed solution and combined column effluent indicates that> 99.999 percent of the Cs in the feed solution was removed by this operation. This report describes the Cs-depletion operations together with a partial analysis of the as-received solution and a more extensive characterization of the Cs-depleted solution.« less

  3. The Costs and Benefits of High Speed Vessels Relative to Traditional C-17 Military Airlift

    DTIC Science & Technology

    2003-12-01

    37 APPENDIX D SWOT Analysis...Port Action Officers Group IBCT Interim Brigade Combat Team LCS Littoral Combat Ship LST Landing ship tank LSV Logistics Support Vessel... SWOT Strength Weakness Opportunity Threat TACOM Tank and Automotive Command TSV Theater Support Vessel USS United States Ship USTRANSCOM

  4. 33 CFR 157.600 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Other Non... non-petroleum oil. (b) This subpart applies to each tank vessel specified in § 157.01 of this part that— (1) Is 5,000 gross tons or more; (2) Carries other non-petroleum oil in bulk as cargo or cargo...

  5. 33 CFR 157.600 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Other Non... non-petroleum oil. (b) This subpart applies to each tank vessel specified in § 157.01 of this part that— (1) Is 5,000 gross tons or more; (2) Carries other non-petroleum oil in bulk as cargo or cargo...

  6. 33 CFR 157.600 - Purpose and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Other Non... non-petroleum oil. (b) This subpart applies to each tank vessel specified in § 157.01 of this part that— (1) Is 5,000 gross tons or more; (2) Carries other non-petroleum oil in bulk as cargo or cargo...

  7. 33 CFR 157.600 - Purpose and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Other Non... non-petroleum oil. (b) This subpart applies to each tank vessel specified in § 157.01 of this part that— (1) Is 5,000 gross tons or more; (2) Carries other non-petroleum oil in bulk as cargo or cargo...

  8. River Protection Project (RPP) Dangerous Waste Training Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less

  9. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  10. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  11. 49 CFR 178.345-1 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) All specification requirements are minimum requirements. (c) Definitions. See § 178.320(a) for the... flange, or by a fillet weld joining the tank shell to a flange shaped to fit the shell contour. (d) A... be constructed with the cargo tanks made to the same specification or to different specifications...

  12. 78 FR 14122 - Revocation of Permanent Variances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto the existing shell. Steel mills...

  13. Evaluation of semi-empirical analyses for tank car puncture velocity, part II : correlations with engineering analyses

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells. In this context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and punctur...

  14. Evaluation of semi-empirical analyses for railroad tank car puncture velocity, part 2 : correlations with engineering analysis

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells. In this : context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and punct...

  15. Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.

    USDA-ARS?s Scientific Manuscript database

    During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

  16. Staged depressurization system

    DOEpatents

    Schulz, T.L.

    1993-11-02

    A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump. 4 figures.

  17. Staged depressurization system

    DOEpatents

    Schulz, Terry L.

    1993-01-01

    A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump.

  18. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220...

  19. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  20. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.

    2014-12-22

    Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary linermore » to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.« less

  1. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  2. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)« less

  3. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; WASHENFELDER D; JOHNSON J

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.« less

  4. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP Recknagle; Y Onishi

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how wellmore » a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.« less

  5. Testing and recommended practices to improve nurse tank safety, phase I : [research brief].

    DOT National Transportation Integrated Search

    2013-10-01

    This study focuses on determining causes and possible inspection remediation strategies to reduce the occurrence of anhydrous ammonia (NH3) nurse tank failures. Nurse tanks are cylindrical steel tank shells with hemispherical or elliptical end caps r...

  6. Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.

  7. Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-07-30

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.

  8. THERMALLY SHIELDED MOISTURE REMOVAL DEVICE

    DOEpatents

    Miller, O.E.

    1958-08-26

    An apparatus is presented for removing moisture from the air within tanks by condensation upon a cartridge containing liquid air. An insulating shell made in two halves covers the cartridge within the evacuated system. The shell halves are hinged together and are operated by a system of levers from outside the tank with the motion translated through a sylphon bellows to cover and uncover the cartridge. When the condensation of moisture is in process, the insulative shell is moved away from the liquid air cartridge, and during that part of the process when there is no freezing out of moisture, the shell halves are closed on the cell so thnt the accumulated frost is not evaporated. This insulating shell greatly reduces the consumption of liquid air in this condensation process.

  9. Chemical Safety Alert: Catastrophic Failure of Storage Tanks

    EPA Pesticide Factsheets

    Aboveground, atmospheric storage tanks can fail when flammable vapors in the tank explode and break either the shell-to-bottom or side seam, resulting in hazardous release accidents. Proper maintenance practices can help prevent accidents.

  10. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  11. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  12. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  13. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  14. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  15. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  16. Thermocryogenic buckling and stress analyses of a partially filled cryogenic tank subjected to cylindrical strip heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.

  17. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  18. The variable polarity plasma arc welding process: Its application to the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, O. E., Jr.; Jones, C. S., III; Munafo, A. P.; Wilson, W. A.

    1983-01-01

    The technical history of the variable polarity plasma arc (VPPA) welding process being introduced as a partial replacement for the gas shielded tungsten arc process in assembly welding of the space shuttle external tank is described. Interim results of the weld strength qualification studies, and plans for further work on the implementation of the VPPA process are included.

  19. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  20. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  1. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  2. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  3. 33 CFR 157.420 - Vessel specific watch policy and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils... employed individual to receive essential information in a language the individual understands. (b...

  4. Attenuation of standing waves in a large water tank using arrays of large tethered encapsulated bubbles.

    PubMed

    Lee, Kevin M; Wilson, Preston S; Wochner, Mark S

    2014-04-01

    The use of bubble resonance effects to attenuate low-frequency underwater sound was investigated experimentally in a large water tank. A compact electromechanical sound source was used to excite standing wave fields at frequencies ranging between 50 and 200 Hz in the tank. The source was then surrounded by a stationary array of tethered encapsulated air bubbles, and reduction in standing wave amplitude by as much as 26 dB was observed. The bubbles consisted of either thin-shelled latex balloons with approximately 5 cm radii or thicker-shelled vinyl boat fenders with 6.9 cm radii. The effects of changing the material and thickness of the bubble shells were found to be in qualitative agreement with predictions from Church's model for sound propagation in a liquid containing encapsulated bubbles [J. Acoust. Soc. Am. 97, 1510-1521 (1995)]. Although demonstrated here for low frequency noise abatement within a tank, which is useful for quieting acoustic test facilities and large tanks used for marine life husbandry, the eventual aim of this work is to use stationary arrays of large tethered encapsulated bubbles to abate low frequency underwater noise from anthropogenic sources in the marine environment.

  5. 78 FR 42818 - SafetyAlert: Safety Alert: Risks Associated With Liquid Petroleum (LP) Gas Odor Fade

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... stakeholders from industry, fire fighter associations, and other regulatory agencies in order to better... tanks are used. New or recently cleaned tanks may absorb the odorant into the metal shell of these tanks...

  6. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  7. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  8. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  9. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  10. 40 CFR 52.1120 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a new regulation 310 CMR 7.19 “Interim Sulfur-in-Fuel Limitations for Fossil Fuel Utilization... May 22, 1985, including Method 27, record form, potential leak points, major tank truck leak sources...

  11. 49 CFR 179.220-26 - Stenciling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The outer shell, or the...

  12. 49 CFR 179.220-26 - Stenciling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The outer shell, or the...

  13. NESC Review of the 8-Foot High Temperature Tunnel (HTT) Oxygen Storage Pressure Vessel Inspection Requirements

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael; Raju, Ivatury; Piascik, Robert; Cameron, Kenneth; Kirsch, Michael; Hoffman, Eric; Murthy, Pappu; Hopson, George; Greulich, Owen; Frazier, Wayne

    2009-01-01

    The 8-Foot HTT (refer to Figure 4.0-1) is used to conduct tests of air-breathing hypersonic propulsion systems at Mach numbers 4, 5, and 7. Methane, Air, and LOX are mixed and burned in a combustor to produce test gas stream containing 21 percent by volume oxygen. The NESC was requested by the NASA LaRC Executive Safety Council to review the rationale for a proposed change to the recertification requirements, specifically the internal inspection requirements, of the 8-Foot HTT LOX Run Tank and LOX Storage Tank. The Run Tank is an 8,000 gallon cryogenic tank used to provide LOX to the tunnel during operations, and is pressured during the tunnel run to 2,250 pounds per square inch gage (psig). The Storage Tank is a 25,000 gallon cryogenic tank used to store LOX at slightly above atmospheric pressure as a external shell, with space between the shells maintained under vacuum conditions.

  14. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  15. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  16. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    NASA Technical Reports Server (NTRS)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  17. State Waste Discharge Permit Application: Electric resistance tomography testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the arealmore » extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.« less

  18. Bench Scale Saltcake Dissolution Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BECHTOLD, D.B.; PACQUET, E.A.

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity;more » saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.« less

  19. Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Bamberger; L.M. Liljegren; P.S. Lowery

    This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less

  20. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    NASA Astrophysics Data System (ADS)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  1. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...

  2. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, Dennis J.

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  3. Initial retrieval sequence and blending strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemwell, D.L.; Grenard, C.E.

    1996-09-01

    This report documents the initial retrieval sequence and the methodology used to select it. Waste retrieval, storage, pretreatment and vitrification were modeled for candidate single-shell tank retrieval sequences. Performance of the sequences was measured by a set of metrics (for example,high-level waste glass volume, relative risk and schedule).Computer models were used to evaluate estimated glass volumes,process rates, retrieval dates, and blending strategy effects.The models were based on estimates of component inventories and concentrations, sludge wash factors and timing, retrieval annex limitations, etc.

  4. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  5. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  6. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  7. Results of initial analyses of the salt (macro) batch 9 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2015-10-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further results on the chemistry and other tests willmore » be issued in the future.« less

  8. Evaluation of semi-empirical analyses for railroad tank car puncture velocity, part 1 : correlations with experimental data

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the first in a two-part series that focuses on methodologies to determine the puncture velocity of tank car shells. In this context, puncture velocity refers to the impact velocity at which a coupler will puncture the tank. In this rep...

  9. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), themore » owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.« less

  10. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    PubMed Central

    Stone, William C.; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  11. Superfund record of decision (EPA Region 10): Elmendorf Air Force Base, Operable Unit 2, source area ST41, Anchorage, AK. (First remedial action), September 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    The 13,130-acre Elmendorf Air Force Base (AFB) site is located adjacent to the municipality of Anchorage, Alaska. From 1940 to 1991, Elmendorf AFB used a 20-acre portion of the site, referred to as source area ST41, to store the fuel product JP-4 and aviation gasoline in four 1-million gallon underground tanks. As a result of numerous leaks and above-ground spills since the tanks were installed in the 1940s, USAF conducted investigations through its Installation Restoration Program (IRP). These investigations revealed several hundred thousand gallons of fuel in the ground water and soil. The ROD addresses an interim remedy at Elmendorfmore » AFB. The action is needed to reduce further spread of fuel constituents through the recovery of floating product on the ground water surface, and containment of seeps. Future RODs will include a final remedy for ground water and soil at ST41, as OU2, and will address the other six OUs at the site. The primary contaminants of concern affecting the ground water at ST41 are the compounds in JP-4, especially VOCs such as benzene, toluene, and xylenes. The selected interim remedial action for the site are included.« less

  12. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, B.D.

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  13. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  14. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  15. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  16. 49 CFR 178.274 - Specifications for UN portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and 178.277, as applicable. Design type means a portable tank or series of portable tanks made of... the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design... be designed and constructed to withstand a hydraulic test pressure of not less than 1.5 times the...

  17. 49 CFR 178.274 - Specifications for UN portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and 178.277, as applicable. Design type means a portable tank or series of portable tanks made of... the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design... be designed and constructed to withstand a hydraulic test pressure of not less than 1.5 times the...

  18. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  19. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  20. Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.

  1. Results of initial analyses of the salt (macro) batch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2017-01-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 10 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 10 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  2. Results of initial analyses of the salt (macro) batch 11 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 11 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 11 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amounts of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  3. Load drop evaluation for TWRS FSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoistingmore » and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.« less

  4. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  5. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  6. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  7. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  8. 40 CFR 1048.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK... to plastic fuel tanks in § 1048.245(e)(1)(i) and § 1048.501(e). [67 FR 68347, Nov. 8, 2002, as...

  9. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K.; Sherbine, Catherine A.

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  10. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  11. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Christopher E.; Lawter, Amanda R.; Qafoku, Nikolla

    Isotopes of iodine were generated during plutonium production from nine production reactors at the U.S. Department of Energy Hanford Site. The long half-life 129I generated at the Hanford Site during reactor operations was 1) stored in single-shell and double-shell tanks, 2) discharged to liquid disposal sites (e.g., cribs and trenches), 3) released to the atmosphere during fuel reprocessing operations, or 4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1more » operable unit. There is also 129I remaining in the vadose zone beneath disposal or leak locations. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited.« less

  13. Analysis and test results for a molten salt thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Sterrett, R. H.; Scott, O. L.

    A system has been developed to provide low cost thermal energy storage using molten salt. It consists of a hot tank to store the 565 C (1050 F) salt and a cold tank to store the 289 C (550 F) salt. The hot tank uses internal insulation protected by a liner to enable the use of a carbon steel shell for structural support. Due to the lower salt temperature, the cold tank can be a carbon steel shell with external insulation. This paper describes an analytical method used to predict the thermal performance of such systems and presents experimental data from a Subsystem Research Experiment (SRE) conducted by Martin Marietta Aerospace, Solar Energy Systems under contract from Sandia National Laboratories, Livermore, CA. The results from three of the SRE test cases are compared with the STS model results. These are (1) steady state operation, (2) concurrent charging and discharging, and (3) transient cooldown. The temperature differences between the analytical and experimental results were less than 10%. The internally insulated hot tank performed well.

  14. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  15. 46 CFR 30.30-9 - Evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Evaluation. 30.30-9 Section 30.30-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Interim Procedures for Evaluating Vessel Personnel Licensing and Certification Programs of Foreign Countries § 30.30-9 Evaluation. Materials...

  16. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).« less

  17. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of each end fitting accommodates this layer. Depending on the application, this layer could be, for example, a layer of rubber, a polymer film, or an electrodeposited layer of metal. If the fluid to be contained in the tank is a gas, then the best permeation barrier is electrodeposited metal (typically copper or nickel), which can be effective at a thickness of as little as 0.005 in (.0.13 mm). The electrodeposited metal becomes molecularly bonded to the second step on each metallic end fitting. The permeation-barrier layer is covered with many layers of filament-wound composite material, which could be the same as, or different from, the composite material of the inner shell. Finally, the filament-wound composite material is cured in an ov

  18. Offsite radiological consequence analysis for the bounding flammable gas accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-19

    The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST).more » A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.« less

  19. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System,more » Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.« less

  20. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.« less

  1. Remaining Sites Verification Package for the 116-C-3, 105-C Chemical Waste Tanks, Waste Site Reclassification Form 2008-002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-01-31

    The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils.more » The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  2. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEFIGH PRICE, C.

    2000-09-25

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initialmore » retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.« less

  3. TMA Chemical Release Payloads for Stratospheric Wind Measurements Auroral E Program and Related Programs

    DTIC Science & Technology

    1982-03-15

    this work was to provide a piston tank filled with trimethyl aluminum for release as a trail in the upper atmosphere. This payload was launched from the...trail payloads. II. PAYLOAD DESCRIPTION The payload consists of a programmer section with plumbing and a piston tank section. The outer shell of the...payload is the wall of the piston tank . The liquid side of the piston tank is filled with 20 pounds of tri- methyl- aluminum (TMA). After filling the

  4. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  5. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  6. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  7. 10 CFR Appendix A to Part 440 - Standards for Weatherization Materials

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...] Insulate tank and distribution piping (See insulation section of this appendix). Install heat traps on..., Ceilings, Attics, and Roofs Insulation—organic fiber—conformance to Interim Safety Standard in 16 CFR part 1209; Fire Safety Requirements for Thermal Insulating Materials According to Insulation Use—Attic Floor...

  8. 46 CFR 30.30-3 - Evaluation materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Evaluation materials. 30.30-3 Section 30.30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Interim Procedures for... materials. The materials to be submitted for evaluation must include the English text of the following: (a...

  9. 33 CFR 157.415 - Bridge resource management policy and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils § 157.415 Bridge resource management policy and procedures. (a) Not later than February 1..., processing, and interpreting all essential information and making it conveniently available to other members...

  10. 33 CFR 157.415 - Bridge resource management policy and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils § 157.415 Bridge resource management policy and procedures. (a) Not later than February 1..., processing, and interpreting all essential information and making it conveniently available to other members...

  11. 33 CFR 157.415 - Bridge resource management policy and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VESSELS CARRYING OIL IN BULK Interim Measures for Certain Tank Vessels Without Double Hulls Carrying Petroleum Oils § 157.415 Bridge resource management policy and procedures. (a) Not later than February 1..., processing, and interpreting all essential information and making it conveniently available to other members...

  12. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, D.W.

    1995-01-01

    The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studiedmore » under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less

  13. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  14. Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.

    PubMed

    Tesei, Alessandra; Guerrini, Piero; Zampolli, Mario

    2008-08-01

    This paper presents results of acoustic inversion and structural health monitoring achieved by means of low to midfrequency elastic scattering analysis of simple, curved objects, insonified in a water tank. Acoustic elastic scattering measurements were conducted between 15 and 100 kHz on a 60-mm-radius fiberglass spherical shell, filled with a low-shear-speed epoxy resin. Preliminary measurements were conducted also on the void shell before filling, and on a solid sphere of the same material as the filler. These data were used to estimate the constituent material parameters via acoustic inversion. The objects were measured in the backscatter direction, suspended at midwater, and insonified by a broadband directional transducer. From the inspection of the response of the solid-filled shell it was possible to detect and characterize significant inhomogeneities of the interior (air pockets), the presence of which were later confirmed by x-ray CT scan and ultrasound measurements. Elastic wave analysis and a model-data comparison study support the physical interpretation of the measurements.

  15. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPESmore » results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.« less

  16. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  17. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less

  18. Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.

    The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze themore » effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (< ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups. The two parameters that best describe the maximum solids volume fraction that can be suspended in a double-shell tank were found to be 1) the Froude number (Fr) based on nozzle velocity (U0) and tank contents level (H) and 2) the dimensionless particle size (dp/D0). The dependence on the Reynolds number (Re) does not appear to be statistically significant.« less

  19. Annular Air Leaks in a liquid hydrogen storage tank

    NASA Astrophysics Data System (ADS)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  20. Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Herr, R. W.; Sewall, J. L.

    1980-01-01

    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks.

  1. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    DOEpatents

    Hutter, Ernest; Pardini, John A.

    1977-03-15

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads.

  2. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  3. 40 CFR 80.156 - Liability for violations of the interim detergent program controls and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... base gasoline component, the detergent component, or the detergent-additized post-refinery component of... component of any post-refinery component or gasoline in the storage tank containing gasoline found to be in... evidence, that the gasoline or detergent carrier caused the violation. (2) Post-refinery component non...

  4. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  5. Effects of Initial Geometric Imperfections On the Non-Linear Response of the Space Shuttle Superlightweight Liquid-Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H., Jr.

    2002-01-01

    The results of an analytical study of the elastic buckling and nonlinear behavior of the liquid-oxygen tank for the new Space Shuttle superlightweight external fuel tank are presented. Selected results that illustrate three distinctly different types of non-linear response phenomena for thin-walled shells which are subjected to combined mechanical and thermal loads are presented. These response phenomena consist of a bifurcation-type buckling response, a short-wavelength non-linear bending response and a non-linear collapse or "snap-through" response associated with a limit point. The effects of initial geometric imperfections on the response characteristics are emphasized. The results illustrate that the buckling and non-linear response of a geometrically imperfect shell structure subjected to complex loading conditions may not be adequately characterized by an elastic linear bifurcation buckling analysis, and that the traditional industry practice of applying a buckling-load knock-down factor can result in an ultraconservative design. Results are also presented that show that a fluid-filled shell can be highly sensitive to initial geometric imperfections, and that the use a buckling-load knock-down factor is needed for this case.

  6. Molten salt thermal energy storage subsystem for Solar Thermal Central Receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    The development of a low-cost thermal energy storage subsystem for large solar plants is analyzed. Molten nitrate salt is used as both the plant's working fluid and as the storage medium. The storage system comprises a specially designed hot tank to hold salt at a storage temperature of 839 K (1050 F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to lower the shell temperature to 561 K (550 F) so that a low-cost carbon steel shell can be used. A preliminary design is described for a large commercial-size plant (1200 MWht). Also described are a laboratory test program for the critical components and the design, construction, and test of a small-scale research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico.

  7. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, R. E.; Wyrwas, R. B.

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less

  8. Ferrocyanide Safety Program. Quarterly report for the period ending March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-04-01

    Various high-level radioactive waste from defense operations has accumulated at the Hanford Site in underground storage tanks since the mid-1940s. During the 1950s, additional tank storage space was required to support the defense mission. To obtain this additional storage volume within a short time period, and to minimize the need for constructing additional storage tanks, Hanford Site scientists developed a process to scavenge {sup 137}Cs from tank waste liquids. In implementing this process, approximately 140 metric tons of ferrocyanide were added to waste that was later routed to some Hanford Site single-shell tanks. The reactive nature of ferrocyanide in themore » presence of an oxidizer has been known for decades, but the conditions under which the compound can undergo endothermic and exothermic reactions have not been thoroughly studied. Because the scavenging process precipitated ferrocyanide from solutions containing nitrate and nitrite, an intimate mixture of ferrocyanides and nitrates and/or nitrites is likely to exist in some regions of the ferrocyanide tanks. This quarterly report provides a status of the activities underway at the Hanford Site on the Ferrocyanide Safety Issue, as requested by the Defense Nuclear Facilities Safety Board (DNFSB) in their Recommendation 90-7. A revised Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was recently prepared and released in March 1994. Activities in the revised program plan are underway or have been completed, and the status of each is described in Section 4.0 of this report.« less

  9. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  10. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  11. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  12. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  13. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  14. 49 CFR 179.100-7 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... welding and must comply with one of the following specifications (IBR, see § 171.7 of this subchapter... sensitizing treatment prior to testing. (d) All attachments welded to tank shell must be of approved material which is suitable for welding to the tank. [Amdt. 179-10, 36 FR 21344, Nov. 6, 1971, as amended by Amdt...

  15. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less

  16. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  17. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  18. 49 CFR 179.300-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-110A tanks shall have fusion-welded heads formed concave to pressure. Heads for fusion welding shall be... one heat so as to provide a straight flange at least 11/2 inches long. The thickness shall not be less... shell. They must be one piece, hot formed in one heat so as to provide a straight flange at least 4...

  19. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER DA; KIRCH NW; WASHENFELDER DJ

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  20. Tank Remote Repair System Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2002-12-06

    This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

  1. Space Shuttle external tank: Today - DDT & E: Tomorrow - Production

    NASA Technical Reports Server (NTRS)

    Norton, A. M.; Tanner, E. J.

    1979-01-01

    The External Tank (ET) is the structural backbone of the Space Shuttle. The ET is discussed relative to its role; its design as a highly efficient Shuttle element; the liquid oxygen tank - a thin shelled monocoque; the intertank - the forward structural connection; the liquid hydrogen tank structure - the connection with the Orbiter; the ET structural verification; the propulsion system - a variety of functions; the electrical subsystem; electrical subsystem qualification; the thermal protection system; and other related problems. To date the qualification programs have been extremely successful and are almost complete, and the first flight tank has been delivered. Tomorrow's objectives will concentrate on establishing the facilities, tools and processes to achieve a production rate of 24 ETs/year.

  2. Effects of septic tank effluent on ground-water quality, Dade County, Florida: an interim report

    USGS Publications Warehouse

    Pitt, William A.

    1974-01-01

    Except at one site, no fecal coliforms were found below the 10-foot depth. Total coliforms exceeded a count of one colony per ml at the 60- foot depth at two sites. At one site a fecal streptococci count of 53 colonies per ml was found at the 60-foot depth and at another a count of seven colonies was found at the 40-foot depth. The three types of bacteria occur in higher concentration in the northern areas of the county than in the south. Bacteria concentrations were also higher where the septic tanks were more concentrated. 

  3. Design and Development of Lightweight Composite Tanks for the Mars Ascent Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Estrada, Hector

    1999-01-01

    The investigation presented here focuses on the design and development of lightweight composite tanks for the Mars ascent propulsion technology. The proposed tanks are fabricated using the filament winding technique. The tanks will be used in the experimental permeability characterization of composite pressure vessels pressurized using cryogenic and kerosene fluids. We considered the geometry and composite material tailorability in the preliminary design formulation to obtain an isotensoid tank. The design formulation is based on membrane shell analysis. The tanks also include circular openings at the apex of the end caps for the installation of polar bosses. The development of a polar boss system was also investigated, and led to an innovative polar boss system that applies a uniform pressure on the o-ring gaskets. The permeability of these tanks was also considered and recommendations for improvement are presented.

  4. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  5. Significant volume reduction of tank waste by selective crystallization: 1994 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, D.L.; Lunsford, T.R.

    1994-09-27

    The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less

  6. Interim Feasibility Assessment Method for Solar Heating and Cooling of Army Buildings

    DTIC Science & Technology

    1976-05-01

    Solar Heating and Cooling System Diagram Conventional Flat-Plate Collector ...tank. The sunlight falling on the array warms a fluid (usually glycol and water), which is pumped through the solar collectors . The heat from this...the system an SYSTEM DIAGRAM auxiliary healer capable of supplying all or part of the heating or cooling demand. Solar Collectors The function

  7. 77 FR 46127 - Interim Staff Guidance on Changes to the Generic Aging Lessons Learned (GALL) Report Revision 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, ``Buried and Underground Piping and Tanks... AMPs in NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's... issues LR-ISG to communicate insights and lessons learned and to address emergent issues not covered in...

  8. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALLAWAY WS; HUBER HJ

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16,more » 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.« less

  10. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  11. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.« less

  12. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 2; Behavior Under 3g End-of-Flight Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H.,Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle super lightweight (SLWT) external liquid-oxygen (LO2) tank are presented for an important end-of-flight loading condition. These results illustrate an important type of response mode for thin-walled shells, that are subjected to combined mechanical and thermal loads, that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the aft dome of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of a short-wavelength bending deformation in the aft elliptical dome of the LO2 tank that grows in amplitude in a stable manner with increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the aft dome. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shell generally require a large-scale, high fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 1.9 times the values of the operational loads considered.

  13. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  14. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  15. Installation guidelines for solar heating system, single-family residence at William OBrien State Park, Stillwater, Minnesota

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.

  16. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  17. 78 FR 38843 - Single Application Option

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... Application Option AGENCY: U.S. Copyright Office, Library of Congress. ACTION: Interim final rule. SUMMARY: The U.S. Copyright Office is amending its regulations on an interim basis in order to establish a new... an additional option for individual authors/claimants registering a single (one) work that is not a...

  18. Repository of not readily available documents for project W-320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.C.

    1997-04-18

    The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

  19. Building M7-0505 Treatment Tank (SWMU 039) Annual Performance Monitoring Report

    NASA Technical Reports Server (NTRS)

    2015-01-01

    This Annual Performance Monitoring Report presents a summary of Interim Measure (IM) activities and an evaluation of data collected during the third year (June 2014 to September 2015) of operation, maintenance, and monitoring (OM&M) conducted at the Building M7-505 (M505) Treatment Tank area, Kennedy Space Center (KSC), Florida ("the Site"). Under KSC's Resource Conservation and Recovery Act Corrective Action Program, the M505 Treatment Tank area was designated Solid Waste Management Unit 039. Arcadis U.S., Inc. (Arcadis) began IM activities on January 10, 2012, after completion of construction of an in situ air sparge (IAS) system to remediate volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable Florida Department of Environmental Protection (FDEP) Chapter 62-777, Florida Administrative Code, Natural Attenuation Default Concentrations (NADCs). This report presents a summary of the third year of OM&M activities conducted between June 2014 and September 2015.

  20. Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank, Waste Site Reclassification Form 2006-019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2006-09-27

    The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestrictedmore » future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.« less

  1. Investigation of Fire-Vulnerability-Reduction Effectiveness of Fire-Resistant Diesel Fuel in Armored Vehicular Fuel Tanks

    DTIC Science & Technology

    1980-09-30

    Aberdeen Proving Ground, Maryland, September 1976. 2. Weatherford, W.D., Jr., Fodor, G.E., Naegeli , D.W., Owens, E.C., Wright, B.R., and Schaekel, F.W...Weatherford, W.I)., Jr., Fodor, G.E., Naegeli , D.W., Owens, E.C., Wright, B.R., and Schaekel, F.W., "Development of Army Fire-Resistant Diesel Fuel," Interim

  2. Space shuttle phase B extension, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    In order to define a system which would significantly reduce payload delivery costs, activities were extended to modifications of the reusable space shuttle design concept. Considered were systems using orbiters with external propellant tanks and an interim expendable booster which allowed phased development of the usable orbiter and booster. Analyzed were: Merits of internal and external propellant tanks and the impact of external LH2 compared to L02 and LH2; impact of cargo bay size; impact abort; merit of expendable booster options; and merit of a phased development program. Studies showed that external L02/LH2 and the continued use of the J-2S engine on the orbiter reduced program cost and risk.

  3. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project.more » As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.« less

  4. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  5. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  6. Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Maier, H. J.

    2016-02-01

    CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. This can involve increased stress in populations, and alteration in individual physiology, which can eventually be expressed through an organism's behavior. If sustained, CO2 induced ocean acidification has the potential to cause major impacts on marine food chains, including on services they provide. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crab Clibanarius digueti, a crustacean inhabiting the littoral zone. We hypothesized that an increase in dissolved carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the physiology of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into the treatment tank and measured as dissolved CO2 by using a NaOH titration method. Additionally, water conditions were characterized for light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We found a marked treatment effect on C. digueti behavior. The population experiencing increased CO2 performed daily shell changes after first day of exposure for each of the 4-day trials, as compared to individuals unexposed to dissolved CO2, that experienced no shell changes. From this study we conclude that the behavior of C. Digueti can be a good indicator of changes in dissolved CO2. This would allow us to better interpret patterns in marine animal behavior in response to climate change.

  7. Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Maier, H. J.

    2015-12-01

    CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. As a result of ocean acidification, marine organisms expend extra energy on modifying behaviors. The current rate of ocean acidification will deplete the marine food chain that much of the world relies on as their major food supply. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crabs Clibanarius digueti. We hypothesized that an increase in carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the niche occupancy of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into a treatment tank and measured as dissolved CO2 by using a sodium hydroxide titration method. Additionally, water conditions were characterized for UV- light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We assessed whether increased CO2 affected hermit crab shell change rate. We found that shell changes only happened among C. digueti placed under increased CO2. The information from this analysis will allow us to assess whether ocean acidification affects basic behavior in hermit crabs, which could later affect population dynamics. Bringing together all of this information will allow us to measure the effects of climate change on the behavior of C.Digueti.

  8. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  9. Parametric design using IGRIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, C.

    1994-10-01

    The Department of Energy`s (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden.more » The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL`s experience with the gantry robot service-providing mechanism.« less

  10. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  11. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)« less

  12. Effects of full-stream carbon filtration on the development of head and lateral line erosion syndrome (HLLES) in ocean surgeon.

    PubMed

    Stamper, M Andrew; Kittell, Michele M; Patel, Erin E; Corwin, Allison L

    2011-09-01

    Head and lateral line erosion syndrome (HLLES) is a common but very poorly understood disease of marine aquarium fish. One suspected etiology is the use of granulated activated carbon (GAC) to filter the water. Seventy-two ocean surgeons Acanthurus bahianus were distributed among three carbon-negative control systems and three GAC-treated systems such that each tank contained approximately the same total body mass. Each replicate system was made up of two 250-L circular tanks with a common filtration system (6 fish per tank, 12 fish per replicate system). The GAC-treated tanks were exposed to full-stream, extruded coconut shell activated carbon, which produced a mean total organic carbon content of 0.4 mg/L. The results of this study indicate that extruded coconut shell activated carbon filtering at full-stream rates can cause HLLES-type lesions in ocean surgeons. The HLLES developed exponentially over 15 d, beginning in the chin region. This was followed by pitting in the cheek region, which expanded until erosions coalesced. Once the carbon was discontinued, the processes reversed in a mean time of 49 d. As the lesions healed, they reverted from the coalesced to the pitted stage and then darkened before returning to normal.

  13. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperaturemore » fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na{sup +}). Concentrated mineral acids and elevated temperature were required to dissolve all of these solids. The refractory nature of some of the solids is consistent with the presence of metal oxides such as aluminosilicates (observed as a minor phase by XRD). Characterization of the water wash solutions and the digested solids confirmed the presence of oxalate salts in both solid samples. Sulfate enrichment was also observed in the Tank 26F solids wash solution, indicating the presence of sulfate precipitates such as burkeite. OLI modeling of the Tank 26F filtered supernatant composition revealed that sodium oxalate has a very low solubility in this solution. The model predicts that the sodium oxalate solubility in the Tank 26F supernatant is only 0.0011 M at 50 C. The results indicate that the highly concentrated nature of the evaporator feed solution and the addition of oxalate anion to the waste stream each contribute to the formation of insoluble solids in the 2F evaporator system.« less

  14. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  15. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  16. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  17. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  18. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  19. Numerical analysis of the cylindrical rigidity of the vertical steel tank shell

    NASA Astrophysics Data System (ADS)

    Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr

    2017-10-01

    The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.

  20. Development of deep drawn aluminum piston tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  1. Deep Sludge Gas Release Event Analytical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environmentmore » from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.« less

  2. Molten salt thermal energy storage subsystem for solar thermal central receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    1982-02-01

    The development of a low cost thermal energy storage subsystem for large solar plants is described. Molten nitrate salt is used as both the solar plant working fluid and the storage medium. The storage system consists of a specially designed hot tank to hold salt at a storage temperature of 839K (1050 deg F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to reduce the shell temperature to 561K (550 deg F) so that a low cost carbon steel shell is used. The internal insulation is protected from the hot salt by a unique metal liner with orthogonal corrugations to allow for numerous cycles of thermal expansion and contraction. A preliminary design for a large commercial size plant (1200 MWh sub +), a laboratory test program for the critical components, and the design, construction, and test of a small scale (7 MWH sub t) research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico is described.

  3. 49 CFR 178.275 - Specification for UN Portable Tanks intended for the transportation of liquid and solid hazardous...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... external heat. Fusible elements must not be utilized on portable tanks with a test pressure which exceeds 2... conductance of the insulation, in kW m −2 K −1, at 38 °C (100 °F); and t = actual temperature of the hazardous... given in this paragraph (i)(2)(i)(A) for insulated shells may only be used if the insulation is in...

  4. 49 CFR 178.275 - Specification for UN Portable Tanks intended for the transportation of liquid and solid hazardous...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... external heat. Fusible elements must not be utilized on portable tanks with a test pressure which exceeds 2... conductance of the insulation, in kW m −2 K −1, at 38 °C (100 °F); and t = actual temperature of the hazardous... given in this paragraph (i)(2)(i)(A) for insulated shells may only be used if the insulation is in...

  5. 49 CFR 178.275 - Specification for UN Portable Tanks intended for the transportation of liquid and solid hazardous...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... external heat. Fusible elements must not be utilized on portable tanks with a test pressure which exceeds 2... conductance of the insulation, in kW m −2 K −1, at 38 °C (100 °F); and t = actual temperature of the hazardous... given in this paragraph (i)(2)(i)(A) for insulated shells may only be used if the insulation is in...

  6. 49 CFR 178.275 - Specification for UN Portable Tanks intended for the transportation of liquid and solid hazardous...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... external heat. Fusible elements must not be utilized on portable tanks with a test pressure which exceeds 2... conductance of the insulation, in kW m −2 K −1, at 38 °C (100 °F); and t = actual temperature of the hazardous... given in this paragraph (i)(2)(i)(A) for insulated shells may only be used if the insulation is in...

  7. 49 CFR 178.275 - Specification for UN Portable Tanks intended for the transportation of liquid and solid hazardous...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... external heat. Fusible elements must not be utilized on portable tanks with a test pressure which exceeds 2... conductance of the insulation, in kW m −2 K −1, at 38 °C (100 °F); and t = actual temperature of the hazardous... given in this paragraph (i)(2)(i)(A) for insulated shells may only be used if the insulation is in...

  8. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lower knuckle should be supplemented by results from a more refined ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions.« less

  9. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses one of the requirements specified in the safety screening DQO. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AW-105 and its respective waste types is contained in Appendix E. A majority of the documents listed in Appendix E may be found in the Tank Characterization and Safety Resource Center.« less

  10. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.« less

  11. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less

  12. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench beganmore » in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.« less

  13. WWC Review of the Report "The Impact of Indiana's System of Interim Assessments on Mathematics and Reading." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2015

    2015-01-01

    The study, "The Impact of Indiana's System of Interim Assessments on Mathematics and Reading," examined the effects of using Diagnostic Assessment Tools (DAT) on mathematics and reading outcomes for students in 59 Indiana schools during the 2009-10 academic year. DAT consists of interim assessment tools--Wireless Generation's mCLASS for…

  14. The effect of enhanced carbon dioxide on the sinking and swimming of the shelled pteropod Limacina retroversa

    NASA Astrophysics Data System (ADS)

    Bergan, A. J.; Maas, A.; Lawson, G. L.

    2016-02-01

    Shelled pteropods (thecosomes) are planktonic mollusks that are expected to be negatively impacted by ocean acidification. The shells of live pteropods exposed to enhanced CO2 are known to exhibit degradation in condition, but the impacts on the fitness of the animals are unclear. Limacina retroversa from the Gulf of Maine were used to investigate the impact of enhanced CO2 on shell condition as well as swimming and sinking behaviors. L. retroversa were caught in the summer, fall, and spring and maintained in seawater at either ambient or two levels of enhanced CO2, and then filmed in a mirrored tank to measure the 3D velocities and other characteristics of the animals' movements while sinking or swimming. Shell condition was also examined by a suite of imaging techniques including light microscopy, SEM, and micro-computed tomography. After exposures to enhanced CO2 of as little as 3 days the pteropod shells became darker and more opaque. The pteropds had slower sinking velocities when kept under medium and high CO2 (800 and 1200 ppm) in comparison to the ambient ( 400 ppm) control group for exposure periods between one and four weeks. The swimming velocities of animals ascending in the tank were similarly decreased for animals maintained under the enhanced CO2 conditions for one to three weeks. The wing beat frequency and the path of motion were analyzed to further characterize swimming ability. Pteropods use both sinking and swimming as anti-predation techniques and hence the observed decrease in sinking and swimming speeds observed for animals exposed to increased CO2 could have a direct impact on their fitness by increasing their mortality risk to predators.

  15. 49 CFR 179.220-23 - Test of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must not be in place when the test is made. (b) The inner container must be pressure tested before... container after its installation within outer shell must have their attachment welds thoroughly inspected by...

  16. 49 CFR 178.274 - Specifications for UN portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... welding of pressure vessels. When the manufacturing process or the materials make it necessary, the shells... strength of the tubing, such as may happen when cutting threads. Brazed joints are not authorized for...

  17. 49 CFR 178.274 - Specifications for UN portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... welding of pressure vessels. When the manufacturing process or the materials make it necessary, the shells... strength of the tubing, such as may happen when cutting threads. Brazed joints are not authorized for...

  18. 1200008

    NASA Image and Video Library

    2012-01-18

    EXTERNAL TANK TEST ARTICLE (ETTA2) IS IN TRANSIT TO BE ROTATED 180° FOR INTERFACE RING INSTALLATION FOR SBKF (SHELL BUCKLING KNOCKDOWN FACTOR) CRITICAL FEEDBACK, UNDERSTANDING AND IDEAS THAT WILL ENABLE THE DEVELOPMENT AND IMPLEMENTATION OF NEW DESIGN APPROACHES AND TECHNOLOGY .

  19. Data Quality Objectives for Tank Farms Waste Compatibility Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presentlymore » in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.« less

  20. A 400,000 lb crude oil storage tank was moved on an 11 in. air blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The British patented-system used to move the 55,000 bbl tank at the Cushing, Okla., tank farm of Getty Oil Co. uses the same airlift principle employed by various hovercraft. Representatives from 20 pipeline and oil companies watched the move, which placed the tank 22 ft higher and 600 ft away from its former location, to improve its gravity flow rate, an improvement spurred by greater crude demands placed on Cushing Terminal. Two 425 hp air compressors were attached to the tank's shell and produced 130,000 cu ft/min of air. The airflow was directed beneath the tank through a segmented skirtmore » fixed to the circumference of the tank's base. Less than 0.5 psi air pressure across the tank floor was needed to lift the tank. Four large D-7 tractors pulled and guided the tank up the incline onto its new pad, where the vessel was rotated into alignment for piping connections. Preliminary rig-up, grading, and pad preparation took six days, but actual tank relocation required only two hours. Getty's Cushing terminal feeds to the 20 in. dia Osage pipeline that serves Getty's El Dorado, Kans., refinery as well as other carriers.« less

  1. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  2. Operation and maintenance of the SOL-DANCE building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-29

    The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less

  3. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be usedmore » during qualification testing and acceptance testing to verify operability.« less

  4. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)« less

  5. 49 CFR 179.200-4 - Insulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., the tank shell and expansion dome when used must be insulated with an approved material. The entire... thermal conductance at 60 °F is not more than 0.225 Btu per hour, per square foot, per degree F...

  6. 49 CFR 178.345-4 - Joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Containers for Motor Vehicle Transportation § 178.345-4 Joints. (a) All joints between the cargo tank shell... accessible for inspection. [Amdt. 178-89, 54 FR 25022, June 12, 1989, as amended by Amdt. 178-118, 61 FR...

  7. 49 CFR 178.345-4 - Joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Containers for Motor Vehicle Transportation § 178.345-4 Joints. (a) All joints between the cargo tank shell... accessible for inspection. [Amdt. 178-89, 54 FR 25022, June 12, 1989, as amended by Amdt. 178-118, 61 FR...

  8. 49 CFR 178.345-4 - Joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Containers for Motor Vehicle Transportation § 178.345-4 Joints. (a) All joints between the cargo tank shell... accessible for inspection. [Amdt. 178-89, 54 FR 25022, June 12, 1989, as amended by Amdt. 178-118, 61 FR...

  9. 49 CFR 178.345-4 - Joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Containers for Motor Vehicle Transportation § 178.345-4 Joints. (a) All joints between the cargo tank shell... accessible for inspection. [Amdt. 178-89, 54 FR 25022, June 12, 1989, as amended by Amdt. 178-118, 61 FR...

  10. 49 CFR 178.345-4 - Joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers for Motor Vehicle Transportation § 178.345-4 Joints. (a) All joints between the cargo tank shell... accessible for inspection. [Amdt. 178-89, 54 FR 25022, June 12, 1989, as amended by Amdt. 178-118, 61 FR...

  11. Design Issues Affecting Pipings Associated with a New Moisture Separator Reheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyung-Keun, Kim; Jae-Kyoung, Cho

    2006-07-01

    This paper summarizes the piping design effects on a New Moisture Separator Reheater (MSR) in Shin-Kori Nuclear Power Plant Units 1 and 2 (SKN 1 and 2) being under the construction in Korea. This SKN 1 and 2 has the same arrangement of a Turbine-Generator set as one of Korea Standard Nuclear Plant Units ( OPR 1000 ) in commercial operation. The Turbine-Generator Supplier has developed a new Moisture Separator Reheater which has first and second stage heating steam supply connections respectively, at both ends of the shell side of the vessel in comparison to MSR of OPR 1000 whichmore » has first and second stage heating steam supply connections at only one end. The different locations of reheaters in MSR cause changes in the associated pipings such as 2. stage reheater heating steam, 2. stage reheater drain, shell drain, drain tank location and tank condensate drainage pipings. (authors)« less

  12. Structural analyses for the modification and verification of the Viking aeroshell

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Anderson, M. S.

    1976-01-01

    The Viking aeroshell is an extremely lightweight flexible shell structure that has undergone thorough buckling analyses in the course of its development. The analytical tools and modeling technique required to reveal the structural behavior are presented. Significant results are given which illustrate the complex failure modes not usually observed in simple models and analyses. Both shell-of-revolution analysis for the pressure loads and thermal loads during entry and a general shell analysis for concentrated tank loads during launch were used. In many cases fixes or alterations to the structure were required, and the role of the analytical results in determining these modifications is indicated.

  13. Structural Configuration Analysis of Crew Exploration Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2006-01-01

    Structural configuration modeling and finite element analysis of crew exploration vehicle (CEV) concepts are presented. In the structural configuration design approach, parametric solid models of the pressurized shell and tanks are developed. The CEV internal cabin pressure is same as in the International Space Station (ISS) to enable docking with the ISS without an intermediate airlock. Effects of this internal pressure load on the stress distribution, factor of safety, mass and deflections are investigated. Uniform 7 mm thick skin shell, 5 mm thick shell with ribs and frames, and isogrid skin construction options are investigated. From this limited study, the isogrid construction appears to provide most strength/mass ratio. Initial finite element analysis results on the service module tanks are also presented. These rapid finite element analyses, stress and factor of safety distribution results are presented as a part of lessons learned and to build up a structural mass estimation and sizing database for future technology support. This rapid structural analysis process may also facilitate better definition of the vehicles and components for rapid prototyping. However, these structural analysis results are highly conceptual and exploratory in nature and do not reflect current configuration designs being conducted at the program level by NASA and industry.

  14. Buckling Design Studies of Inverted, Oblate Bulkheads for a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Bowman, Lynn M.

    2002-01-01

    An investigation of the deformation and buckling characteristics of a composite, oblate bulkhead that has an inverted geometry and is subjected to pressure-only loading is presented for three bulkhead geometries and thicknesses. The effects of a stiffening support ring at the bulkhead to cylinder interface are also evaluated. Buckling analyses conducted using the axisymmetric shell code BOSOR4 are discussed for several bulkhead configurations. These results are analytically verified using results from the Structural Analysis of General Shells (STAGS) code for a selected bulkhead configuration. The buckling characterization of an inverted, oblate bulkhead requires careful attention as small changes in bulkhead parameters can have a significant effect on the critical buckling load. Comparison of BOSOR4 and STAGS results provided a very good correlation between the two analysis methods. In addition, the analysis code BOSOR4 was found to be an efficient sizing tool that is useful during the preliminary design stage of a practical shell structure. Together, these two aspects should give the design engineer confidence in sizing these stability critical structures. Additional characterization is warranted, especially for a composite tank structure, since only one bulkhead configuration was examined closely.

  15. Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.

    PubMed

    Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan

    2012-03-07

    Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.

  16. Characterization of Al 2219 material for the application of the spin-forming-process

    NASA Astrophysics Data System (ADS)

    Mueller-Wiesner, D.; Sieger, E.; Ernsberger, K.

    1991-10-01

    The shells of the propellant tanks of the Ariane 5 EPS stage are to be manufactured by the spin forming process. The material for the shells (hemispheres) is the aluminum alloy 2219. By a material characterization program optimized parameters for the application of the forming process starting from different material conditions (T31 temper and '0' condition) are determined. Based on the results of this program it was decided to start spin forming in the '0' condition for flight hardware.

  17. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture.

    PubMed

    Saisadan, D; Manimaran, P; Meenapriya, P K

    2016-10-01

    Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties - flexural strength, compressive strength, and color stability. The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). It was inferred from the study that no one material was superior in all three tested parameters.

  18. 1301259

    NASA Image and Video Library

    2013-12-10

    MARK HILBURGER, PROJECT ENGINEER FROM LANGLEY RESEARCH CENTER (LARC) WITH THE ALUMINUM-LITHIUM CYLINDER USED IN THE SHELL BUCKLE KNOCKDOWN FACTOR TESTING. DURING THE TESTING FORCE AND PRESSURE WERE INCREASINGLY APPLIED TO THE TOP OF AN EMPTY BUT PRESSURIZED ROCKET FUEL TANK TO EVALUATE ITS STRUCTURAL INTEGRITY.

  19. Thermal Analysis for Ion-Exchange Column System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less

  20. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less

  1. RCRA, superfund and EPCRA hotline training module. Introduction to: Land disposal units (40 cfr parts 264/265, subparts k, l, m, n) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module provides an overview of the requirements for landfills, surface impoundments, waste piles, and land treatment units. It summarizes the differences between interim status (Part 265) and permitted (Part 264) standards for land disposal units. It defines `surface impoundment` and distinguishes surface impoundments from tanks and describes surface impoundment retrofitting and retrofitting variance procedures. It explains the connection between land disposal standards, post-closure, and groundwater monitoring.

  2. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  3. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Rassat; PA Gauglitz; SM Caley

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann etmore » al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati on in single-shell tank (SST) waste forms. The much higher void being currently observed in SY-101 represents essentially a new crust configuration, and the mechanisms for sudden gas release need to be evaluated. The purpose of this study is to evaluate the situation of gas bubbles in crust based on the previous work on gas bubble retention, migration, and release in simulants and actual waste. We have also conducted some visual observations of bubble migration through simulated crusts to help understand the interaction of the various mechanisms.« less

  4. Investigation of Noise in Solids at Low Temperatures.

    DTIC Science & Technology

    1980-08-01

    surroundinz liquid helium dewar. The procedure used has been to liquefy helium gas and fill the liquid helium dewar. The liquefier operation is then...cryostat is at room temperature and is 25’ diameter X 72" long. Inside this is the liquid nitrogen shield which is a shell formed by two co-axial...cylinders of 22" and 19" diameters X 68’ long. This liquid nitrogen tank has a volume of 108 k. Across the bottom of this tank is a 1/16" thick copper

  5. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integritymore » assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.« less

  7. Mg and 18O Variations in the Shell of the Chilean Gastropod Concholepas concholepas Reflect SST and Growth Rate variations

    NASA Astrophysics Data System (ADS)

    Guzman, N.; Lazareth, C. E.; Poitrasson, F.; Cuif, J.; Ortlieb, L.

    2004-12-01

    To validate the use of fossil mollusc shells as recorders of environmental conditions, a primary calibration study was carried out on modern shells of the Chilean gastropod Concholepas concholepas, the so-called southern hemisphere abalone which is particularly abundant in Holocene archaeological sites. Organisms were maintained in culture tanks and feed with live mytilids. The sea water temperature in the tank was recorded every half-an-hour by an automatic device. The experiment lasted several months. Periodical marking with calcein provided a precise chronological control of the shell growth. Thus, well-dated high resolution chemical profiles could be directly compared with temperatures during shell formation. Geochemical analyses of the calcite layers include Mg, Sr and 16O/18O composition. Trace elements were analysed using Laser Ablation ICP-MS and Electron Microprobe while stable isotopes were measured on a Secondary Ion Mass spectrometry (SIMS). The shell growth rate during two months of formation varied between 30 and 140 µm/day which allows us to reach a temporal resolution for chemical profiles between a few hours and three days. The growth rate variations do not seem to be related to temperature fluctuations. Only Mg content was analytically reproducible and showed significant variations across the shells. The Mg high-resolution profiles display a grossly sinusoidal shape. Shells from different sites along the coasts of Chile showed mean Mg contents of 300 ppm and 500 ppm for mean temperatures of 17 and 20° C, respectively. This suggests a gross correlation between Mg and temperature. However, high resolution Mg results do not show an exact fitting neither with temperature nor with growth rates. Other parameters, like shell ageing as suggested by an amplitude increase observed near the edge of one of the shells, or other complex biological factors, may influence Mg incorporation into the shell. \\delta 18O values of the calcite vary between -1,5 and 2,0 \\permil for a temperature range between 17 and 22° C. Growth rate variations seem to be an important factor affecting the oxygen isotopic ratio within shells. When growth rate variations are limited, \\delta 18O and temperature are well correlated. The study confirms that, like for all biogenic carbonates, elemental and isotopic composition of the calcite layer of this gastropod, should not be used in paleoenvironmental reconstructions without detailed calibration experiments, and must systematically include precise growth rate analyses. The growth rhythms, which vary under the double influence of environmental and biological factors, are of paramount importance in the relationship between environmental parameters and geochemical composition of the growth layers of the shells. Work supported by "CONCHAS" Project (PNEDC).

  8. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less

  9. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang

    2016-09-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  10. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150-1000 μm). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.« less

  11. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than 360 cu ft using salt-cake dissolution, modified sluicing, in-tank vehicle with high pressure water spray and caustic dissolution. Tanks C-108 and C-109 have been retrieved to 90% and 85% respectively. Modified sluicing was no longer effective at retrieving the remaining 5,000 to 10,000 gallons of residual. A Mobile Retrieval Tool (FoldTrac) is scheduled for installation early in 2008 to assist in breaking up chunks of waste and mobilizing the waste for transfer. Lessons learned from application of new tank waste retrieval methods are being documented and incorporated into future retrieval operations. They address all phases of retrieval including process design, equipment procurement and installation, supporting documentation, and system operations. Information is obtained through interviews with retrieval project personnel, focused workshops, review of problem evaluation requests, and evaluation of retrieval performance data. This paper presents current retrieval successes and lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met. (authors)« less

  12. 75 FR 750 - Consumer Price Index Adjustments of Oil Pollution Act of 1990 Limits of Liability-Vessels and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... applicability of the OPA 90 single-hull tank vessel limits of liability. DATES: This final rule is effective... amendments to clarify the applicability of the single-hull tank vessel limits of liability, and solicited... regulations, at 33 CFR part 138, subpart A, to single- hull tank vessels that do not carry oil as cargo. As...

  13. 49 CFR 180.503 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Interior heater system means a piping system located within the tank shell that uses a fluid medium to heat... the service equipment, may react to produce heat, gases, and/or pressure which could substantially....517(b). Safety system means one or more of the following: Thermal protection systems, insulation...

  14. 49 CFR 180.503 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Interior heater system means a piping system located within the tank shell that uses a fluid medium to heat... the service equipment, may react to produce heat, gases, and/or pressure which could substantially....517(b). Safety system means one or more of the following: Thermal protection systems, insulation...

  15. 49 CFR 180.503 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Interior heater system means a piping system located within the tank shell that uses a fluid medium to heat... the service equipment, may react to produce heat, gases, and/or pressure which could substantially....517(b). Safety system means one or more of the following: Thermal protection systems, insulation...

  16. DOT-105/111/112/114 Tank Cars Shell Cracking and Structural Integrity Assessment: Task Force Report

    DOT National Transportation Integrated Search

    1986-02-01

    In August 1985, the FRA Associate Administrator for Safety asked the DOT Transportation Systems Center to make a preliminary technical assessment of the adequacy of the manufacturer's inspection and repair procedures. The Center formed a task force f...

  17. Implementation Document for Other Contamination Sources Interim Response Action shell Section 36 Trenches, RMA. Volume 1. General

    DTIC Science & Technology

    1990-12-01

    rights and obligations of theA Army as L.aaa Aqency-or Shall as Leand Party under any law or the Federai. Fact..ity (g) Unless otherwise provided in a...Exposure occurs principally during manufacture or during bulk handling activities. Since it is generally injected into the soil at depths of 15 to 30 cm...Slurry Mix Design: The design of the IMPERMIX grouting mix, which shall meet all requirements of the Impermix manufacturer . G. Quality Control Testing

  18. Development of Automotive Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  19. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSSELL, J.H.

    1999-08-24

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less

  20. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture

    PubMed Central

    Saisadan, D.; Manimaran, P.; Meenapriya, P. K.

    2016-01-01

    Introduction: Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. Acrylics: These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composites: Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed Crowns: Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. Aims and Objectives: The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties – flexural strength, compressive strength, and color stability. Materials and Methods: The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). Result: It was inferred from the study that no one material was superior in all three tested parameters. PMID:27829758

  1. Thermal modeling of tanks 241-AW-101 and 241-AN-104 with the TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    The TEMPEST code was exercised in a preliminary study of double-shell Tanks 241 -AW-101 and 241-AN-104 thermal behavior. The two-dimensional model used is derived from our earlier studies on heat transfer from Tank 241-SY-101. Several changes were made to the model to simulate the waste and conditions in 241-AW-101 and 241-AN-104. The nonconvective waste layer was assumed to be 254 cm (100 in.) thick for Tank 241-AW-101, and 381 cm (150 in.) in Tank 241-AN-104. The remaining waste was assumed, for each tank, to consist of a convective layer with a 7.6-cm (3-inch) crust on top. The waste heat loadsmore » for 241-AW-101 and 241-AN-104 were taken to be 10 kW (3.4E4 Btu/hr) and 12 kW (4.0E4 Btu/hr), respectively. Present model predictions of maximum and convecting waste temperatures are within 1.7{degrees}C (3{degrees}F) of those measured in Tanks 241-AW-101 and 241-AN-104. The difference between the predicted and measured temperature is comparable to the uncertainty of the measurement equipment. These models, therefore, are suitable for estimating the temperatures within the tanks in the event of changing air flows, waste levels, and/or waste configurations.« less

  2. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...

  3. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...

  4. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...

  5. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...

  6. Prospects for making carbide-free bainitic thick steel plate by means of controlled quenching : a first estimate

    DOT National Transportation Integrated Search

    1995-11-12

    Materials used for the shells of pressurized railroad tank cars : must be strong and inexpensive, yet also easily weldable and : resistant to fracture. The high costs associated with special alloy : compositions have made it difficult in the past to ...

  7. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  8. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  9. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  10. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  11. Mussel Shell Evaluation as Bioindicator For Heavy Metals

    NASA Astrophysics Data System (ADS)

    Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra

    2010-05-01

    Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.

  12. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less

  13. Analysis of stress-strain state of RVS-20000 tank under non-axisymmetric wind load action

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-03-01

    In modern reference documentation, it is customary to set the wind load as uniformly distributed pressure over the area and wall of the tank. Experimental studies in the wind tunnel for various designs of the VST carried out under the guidance of professors V.E. Shutov and V.L. Berezin showed that when wind acts on the shell, there occur rarefaction zones, which must be taken into account during strain analysis of tanks. A finite-element model of the RVS-20000 tank was developed to calculate the wind load in a non-axisymmetric setting, taking into account the array of differentiated values of the aerodynamic coefficient. The distribution of stresses and strains of RVS-20000 metal structures under the effect of unevenly distributed wind pressure with a normal value of Qn = 600 Pa is obtained. It is established that the greatest strains and stresses occur at the interface of the wall and the fixed floor.

  14. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  15. 242-A Evaporator quality assurance plan. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (calledmore » process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.« less

  16. 75 FR 71346 - Special Conditions: Boeing Model 787-8 Airplane; Lightning Protection of Fuel Tank Structure To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Boeing Model 787-8 airplane will incorporate a fuel tank nitrogen generation system (NGS) that actively... ignition source in the fuel tank system could not result from any single failure, from any single failure... of fuel systems. We do not intend to apply the alternative standards used under these special...

  17. 78 FR 40651 - Regulated Navigation Area; Special Buzzards Bay Vessel Regulation, Buzzards Bay, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... regardless of whether those tank barges are single or double hull. Reporting and participation requirements..., equipment limitations), double hull tank barges laden with 5,000 or more barrels of oil or hazardous material may require a tug escort. Single-hull tank barges will continue to require tug escorts under all...

  18. Spatial and temporal modeling of sub- and supercritical thermal energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, LA; Ganapathi, GB; Wirz, RE

    2014-05-01

    This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is itsmore » high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage. (C) 2014 Elsevier Ltd. All rights reserved.« less

  19. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Bulkheads and Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...

  20. 49 CFR 177.837 - Class 3 materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or integrally connected steel framing, and the other end to the shell of the cargo tank to provide a continuous... after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...

  1. 49 CFR 177.837 - Class 3 materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or integrally connected steel framing, and the other end to the shell of the cargo tank to provide a continuous... after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...

  2. A study of fluid-structure problems

    NASA Astrophysics Data System (ADS)

    Lam, Dennis Kang-Por

    The stability of structures with and without fluid load is investigated. A method is developed for determining the fluid load in terms of added structural mass. Finite element methods are employed to study the buckling of a cylindrical shell under axial compression and liquid storage tanks under hydrodynamic load. Both linear and nonlinear analyses are performed. Diamond modes are found to be the possible postbuckling shapes of the cylindrical shell. Local buckling including elephant-foot buckle and diamond buckle are found for the liquid storage tank models. Comparison between the linear and nonlinear results indicates a substantial difference in buckling mode shapes, though the buckling loads are close to each other. The method for determining the hydrodynamic mass is applied to the impeller stage of a centrifugal pump. The method is based on a linear perturbation technique which assumes that the disturbance in the flow boundaries and velocities caused by the motion of the structure is small. A potential method is used to estimate the velocity flow field. The hydrodynamic mass is then obtained by calculating the total force which results from the pressure induced by a perturbation of the structure.

  3. A water blown urethane insulation for use in cryogenic environments

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  4. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  5. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  6. WWC Review of the Report "The Impact of Indiana's System of Interim Assessments on Mathematics and Reading Achievement." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2015

    2015-01-01

    The study authors examined the effects of using "Diagnostic Assessment Tools" ("DAT") on mathematics and reading outcomes for students in Indiana schools during the 2009-10 academic year. "DAT" consists of interim assessment tools--Wireless Generation's mCLASS for students in grades K-2 and CTB/ McGraw-Hill's Acuity…

  7. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.

  8. Cost Effectiveness Study of Wastewater Management Systems for Selected U.S. Coast Guard Vessels. Volume 3. Installation Analysis. Part 5. White Sage (133 Feet)

    DTIC Science & Technology

    1977-02-01

    located in a wire mesh enclosure in the center of the hold. The cargo boom hydraulic tank is located in the port aft corner of the hold. The rcmainder...2, there may be minor modifications required to the shelving on the starboard side (along the I shell of the vessel) and the wire mesh eculosure...along the shell of the vessel) and the wire mesh enclosure for the ship’s dry stores on the centerline of the vessel (between Frames 9 and 10). 24 NOW oI

  9. 86. ARAIII. GCRE reactor building (ARA608) showing mechanical loop pit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. ARA-III. GCRE reactor building (ARA-608) showing mechanical loop pit after building shell had been erected. Beyond pit are demineralized water surge tank and heat exchanger. Camera facing northeast. December 22, 1958. Ineel photo no. 58-6427. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  10. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  11. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  12. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  13. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  14. 29 CFR 1910.106 - Flammable and combustible liquids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... venting devices shall be not less than that derived from Table H-10 except as provided in subdivision (e... 30 feet above grade of the exposed shell area of a vertical tank. Table H-10—Wetted Area Versus Cubic... determined in accordance with Table H-10, except that when the exposed wetted area of the surface is greater...

  15. Degradation and Reinforcement of Industrial Gas Tank Support Structures. Thirty-Year Long Monitoring

    NASA Astrophysics Data System (ADS)

    Krentowski, Janusz R.; Knyziak, Piotr

    2017-10-01

    An analysis of reinforced concrete supporting structures of more than a dozen liquid gas tanks mounted on tower support structures located at different sites on Poland’s territory is presented. Stability testing of the degraded structures was carried out over a period of 30 years and pointed out significant defects that prevented safe operation of the tanks containing hazardous medium. Analysing complex stress states, as well as displacements of shell structure components, the authors developed a concept of strengthening the structures. Initial repair works, which had been carried out without proper supervision, failed to meet the mandatory requirements and were not compatible with the original design solutions. After several years of operation of the reinforced structures, their degradation states were assessed again. The next stage of repair works was carried out under the supervision of the authors together with authorized representatives of the investors.

  16. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  17. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energymore » storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required for charging storage. Thus, the cost of the thermal storage system is reduced due to smaller containers and less salt. The optimum salt proportions, their melting temperature and the number of salts in the cascade are determined by raw materials costs and the mathematical model. We estimate the processing cost of the encapsulation to be low, where the major cost of the capsule will be the cost of the phase-change salt(s). Our economic analyses show that the cost of EPCM-TES is about $17.98 per kWh(t), which is about 40% lower than the $28.36 per kWh(t) for a two-tank sensible heat TES for a large scale CSP-TES design. Finally, additional improvements in the heat-transfer fluids, currently in development elsewhere will further improve the energy density to achieve the SunShot goal of $15 per kWh(t).« less

  18. Investigation of mechanical properties and deformation behavior of single-crystal Al-Cu core-shell nanowire generated using non-equilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit

    2018-06-01

    Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.

  19. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR; CORBETT JE; WILSON RA

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less

  20. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    PubMed

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  1. Lightweight Tanks for Storing Liquefied Natural Gas

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  2. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  3. Evaluation of temephos and chlorpyrifos-methyl against Culex pipiens (Diptera: Culicidae) larvae in septic tanks in Antalya, Turkey.

    PubMed

    Cetin, H; Yanikoglu, A; Kocak, O; Cilek, J E

    2006-11-01

    The larvicidal activity of chlorpyrifos-methyl and temephos was evaluated against Culex pipiens L. (Diptera: Culicidae) in septic tanks in Antalya, Turkey. Chlorpyrifos-methyl (Pyrifos MT 25 emulsifiable concentrate [EC] ) was evaluated at application rates of 0.04, 0.08, and 0.12 mg active ingredient (AI)/liter, and temephos (Temeguard 50 EC) was evaluated at 0.02, 0.04, and 0.06 mg (AI)/liter during a 21-d study. Generally, overall larval reduction in septic tanks from single- and multifamily dwellings treated with either larvicide was significantly greater than pretreatment levels and control tanks for the duration of the study. At 14 d posttreatment, duration of control was greatest in multifamily tanks treated with chlorpyrifos-methyl at the highest application rate with similar levels of control through 21 d for single-family dwellings (range 97-100%). Septic tanks from both types of family dwellings treated at the highest application rate of temephos resulted in >90% reduction through day 21 (range 91-100%). Laboratory bioassays of septic tank water treated at field application rates, without daily dilution, revealed that complete larval mortality was achieved for 21 d at each application rate and formulation. It is thought that daily addition of water and organic matter to the septic tanks in the single and multifamily dwellings influenced the duration of effectiveness of the larvicides.

  4. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  5. Support for HLW Direct Feed - Phase 2, VSL-15R3440-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Pegg, I.; Joseph, I.

    This report describes work performed to develop and test new glass and feed formulations originating from a potential flow-sheet for the direct vitrification of High Level Waste (HLW) with minimal or no pretreatment. In the HLW direct feed option that is under consideration for early operations at the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the pretreatment facility would be bypassed in order to support an earlier start-up of the vitrification facility. For HLW, this would mean that the ultrafiltration and caustic leaching operations that would otherwise have been performed in the pretreatment facility would either not be performedmore » or would be replaced by an interim pretreatment function (in-tank leaching and settling, for example). These changes would likely affect glass formulations and waste loadings and have impacts on the downstream vitrification operations. Modification of the pretreatment process may result in: (i) Higher aluminum contents if caustic leaching is not performed; (ii) Higher chromium contents if oxidative leaching is not performed; (iii) A higher fraction of supernate in the HLW feed resulting from the lower efficiency of in-tank washing; and (iv) A higher water content due to the likely lower effectiveness of in-tank settling compared to ultrafiltration. The HLW direct feed option has also been proposed as a potential route for treating HLW streams that contain the highest concentrations of fast-settling plutoniumcontaining particles, thereby avoiding some of the potential issues associated with such particles in the WTP Pretreatment facility [1]. In response, the work presented herein focuses on the impacts of increased supernate and water content on wastes from one of the candidate source tanks for the direct feed option that is high in plutonium.« less

  6. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi

    2018-05-01

    The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.

  7. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  8. Immediate provisionalization with a CAD/CAM interim abutment and crown: a guided soft tissue healing technique.

    PubMed

    Proussaefs, Periklis

    2015-02-01

    A technique is described in which a single interim abutment and crown were fabricated in advance and placed the day of dental implant surgery. The contours of the interim crown were identical to the contours of a tentatively designed definitive prosthesis and allowed the tissue to heal and obtain contours that accommodated the contours of the definitive prosthesis. After osseointegration was established, a definitive impression was made with a custom computer-assisted design and computer-assisted manufacturing impression coping. The definitive prosthesis then was fabricated. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  10. Grants and cooperative agreements to state and local governments, universities, hospitals, and other non-profit organizations--USDA. Interim final rule.

    PubMed

    1997-08-29

    This interim final rule amendment is issued to implement the Single Audit Act Amendments of 1996 (Public Law 104-156, 110 Stat. 1396) and the June 24, 1997, revision of OMB Circular A-133, "Audits of States, Local Governments, and Non-Profit Organizations" and to replace the existing audit requirements that are superseded by Public Law 104-156 and the revised A-133.

  11. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... for the loss of lading due to an accident. (1) Any dome, sump, or washout cover plate projecting from...

  12. 75 FR 11169 - AES Sparrows Point LNG, LLC; Mid-Atlantic Express, LLC; Notice of Availability of the Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... LNG storage tanks; A closed-loop shell and tube heat exchanger vaporization system; Various ancillary..., there are three methods you can use to submit your comments to the Commission. In all instances please... encourages electronic filing of comments and has dedicated eFiling expert staff available to assist you at...

  13. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specified in Table 172.180 of this chapter; and (3) 30 inches (760 mm) from the shell plating. (b) For type... for grounding penetration specified in Table 172.180 of this chapter; and (2) 30 inches (760 mm) from... bottom height or 13.8 in. (350 mm). [CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 79-023, 48...

  14. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  15. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  16. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  17. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  18. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  19. Presenting a conceptual pattern of HSE performance of oil trucks.

    PubMed

    Ghaleh, Sahar; Omidvari, Manouchehr; Nassiri, Parvin; Momeni, Mansour; Lavasani, Seyed Mohammadreza Miri

    2018-01-25

    Accidents are among the main problems in the oil product supply chain. The most important effective factors in these events are the kind of trucks used and their health, safety, and environment (HSE) condition. The aim of this study was to present a conceptual pattern of the HSE performance of oil trucks in oil industries. In this study, 20 truck models (with fixed tanks), in use over different periods of time, were investigated. In this regard, the criteria and sub-criteria were first determined in two parts-carrier and tank-and weighted by fuzzy analytical hierarchy process (FAHP). The results showed that the most important sub-criteria regarding the HSE factors of the carrier were resistance and strength of the front and rear shields, the brake system, and the ventilation system. The most important sub-criteria regarding the HSE factors of the tank were tank shell thickness and a good tank design shape with respect to portable material. It should be noted that the weight of the criteria with each other and sub-criteria with each other are not equal. This issue is important for decision-making. The main reason for the use of trucks with the lowest score in developing countries is the lack of attention by managers to safety issues and international standards and agreements such as the ADR.

  20. Large Steel Tank Fails and Rockets to Height of 30 meters - Rupture Disc Installed Incorrectly.

    PubMed

    Hedlund, Frank H; Selig, Robert S; Kragh, Eva K

    2016-06-01

    At a brewery, the base plate-to-shell weld seam of a 90-m(3) vertical cylindrical steel tank failed catastrophically. The 4 ton tank "took off" like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure responsible for the failure was an estimated 60 kPa. A rupture disc rated at < 50 kPa provided overpressure protection and thus prevented the tank from being covered by the European Pressure Equipment Directive. This safeguard failed and it was later discovered that the rupture disc had been installed upside down. The organizational root cause of this incident may be a fundamental lack of appreciation of the hazards of large volumes of low-pressure compressed air or gas. A contributing factor may be that the standard piping and instrumentation diagram (P&ID) symbol for a rupture disc may confuse and lead to incorrect installation. Compressed air systems are ubiquitous. The medium is not toxic or flammable. Such systems however, when operated at "slight overpressure" can store a great deal of energy and thus constitute a hazard that ought to be addressed by safety managers.

  1. Kinematic arguments against single relativistic shell models for GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, E.E.; Ramirez, E.; Sumner, M.C.

    1997-09-01

    Two main types of models have been suggested to explain the long durations and multiple peaks of Gamma Ray Bursts (GRBs). In one, there is a very quick release of energy at a central site resulting in a single relativistic shell that produces peaks in the time history through its interactions with the ambient material. In the other, the central site sporadically releases energy over hundreds of seconds forming a peak with each burst of energy. The authors show that the average envelope of emission and the presence of gaps in GRBs are inconsistent with a single relativistic shell. Theymore » estimate that the maximum fraction of a single shell that can produce gamma-rays in a GRB with multiple peaks is 10{sup {minus}3}, implying that single relativistic shells require 10{sup 3} times more energy than previously thought. They conclude that either the central site of a GRB must produce {approx}10{sup 51} erg/s{sup {minus}1} for hundreds of seconds, or the relativistic shell must have structure on a scales the order of {radical}{epsilon}{Gamma}{sup {minus}1}, where {Gamma} is the bulk Lorentz factor ({approximately}10{sup 2} to 10{sup 3}) and {epsilon} is the efficiency.« less

  2. National School Lunch Program and School Breakfast Program: Nutrition Standards for All Foods Sold in School as Required by the Healthy, Hunger-Free Kids Act of 2010. Final rule and interim final rule.

    PubMed

    2016-07-29

    This rule adopts as final, with some modifications, the National School Lunch Program and School Breakfast Program regulations set forth in the interim final rule published in the Federal Register on June 28, 2013. The requirements addressed in this rule conform to the provisions in the Healthy, Hunger-Free Kids Act of 2010 regarding nutrition standards for all foods sold in schools, other than food sold under the lunch and breakfast programs. Most provisions of this final rule were implemented on July 1, 2014, a full year subsequent to publication of the interim final rule. This was in compliance with section 208 of the Healthy, Hunger-Free Kids Act of 2010, which required that State and local educational agencies have at least one full school year from the date of publication of the interim final rule to implement the competitive food provisions. Based on comments received on the interim final rule and implementation experience, this final rule makes a few modifications to the nutrition standards for all foods sold in schools implemented on July 1, 2014. In addition, this final rule codifies specific policy guidance issued after publication of the interim rule. Finally, this rule retains the provision related to the standard for total fat as interim and requests further comment on this single standard.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J.; Richard, P.; Gray, T.J.

    The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less

  4. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHEN, E.J.

    2000-10-05

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome ofmore » this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system.« less

  5. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hull barge with internal framing 1 Double hull barge with external framing 2 Single hull barge with..., ends, and bottoms) when the structural framing is on the internal tank surface. 2 Applicable to double hull tank barges (double sides, ends, and bottoms) when the structural framing is on the external tank...

  6. 46 CFR 34.20-5 - Quantity of foam required-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to give primary protection to the spaces over the cargo tanks. (b) Rate of application. The water... liters/min per square meter of cargo tanks deck area, where cargo tanks deck area means the maximum.../min per square meter of the horizontal sectional area of the single tank having the largest such area...

  7. Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran

    2018-04-01

    The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.

  8. Suppressed Blinking and Auger Recombination in Near-Infrared Type-II InP/CdS Nanocrystal Quantum Dots

    PubMed Central

    Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei; Park, Young-Shin; Hannah, Daniel C.; Casson, Joanna L.; Williams, Darrick J.; Schaller, Richard D.; Htoon, Han; Hollingsworth, Jennifer A.

    2012-01-01

    Non-blinking excitonic emission from near-infrared and type-II nanocrystal quantum dots (NQDs) is reported for the first time. To realize this unusual degree of stability at the single-dot level, novel InP/CdS core/shell NQDs were synthesized for a range of shell thicknesses (~1–11 monolayers of CdS). Ensemble spectroscopy measurements (photoluminescence peak position and radiative lifetimes) and electronic structure calculations established the transition from type-I to type-II band alignment in these heterostructured NQDs. More significantly, single-NQD studies revealed clear evidence for blinking suppression that was not strongly shell-thickness dependent, while photobleaching and biexciton lifetimes trended explicitly with extent of shelling. Specifically, very long biexciton lifetimes—up to >7 ns—were obtained for the thickest-shell structures, indicating dramatic suppression of non-radiative Auger recombination. This new system demonstrates that electronic structure and shell thickness can be employed together to effect control over key single-dot and ensemble NQD photophysical properties. PMID:23030497

  9. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, D.; Awwad, A.; Roelant, D.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function atmore » winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)« less

  10. Quantifying the bias in the estimated treatment effect in randomized trials having interim analyses and a rule for early stopping for futility.

    PubMed

    Walter, S D; Han, H; Briel, M; Guyatt, G H

    2017-04-30

    In this paper, we consider the potential bias in the estimated treatment effect obtained from clinical trials, the protocols of which include the possibility of interim analyses and an early termination of the study for reasons of futility. In particular, by considering the conditional power at an interim analysis, we derive analytic expressions for various parameters of interest: (i) the underestimation or overestimation of the treatment effect in studies that stop for futility; (ii) the impact of the interim analyses on the estimation of treatment effect in studies that are completed, i.e. that do not stop for futility; (iii) the overall estimation bias in the estimated treatment effect in a single study with such a stopping rule; and (iv) the probability of stopping at an interim analysis. We evaluate these general expressions numerically for typical trial scenarios. Results show that the parameters of interest depend on a number of factors, including the true underlying treatment effect, the difference that the trial is designed to detect, the study power, the number of planned interim analyses and what assumption is made about future data to be observed after an interim analysis. Because the probability of stopping early is small for many practical situations, the overall bias is often small, but a more serious issue is the potential for substantial underestimation of the treatment effect in studies that actually stop for futility. We also consider these ideas using data from an illustrative trial that did stop for futility at an interim analysis. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  12. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals

    PubMed Central

    Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos

    2013-01-01

    Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing. PMID:23974520

  13. Hatchability and survival of oncomiracidia of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) exposed to aqueous aluminium.

    PubMed

    Gilbert, Beric M; Avenant-Oldewage, Annemariè

    2016-07-28

    Monogenea is a diverse group of ectoparasites showing great potential as sentinel organisms for monitoring environmental health. Exposure to metals negatively affects infrapopulations of monogeneans and exposure to aluminium has been found to negatively impact the survival of gyrodactylids. Samples of infected host fish, the smallmouth yellowfish Labeobarbus aeneus (Cyprinidae), were collected from the Vaal Dam, South Africa and transported back to the laboratory in dark 160 l containers. Eggs of the monogenean Paradiplozoon ichthyoxanthon infecting L. aeneus were collected and exposed to varying concentrations of aluminium along with a control group in static tanks. The eggs were checked every 24 h and hatching commenced 13-14 days after exposure. Water samples were taken from exposure tanks and acidified for analysis of Al levels with inductively-coupled plasma mass spectrometry. Hatching of eggs was variable between exposures, and in 30 μg Al/l and 60 μg Al/l was found to occur before eggs in control beakers, whereas, exposure to 120 μg Al/l delayed hatching and reduced hatchability. Survival of hatched oncomiracidia was concentration dependent and negatively correlated with aluminium concentrations. Lowest survival was recorded for 60 μg Al/l and 120 μg Al/l where all larvae died shortly after or during hatching. Normal development of embryos of P. ichthyoxanthon within eggs exposed to all doses of aluminium indicates that the egg shell is moderately impermeable to metals and inhibits movement of aluminium across the shell and interacting with developing embryos. Higher larval mortality rate in 120 μg/l exposure can be related to aluminium crossing the egg shell in the late stages and causing death of unhatched yet fully developed embryos, possibly due to changes in the permeability of the egg shell as embryos neared developmental completion. Accelerated death of oncomiracidia after hatching indicates sensitivity toward high concentrations of aluminium.

  14. USSR Report, Engineering and Equipment, No. 98.

    DTIC Science & Technology

    1983-11-09

    Nonhomogeneous Cylinder During Convective Cooling (V. Ya. Belousov; PROBLEM PROCHNOSTI, No 5, May 83) 66 Deformation of Spherical Shells Under Wind...generator and turbine, condenser , deaerator, and tap-water or hot-water tank for heat storage. The electric power is regulated by varying the steam rate...indicators, relative to those of hybrid condensation - boiler atomic electric power plants already in existence, So far the VK-500 boiling^water

  15. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  16. Enhanced deammonification of livestock wastewater using Brocadia caroliniensis and HPNS in single tank process

    USDA-ARS?s Scientific Manuscript database

    In this work we describe new findings that allowed rapid implementation of deammonification reaction in livestock anaerobic digestion effluents using mixtures of two bacterial cultures and a one-stage process (partial nitritation and anammox in a single tank). The bacterial cultures were high perf...

  17. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  18. Risk based inspection for atmospheric storage tank

    NASA Astrophysics Data System (ADS)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  19. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive andmore » extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be received by the TF when required to support 2016 production of immobilized low-activity waste (ILAW). - Ensure the required baseline and additional funding is provided beginning in fiscal year 2011. - Modify TF and WTP contracts to adequately address this vision. The 2020 Vision provides a summary of strategies and key actions that optimize the approach to startup, commissioning, and turnover of WTP facilities. This vision focuses on the legally enforceable requirement to achieve the Consent Decree milestones of starting radioactive operations in 2019, and achieving initial WTP operations in 2022. (authors)« less

  20. Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guan, N.; Piazza, V.; Kapoor, A.; Bougerol, C.; Julien, F. H.; Babichev, A. V.; Cavassilas, N.; Bescond, M.; Michelini, F.; Foldyna, M.; Gautier, E.; Durand, C.; Eymery, J.; Tchernycheva, M.

    2017-12-01

    Single nitride nanowire core/shell n-p photodetectors are fabricated and analyzed. Nanowires consisting of an n-doped GaN stem, a radial InGaN/GaN multiple quantum well system and a p-doped GaN external shell were grown by catalyst-free metal-organic vapour phase epitaxy on sapphire substrates. Single nanowires were dispersed and the core and the shell regions were contacted with a metal and an ITO deposition, respectively, defined using electron beam lithography. The single wire photodiodes present a response in the visible to UV spectral range under zero external bias. The detector operation speed has been analyzed under different bias conditions. Under zero bias, the  -3 dB cut-off frequency is ~200 Hz for small light modulations. The current generation was modeled using non-equilibrium Green function formalism, which evidenced the importance of phonon scattering for carrier extraction from the quantum wells.

  1. CALUTRONS

    DOEpatents

    Lawrence, E.O.

    1958-09-16

    This patent relates to calutron devices and has for its object the arrangement of several independent ion separating mechanisms, i.e., ion source and ion receiver, within a single vacuum tank to econnmize on space and reduce the duplication of magnetic structure. In each of the two described embodiments the ion separating mechanisms are removably supported within the tank. In addition, the magnetic field is produced in the tank by coaxial coils supported outside the tank and magnetic structure is arranged to confine and provide a uniform field within the tank.

  2. Sealed One Piece Battery Having A Prism Shape Container

    DOEpatents

    Verhoog, Roelof; Barbotin, Jean-Loup

    2000-03-28

    A sealed one-piece battery having a prism-shaped container including: a tank consisting of a single plastic material, a member fixed and sealed to the tank and to partitions on the side of the tank opposite the transverse wall to seal the tank, two flanges fixed and sealed to longitudinal walls defining flow compartments for a heat-conducting fluid, and two tubes on the transverse wall of the tank forming an inlet and an outlet for fluid common to the compartments.

  3. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less

  4. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CORBETT JE; TEDESCH AR; WILSON RA

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less

  5. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    NASA Astrophysics Data System (ADS)

    Ramandi, M. Y.; Dincer, I.; Naterer, G. F.

    2011-07-01

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.

  6. Steam-jet Chiller for Army Field Kitchens

    DTIC Science & Technology

    2009-08-01

    Steam-Jet Test-Loop Schematic A vacuum pump removes air from the entire system on startup, and is occasionally used to expel air during...delivered to the tube and shell condenser. The steam is condensed and drains to the vacuum sump tank. 11 Periodically, the condensate pump ... Vacuum Roughing Pump The condenser must be held at vacuum to prevent air from insulating the condenser tubes or create a back-pressure that would

  7. JPRS Report, West Europe.

    DTIC Science & Technology

    1987-07-13

    council member. 38. Jordanian Communist Party, 39. Iraqi Communist Party: ’Aziz Muhammad, central committee secretary general; Habib . 40. Tudeh Party...national executive committee. 55. PLO: Zaharia ’Abd al-Rahim, director of a PLO political division; Sami Sarhan, director of a PLO organization...8217 anwensstÄrestres^ l Key: 1. 2, 3. 4. 5. 6. 7. Tanks Guns Military aircraft guns Rifles Shells Cartridges Principal production of the arsenals of the

  8. Mobility Research at TARDEC (Briefing Charts)

    DTIC Science & Technology

    2015-03-10

    UWM UIC UWM UWM Gap Collaboration 4 ARC & RIF Fund: $255k+$250K New ANCF shell element Fiber -reinforced composite rubber Validation and benchmark 2013...U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Mobility Research at TARDEC Dr. P. Jayakumar, S. Arepally Analytics 1...t s 5 9 - - - -3 t s 7 98 - - - . . . .t s Drucker-Prager Elasto- Plastic Soil Elastic Soil 6 A Physics-Based High Performance

  9. Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Liu, Youwen

    2015-02-01

    A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until themore » 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m 3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.« less

  11. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  12. Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot.

    PubMed

    Dusanowski, Ł; Holewa, P; Maryński, A; Musiał, A; Heuser, T; Srocka, N; Quandt, D; Strittmatter, A; Rodt, S; Misiewicz, J; Reitzenstein, S; Sęk, G

    2017-12-11

    We report on the experimental demonstration of triggered single-photon emission at the telecom O-band from In(Ga)As/GaAs quantum dots (QDs) grown by metal-organic vapor-phase epitaxy. Micro-photoluminescence excitation experiments allowed us to identify the p-shell excitonic states in agreement with high excitation photoluminescence on the ensemble of QDs. Hereby we drive an O-band-emitting GaAs-based QD into the p-shell states to get a triggered single photon source of high purity. Applying pulsed p-shell resonant excitation results in strong suppression of multiphoton events evidenced by the as measured value of the second-order correlation function at zero delay of 0.03 (and ~0.005 after background correction).

  13. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.

    PubMed

    Reid, Kemar R; McBride, James R; Freymeyer, Nathaniel J; Thal, Lucas B; Rosenthal, Sandra J

    2018-02-14

    Thick-shell (>5 nm) InP-ZnSe colloidal quantum dots (QDs) grown by a continuous-injection shell growth process are reported. The growth of a thick crystalline shell is attributed to the high temperature of the growth process and the relatively low lattice mismatch between the InP core and ZnSe shell. In addition to a narrow ensemble photoluminescence (PL) line-width (∼40 nm), ensemble and single-particle emission dynamics measurements indicate that blinking and Auger recombination are reduced in these heterostructures. More specifically, high single-dot ON-times (>95%) were obtained for the core-shell QDs, and measured ensemble biexciton lifetimes, τ 2x ∼ 540 ps, represent a 7-fold increase compared to InP-ZnS QDs. Further, high-resolution energy dispersive X-ray (EDX) chemical maps directly show for the first time significant incorporation of indium into the shell of the InP-ZnSe QDs. Examination of the atomic structure of the thick-shell QDs by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals structural defects in subpopulations of particles that may mitigate PL efficiencies (∼40% in ensemble), providing insight toward further synthetic refinement. These InP-ZnSe heterostructures represent progress toward fully cadmium-free QDs with superior photophysical properties important in biological labeling and other emission-based technologies.

  14. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  15. 46 CFR 151.45-2 - Special operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sign at or on each tank or by a single sign similar to the following example: Tank No. Cargo IP /xxxx... only a single product, the Warning Sign required by paragraph (e)(1) of this section can be considered... spaces shall be closed and secured at all times. (e) Cargo signs and cards. (1) Warning signs shall be...

  16. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  17. 49 CFR 172.800 - Purpose and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...,000 kg (6,614 pounds) for solids or 3,000 liters (792 gallons) for liquids and gases in a single packaging such as a cargo tank motor vehicle, portable tank, tank car, or other bulk container. (1) Any... emulsions, suspensions, or gels; (11) Any quantity of organic peroxide, Type B, liquid or solid, temperature...

  18. 49 CFR 172.800 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...,000 kg (6,614 pounds) for solids or 3,000 liters (792 gallons) for liquids and gases in a single packaging such as a cargo tank motor vehicle, portable tank, tank car, or other bulk container. (1) Any... emulsions, suspensions, or gels; (11) Any quantity of organic peroxide, Type B, liquid or solid, temperature...

  19. 49 CFR 172.800 - Purpose and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...,000 kg (6,614 pounds) for solids or 3,000 liters (792 gallons) for liquids and gases in a single packaging such as a cargo tank motor vehicle, portable tank, tank car, or other bulk container. (1) Any... emulsions, suspensions, or gels; (11) Any quantity of organic peroxide, Type B, liquid or solid, temperature...

  20. 49 CFR 172.800 - Purpose and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...,000 kg (6,614 pounds) for solids or 3,000 liters (792 gallons) for liquids and gases in a single packaging such as a cargo tank motor vehicle, portable tank, tank car, or other bulk container. (1) Any... emulsions, suspensions, or gels; (11) Any quantity of organic peroxide, Type B, liquid or solid, temperature...

  1. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzmán, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2009-02-01

    Variations in the chemical composition of fossil biogenic carbonates, and in particular of mollusc shells, have been used in a range of palaeoenvironmental reconstructions. It is of primary importance, therefore, to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Holocene and Pleistocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusc shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to verify the conservation state of shell samples is insufficient.

  2. Diagenetic changes in Concholepas concholepas shells (Gastropoda, Muricidae) in the hyper-arid conditions of Northern Chile - implications for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Guzman, N.; Dauphin, Y.; Cuif, J. P.; Denis, A.; Ortlieb, L.

    2008-02-01

    Variations on chemical composition in fossil biogenic carbonates, and in particular of mollusk shells, have been used in a range of palaeoenvironmental reconstructions. Therefore, it is of primary importance to detect and understand the diagenetic processes that may modify the original chemical signature. This microstructural and biogeochemical study focuses on modern and fossil (Pleistocene and Holocene) shells of a littoral gastropod of Northern Chile, and on the characterization of mineral component transformations at the nanometric scale and concomitant intracrystalline organic compound modifications. The inner aragonite layer of the shell exhibits more complex deteriorations than the calcite layer. This preliminary study confirms that physical and chemical alterations of various components of mollusk shell biocrystals are complex and might manifest in different ways even within a single individual. The single criterion of determining the mineralogical composition to attest shell sample conservation state should not be considered as sufficient.

  3. Singlet-paired coupled cluster theory for open shells

    NASA Astrophysics Data System (ADS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  4. Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.

    PubMed

    Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T

    2017-02-08

    We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

  5. Nonpolar InGaN/GaN core–shell single nanowire lasers

    DOE PAGES

    Li, Changyi; Wright, Jeremy Benjamin; Liu, Sheng; ...

    2017-01-24

    We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core–shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core–shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core–shell nanowires, despite significantly shorter cavity lengths and reducedmore » active region volume. Mode simulations show that due to the core–shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. Furthermore, the results show the viability of this p-i-n nonpolar core–shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV–visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.« less

  6. Analysis of pulsed injection for microgravity receiver tank chilldown

    NASA Astrophysics Data System (ADS)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  7. A single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  8. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  9. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  10. Single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.

  11. Low cost anaerobic system for Indonesia: single baffled septic tank.

    PubMed

    Wibisono, G; Mathew, K; Ho, Goen

    2003-01-01

    The insertion of a single baffle into a laboratory septic tank to mix incoming feed with sludge has been shown to improve anaerobic degradation of the feed. This is particularly true of soluble organic matter such as glucose. Oil or cellulose fed separately does not undergo degradation. It is expected however that a balanced feed such as sewage will be better degraded.

  12. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  13. Target electron ionization in Li2+-Li collisions: A multi-electron perspective

    NASA Astrophysics Data System (ADS)

    Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.

    2015-05-01

    The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.

  14. Perspectives on land snails - sampling strategies for isotopic analyses

    NASA Astrophysics Data System (ADS)

    Kwiecien, Ola; Kalinowski, Annika; Kamp, Jessica; Pellmann, Anna

    2017-04-01

    Since the seminal works of Goodfriend (1992), several substantial studies confirmed a relation between the isotopic composition of land snail shells (d18O, d13C) and environmental parameters like precipitation amount, moisture source, temperature and vegetation type. This relation, however, is not straightforward and site dependent. The choice of sampling strategy (discrete or bulk sampling) and cleaning procedure (several methods can be used, but comparison of their effects in an individual shell has yet not been achieved) further complicate the shell analysis. The advantage of using snail shells as environmental archive lies in the snails' limited mobility, and therefore an intrinsic aptitude of recording local and site-specific conditions. Also, snail shells are often found at dated archaeological sites. An obvious drawback is that shell assemblages rarely make up a continuous record, and a single shell is only a snapshot of the environmental setting at a given time. Shells from archaeological sites might represent a dietary component and cooking would presumably alter the isotopic signature of aragonite material. Consequently, a proper sampling strategy is of great importance and should be adjusted to the scientific question. Here, we compare and contrast different sampling approaches using modern shells collected in Morocco, Spain and Germany. The bulk shell approach (fine-ground material) yields information on mean environmental parameters within the life span of analyzed individuals. However, despite homogenization, replicate measurements of bulk shell material returned results with a variability greater than analytical precision (up to 2‰ for d18O, and up to 1‰ for d13C), calling for caution analyzing only single individuals. Horizontal high-resolution sampling (single drill holes along growth lines) provides insights into the amplitude of seasonal variability, while vertical high-resolution sampling (multiple drill holes along the same growth line) produces replicable results. This reproducibility enables not only sequential testing of isotopic changes in shells exposed to artificially elevated temperatures, but also systematic assessment of different cleaning methods. Goodfriend, 1992. The use of land snail shells in paleoenvironmental reconstruction, EPSL 11, 655-685

  15. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less

  16. Testing the assumption of annual shell ring deposition in freshwater mussels

    Treesearch

    Wendell R. Haag; Amy M. Commens-Carson

    2008-01-01

    We tested the assumption of annual shell ring deposition by freshwater mussels in three rivers using 17 species. In 2000, we notched shell margins, returned animals to the water, and retrieved them in 2001. In 2003, we measured shells, affixed numbered tags, returned animals, and retrieved them in 2004 and 2005. We validated deposition of a single internal annulus per...

  17. The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK

    PubMed Central

    Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2014-01-01

    A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930

  18. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  19. Experimental study of foam-insulated liquified-gas tanks

    NASA Technical Reports Server (NTRS)

    Reynolds, Thaine W; Weiss, Solomon

    1957-01-01

    Experiments with liquid nitrogen and liquid hydrogen is styrofoam-insulated tanks have indicated good agreement between measured and calculated heat-leak rates when the insulation was formed from a single block of material. In a large tank installation where the insulation was applied in sections without sealing the joints, the measured heat leak was about 2 and 1/2 times the calculated value.

  20. Burrowing behaviour of robotic bivalves with synthetic morphologies.

    PubMed

    Germann, D P; Carbajal, J P

    2013-12-01

    Several bivalve species burrow into sandy sediments to reach their living position. There are many hypotheses concerning the functional morphology of the bivalve shell for burrowing. Observational studies are limited and often qualitative and should be complemented by a synthetic approach mimicking the burrowing process using a robotic emulation. In this paper we present a simple mechatronic set-up to mimic the burrowing behaviour of bivalves. As environment we used water and quartz sand contained in a glass tank. Bivalve shells were mathematically modelled on the computer and then materialized using a 3D printer. The burrowing motion of the shells was induced by two external linear motors. Preliminary experiments did not expose any artefacts introduced to the burrowing process by the set-up. We tested effects of shell size, shape and surface sculpturing on the burrowing performance. Neither the typical bivalve shape nor surface sculpture did have a clear positive effect on burrowing depth in the performed experiments. We argue that the presented method is a valid and promising approach to investigate the functional morphology of bivalve shells and should be improved and extended in future studies. In contrast to the observation of living bivalves, our approach offers complete control over the parameters defining shell morphology and motion pattern. The technical set-up allows the systematic variation of all parameters to quantify their effects. The major drawback of the built set-up was that the reliability and significance of the results was limited by the lack of an optimal technique to standardize the sediment state before experiments.

Top