NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Jin, Michael H. C.; Harris, Jerry D.; Fanwick, Philip E.; Hepp, Aloysius F.
2004-01-01
We report a new simplified synthetic procedure for commercial manufacture of ternary single source precursors (SSP). This new synthetic process has been successfully implemented to fabricate known SSPs on bulk scale and the first liquid SSPs to the semiconductors CuInSe2 and AgIn(x)S(y). Single crystal X-ray determination reveals the first unsolvated ternary AgInS SSP. SSPs prepared via this new route have successfully been used in a spray assisted chemical vapor deposition (CVD) process to deposit polycrystalline thin films, and for preparing ternary nanocrystallites.
Making Single-Source Precursors of Ternary Semiconductors
NASA Technical Reports Server (NTRS)
Hepp, Aloysius; Banger, Kulbindre K.
2007-01-01
A synthesis route has been developed for the commercial manufacture of single- source precursors of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. A closely related class of single-source precursors of these semiconductors, and their synthesis routes, were reported in "Improved Single-Source Precursors for Solar-Cell Absorbers" (LEW-17445-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 56. The present synthesis route is better suited to commercialization because it is simpler and involves the use of commercially available agents, yet offers the flexibility needed for synthesis of a variety of precursors. A single-source precursor of the type of interest here is denoted by the general formula L2M'(mu-ER)2M(ER)2, where L signifies a Lewis base; M signifies Al, In, or Ga; M' signifies Ag or Cu; R signifies an alkyl, aryl, silyl, or perfluorocarbon group; E signifies O, S, Se, or Te; and mu signifies a bridging ligand. This compound can be synthesized in a "one-pot" procedure from ingredients that are readily available from almost any chemical supplier. In a demonstration, the following synthesis was performed: Under anaerobic conditions, InCl3 was reacted with sodium ethanethiolate in methanol in a 1:4 molar ratio to afford the ionic stable intermediate compound Na+[In(SEt)4]- (where Et signifies ethyl group). After approximately 15 minutes, a heterogeneous solution of CuCl and the Lewis base PPh3 (where Ph signifies phenyl) in a 1:2 ratio in a mixture of CH3CN and CH2Cl2 was added directly to the freshly prepared Na+[In(SEt)4]-. After 24 hours, the reaction was essentially complete. The methanolic solution was concentrated, then the product was extracted with CH2Cl2, then the product was washed with dry ether and pentane. The product in its final form was a creamy white solid. Spectroscopic and elemental analysis confirmed that the product was (PPh3)2Cu(mu-SEt)2In(mu-SEt)2, which is known to be a precursor of the ternary semiconductor CuInS2.
Sol-gel precursors and products thereof
Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.
2017-02-14
The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)
2006-01-01
A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.
A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heieh, B.R.; Antoniadis, H.; Bland, D.C.
1995-12-01
We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less
Molecular ways to nanoscale particles and films
NASA Astrophysics Data System (ADS)
Shen, H.; Mathur, S.
2002-06-01
Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.
Improved Single-Source Precursors for Solar-Cell Absorbers
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius
2007-01-01
Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).
Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.
Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R
2018-05-28
In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.
Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian
2012-12-15
Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less
Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...
2016-05-25
In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI 2).
Bear, J. C.; Mayes, A. G.; Parkin, I. P.; O'Brien, P.
2017-01-01
The synthesis of lead sulfide nanocrystals within a solution processable sulfur ‘inverse vulcanization’ polymer thin film matrix was achieved from the in situ thermal decomposition of lead(II) n-octylxanthate, [Pb(S2COOct)2]. The growth of nanocrystals within polymer thin films from single-source precursors offers a faster route to networks of nanocrystals within polymers when compared with ex situ routes. The ‘inverse vulcanization’ sulfur polymer described herein contains a hybrid linker system which demonstrates high solubility in organic solvents, allowing solution processing of the sulfur-based polymer, ideal for the formation of thin films. The process of nanocrystal synthesis within sulfur films was optimized by observing nanocrystal formation by X-ray photoelectron spectroscopy and X-ray diffraction. Examination of the film morphology by scanning electron microscopy showed that beyond a certain precursor concentration the nanocrystals formed were not only within the film but also on the surface suggesting a loading limit within the polymer. We envisage this material could be used as the basis of a new generation of materials where solution processed sulfur polymers act as an alternative to traditional polymers. PMID:28878986
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius
2002-01-01
Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.
NASA Astrophysics Data System (ADS)
Jayaram, S.; Daeid, N. Nic; Kerr, W. J.; Kemp, H. F.; Meier-Augenstein, W.
2012-04-01
This work exposes the variation in light element stable isotopic abundance values of 13C, 2H and 15N) derived from the analysis of methylamphetamine synthesized via 2 different synthetic routes popular with clandestine laboraties, the Hypophosphorous and the Moscow route. We repeatedly prepared the final product using known clandestine synthetic methods where the precursors, catalysts and reducing agents have themselves been derived from house hold products and commonly available cold medications. Methylamphetamine was prepared from both lab grade pseudoephedrine and pseudoephedrine extracted (using three different solvent systems) from Sudafed®, an over-the-counter cold medication widely available in the United Kingdom. Six repetitive batches of the final product were produced in each case to provide within and between batch variations thus yielding a total of 48 samples (24 for each route). We have demonstrated that stable isotope analysis by Isotope Ratio Mass Spectrometry (IRMS) is potentially useful in the comparison and discrimination of batches of methylamphetamine produced for each route and for each precursor depending on the solvent used for extracting the pseudoephedrine starting material. To our knowledge this is the first time multivariate stable isotope analysis has been applied to methylamphetamine samples synthesized from pseudoephedrine extracted from over-the-counter cold medications.
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
Synthesis and structures of metal chalcogenide precursors
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.
1990-01-01
The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.
Methods of forming semiconductor devices and devices formed using such methods
Fox, Robert V; Rodriguez, Rene G; Pak, Joshua
2013-05-21
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials
NASA Technical Reports Server (NTRS)
Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.
Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors
NASA Astrophysics Data System (ADS)
Hollingsworth, Jennifer Ann
1999-11-01
The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.
Rees, Kelly; Lorusso, Emanuela; Cosham, Samuel D; Kulak, Alexander N; Hyett, Geoffrey
2018-02-14
In this paper we report on a novel chemical vapour deposition approach to the formation and control of composition of mixed anion materials, as applied to titanium oxynitride thin films. The method used is the aerosol assisted chemical vapour deposition (AACVD) of a mixture of single source precursors. To explore the titanium-oxygen-nitrogen system the single source precursors selected were tetrakis(dimethylamido) titanium and titanium tetraisopropoxide which individually are precursors to thin films of titanium nitride and titanium dioxide respectively. However, by combining these precursors in specific ratios in a series of AACVD reactions at 400 °C, we are able to deposit thin films of titanium oxynitride with three different structure types and a wide range of compositions. Using this precursor system we can observe films of nitrogen doped anatase, with 25% anion doping of nitrogen; a new composition of pseudobrookite titanium oxynitride with a composition of Ti 3 O 3.5 N 1.5 , identified as being a UV photocatalyst; and rock-salt titanium oxynitride in the range TiO 0.41 N 0.59 to TiO 0.05 N 0.95 . The films were characterised using GIXRD, WDX and UV-vis spectroscopy, and in the case of the pseudobrookite films, assessed for photocatalytic activity. This work shows that a so-called dual single-source CVD approach is an effective method for the deposition of ternary mixed anion ceramic films through simple control of the ratio of the precursors, while keeping all other experimental parameters constant.
Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S
2015-06-01
Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Li, Xiaolin; Henderson, Wesley A.
2016-02-01
Highly crystalline LiCoPO4/C cathode has been synthesized without any impurities via single step solid-state reaction using CoHPO4xH2O nanoplates as a precursor obtained by simple precipitation route. The electrochemical test shows specific capacity as high as 125mAh/g at charge/discharge rate of C/10. Synthesis approach for obtaining CoHPO4xH2O nanoplate precursor and final LiCoPO4/C cathode using single step solid-state reaction have been characterized using X-ray diffraction, thermos gravimetric analyses (TGA) – differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The electrochemical test and cycling stability using different electrolytes, additive and separator have been investigated.
NASA Astrophysics Data System (ADS)
Wu, Fengcheng; Xie, Pinhua; Li, Ang; Mou, Fusheng; Chen, Hao; Zhu, Yi; Zhu, Tong; Liu, Jianguo; Liu, Wenqing
2018-02-01
Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in the NCP in the summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that transport from the southern NCP strongly affects air quality in Beijing, and the transport route, particularly SO2 transport on the route of Shijiazhuang-Baoding-Beijing, is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang-Baoding-Beijing are elevated sources compared to low area sources for the route of Dezhou-Cangzhou-Tianjin-Beijing; this is found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussions on hot spots near the city of JiNan show that average observed width of polluted air mass is 11.83 and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between the Ozone Monitoring Instrument (OMI) and mobile DOAS observations, with a correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have a similar spatial pattern. The fitted slope of 0.55 is significantly less than unity, which can reflect the contamination of local sources, and OMI observations are needed to improve the sensitivities to the near-surface emission sources through improvements of the retrieval algorithm or the resolution of satellites.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2016-04-19
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2014-09-09
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Vaporization of a mixed precursors in chemical vapor deposition for YBCO films
NASA Technical Reports Server (NTRS)
Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises
1995-01-01
Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.
2008-03-04
Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the filmmore » grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.« less
Template-assisted mineral formation via an amorphous liquid phase precursor route
NASA Astrophysics Data System (ADS)
Amos, Fairland F.
The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.
NASA Astrophysics Data System (ADS)
Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.
2016-01-01
Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2012-12-04
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Yuan, Kai; Chen, Lie; Chen, Yiwang
2014-09-01
The direct growth of CdS nanocrystals in functional solid-state thermotropic liquid crystal (LC) small molecules and a conjugated LC polymer by in situ thermal decomposition of a single-source cadmium xanthate precursor to fabricate LC/CdS hybrid nanocomposites is described. The influence of thermal annealing temperature of the LC/CdS precursors upon the nanomorphology, photophysics, and optoelectronic properties of the LC/CdS nanocomposites is systematically studied. Steady-state PL and ultrafast emission dynamics studies show that the charge-transfer rates are strongly dependent on the thermal annealing temperature. Notably, annealing at liquid-crystal state temperature promotes a more organized nanomorphology of the LC/CdS nanocomposites with improved photophysics and optoelectronic properties. The results confirm that thermotropic LCs can be ideal candidates as organization templates for the control of organic/inorganic hybrid nanocomposites at the nanoscale level. The results also demonstrate that in situ growth of semiconducting nanocrystals in thermotropic LCs is a versatile route to hybrid organic/inorganic nanocomposites and optoelectronic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bendt, Georg; Weber, Anna; Heimann, Stefan; Assenmacher, Wilfried; Prymak, Oleg; Schulz, Stephan
2015-08-28
Thermolysis of the single source precursor (Et2Bi)2Te in DIPB at 80 °C yielded phase-pure Bi4Te3 nanoparticles, while mixtures of Bi4Te3 and elemental Bi were formed at higher temperatures. In contrast, cubic Bi2Te particles were obtained by thermal decomposition of Et2BiTeEt in DIPB. Moreover, a dual source approach (hot injection method) using the reaction of Te(SiEt3)2 and Bi(NMe2)3 was applied for the synthesis of different pure Bi-Te phases including Bi2Te, Bi4Te3 and Bi2Te3, which were characterized by PXRD, REM, TEM and EDX. The influence of reaction temperature, precursor molar ratio and thermolysis conditions on the resulting material phase was verified. Moreover, reactions of alternate bismuth precursors such as Bi(NEt2)3, Bi(NMeEt)3 and BiCl3 with Te(SiEt3)2 were investigated.
CVD growth of graphene at low temperature
NASA Astrophysics Data System (ADS)
Zeng, Changgan
2012-02-01
Graphene has attracted a lot of research interest owing to its exotic properties and a wide spectrum of potential applications. Chemical vapor deposition (CVD) from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth. However, high growth temperature, typically 1000^oC, is required for such growth. In this talk, I will show a revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks. For solid PMMA and polystyrene precursors, centimeter-scale monolayer graphene films are synthesized at a growth temperature down to 400^oC. When benzene is used as the hydrocarbon source, monolayer graphene flakes with excellent quality are achieved at a growth temperature as low as 300^oC. I will also talk about our recent progress on low-temperature graphene growth using paraterphenyl as precursor. The successful low-temperature growth can be qualitatively understood from the first principles calculations. Our work might pave a way to economical and convenient growth route of graphene, as well as better control of the growth pattern of graphene at low temperature.
Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye
2013-10-11
One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collins, Michael; Cawley, Adam T; Heagney, Aaron C; Kissane, Luke; Robertson, James; Salouros, Helen
2009-07-01
Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (delta(13)C), nitrogen (delta(15)N) and hydrogen (delta(2)H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the delta(13)C, delta(15)N and delta(2)H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC-IRMS) in high-purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi-synthetic, or fully synthetic origin. Copyright (c) 2009 Commonwealth of Australia.
Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...
2015-11-05
Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni 2P, Rh 2P, and Pd 3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni 2P NPs was shownmore » to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H 2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H 2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H 2 incorporation in the presence of all of the catalysts except NP-Pd 3P, which exhibited minimal productive activity, and IW-Ni, which evolved H 2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni 2P catalyst exhibited H 2 activation and incorporation, in contrast to IW-Ni, indicating that the behavior of the metal phosphide is significantly different from that of the parent metal, and more closely resembles that of noble metal catalysts.« less
NASA Technical Reports Server (NTRS)
Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.
2003-01-01
Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.
NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2002-01-01
Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.
Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won
2015-12-11
One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.
NASA Astrophysics Data System (ADS)
Mishra, Raman; Bajpai, P. K.
2011-11-01
Nano-size ZnO (particle size 7.8 nm) have been prepared from a versatile, efficient and technically simple polymer matrix based precursor solution. The precursor solution constituted of zinc nitrates with polymer PVA in presence of mono-/disaccharides. Annealing the precursor mass at 900 °C single phase zinc oxide nano-particles are obtained. X-ray diffraction analysis confirms hexagonal crystal structure with lattice parameter a = b = 3.261 A0, c = 5.220 A0. The estimated average particle size obtained from XRD data is ≈7.8 nm. The impedance analysis reveals that the grain resistance decreases with increase in temperature as expected for a semi-conducting material. The relaxation is polydispersive and conduction is mainly through grains. Optical properties and AC/DC conduction activation energies are estimated from Arrhenius plots and conduction mechanism is discussed.
Organometallic Precursor Routes to Si-C-Al-O-N Ceramics
1991-05-15
Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3 N 4", Kluwer Academic Publishers, Dordrecht, NATO Workshop or Organometallic Polymers with Special...the polymer to a preceramic SiC . Thus the IR and H CRAMPS spectra confirm the decreasing concentration of hydrogen with increasing pyrolysis ...generality of this polymer pyrolysis route to nanocrystalline composites of refractory nitride and carbide ceramics. Investigation of AlN Precursors Our
The effects of preparation conditions for a BaNbO2 N photocatalyst on its physical properties.
Hisatomi, Takashi; Katayama, Chisato; Teramura, Kentaro; Takata, Tsuyoshi; Moriya, Yosuke; Minegishi, Tsutomu; Katayama, Masao; Nishiyama, Hiroshi; Yamada, Taro; Domen, Kazunari
2014-07-01
BaNbO2 N is a semiconductor photocatalyst active for water oxidation under visible-light irradiation up to λ=740 nm. It is important to understand the nitridation processes of precursor materials to form BaNbO2 N to tune the physical properties and improve the photocatalytic activity. Comprehensive experiments and analyses of temperatures, durations, ammonia flow rates, and barium/niobium ratios in the precursor during the nitridation process reveals that faster ammonia flow rates and higher barium/niobium ratios in the precursors help to suppress reduction of pentavalent niobium ions in the nitridation products and that the use of a precursor prepared by a soft-chemistry route allows the production of BaNbO2 N at lower temperatures in shorter times than the use of physical mixtures of BaCO3 and Nb2 O5 because the niobium species is dispersed among the barium species. BaNbO2 N prepared by the soft-chemistry route exhibits comparatively higher activity than that prepared from physical mixtures of BaCO3 and Nb2 O5 , probably because of lower nitridation temperatures, which suppress excessive dissociation of ammonia, and thereby reduce pentavalent niobium ions, and intimate interaction of niobium and barium sources, which lowers the densities of mid-gap states associated with defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CVD of SiC and AlN using cyclic organometallic precursors
NASA Technical Reports Server (NTRS)
Interrante, L. V.; Larkin, D. J.; Amato, C.
1992-01-01
The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.
Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi
2015-01-01
Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203
Ceramics Derived from Organo-Metallic Precursors
1991-10-01
spraying, and roller-coating may also be used to good effect . The films deposited by any of these techniques are ready to be fired immediately...films. The wet chemical route offers great potential for highly cost- effective processing; and the critical issue for its wide-scale implementation is...glasses and subsequently to crystallize single phase HTSC materials. The fourth composition, 4223, was made in order to test the effect of Bi on glass
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.
1993-01-01
A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster /(t-Bu)GaS/4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shusuke, E-mail: shusuke-okada@aist.go.jp; Takagi, Kenta; Ozaki, Kimihiro
Submicron-sized Sm{sub 2}Fe{sub 17} powder samples were fabricated by a non-pulverizing process through reduction-diffusion of precursors prepared by a wet-chemical technique. Three precursors having different morphologies, which were micron-sized porous Sm-Fe oxide-impregnated iron nitrate, acicular goethite impregnated-samarium nitrate, and a conventional Sm-Fe coprecipitate, were prepared and subjected to hydrogen reduction and reduction-diffusion treatment to clarify whether these precursors could be convert to Sm{sub 2}Fe{sub 17} without impurity phases and which precursor is the most attractive for producing submicron-sized Sm{sub 2}Fe{sub 17} powder. As a result, all three precursors were successfully converted to Sm{sub 2}Fe{sub 17} powders without impurity phases, andmore » the synthesis route using iron-oxide particle-impregnated samarium oxide was revealed to have the greatest potential among the three routes.« less
Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh
2018-05-01
SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.
Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor
NASA Astrophysics Data System (ADS)
Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan
2018-05-01
Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.
Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins.
Schraivogel, Daniel; Meister, Gunter
2014-09-01
Small RNAs are important regulators of gene expression in many different organisms. Nuclear and cytoplasmic biogenesis enzymes generate functional small RNAs from double-stranded (ds) or single-stranded (ss) RNA precursors, and mature small RNAs are loaded into Argonaute proteins. In the cytoplasm, small RNAs guide Argonaute proteins to complementary RNAs leading to cleavage of these targets, translational silencing, or mRNA decay. In the nucleus Argonaute proteins engage in transcriptional silencing processes such as epigenetic silencing of repetitive elements at the chromatin level. During the past few years many novel functions of small RNA-guided gene silencing proteins in the nucleus have been reported. However, their specific import routes are largely unknown. In this review we summarize the current knowledge on nuclear transport routes that Argonaute and other RNA-silencing proteins take to carry out their various functions in the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.
New polymeric precursors to SiNCB, BN, and La(3)Ni(2)B(2)N(3) materials
NASA Astrophysics Data System (ADS)
Wideman, Thomas W.
Boron-containing non-oxide ceramics demonstrate a number of important structural, electronic and physical properties. However, the lack of general synthetic routes to generate these materials with controlled composition, under moderate conditions, and in processed forms, has hampered both scientific studies and practical applications. The goal of the work described in this dissertation was to develop efficient new polymeric precursor routes to boron-containing materials including SiNCB ceramics composites, boron nitride fibers, and quaternary metal boro-nitride superconductors. Two types of polyborosilazane precursors to SiNCB ceramics were developed. Borazine-co-silazane copolymers were prepared through the thermal copolymerization of borazine with two silazanes, tris(trimethylsilylamino)silane, and 1,1,3,3,5,5 -hexamethylcyclotrisilazane. Polyborosilazanes with pendent boron-containing species were obtained by the modification of preformed hydridopolysilazane polymers with three monofunctional boranes: pinacolborane, 2,4-diethylborazine and 1,3-dimethyl-1,3-diaza-2-boracyclopentane. Pyrolyses of both types of polyborosilazanes produced SiNCB ceramics with controllable boron contents, enhanced thermal stabilities, and reduced crystallinity. Processible polymeric precursors to BN were also achieved by the chemical modification of polyborazylene, (Bsb3Nsb3Hsb{˜ 4}rbrack sb{x}, with diethylamine, dipentylamine, and hexamethyldisilazane. The modified polymers, unlike the parent polyborazylene, do not crosslink at low temperatures, and therefore proved to be ideal melt-spinnable precursors to BN ceramic fibers. A new polymeric precursor route to the recently discovered Lasb3Nisb2Bsb2Nsb3 superconductor (Tc = 12K) was developed by reacting lanthanum and nickel powders dispersed in the polyborazylene, to produce the intermetallic in excellent yields. The use of the polymer as a "reagent" provided a controllable, solid state source of nitrogen, and allows for the large scale syntheses of Lasb3Nisb2Bsb2Nsb3 and other quaternary metal boro-nitrides. Two new preparations of borazine, Bsb3Nsb3Hsb6, a key molecular unit in many of the polymers described above, have also been developed. Chemical investigations and practical applications of borazine-based preceramic polymers have been limited by the inefficient syntheses and high cost of borazine, which may now be prepared in 55-65% yields by the convenient, inexpensive the reaction of ammonium and borohydride salts, and the decomposition of ammonia borane, in high-boiling ether solutions.
NASA Astrophysics Data System (ADS)
Woods, Keenan N.
Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing. Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II. This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions. This dissertation includes previously published coauthored material.
Indoor 3D Route Modeling Based On Estate Spatial Data
NASA Astrophysics Data System (ADS)
Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.
2014-04-01
Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.
Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M
2009-08-26
A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.
Joshi, Hemant; Sharma, Kamal Nayan; Singh, Ved Vati; Singh, Pradhumn; Singh, Ajai Kumar
2013-02-21
The AgBr and Ag(2)Se nanoparticles (NPs) have been synthesized for the first time from two single source precursors ([Ag(2)(L)(2)Br(2)] (1) and [Ag(L-HBr)(2)]BF(4) (2) respectively) designed using the same ligand 3-benzyl-1-(2-phenylselanyl-ethyl)-3H-imidazolium bromide (L). The ODE-ODA-OA (1 : 1 : 2) and TOP-OA (1 : 2) are most suitable solvents for thermolysis of 1 and 2 respectively, resulting in the NPs. The composition of the solvent used in thermolysis affects the purity of NPs. The bonding of L in 1 is unique, as it has a pre-carbene site intact.
COI oxidation on a single Pd atom supported on magnesia.
Abbet, S; Heiz, U; Häkkinen, H; Landman, U
2001-06-25
The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass spectrometry and infrared spectroscopy. In one-heating-cycle experiments, CO(2), formed from O(2) and CO preadsorbed at 90 K, is detected at 260 and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)(2)O(2) and PdCO(3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.
A new approach to preparing Bi2Zr2O7 photocatalysts for dye degradation
NASA Astrophysics Data System (ADS)
Luo, Yijia; Cao, Liyun; Huang, Jianfeng; Feng, Liangliang; Yao, Chunyan
2018-01-01
A new synthetic route is presented to prepared pure Bi2Zr2O7 material, in which a NaNO3/KNO3 molten salt is used to obtain the resulting Bi2Zr2O7 at a relatively low temperature of 400 °C under atmospheric pressure. Powder x-ray diffraction confirmed the structure type and purity of the as-prepared sample, and further revealed that a single-source Bi(OH)3 · Zr(OH)4 · nH2O complex precursor plays a crucial role to synthesize Bi2Zr2O7 nanocrystals. Scanning electron microscope and transmission electron microscope show the morphologies and sizes of Bi2Zr2O7 crystal in detail, and UV-vis diffuse reflectance measurements evidenced the wide light absorption range. Furthermore, the as-synthesized Bi2Zr2O7 with smaller particle size and larger specific surface area exhibit superior photocatalytic activities compared with the sample obtained without adding molten salts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka; Patra, Rajkumar; Ghosh, Santanu
2012-10-15
The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating.more » It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.« less
EXAFS Study on LiFePO4 Powders Produced From Two Sol-Gel Routes
NASA Astrophysics Data System (ADS)
Negara, V. S. I.; Latif, C.; Wongtepa, W.; Pratapa, S.
2018-04-01
The local structure of LiFePO4 powders has been investigated using Fe K-edge Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy data. The synthesis of LFP powders was carried out using two different sol-gel methods. The raw materials for Fe source were ironstone and commercial precursor of FeCl2·4H2O. Synthesis using natural materials produced two phases, namely LiFePO4 olivine and Li3Fe2(PO4)3 nasicon, whereas that using a commercial product produced a single phase of LiFePO4 olivine. The EXAFS data for both samples were collected at Synchrotron Light Research Institute (SLRI), Thailand. Fitting of the model on the experimental curve provided parameters that can be interpreted as the distance between Fe as the absorber and the nearest atoms on the LFP materials. The EXAFS data analysis has shown that synthesis of LFPs using different Fe sources gives slightly different nearest-neighbor distances, namely Fe-O of 0.21% -0.23%, Fe-P of 0.14% - 0.16%, Fe-Fe of 0.12% for both samples, respectively.
NASA Astrophysics Data System (ADS)
Raut, Suyog A.; Mutadak, Pallavi R.; Kumar, Shiv; Kanhe, Nilesh S.; Huprikar, Sameer; Pol, Harshawardhan V.; Phase, Deodatta M.; Bhoraskar, Sudha V.; Mathe, Vikas L.
2018-03-01
In this paper we report single step large scale synthesis of highly crystalline iron oxide nanoparticles viz. magnetite (Fe3O4) and maghemite (γ-Fe2O3) via gas phase condensation process, where micron sized iron metal powder was used as a precursor. Selective phases of iron oxide were obtained by variation of gas flow rate of oxygen and hence partial pressure of oxygen inside the plasma reactor. Most of the particles were found to possesses average crystallite size of about 20-30 nm. The DC magnetization curves recorded indicate almost super-paramagnetic nature of the iron oxide magnetic nanoparticles. Further, iron oxide nanoparticles were analyzed using Raman spectroscopy, X-ray photoelectron spectroscopy and Mossbauer spectroscopy. In order to explore the feasibility of these nanoparticles for magnetic damper application, rheological studies have been carried out and compared with commercially available Carbonyl Iron (CI) particles. The nanoparticles obtained by thermal plasma route show improved dispersion which is useful for rheological applications.
[Progress in bio-based polyamides].
Huang, Zhengqiang; Cui, Zhe; Zhang, Heming; Fu, Peng; Zhao, Qingxiang; Liu, Minying
2016-06-25
Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conze, S., E-mail: susan.conze@ikts.fraunhofer.de; Veremchuk, I.; Reibold, M.
2015-09-15
A new synthetic approach for producing nano-powders of the Magnéli phases Ti{sub 4}O{sub 7}, Ti{sub 8}O{sub 15} and their carbon nanocomposites by thermal decomposition-precursor route is proposed. The formation mechanism of the single-phase carbon nanocomposites (Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C) from metal–organic precursors is studied using FT-IR, elemental analysis, TG, STA-MS and others. The synthesis parameters and conditions were optimized to prepare the target oxides with the desired microstructure and physical properties. The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. These nano-materials are n-type semiconductors with relatively low thermal conductivity inmore » contrast to the bulk species. The nanostructured carbon nanocomposites of Magnéli phases achieve a low thermal conductivity close to 1 W/m K at RT. The maximum ZT{sub 570} {sub °C} values are 0.04 for Ti{sub 4}O{sub 7}/C powder nanocomposite and 0.01 for Ti{sub 8}O{sub 15}/C bulk nanocomposite. - Graphical abstract: From the precursor to the produced titanium oxide pellet and its microstructure (SEM, TEM micrographs) as well as results of phase and thermoelectric analyses. - Highlights: • Magnéli phases Ti{sub 4}O{sub 7}/Ti{sub 8}O{sub 15} via thermal decomposition-precursor route is proposed. • The formation mechanism of the nanocomposites Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • Microstructure of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are examined. • The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • The maximum figure of mertit ZT{sub 570} {sub °C} of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are 0.01 and 0.04.« less
Historical Temporal Shipping (HITS)
1978-06-28
Histogram Cells 45 El Figure 4-3 Projection of Area onto Route Perpendicular 45 Figure 4-4 Single Column Cut of Route Envelope 46ii Figure 4-5 Histogram of...Resources, "Super" Bulk Carriers, and Deepwater Port Development." Naval Postgraduate School . June 1974. 8. Gulland, J.A. "The Fish Resources of the Ocean...sailing reports from the various harbour masters. The completeness of the data thus depends in most cases upon the diligence of a single reporting source
An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1992-01-01
Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.
A novel low cost non-aqueous chemical route for giant dielectric constant CaCu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Singh, Laxman; Kim, Ill Won; Woo, Won Seok; Sin, Byung Cheol; Lee, Hyung-il; Lee, Youngil
2015-05-01
This paper reports a simple, fast, low cost and environment-friendly route for preparing a highly crystalline giant dielectric material, CaCu3Ti4O12 (CCTO), through combustion of metal nitrates in non-aqueous precursor solution using inexpensive solid TiO2 powder. The route to producing pure phase CCTO ceramic using stable solid TiO2 is better than other several sol-gel routes reported earlier in which expensive alkoxides, oxynitrates, or chlorides of titanium are used as the titanium sources. X-ray diffraction revealed the formation of cubic perovskite CCTO. Scanning electron microscopy image showed the average grain sizes in the range of 1.5-5 μm. At 10 kHz and room temperature, the best CCTO ceramic exhibited a high dielectric constant, ε‧ ∼43325.24, with low dielectric loss, tan δ ∼0.088. The dielectric relaxation behavior was rationalized from impedance and modulus studies and the presence of a non-Debye type of relaxation was confirmed.
Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E
2015-12-07
A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.
Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...
2016-03-15
In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 3(μ 3-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 3(μ 3-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less
Single Source Precursors for Thin Film Solar Cells
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.
2002-01-01
The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.
NASA Astrophysics Data System (ADS)
Wellons, Matthew S.
The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.
Brog, Jean-Pierre; Crochet, Aurélien; Seydoux, Joël; Clift, Martin J D; Baichette, Benoît; Maharajan, Sivarajakumar; Barosova, Hana; Brodard, Pierre; Spodaryk, Mariana; Züttel, Andreas; Rothen-Rutishauser, Barbara; Kwon, Nam Hee; Fromm, Katharina M
2017-08-22
LiCoO 2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO 2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li + ) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Several new single source precursors containing lithium (Li + ) and cobalt (Co 2+ ) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO 2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO 2 have faster kinetics for Li + insertion/extraction compared to microparticles. Overall, nano-sized LiCoO 2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.
Method to synthesize metal chalcogenide monolayer nanomaterials
Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.
2016-12-13
Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.
Potential of IRMS technology for tracing gamma-butyrolactone (GBL).
Marclay, François; Pazos, Diego; Delémont, Olivier; Esseiva, Pierre; Saudan, Christophe
2010-05-20
Popularity of gamma-hydroxybutyric acid (GHB) is fairly stable among drug users, while the consumption of its chemical precursor, gamma-butyrolactone (GBL), is a growing phenomenon. Although conventional analytical methods allow to detect this substance in various matrices, linking a trace and a source is still a difficult challenge. However, as several synthesis pathways and chemical precursors exist for the production of GBL, its carbon isotopic signature may vary extensively. For that purpose, a method has been developed to determine the carbon isotopes content of GBL by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The delta(13)C-values of 19 bulk samples purchased worldwide were in the range from -23.1 to -45.8 per thousand (SD<0.3 per thousand). Furthermore, testing on the purification of GBL by distillation has not been found to be consistent with such a large range of delta(13)C-values, which are likely to result from the isotopic composition of the organic precursors used to produce GBL together with the kinetic isotope effect associated with the synthesis routes. Finally, inter- and intra-variability measurements of the delta(13)C-values demonstrated the high potential of IRMS for discriminating between seizures of GBL and for source determination.
Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin
2015-12-14
We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr; Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve; Kenfack Tsobnang, Patrice
2015-10-15
Nanoparticles of Ni{sub 1−x}Zn{sub x}O and Ni{sub 1−x}Zn{sub x}O/ZnO, which can be good candidates for selective gas sensors, were successfully obtained via a two-step synthetic route, in which the nickel zinc malonate precursor was first synthesized by co-precipitation from an aqueous solution, followed by pyrolysis in air at a relatively low temperature (~500 °C). The precursor was characterized by ICP-AES, FTIR and TG and the results indicate the molecular structure of the precursor to be compatible with Ni{sub 1−x}Zn{sub x}(OOCCH{sub 2}COO)·2H{sub 2}O. The decomposition product, characterized using various techniques (FTIR, XRD, ToF-SIMS, SEM, TEM and XPS), was established to bemore » a doped nickel oxide (Ni{sub 1−x}Zn{sub x}O for 0.01≤x≤0.1) and a composite material (Ni{sub 1−x}Zn{sub x}O/ZnO for 0.2≤x≤0.5). To elucidate the form in which the Zn is present in the NiO structure, three analytical techniques were employed: ToF-SIMS, XRD and XPS. While ToF SIMS provided a direct evidence of the presence of Zn in the NiO crystal structure, XRD showed that Zn actually substitutes Ni in the structure and XPS is a bit more specific by indicating that the Zn is present in the form of Zn{sup 2+} ions. - Highlights: • Coprecipitation synthesis of nickel zinc malonate single bath precursor was achieved. • The as synthesized precursors are an homogeneous mixture of nickel and zinc malonate. • XRD, ToF-SIMS, XPS, SEM and TEM was used to characterized decomposition products. • Ni{sub 1−x}Zn{sub x}O nanoparticles (0.01≤x≤0.1) formed after pyrolysis (~500 °C) of precursor. • Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposite (0.2≤x≤0.5) formed after pyrolysis at 500 °C of precursor.« less
Flood routing of the Maja outflow across Xanthe Terra
NASA Technical Reports Server (NTRS)
Dehon, R. A.
1991-01-01
The object is to trace a single flood crest through the Maja outflow system and to evaluate the effects of topography on ponding and multiple channel routing. Maja Valles provides a good model because it has a single source and a well defined channel system. The 1500 km long Maja Valles originates in Juventae Chasma. The outflow system stretches 1100 km northward along the Lunae Planum/Xanthe Terra boundary, then eastward across the Xanthe Terra highlands. It descends to Chryse Planitia where it extends northeastward toward the middle of the basin. It is concluded that flood routing through multiple channels and retardation in local impoundments are responsible for breakup of the initial flood crest and the formation of multiple flood crests. Recombined flow near the mouths of these canyons results in an extended flow regime and multiple flood surges. As a result of ponding along the flood course, depositional sites are localized and renewed erosion downstream (from ponded sites) results in sediment source areas not greatly removed from depositional sites.
Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents
2014-01-01
In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents. PMID:24650322
Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang
2018-03-01
The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.
NASA Astrophysics Data System (ADS)
Yilmaz, Ceren; Unal, Ugur
2016-04-01
Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.
Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin
2016-06-21
Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.
Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor
NASA Astrophysics Data System (ADS)
Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal
2011-12-01
Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.
In regulatory assessments, there is a need for reliable estimates of the impacts of precursor emissions from individual sources on secondary PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microns) and ozone. Three potential methods for estimating th...
NASA Astrophysics Data System (ADS)
Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh
2018-01-01
In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.
Beita-Sandí, Wilson; Karanfil, Tanju
2017-11-01
Drinking water utilities are relying more than ever on water sources impacted by wastewater effluents. Disinfection/oxidation of these waters during water treatment may lead to the formation of several disinfection by-products, including the probable human carcinogen N-nitrosodimethylamine (NDMA) and the regulated trihalomethanes (THMs). In this study, the potential of ion exchange resins to control both NDMA and THMs precursors in a single treatment is presented. Two ion exchange resins were examined, a cation exchange resin (Plus) to target NDMA precursors and an anion exchange resin (MIEX) for THMs precursors control. We applied the resins, individually and combined, in the treatment of surface and wastewater effluent samples. The treatment with both resins removed simultaneously NDMA (43-85%) and THMs (39-65%) precursors. However, no removal of NDMA precursors was observed in the surface water with low initial NDMA FP (14 ng/L). The removals of NDMA FP and THMs FP with Plus and MIEX resins applied alone were (49-90%) and (41-69%), respectively. These results suggest no interaction between the resins, and thus the feasibility of effectively controlling NDMA and THMs precursors concomitantly. Additionally, the effects of the wastewater impact and the natural attenuation of precursors were studied. The results showed that neither the wastewater content nor the attenuation of the precursor affected the removals of NDMA and THMs precursors. Finally, experiments using a wastewater effluent sample showed that an increase in the calcium concentration resulted in a reduction in the removal of NDMA precursors of about 50%. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barick, B. K.; Yadav, Shivesh; Dhar, S.
2017-11-01
GaN/SiO2 core/shell nanowires are grown by cobalt phthalocyanine catalyst assisted vapor-liquid-solid route, in which Si wafer coated with a mixture of gallium and indium is used as the source for Ga and Si and ammonia is used as the precursor for nitrogen and hydrogen. Gallium in the presence of indium and hydrogen, which results from the dissociation of ammonia, forms Si-Ga-In alloy at the growth temperature ∼910 °C. This alloy acts as the source of Si, Ga and In. A detailed study using a variety of characterization tools reveals that these wires, which are several tens of micron long, has a diameter distribution of the core ranging from 20 to 50 nm, while the thickness of the amorphous SiO2 shell layer is about 10 nm. These wires grow along [ 1 0 1 bar 0 ] direction. It has also been observed that the average diameter of these wires decreases, while their density increases as the gallium proportion in the Ga-In mixture is increased.
Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin
2015-12-01
Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.
Bieganowski, Pawel; Brenner, Charles
2004-05-14
NAD+ is essential for life in all organisms, both as a coenzyme for oxidoreductases and as a source of ADPribosyl groups used in various reactions, including those that retard aging in experimental systems. Nicotinic acid and nicotinamide were defined as the vitamin precursors of NAD+ in Elvehjem's classic discoveries of the 1930s. The accepted view of eukaryotic NAD+ biosynthesis, that all anabolism flows through nicotinic acid mononucleotide, was challenged experimentally and revealed that nicotinamide riboside is an unanticipated NAD+ precursor in yeast. Nicotinamide riboside kinases from yeast and humans essential for this pathway were identified and found to be highly specific for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin. Nicotinamide riboside was discovered as a nutrient in milk, suggesting that nicotinamide riboside is a useful compound for elevation of NAD+ levels in humans.
Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V
2014-05-05
Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.
NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2003-01-01
Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.
NASA Astrophysics Data System (ADS)
Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras
2016-09-01
Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.
NASA Astrophysics Data System (ADS)
Pashchanka, Mikhail; Hoffmann, Rudolf C.; Burghaus, Olaf; Corzilius, Björn; Cherkashinin, Gennady; Schneider, Jörg J.
2011-01-01
The synthesis and full characterisation of pure and Mn-doped polycrystalline zinc oxide nanorods with tailored dopant content are obtained via a single source molecular precursor approach using two Schiff base type coordination compounds is reported. The infiltration of precursor solutions into the cylindrical pores of a polycarbonate template and their thermal conversion into a ceramic green body followed by dissolution of the template gives the desired ZnO and Mn-doped ZnO nanomaterial as compact rods. The ZnO nanorods have a mean diameter between 170 and 180 nm or 60-70 nm, depending on the template pore size employed, comprising a length of 5-6 μm. These nanorods are composed of individual sub-5 nm ZnO nanocrystals. Exact doping of these hierarchically structured ZnO nanorods was achieved by introducing Mn(II) into the ZnO host lattice with the precursor complex Diaquo-bis[2-(meth-oxyimino)-propanoato]manganese, which allows to tailor the exact Mn(II) doping content of the ZnO rods. Investigation of the Mn-doped ZnO samples by XRD, TEM, XPS, PL and EPR, reveals that manganese occurs exclusively in its oxidation state + II and is distributed within the volume as well as on the surface of the ZnO host.
A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis
NASA Astrophysics Data System (ADS)
Walker, Joan M.; Zaleski, Jeffrey M.
2016-01-01
Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing.Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06700f
Carbothermal shock synthesis of high-entropy-alloy nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing
2018-03-01
The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.
NASA Astrophysics Data System (ADS)
Ai, Lunhong; Jiang, Jing
CoLaxFe2-xO4 (x = 0.00, 0.05 and 0.1) nanoparticles were prepared simply by a modified citrate precursor route. Effects of La-substituting level on the their magnetic properties were investigated on the basis of the structural analysis. The thermal evolution of the precursor, as well as the microstructure of as-prepared products were studied by means of a thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectrometer. The magnetic properties of the as-prepared samples were measured using a vibrating sample magnetometer (VSM). It was found that the magnetic properties were dependent on many factors such as La-substituting level, particle size and microstructure. The observed saturation magnetization decreased with increasing La content, whereas coercivity exhibited reverse behavior.
NASA Astrophysics Data System (ADS)
Fujdala, Kyle Lee
This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (<200°C) to provide homogeneous carbon-free materials via the elimination of isobutylene and water. A gel is formed when thermolyses are performed in non-polar solvents, and subsequent drying of the gel in a conventional manner yields high surface area xerogels. This thermolytic molecular precursor (TMP) approach has been utilized to provide a variety of oxide materials with tailored properties. In addition, the oxygen rich environment of the molecular precursors coupled with the presence of M-O-E heterolinkages permits use of them as models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is the only crystalline species present in CrOSiss and CrOSixg after calcination at temperatures up to 1200°C in O2. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.
2018-04-01
Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.
Huang, Xuenian; Liang, Yajing; Yang, Yong; Lu, Xuefeng
2017-07-01
Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.
Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2017-09-13
Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.
Crystalline Organic Pigment-Based Field-Effect Transistors.
Zhang, Haichang; Deng, Ruonan; Wang, Jing; Li, Xiang; Chen, Yu-Ming; Liu, Kewei; Taubert, Clinton J; Cheng, Stephen Z D; Zhu, Yu
2017-07-05
Three conjugated pigment molecules with fused hydrogen bonds, 3,7-diphenylpyrrolo[2,3-f]indole-2,6(1H,5H)-dione (BDP), (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (IIDG), and 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (TDPP), were studied in this work. The insoluble pigment molecules were functionalized with tert-butoxylcarbonyl (t-Boc) groups to form soluble pigment precursors (BDP-Boc, IIDG-Boc, and TDPP-Boc) with latent hydrogen bonding. The single crystals of soluble pigment precursors were obtained. Upon simple thermal annealing, the t-Boc groups were removed and the soluble pigment precursor molecules with latent hydrogen bonding were converted into the original pigment molecules with fused hydrogen bonding. Structural analysis indicated that the highly crystalline soluble precursors were directly converted into highly crystalline insoluble pigments, which are usually only achievable by gas-phase routes like physical vapor transport. The distinct crystal structure after the thermal annealing treatment suggests that fused hydrogen bonding is pivotal for the rearrangement of molecules to form a new crystal in solid state, which leads to over 2 orders of magnitude enhancement in charge mobility in organic field-effect transistor (OFET) devices. This work demonstrated that crystalline OFET devices with insoluble pigment molecules can be fabricated by their soluble precursors. The results indicated that a variety of commercially available conjugated pigments could be potential active materials for high-performance OFETs.
Final Report for Grant "Direct Writing via Novel Aromatic Ladder Polymer Precursors"
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. B. Gorman
2010-10-29
This report describes activities and findings under the above entitled grant. These pertain to the development of new synthetic routes to novel precursor polymers and oligomers that are applicable for conversion from electrical insulators to electrical conductors under the application of light (e.g. direct photolithographic writing)
Multi-photon absorption limits to heralded single photon sources
Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.
2013-01-01
Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400
NASA Astrophysics Data System (ADS)
Jain, Shefali; Chawla, Parul; Sharma, Shailesh Narain; Singh, Dinesh; Vijayan, N.
2018-07-01
This work reports the synthesis of varied shaped Cu2ZnSnS4 (CZTS) nano inks in a most stable kesterite phase via a hot injection colloidal route. CZTS nanoparticles of varied shape were synthesized by using various capping ligands with the introduction of butylamine as a new capping ligand and two different sulfur precursors respectively. The shape of the as-synthesized kesterite CZTS nanocrystals can be well controlled in the form of nanofibers, spherical nanoparticles, nano hexagons, nanotriangles, and nanodiscs. A detailed analysis of the effects of various capping ligand and sulfur source on reaction conditions to obtain pure phase kesterite CZTS nanocrystals for different shapes is explained using LaMer's diagram. It has been found that the choice of sulfur precursor also plays an important role in determining the symmetry and orientation of the plane of the CZTS nanocrystals. Due to different morphology and capping ligands present on the surface, diverse surface properties were obtained which was confirmed by contact angle measurements. The variation in the band gap was also found with changes in morphology of kesterite phased CZTS nanoparticles. Due to variations obtained in band gap, changes in I-V characteristics were also observed which may leads different CZTS nanoparticles to have their potential applications in different regime other than photovoltaics like sensors, photocatalysis etc.
Soft chemistry routes to GeS2 nanoparticles
NASA Astrophysics Data System (ADS)
Courthéoux, Laurence; Mathiaud, Romain; Ribes, Michel; Pradel, Annie
2018-04-01
Spherical GeS2 particles are prepared by a low temperature liquid route with TEOG as germanium precursor and either H2S or thioacetamide (TAA) as sulfur precursors. The size and agglomeration of the particles change depending upon the temperature and nature of the solvent. Most synthesis lead to preparing amorphous GeS2. When the reaction kinetic is slowed down by using TAA at 25 °C, the obtained GeS2 product presents a larger order in the range of few Å as proven by Raman spectroscopy, even though it is still an amorphous compound as suggested by X-Ray diffraction and TEM experiments.
Adcock, Jamie; Dai, Sheng; Veith, Gabriel M.; ...
2015-10-13
In this study, a new synthetic route for the formation of titanium oxydifluoride (TiOF 2) through the process of direct fluorination via a fluidized bed reactor system and the associated electrochemical properties of the powders formed from this approach are reported. The flexibility of this synthetic route was demonstrated using precursor powders of titanium dioxide (TiO 2) nanoparticles, as well as a reduced TiO xN y. An advantage of this synthetic method is the ability to directly control the extent of fluorination as a function of reaction temperature and time. The reversible capacity of TiOF 2 anodes was found tomore » depend greatly upon the precursor employed. The TiOF 2 synthesized from TiO 2 and TiO xN y showed reversible capacities of 300 mAh g -1 and 440 mAh g -1, respectively, over 100 cycles. The higher reversible capacity of the TiOF 2 powders derived from TiO xN y likely relate to the partial reduction of the Ti in the fluorinated electrode material, highlighting a route to optimize the properties of conversion electrode materials.« less
Flynn, G; Stokes, K; Ryan, K M
2018-05-31
Herein, we report the formation of silicon, germanium and more complex Si-SixGe1-x and Si-Ge axial 1D heterostructures, at low temperatures in solution. These nanorods/nanowires are grown using phenylated compounds of silicon and germanium as reagents, with precursor decomposition achieved at substantially reduced temperatures (200 °C for single crystal nanostructures and 300 °C for heterostructures), through the addition of a reducing agent. This low energy route for the production of these functional nanostructures as a wet chemical in high yield is attractive to meet the processing needs for next generation photovoltaics, batteries and electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.
2014-01-01
Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrationalmore » and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.« less
Schnepp, Zoë; Hollamby, Martin J; Tanaka, Masahiko; Matsushita, Yoshitaka; Katsuya, Yoshio; Sakka, Yoshio
2012-06-01
Metal oxide/nitride nanocomposites have many existing and potential applications, e.g. in energy conversion or ammonia synthesis. Here, a hybrid oxide/nitride nanocomposite (anatase/Ti x W 1- x N) was synthesized by an ammonia-free sol-gel route. Synchrotron x-ray diffraction, complemented with electron microscopy and thermogravimetric analysis, was used to study the structure, composition and mechanism of formation of the nanocomposite. The nanocomposite contained nanoparticles (<5 nm diameter) of two highly intermixed phases. This was found to arise from controlled nucleation and growth of a single oxide intermediate from the gel precursor, followed by phase separation and in situ selective carbothermal nitridation. Depending on the preparation conditions, the composition varied from anatase/Ti x W 1- x N at low W content to an isostructural mixture of Ti-rich and W-rich Ti x W 1- x N at high W content. In situ selective carbothermal nitridation offers a facile route to the synthesis of nitride-oxide nanocomposites. This conceptually new approach is a significant advance from previous methods, which generally require ammonolysis of a pre-synthesized oxide.
Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts
NASA Astrophysics Data System (ADS)
Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi
2014-03-01
We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).
Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.
Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas
2018-05-10
The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.
Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M
2016-02-12
Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2) g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie
2017-03-01
Well-defined Fe3O4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe3O4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe3O4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature.
Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells
Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias
2011-01-01
NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens
2015-09-15
Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content.more » The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.« less
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Tiwari, S. P.; Kumar, A.; Kumar, K.
2018-04-01
The synthesis and spectroscopy of the upconverting nanoparticles, cubic NaYF4:Er3+/Yb3+ phosphor is developed for latent fingermark detection. The cubic phase of NaYF4: Er3+/Yb3+ phosphor is synthesized by thermal decomposition method using trifluoroacetate precursor with coordinating ligand octadecene and oleic acid in a mixture of technical grade. The synthesized samples showed intense green emission using 976 nm diode laser as an excitation source. Because of excellent property of luminescence in green regime the sample is used to detect the latent fingermark on a porous glass surface.
NASA Technical Reports Server (NTRS)
Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius
2003-01-01
Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.
Onwudiwe, Damian C; Ajibade, Peter A
2011-01-01
The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively.
Onwudiwe, Damian C.; Ajibade, Peter A.
2011-01-01
The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively. PMID:22016607
Cohen, P; Morel, A; Gluschankof, P; Gomez, S; Nicolas, P
1985-01-01
An Arg-Lys esteropeptidase which converts somatostatin-28 (S-28) into somatostatin-14 (S-14) was detected in rat brain cortical extracts using a synthetic undecapeptide substrate mimicking the octacosapeptide sequence at the restriction site. This enzyme system was unable to release either the octacosapeptide or S-14 from the 15,000 mol wt (15K) rat hypothalamic precursor. This argues in favor of sequential degradation of the precursor into S-14 via S-28 as an obligatory intermediate. Another in vivo processing system was analyzed in the anglerfish pancreatic Brockmann organs. Here, cloning of two cDNA corresponding to two mRNA species predicts two distinct somatostatins precursors, called prosomatostatins I and II (Hobart et al., Nature 288:137, 1980). While a single S-14 can be detected in extracts made from this pancreatic tissue, indistinguishable from the mammalian species, two S-28 species could be separated by HPLC. Immunochemical and biochemical evidence indicates that the second species should correspond to anglerfish S-28 (AF S-28), the product of prosomatostatin-II processing in vivo. Amino acid analysis, together with the determined complete amino acid sequence of this peptide, demonstrates that this is indeed the case and that AF S-28 contains in its C-terminal half the [Tyr7, Gly10] derivative of S-14. These observations give an example of a AF S-28 being a terminal active product of prosomatostatin processing. They suggest that this octacosapeptide, which is potent on the inhibition of growth hormone release by anterior pituitary cells, may play such a role in the gastrointestinal tract of the anglerfish. These results, while not excluding alternative routes, give support to a sequential processing of the 15 K precursor----S-28----S-14.
Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars
NASA Technical Reports Server (NTRS)
Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.
2004-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.
Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars
NASA Technical Reports Server (NTRS)
Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.
2003-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.
Synthesis of quaternary chalcogenide CZTS nanoparticles by a hydrothermal route
NASA Astrophysics Data System (ADS)
Das, S.; Sa, K.; Mahakul, P. C.; Raiguru, J.; Alam, I.; Subramanyam, BVRS; Mahanandia, P.
2018-03-01
Cu2ZnSnS4 (CZTS) has emerged as a potential absorber towards inorganic photovoltaic device application for its outstanding properties like non toxicity, earth abundancy nature, optimal band gap matched with solar spectrum (1.45- 1.65eV), high absorption coefficient (104cm‑1). Here, a low cost, environment friendly facile hydrothermal route to synthesize phase pure CZTS nanoparticles using Cu (II), Zn (II), Sn (II) inorganic metal salts and thiourea as Sulphur source in distilled water solution as precursor is reported. The as synthesized samples characterized by X-Ray diffraction (XRD) and RAMAN confirmed structure and phase of CZTS nanocrystals. The morphology of the prepared CZTS have been characterized by scanning electron microscopy (SEM). The particle size is found in the range 4-5 nm with crystalline nature have been characterized by transmission electron microscope (TEM). The optical band gap of the as prepared samples is calculated to be 1.65eV from UV-Visible analysis which proves it can be used towards photovoltaic applications.
Mjejri, Issam; Rougier, Aline; Gaudon, Manuel
2017-02-06
In this study, vanadium sesquioxide (V 2 O 3 ), dioxide (VO 2 ), and pentoxide (V 2 O 5 ) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V 2 O 5 , VO 2 , and V 2 O 3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V 2 O 5 , VO 2 , and V 2 O 3 are illustrated by the characterization of the electrochromic properties of V 2 O 5 films, a discussion about the metal to insulator transition of VO 2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V 2 O 3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.
The origin of free brain malonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, K.M.; Dickson, A.C.; Koeppen, A.H.
Rat brain contains substantial concentrations of free malonate (192 nmol/g wet weight) but origin and biological importance of the dicarboxylic acid are poorly understood. A dietary source has been excluded. A recently described malonyl-CoA decarboxylase deficiency is associated with malonic aciduria and clinical manifestations, including mental retardation. In an effort to study the metabolic origin of free malonate, several labeled acetyl-CoA precursors were administered by intracerebral injection. (2-14C)pyruvate or (1,5-14C)citrate produced radioactive glutamate but failed to label malonate. In contrast, (1-14C)acetate, (2-14C)acetate, and (1-14C)butyrate were converted to labeled glutamate and malonate after the same route of administration. The intracerebral injectionmore » of (1-14C)-beta-alanine as a precursor of malonic semialdehyde and possibly free malonate did not give rise to radioactivity in the dicarboxylate. The labeling pattern of malonic acid is compatible with the reaction sequence: acetyl-CoA----malonyl-CoA----malonate. The final step is thought to occur by transfer of the CoA-group from malonyl-CoA to succinate and/or acetoacetate. Labeling of malonate from acetate is most effective at the age of 7 days when the net concentration of the dicarboxylic acid in rat brain is still very low. At this age, butyrate was a better precursor of malonate than acetate. It is proposed that fatty acid oxidation provides the acetyl-CoA which functions as the precursor of free brain malonate. Compartmentation of malonate biosynthesis is likely because the acetyl-CoA precursors citrate and pyruvate are ineffective.« less
Making Ternary Quantum Dots From Single-Source Precursors
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius
2007-01-01
A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
A Novel and Facile Route to Synthesize Atomic-Layered MoS2 Film for Large-Area Electronics.
Boandoh, Stephen; Choi, Soo Ho; Park, Ji-Hoon; Park, So Young; Bang, Seungho; Jeong, Mun Seok; Lee, Joo Song; Kim, Hyeong Jin; Yang, Woochul; Choi, Jae-Young; Kim, Soo Min; Kim, Ki Kang
2017-10-01
High-quality and large-area molybdenum disulfide (MoS 2 ) thin film is highly desirable for applications in large-area electronics. However, there remains a challenge in attaining MoS 2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few-layered MoS 2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO) 6 ) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS 2 film is readily achievable in 20 min. Large-area MoS 2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm 2 V -1 s -1 , which is the highest reported for bottom-gated MoS 2 -FETs fabricated via photolithography with an on/off ratio of ≈10 5 at room temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1993-11-10
realized. Metal carboxylates are often used as precursors for ceramic oxides since they tend to be air-stable, soluble in organic solvents, and decompose...metalorganic precursors [9] . These include routes based solely on metal alkoxides [9, 101 or metal carboxylates (e.g. the Pechini (or citrate) process
NASA Astrophysics Data System (ADS)
Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke
2018-02-01
We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.
Preparation of plutonium-bearing ceramics via mechanically activated precursor
NASA Astrophysics Data System (ADS)
Chizhevskaya, S. V.; Stefanovsky, S. V.
2000-07-01
The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.
Mordvinova, Natalia; Vinokurov, Alexander; Kuznetsova, Tatiana; Lebedev, Oleg I; Dorofeev, Sergey
2017-01-24
Here we report a simple method for the creation of highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots (QDs) on the basis of a phosphine synthetic route. In this method a Zn precursor was added to the reaction mixture at the beginning of the synthesis to form an In(Zn)P alloy structure, which promoted the formation of a ZnX shell. Core-shell InP/ZnX QDs exhibit highly intensive emission with a quantum yield over 50%. The proposed method is primarily important for practical applications. Advantages of this method compared to the widely used SILAR technique are discussed. We further demonstrate that the SILAR approach consisting of consequent addition of Zn and chalcogen precursors to pre-prepared non-doped InP colloidal nanoparticles is not quite suitable for shell growth without the addition of special activator agents or the use of very reactive precursors.
Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD
NASA Technical Reports Server (NTRS)
Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.
Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals
2009-06-30
Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of
Ta2O5 nanowires: a novel synthetic method and their solar energy utilization.
Lü, Xujie; Ding, Shangjun; Lin, Tianquan; Mou, Xinliang; Hong, Zhanglian; Huang, Fuqiang
2012-01-14
Single-crystalline uniform Ta(2)O(5) nanowires are prepared by a novel synthetic route. The formation of the nanowires involves an oriented attachment process caused by the reduction of surface energy. The nanowires are successfully applied to photocatalytic H(2) evolution, contaminant degradation, and dye-sensitized solar cells (DSCs). The Ta(2)O(5)-based DSCs reveal a significant photovoltaic response, which has not been reported. As a photocatalyst, the Ta(2)O(5) nanowires possess high H(2) evolution efficiency under Xe lamp irradiation, nearly 27-fold higher than the commercial powders. A better performance of photocatalytic contaminant degradation is also observed. Such improvements are ascribed to better charge transport ability for the single-crystalline wire and a higher potential energy of the conduction band. This new synthetic approach using a water-soluble precursor provides a versatile way to prepare nanostructured metal oxides.
Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.
Trammell, Samuel A J; Schmidt, Mark S; Weidemann, Benjamin J; Redpath, Philip; Jaksch, Frank; Dellinger, Ryan W; Li, Zhonggang; Abel, E Dale; Migaud, Marie E; Brenner, Charles
2016-10-10
Nicotinamide riboside (NR) is in wide use as an NAD + precursor vitamin. Here we determine the time and dose-dependent effects of NR on blood NAD + metabolism in humans. We report that human blood NAD + can rise as much as 2.7-fold with a single oral dose of NR in a pilot study of one individual, and that oral NR elevates mouse hepatic NAD + with distinct and superior pharmacokinetics to those of nicotinic acid and nicotinamide. We further show that single doses of 100, 300 and 1,000 mg of NR produce dose-dependent increases in the blood NAD + metabolome in the first clinical trial of NR pharmacokinetics in humans. We also report that nicotinic acid adenine dinucleotide (NAAD), which was not thought to be en route for the conversion of NR to NAD + , is formed from NR and discover that the rise in NAAD is a highly sensitive biomarker of effective NAD + repletion.
Liang, Bo; Huang, Xuenian; Teng, Yun; Liang, Yajing; Yang, Yong; Zheng, Linghui; Lu, Xuefeng
2018-06-01
Biosynthesis of simvastatin, the active pharmaceutical ingredient of cholesterol-lowering drug Zocor, has drawn increasing global attention in recent years. Although single-step in vivo production of monacolin J, the intermediate biosynthetic precursor of simvastatin, has been realized by utilizing lovastatin hydrolase (PcEST) in our previous study, about 5% of residual lovastatin is still a problem for industrial production and quality control. In order to improve conversion efficiency and reduce lovastatin residues, modification of PcEST is carried out through directed evolution and a novel two-step high-throughput screening method. The mutant Q140L shows 18-fold improved whole-cell activity as compared to the wild-type, and one fold enhanced catalytic efficiency and 3 °C increased T 50 10 over the wild-type are observed by characterizing the purified protein. Finally, the engineered A. terreus strain overexpressing Q140L mutant exhibited the increased conversion efficiency and the reduced lovastatin residues by comparing with A. terreus strain overexpressing the wild-type PcEST, where almost 100% of the produced lovastatin is hydrolyzed to monacolin J. Therefore, this improved microbial cell factory can realize single-step bioproduction of monacolin J in a more efficient way, providing an attractive and eco-friendly substitute over the existing chemical synthetic routes of monacolin J and promoting complete bioproduction of simvastatin at industrial scale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-crystalline dendritic bimetallic and multimetallic nanocubes.
Kuang, Yun; Zhang, Ying; Cai, Zhao; Feng, Guang; Jiang, Yingying; Jin, Chuanhong; Luo, Jun; Sun, Xiaoming
2015-12-01
Developing facial synthetic routes for fabrication of multimetallic nanocatalysts with open porous morphology, tunable composition and tailored crystalline structure is a big challenge for fabrication of low-cost electrocatalysts. Here we report on the synthesis of single-crystalline dendritic bimetallic and multimetallic nanocubes via a solvothermal co-reduction method. These cubes show highly porous, complex 3D inner connections but single-crystalline structure. Tuning the reduction kinetics of metal precursors and introducing galvanic reaction at the active sites during growth were believed to be the keys for the formation of such unique nanostructure. Electro-catalytic oxygen reduction (ORR) and methanol oxidation (MOR) on these catalysts showed dramatic enhancements for both cathodic and anodic electrocatalysis in fuel cells, which were attributed to their unique morphology and crystalline structure, as well as synergetic effect of the multi-metallic components. This work uncovers the formation mechanism of such complex single-crystalline dendritic multimetallic nanocrystals and offers a promising synthetic strategy for geometric and crystalline control of multimetallic nanocrystals with tailored physical and chemical properties, which will benefit the development of clean energy.
Aqueous silicates in biological sol-gel applications: new perspectives for old precursors.
Coradin, Thibaud; Livage, Jacques
2007-09-01
Identification of silica sol-gel chemistry with silicon alkoxide hydrolysis and condensation processes is common in modern materials science. However, aqueous silicates exhibit several features indicating that they may be more suitable precursors for specific fields of research and applications related to biology and medicine. In this Account, we illustrate the potentialities of such aqueous precursors for biomimetic studies, bio-hybrid material design, and bioencapsulation routes. We emphasize that the natural relevance, the biocompatibility, and the low ecological impact of silicate chemistry may balance its lack of diversity, flexibility, and processability.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.
2008-01-01
Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.
Li, Shaomin; Liu, Xichuan; Mi, Rui; Liu, Hao; Li, Yinchuan; Lau, Woon-min; Mei, Jun
2014-06-25
This study introduces an economical and environmentally friendly way of synthesizing LiFePO4/C to be used as cathode material in lithium ion batteries via two processes: (1) the synthesis of LiFePO4/C cathode material using a low cost divalent precursor ferrous phosphate, Fe3 (PO4)2·8H2O, as iron source in a polyol process and (2) the modification of the morphology of this precursor by varying the reaction time in a coprecipitation process. The study examines the effects of different structures and morphologies of the precursor on the structure and electrochemical performance of the as-synthesized LiFePO4/C. The LiFePO4/C shows an excellent rate capability and cycle performance, with initial discharge capacities of 153, 128, and 106 mA h g(-1) at 1 C, 5 C, and 10 C. The capacity retention is respectively 98.7%, 98.2%, and 98.7%, after 10 cycles at the corresponding rates. The capacity retention remains at 97% even after 300 cycles at the rate of 10 C. The outstanding electrochemical performance can be attributed to the improved rate of Li(+) diffusion and the excellent crystallinity of synthesized LiFePO4/C powders through the modified precursor. Therefore, this is an economical and environmentally friendly way of synthesizing LiFePO4/C to be used as cathode material in lithium ion batteries.
The Unique Biosynthetic Route from Lupinus β-Conglutin Gene to Blad
Monteiro, Sara; Freitas, Regina; Rajasekhar, Baru T.; Teixeira, Artur R.; Ferreira, Ricardo B.
2010-01-01
Background During seed germination, β-conglutin undergoes a major cycle of limited proteolysis in which many of its constituent subunits are processed into a 20 kDa polypeptide termed blad. Blad is the main component of a glycooligomer, accumulating exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Principal Findings The sequence of the gene encoding β-conglutin precursor (1791 nucleotides) is reported. This gene, which shares 44 to 57% similarity and 20 to 37% identity with other vicilin-like protein genes, includes several features in common with these globulins, but also specific hallmarks. Most notable is the presence of an ubiquitin interacting motif (UIM), which possibly links the unique catabolic route of β-conglutin to the ubiquitin/proteasome proteolytic pathway. Significance Blad forms through a unique route from and is a stable intermediary product of its precursor, β-conglutin, the major Lupinus seed storage protein. It is composed of 173 amino acid residues, is encoded by an intron-containing, internal fragment of the gene that codes for β-conglutin precursor (nucleotides 394 to 913) and exhibits an isoelectric point of 9.6 and a molecular mass of 20,404.85 Da. Consistent with its role as a storage protein, blad contains an extremely high proportion of the nitrogen-rich amino acids. PMID:20066045
Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.
Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin
2015-01-01
A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.
Seeded Growth Route to Noble Calcium Carbonate Nanocrystal
Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin
2015-01-01
A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479
NASA Astrophysics Data System (ADS)
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
2013-01-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-26
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-11-21
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Ying; Dong, Shijie, E-mail: dongsjsj@163.com; Wang, Huihu
2012-03-15
Graphical abstract: In this paper, the weight loss and reaction evolution of ZrO{sub 2} precursor powders are determined by TG-DTA, and 600 Degree-Sign C is the most reasonable calcination temperature of precursor according to the TG-DTA. At the same time, we study the effect of reaction conditions upon the particle sizes, such as concentration of zirconium nitrate solution, reaction temperature and urea content. TEM micrographs of zirconia powders indicated that ZrO{sub 2} nano-powders prepared via the coupling route of w/o emulsion with homogenous precipitation possess spherical shape and excellent dispersing. Highlights: Black-Right-Pointing-Pointer The monodisperse spherical nanometer ZrO{sub 2} (Y{sub 2}O{submore » 3}) powders have been prepared via the coupling route of w/o emulsion with urea homogenous precipitation. Black-Right-Pointing-Pointer The principle of the coupling route of emulsion with homogenous precipitation has been studied. Black-Right-Pointing-Pointer The concentration of zirconium nitrate, reaction temperature of water bath and the quantity of urea effect regularly on the average particle size of products. -- Abstract: Using xylol as the oil phase, span-80 as the surfactant, and an aqueous solution containing zirconium (3 mol% Y{sub 2}O{sub 3}) and urea as the water phase, tetragonal phase ZrO{sub 2} nano-powders have been prepared via the coupling route of w/o emulsion with urea homogenous precipitation. The effects of the zirconium concentration, the reaction temperature and the urea content on the average size of the products have been examined. The as-prepared ZrO{sub 2} powders and the precursor powders were characterized by TGA-DTA, XRD, TEM and BET. Experimental results indicate that ZrO{sub 2} powders prepared via the coupling route of w/o emulsion with urea homogenous precipitation possess some excellent characteristics, such as well-rounded spherical shape and excellent dispersing.« less
A phase coherence approach to identifying co-located earthquakes and tremor
NASA Astrophysics Data System (ADS)
Hawthorne, J. C.; Ampuero, J.-P.
2018-05-01
We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green's function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a M 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.
Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon
2012-09-01
A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electro-optic routing of photons from a single quantum dot in photonic integrated circuits
NASA Astrophysics Data System (ADS)
Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren
2017-12-01
Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.
Park, Jinho; Zhang, Lei; Choi, Sang-Il; ...
2015-02-08
We systematically evaluated two different approaches to the syntheses of Pd@PtnL (n = 2–5) core–shell octahedra. We initially prepared the core–shell octahedra using a polyol-based route by titrating a Pt(IV) precursor into the growth solution containing Pd octahedral seeds at 200 °C through the use of a syringe pump. The number of Pt atomic layers could be precisely controlled from two to five by increasing the volume of the precursor solution while fixing the amount of seeds. We then demonstrated the synthesis of Pd@Pt nL octahedra using a water-based route at 95 °C through the one-shot injection of a Pt(II)more » precursor. Due to the large difference in reaction temperature, the Pd@Pt nL octahedra obtained via the water-based route showed sharper corners than their counterparts obtained through the polyol-based route. When compared to a commercial Pt/C catalyst based upon 3.2 nm Pt particles, the Pd@Pt nL octahedra prepared using both methods showed similar remarkable enhancement in terms of activity (both specific and mass) and durability toward the oxygen reduction reaction. These calculations based upon periodic, self-consistent density functional theory suggested that the enhancement in specific activity for the Pd@Pt nL octahedra could be attributed to the destabilization of OH on their Pt nL*/Pd(111) surface relative to the {111} and {100} facets exposed on the surface of Pt/C. Finally. the destabilization of OH facilitates its hydrogenation, which was found to be the rate-limiting step of the oxygen reduction reaction on all these surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi
Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenck, Craig A.; Holland, Cynthia K.; Schneider, Matthew R.
L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that definesmore » TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.« less
The effect of Ge precursor on the heteroepitaxy of Ge1-x Sn x epilayers on a Si (001) substrate
NASA Astrophysics Data System (ADS)
Jahandar, Pedram; Weisshaupt, David; Colston, Gerard; Allred, Phil; Schulze, Jorg; Myronov, Maksym
2018-03-01
The heteroepitaxial growth of Ge1-x Sn x on a Si (001) substrate, via a relaxed Ge buffer, has been studied using two commonly available commercial Ge precursors, Germane (GeH4) and Digermane (Ge2H6), by means of chemical vapour deposition at reduced pressures (RP-CVD). Both precursors demonstrate growth of strained and relaxed Ge1-x Sn x epilayers, however Sn incorporation is significantly higher when using the more reactive Ge2H6 precursor. As Ge2H6 is significantly more expensive, difficult to handle or store than GeH4, developing high Sn content epilayers using the latter precursor is of great interest. This study demonstrates the key differences between the two precursors and offers routes to process optimisation which will enable high Sn content alloys at relatively low cost.
Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; ...
2014-09-01
The high balance-of-system costs of photovoltaic (PV) installations indicate that reductions in cell $/W costs alone are likely insufficient for PV electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which yield both high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the difficulty of scaling the metal-organic chemical vapor deposition (MOCVD) process, which relies on expensive reactors and employs toxic and pyrophoric gas-phase precursors suchmore » as arsine and trimethyl gallium, respectively. In this study, we describe GaAs films made by an alternative close-spaced vapor transport (CSVT) technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient in order to deposit crystalline films with similar electronic properties to that of GaAs deposited by MOCVD. CSVT is similar to the vapor transport process used to deposit CdTe thin films and is thus a potentially scalable low-cost route to GaAs thin films.« less
Early stage sustainability evaluation of new, nanoscale cathode materials for Li-ion batteries.
Hischier, Roland; Kwon, Nam Hee; Brog, Jean-Pierre; Fromm, Katharina M
2018-05-07
We present results of early stage sustainability evaluation of two development strategies for new, nano-scale cathode materials for Li-ion batteries: (i) a new production pathway of existing material (LiCoO2), and (ii) a new nanomaterial (LiMnPO4). Nano-LiCoO2 was synthesized via a single source precursor route at lower temperature with a shorter reaction time, resulting in a smaller grain size and, thereby, a better diffusivity for Li-ions. Nano-LiMnPO4 was synthesized via a wet chemical method. The sustainability potential of these materials has then been investigated (at the laboratory and pilot production scales). The results show that the environmental impact of nano-LiMnPO4 is lower compared to the other examined nanomaterial by several factors, and this regardless of the indicator for the comparison. In contrast to commercial cathode materials, this new material shows, particularly on an energy and capacity basis, results in the same order of magnitude as those of lithium manganese oxide (LiMn2O4), and only slightly higher values than those for lithium iron phosphate (LiFePO4); values that are clearly lower than those for high-temperature LiCoO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes.
Wiesenfeldt, Mario P; Nairoukh, Zackaria; Li, Wei; Glorius, Frank
2017-09-01
All-c is -multifluorinated cycloalkanes exhibit intriguing electronic properties. In particular, they display extremely high dipole moments perpendicular to the aliphatic ring, making them highly desired motifs in material science. Very few such motifs have been prepared, as their syntheses require multistep sequences from diastereoselectively prefunctionalized precursors. Herein we report a synthetic strategy to access these valuable materials via the rhodium-cyclic (alkyl)(amino)carbene (CAAC)-catalyzed hydrogenation of readily available fluorinated arenes in hexane. This route enables the scalable single-step preparation of an abundance of multisubstituted and multifluorinated cycloalkanes, including all- cis -1,2,3,4,5,6-hexafluorocyclohexane as well as cis-configured fluorinated aliphatic heterocycles. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Domingues, Eddy M.; Gonçalves, Priscila; Figueiredo, Filipe M.
2012-07-01
The room temperature mechanosynthesis of La1-xSrxGa1-y-zMgyAlzO3-δ nanopowders is successfully demonstrated for a broad compositional range (x ≤ 0.1; y ≤ 0.2, z ≤ 0.4) by resorting to a nearly amorphous alumina precursor with enhanced reactivity. It is shown that ceramics with one single phase and free from open porosity can be obtained by sintering these nanopowders at 1350-1450 °C. Microstructural data show that the substitution of Ga by Al hinders densification and decreases the grain size of ceramics. This is explained assuming the segregation of aluminum cations to the grain boundaries as a result of the decrease of the cationic diffusion coefficients.
Assimilation of NAD(+) precursors in Candida glabrata.
Ma, Biao; Pan, Shih-Jung; Zupancic, Margaret L; Cormack, Brendan P
2007-10-01
The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection.
Synthetic Routes to Methylerythritol Phosphate Pathway Intermediates and Downstream Isoprenoids
Jarchow-Choy, Sarah K; Koppisch, Andrew T; Fox, David T
2014-01-01
Isoprenoids constitute the largest class of natural products with greater than 55,000 identified members. They play essential roles in maintaining proper cellular function leading to maintenance of human health, plant defense mechanisms against predators, and are often exploited for their beneficial properties in the pharmaceutical and nutraceutical industries. Most impressively, all known isoprenoids are derived from one of two C5-precursors, isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). In order to study the enzyme transformations leading to the extensive structural diversity found within this class of compounds there must be access to the substrates. Sometimes, intermediates within a biological pathway can be isolated and used directly to study enzyme/pathway function. However, the primary route to most of the isoprenoid intermediates is through chemical catalysis. As such, this review provides the first exhaustive examination of synthetic routes to isoprenoid and isoprenoid precursors with particular emphasis on the syntheses of intermediates found as part of the 2C-methylerythritol 4-phosphate (MEP) pathway. In addition, representative syntheses are presented for the monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40). Finally, in some instances, the synthetic routes to substrate analogs found both within the MEP pathway and downstream isoprenoids are examined. PMID:25009443
Synthesizing and characterization of titanium diboride for composite bipolar plates in PEM fuel cell
NASA Astrophysics Data System (ADS)
Duddukuri, Ramesh
This research deals with the synthesis and characterization of titanium diboride (TiB2) from novel carbon coated precursors. This work provides information on using different boron sources and their effect on the resulting powders of TiB2. The process has two steps in which the oxide powders were first coated with carbon by cracking of a hydrocarbon gas, propylene (C3H6) and then, mixed with boron carbide and boric acid powders in a stoichiometric ratio. These precursors were treated at temperatures in the range of 1200--1400° C for 2 h in flowing Argon atmosphere to synthesize TiB2. The process utilizes a carbothermic reduction reaction of novel carbon coated precursor that has potential of producing high-quality powders (sub-micrometer and high purity). Single phase TiB2 powders produced, were compared with commercially available titanium diboride using X-ray diffraction and Transmission electron microscopy obtained from boron carbide and boric acid containing carbon coated precursor.
The Preparation of (Al2O3)x(SiO2)y Thin Films Using (Al(OSiEt3)3)2 as a Single Source Precursor
1992-05-12
point AI(OSiEt 3)3(NH3 ) cannot itself readily be used as a volatile precursor. If, however, NH 3 is used as the carrier gas [AI(OSiEt3)3]2 rapidly melts ...situ formation of the low melting Lewis acid-base adduct Al(OSiEt 3)3(NH 3), however, no nitrogen incorporation was observed in these deposited films...in situ formation of the low melting Lewis acid-base adduct AI(OSiEt3)3(NH3), however, no nitrogen incorporation was observed in these deposited
Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.
Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen
2015-03-17
Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila
2003-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.
Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong
2005-06-30
A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.
Li, Dong; Xing, Guanjie; Tang, Shilin; Li, Xiaohong; Fan, Louzhen; Li, Yunchao
2017-10-12
We report herein a heat-triggered precursor slow releasing route for the one-pot synthesis of ultrathin ZnSe nanowires (NWs), which relies on the gradual dissolving of Se powder into oleylamine containing a soluble Zn precursor under heating. This route allows the reaction system to maintain a high monomer concentration throughout the entire reaction process, thus enabling the generation of ZnSe NWs with diameter down to 2.1 nm and length approaching 400 nm. The size-dependent optical properties and band-edge energy levels of the ZnSe NWs were then explored in depth by UV-visible spectroscopy and cyclic voltammetry, respectively. Considering their unique absorption properties, these NWs were specially utilized for fabricating photoelectrochemical-type photodetectors (PDs). Impressively, the PDs based on the ZnSe NWs with diameters of 2.1 and 4.5 nm exhibited excellent responses to UVA and near-visible light, respectively: both possessed ultrahigh on/off ratios (5150 for UVA and 4213 for near-visible light) and ultrawide linear response ranges (from 2.0 to 9000 μW cm -2 for UVA and 5.0 to 8000 μW cm -2 for near-visible light). Furthermore, these ZnSe NWs were selectively doped with various amounts of Mn 2+ to tune their emission properties. As a result, ZnSe NW film-based photochromic cards were creatively developed for visually detecting UVA and near-visible radiation.
Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham
2017-10-17
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y., E-mail: yuezhao@sjtu.edu.cn
2017-02-15
Epitaxial growth of oxide thin films has attracted much interest because of their broad applications in various fields. In this study, we investigated the microstructure of textured Gd{sub 2}Zr{sub 2}O{sub 7} films grown on (001)〈100〉 orientated NiW alloy substrates by a chemical solution deposition (CSD) method. The aging effect of precursor solution on defect formation was thoroughly investigated. A slight difference was observed between the as-obtained and aged precursor solutions with respect to the phase purity and global texture of films prepared using these solutions. However, the surface morphologies are different, i.e., some regular-shaped regions (mainly hexagonal or dodecagonal) weremore » observed on the film prepared using the as-obtained precursor, whereas the film prepared using the aged precursor exhibits a homogeneous structure. Electron backscatter diffraction and scanning electron microscopy analyses showed that the Gd{sub 2}Zr{sub 2}O{sub 7} grains present within the regular-shaped regions are polycrystalline, whereas those present in the surrounding are epitaxial. Some polycrystalline regions ranging from several micrometers to several tens of micrometers grew across the NiW grain boundaries underneath. To understand this phenomenon, the properties of the precursors and corresponding xerogel were studied by Fourier transform infrared spectroscopy and coupled thermogravimetry/differential thermal analysis. The results showed that both the solutions mainly contain small Gd−Zr−O clusters obtained by the reaction of zirconium acetylacetonate with propionic acid during the precursor synthesis. The regular-shaped regions were probably formed by large Gd−Zr−O frameworks with a metastable structure in the solution with limited aging time. This study demonstrates the importance of the precise control of chemical reaction path to enhance the stability and homogeneity of the precursors of the CSD route. - Highlights: •We investigate microstructure of Gd{sub 2}Zr{sub 2}O{sub 7} films grown by a chemical solution route. •The aging effect of precursor solution on formation of surface defect was thoroughly studied. •Gd−Zr−O clusters are present in the precursor solutions.« less
Adamatzky, Andrew I
2014-01-01
A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and will provide inspirations in design of bioinspired amorphous robotic devices.
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include: High-Accuracy, High-Dynamic-Range Phase-Measurement System; Simple, Compact, Safe Impact Tester; Multi-Antenna Radar Systems for Doppler Rain Measurements; 600-GHz Electronically Tunable Vector Measurement System; Modular Architecture for the Measurement of Space Radiation; VLSI Design of a Turbo Decoder; Architecture of an Autonomous Radio Receiver; Improved On-Chip Measurement of Delay in an FPGA or ASIC; Resource Selection and Ranking; Accident/Mishap Investigation System; Simplified Identification of mRNA or DNA in Whole Cells; Printed Multi-Turn Loop Antennas for RF Biotelemetry; Making Ternary Quantum Dots From Single-Source Precursors; Improved Single-Source Precursors for Solar-Cell Absorbers; Spray CVD for Making Solar-Cell Absorber Layers; Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells; A Method of Assembling Compact Coherent Fiber-Optic Bundles; Manufacturing Diamond Under Very High Pressure; Ring-Resonator/Sol-Gel Interferometric Immunosensor; Compact Fuel-Cell System Would Consume Neat Methanol; Algorithm Would Enable Robots to Solve Problems Creatively; Hypothetical Scenario Generator for Fault-Tolerant Diagnosis; Smart Data Node in the Sky; Pseudo-Waypoint Guidance for Proximity Spacecraft Maneuvers; Update on Controlling Herds of Cooperative Robots; and Simulation and Testing of Maneuvering of a Planetary Rover.
New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
NASA Astrophysics Data System (ADS)
Khani, Zohreh; Taillades-Jacquin, Mélanie; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J.; Rozière, Jacques
2009-04-01
Low temperature routes have been developed for the preparation of BaCe 0.9Y 0.1O 2.95 (BCY10) and BaZr 0.9Y 0.1O 2.95 (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 °C for 4 h for BCY10 and 800 °C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (⩾95%) are obtained by sintering BCY10 pellets at 1350 °C and BZY10 pellets at 1500 °C for 10 h. The water uptake of compacted samples at 500 °C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 °C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8×10 -2 S/cm for BCY10 and 2×10 -3 S/cm for BZY10 at 600 °C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Yang, Jiakuan; Zhang, Wei; Zhu, Xinfeng; Hu, Yuchen; Yang, Danni; Yuan, Xiqing; Yu, Wenhao; Dong, Jinxin; Wang, Haifeng; Li, Lei; Vasant Kumar, R.; Liang, Sha
2014-12-01
A novel green recycling process is investigated to prepare lead acetate trihydrate precursors and novel ultrafine lead oxide from spent lead acid battery pastes. The route contains the following four processes. (1) The spent lead pastes are desulphurized by (NH4)2CO3. (2) The desulphurized pastes are converted into lead acetate solution by leaching with acetic acid solution and H2O2; (3) The Pb(CH3COO)2·3H2O precursor is crystallized and purified from the lead acetate solution with the addition of glacial acetic acid; (4) The novel ultrafine lead oxide is prepared by the calcination of lead acetate trihydrate precursor in N2 or air at 320-400 °C. Both the lead acetate trihydrate and lead oxide products are characterized by TG-DTA, XRD, and SEM techniques. The calcination products are mainly α-PbO, β-PbO, and a small amount of metallic Pb. The particle size of the calcination products in air is significantly larger than that in N2. Cyclic voltammetry measurements of the novel ultrafine lead oxide products show good reversibility and cycle stability. The assembled batteries using the lead oxide products as cathode active materials show a good cyclic stability in 80 charge/discharge cycles with the depth of discharge (DOD) of 100%.
Complex impedance analyses and magnetoelectric effect in ferrite ferroelectric composite ceramics
NASA Astrophysics Data System (ADS)
Patankar, K. K.; Kanade, S. A.; Padalkar, D. S.; Chougule, B. K.
2007-02-01
Magnetoelectric (ME) composites yBa0.8Pb0.2TiO3 (1-y)CuFe2O4 are prepared by ceramic method. The component phases are prepared from two different routes, viz. CuFe2O4 (ferrite phase) is prepared by oxalate precursor route and Ba0.8Pb0.2TiO3 (ferroelectric phase) by solid-state reaction route. No intermediate phases are observed in the composites containing these ferrite and ferroelectric phases. ME conversion factor (measure of ME effect) is found to be enhanced compared to those reported in the composites, in which the component phases were prepared by only one route, i.e. solid-state reaction route. The results on ME conversion are well accounted by measuring the complex impedance and analyzing their Nyquist plots.
A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.
2002-01-01
We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.
New metal catalyzed syntheses of nanostructured boron nitride and alkenyldecaboranes
NASA Astrophysics Data System (ADS)
Chatterjee, Shahana
The goals of the research described in this dissertation were two-fold. The first goal was to develop new methods, employing metal-catalyzed chemical vapor deposition reactions of molecular polyborane precursors, for the production of boron nitride nanostructured materials, including both boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNS). The second goal was to develop new systematic metal-catalyzed reactions for polyboranes that would facilitate their functionalization for possible biomedical and/or materials applications. The syntheses of multi- and double-walled BNNTs were achieved with the aid of a floating nickel catalyst via the catalytic chemical vapor deposition (CCVD) of borazine (B3N3H6) or decaborane (B10H14) molecular precursors in ammonia atmospheres, with each precursor having its own advantages. While borazine is a single-source precursor containing both boron and nitrogen, the decaborane-based syntheses required the additional step of reaction with ammonia. However, the higher observed BNNT yields and the ease of handling and commercial availability of decaborane are distinct advantages. The BNNTs derived from both precursors were crystalline with highly ordered structures. The BNNTs grown at 1200 ºC from borazine were mainly double walled, with lengths up to 0.2 µm and ˜2 nm diameters. The BNNTs grown at 1200-1300 ºC from decaborane were double- and multi-walled, with the double-walled nanotubes having ˜2 nm inner diameters and the multi-walled nanotubes (˜10 walls) having ˜4-5 nm inner diameters and ˜12-14 nm outer diameters. BNNTs grown from decaborane at 1300 ºC were longer, averaging ˜0.6 µm, whereas those grown at 1200 ºC had average lengths of ˜0.2 µm. The BNNTs were characterized using scanning and transmission electron microscopies (SEM and TEM), and electron energy loss spectroscopy (EELS). This floating catalyst method now provides a catalytic and potentially scalable route to BNNTs with low defect density from safe and commercially available precursor compounds. A catalytic CVD method, employing the thermally induced reactions of ammonia with decaborane on polycrystalline nickel and copper foils, was also successfully developed for the production of BNNS. The metals were readily etched and the BNNS transferred to other substrates. The EELS and Raman spectra and the electron diffraction patterns of the BNNS confirmed the formation of h-BN and their optical, AFM and TEM characterizations showed BNNS with large micron-scale areas with some crumpling and folding. Most of the BNNS deposited on Ni were two- or three-layered; however, some regions were thicker containing up to six BN sheets. The films on Cu also contained two- and three-layered BNNS, but had large amorphous BN regions. Many of the BNNS grown on Ni exhibited well-defined angular edges, with near regular angles of 30º, 60º or 90º, suggesting that with a fine-tuning of the decaborane/ammonia pressure and growth conditions, controlled growth of regular polygonal BNNS structures can be achieved. To achieve the second goal, transition-metal-catalyzed decaborane-alkyne hydroboration reactions were developed that provide high-yield routes to the previously unknown di- and monoalkenyldecaboranes. An unusual catalyst product selectivity was observed, with the reactions catalyzed by the [RuCl2 (p-cymene)]2 and [Cp*IrCl2]2 complexes giving the β-E alkenyldecaboranes and the corresponding reactions with the [RuI2(p-cymene)]2 complex giving the α-alkenyldecaborane isomers. These product selectivities coupled with the differences observed in NMR studies of catalyzed reactions in progress, suggest quite distinct mechanistic steps for the different catalysts. It was further demonstrated that the new alkenyldecaboranes could be easily modified with the aid of metal-catalyzed hydroborations and homo and cross metathesis reactions to yield both linked cage and chemically active derivatives. These results demonstrate that the alkenyldecaboranes could serve as important materials for many potential polyborane biomedical and/or materials applications.
Li, Wenchao; Liu, Jingjian; Fan, Minghua; Li, Zhongtang; Chen, Yin; Zhang, Guisen; Huang, Zhuo; Zhang, Liangren
2018-04-24
GLYX-13, a NMDAR glycine-site partial agonist, was discovered as a promising antidepressant with rapidly acting effects but no ketamine-like side effects. However, the reported synthetic process route had deficiencies of low yield and the use of unfriendly reagents. Here, we report a scaled-up synthesis of GLYX-13 with an overall yield of 30% on the hectogram scale with a column chromatography-free strategy, where the coupling and deprotection reaction conditions were systematically optimized. Meanwhile, the absolute configuration of precursor compound of GLYX-13 was identified by X-ray single crystal diffraction. Finally, the activity of GLYX-13 was verified in the cortical neurons of mice through whole-cell voltage-clamp technique.
The Effectiveness of a Route Crossing Tool in a Simulated New York Airspace
NASA Technical Reports Server (NTRS)
Parke, Bonny; Chevalley, Eric; Bienert, Nancy; Lee, Paul; Gonter, Kari; Omar, Faisal; Kraut, Joshua; Yoo, Hyo-Sang; Borade, Abhay; Gabriel, Conrad;
2015-01-01
Congested airspace is the cause of many delays in the terminal area and these delays can have a ripple effect on the rest of a nation's airspace. The New York terminal area is an example of where this happens in the U. S. An important goal, therefore, is to increase the efficiency of operations in congested terminal airspace where possible. Modeling studies of arrival and departure flows have shown that sharing of arrival and departure airspace increases efficiency in terminal operations. One source of inefficiency in terminal operations is that departure aircraft are frequently held level under arrival flows when it would be more efficient to climb the departure aircraft earlier. A Route Crossing Tool was developed to help controllers climb Newark (EWR) departures to the south earlier by temporarily sharing airspace with arrivals coming into LaGuardia (LGA) from the south. Instead of flying under the arrivals, a departure to the south could climb earlier by flying through the arrival airspace if there was a suitable gap between arrivals. A Human-in-the-Loop (HITL) simulation was conducted in this environment which compared three tool conditions: Baseline (no tool), a Single Route Crossing tool in which one route through the arrival flow was evaluated for crossing, and a Multi-Route Crossing tool in which five parallel routes were evaluated. In all conditions, the departures could be held level under the arrival flow. The results showed that controllers climbed a higher proportion of departures in the Multi-Route tool condition than in the other two conditions, with a higher proportion of departures climbed in smaller gaps and in front of trailing arrivals. The controllers indicated that the Multi-Route and Single Route tools helped them estimate distances more accurately and rated safety, workload, and coordination in the simulation as acceptable.
Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.
Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud
2017-09-08
Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.
1994-05-06
while the heterobimetallic species, 7, thermally decomposed to give00 crystalline ZnO.5S according to X-ray powder diffraction data. A. SUBJECT TERMS 15... heterobimetallic species, 7, thermally decomposed to give crystalline ZnO.5CdO.5S according to X-ray powder diffraction data. LaGOSSIOn "or OTIS RA&I VT-iC TAB EU...on the NMR timescale, and a single heterobimetallic species. Attempts to distinguish these possibilities are described later. The variable temperature
NASA Astrophysics Data System (ADS)
He, Feng
The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.
Single-Source Molecular Precursor for Synthesis of CdS Nanoparticles and Nanoflowers
NASA Astrophysics Data System (ADS)
Salavati-Niasari, Masoud; Sobhani, Azam
2012-04-01
CdS Semiconductor nanostructures were synthesized by using two different methods. Using triphenylphosphine (C18H15P) and oleylamine (C18H37N) as surfactant, CdS semiconductor nanocrystals with a size ranging from 30 to 90 nm can be synthesized by thermal decomposition of precursor [bis(thiosemicarbazide)cadmium(II)]. CdS nanoflowers were synthesized via hydrothermal decomposition of [bis(thiosemicarbazide) cadmium(II)] without any surfactant. X-ray diffraction (XRD) patterns confirm that the resulting samples were a pure hexagonal phase of CdS. The optical property test indicates that the absorption peak of the samples shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect.
Heteroatom-doped highly porous carbon from human urine.
Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung
2014-06-09
Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time "proof of concept" of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared "Urine Carbon" (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.
Heteroatom-doped highly porous carbon from human urine
NASA Astrophysics Data System (ADS)
Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung
2014-06-01
Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time ``proof of concept'' of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared ``Urine Carbon'' (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.
Formation of Benzene in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)
2010-01-01
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.
Heteroatom-doped highly porous carbon from human urine
Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung
2014-01-01
Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time “proof of concept” of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared “Urine Carbon” (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework. PMID:24909133
Formation of benzene in the interstellar medium
Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.
2011-01-01
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430
Filatova, Ekaterina A; Hausmann, Dennis; Elliott, Simon D
2018-05-02
Understanding the mechanism of SiC chemical vapor deposition (CVD) is an important step in investigating the routes toward future atomic layer deposition (ALD) of SiC. The energetics of various silicon and carbon precursors reacting with bare and H-terminated 3C-SiC (011) are analyzed using ab initio density functional theory (DFT). Bare SiC is found to be reactive to silicon and carbon precursors, while H-terminated SiC is found to be not reactive with these precursors at 0 K. Furthermore, the reaction pathways of silane plasma fragments SiH 3 and SiH 2 are calculated along with the energetics for the methane plasma fragments CH 3 and CH 2 . SiH 3 and SiH 2 fragments follow different mechanisms toward Si growth, of which the SiH 3 mechanism is found to be more thermodynamically favorable. Moreover, both of the fragments were found to show selectivity toward the Si-H bond and not C-H bond of the surface. On the basis of this, a selective Si deposition process is suggested for silicon versus carbon-doped silicon oxide surfaces.
Single-crystalline δ-Ni2Si nanowires with excellent physical properties
2013-01-01
In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/μm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation. PMID:23782805
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, R.S.; Song, Jian; Gu, Wei
L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbonmore » or nitrogen was dependent upon {sub S}{sup 54}, as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase. 32 refs., 5 figs., 4 tabs.« less
Relative Importance of Different Water Categories as Sources of N-Nitrosamine Precursors.
Zeng, Teng; Glover, Caitlin M; Marti, Erica J; Woods-Chabane, Gwen C; Karanfil, Tanju; Mitch, William A; Dickenson, Eric R V
2016-12-20
A comparison of loadings of N-nitrosamines and their precursors from different source water categories is needed to design effective source water blending strategies. Previous research using Formation Potential (FP) chloramination protocols (high dose and prolonged contact times) raised concerns about precursor loadings from various source water categories, but differences in the protocols employed rendered comparisons difficult. In this study, we applied Uniform Formation Condition (UFC) chloramination and ozonation protocols mimicking typical disinfection practice to compare loadings of ambient specific and total N-nitrosamines as well as chloramine-reactive and ozone-reactive precursors in 47 samples, including 6 pristine headwaters, 16 eutrophic waters, 4 agricultural runoff samples, 9 stormwater runoff samples, and 12 municipal wastewater effluents. N-Nitrosodimethylamine (NDMA) formation from UFC and FP chloramination protocols did not correlate, with NDMA FP often being significant in samples where no NDMA formed under UFC conditions. N-Nitrosamines and their precursors were negligible in pristine headwaters. Conventional, and to a lesser degree, nutrient removal wastewater effluents were the dominant source of NDMA and its chloramine- and ozone-reactive precursors. While wastewater effluents were dominant sources of TONO and their precursors, algal blooms, and to a lesser degree agricultural or stormwater runoff, could be important where they affect a major fraction of the water supply.
Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingasu, Dana; Mindru, Ioana, E-mail: imandru@yahoo.com; Culita, Daniela C.
2014-01-01
Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{submore » 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.« less
Solution based zinc tin oxide TFTs: the dual role of the organic solvent
NASA Astrophysics Data System (ADS)
Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira
2017-02-01
Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV = -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.
NASA Astrophysics Data System (ADS)
Wei, Kaya; Dong, Yongkwan; Nolas, George S.
2016-05-01
A new quaternary clathrate-II composition, Cs8Na16Al24Si112, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs8Na16Al24Si112 were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
Analysis on Multicast Routing Protocols for Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Xiang, Ma
As the Mobile Ad Hoc Networks technologies face a series of challenges like dynamic changes of topological structure, existence of unidirectional channel, limited wireless transmission bandwidth, the capability limitations of mobile termination and etc, therefore, the research to mobile Ad Hoc network routings inevitablely undertake a more important task than those to other networks. Multicast is a mode of communication transmission oriented to group computing, which sends the data to a group of host computers by using single source address. In a typical mobile Ad Hoc Network environment, multicast has a significant meaning. On the one hand, the users of mobile Ad Hoc Network usually need to form collaborative working groups; on the other hand, this is also an important means of fully using the broadcast performances of wireless communication and effectively using the limited wireless channel resources. This paper summarizes and comparatively analyzes the routing mechanisms of various existing multicast routing protocols according to the characteristics of mobile Ad Hoc network.
NASA Astrophysics Data System (ADS)
Gil, E.; Cortés, J.; Iturriza, I.; Ordás, N.
2018-01-01
An innovative powder metallurgy route to produce ODS FS, named STARS, has succeeded in atomizing steel powders containing the oxide formers (Y and Ti) and, hence, avoids the mechanical alloying (MA) step to dissolve Y in the matrix. A metastable oxide layer forms at the surface of atomized powders and dissociates during HIP consolidation at high temperatures, leading to precipitation of more stable Y-Ti-O nanoparticles.
One-step green route to narrowly dispersed copper nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Chunwei; Mosher, Brian P.; Zeng, Taofang
2006-12-01
We report a total "green" chemical method in aqueous solution for synthesizing stable narrowly distributed copper nanoparticles with average diameter less than 5 nm in the presence of Polyvinylpyrrolidone (PVP) as a stabilizer and without any inert gas protection. In our synthesis route, ascorbic acid, natural vitamin C (VC), an excellent oxygen scavenger, acts as both reducing agent and antioxidant, to reduce the metallic ion precursor, and to effectively prevent the common oxidation process of the newborn pure copper nanoclusters.
Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment
NASA Technical Reports Server (NTRS)
Levy, Moises; Sarma, Bimal K.
1994-01-01
Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.
Advanced transition metal phosphide materials from single-source molecular precursors
NASA Astrophysics Data System (ADS)
Colson, Adam Caleb
In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe3P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe3P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe2--xMn xP nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO)8(mu-PR1R 2) (R1 = H, R2 = H or R1 = H, R2 = Ph), which contain the relatively rare mu-PH2 and mu-PPhH functionalities. Iron rich Fe2--xMnxP nanoparticles were obtained by thermal decomposition of FeMn(CO)8(mu-PH 2) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO)8(mu-PH2) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn xOy. A new method for the preparation of phase-pure ferromagnetic Fe 3P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and field-dependent magnetization measurements, the results of which were all in good agreement with measurements obtained from bulk Fe3P. As-deposited Fe3P films were found to be amorphous, and little or no magnetic hysteresis was observed in plots of magnetization versus applied field. Annealing the Fe3P films at 550 °C resulted in improved crystallinity as well as the observation of magnetic hysteresis.
NASA Astrophysics Data System (ADS)
Belmont, P.; Viparelli, E.; Parker, G.; Lauer, W.; Jennings, C.; Gran, K.; Wilcock, P.; Melesse, A.
2008-12-01
Modeling sediment fluxes and pathways in complex landscapes is limited by our inability to accurately measure and integrate heterogeneous, spatially distributed sources into a single coherent, predictive geomorphic transport law. In this study, we partition the complex landscape of the Le Sueur River watershed into five distributed primary source types, bluffs (including strath terrace caps), ravines, streambanks, tributaries, and flat,agriculture-dominated uplands. The sediment contribution of each source is quantified independently and parameterized for use in a sand and mud routing model. Rigorous modeling of the evolution of this landscape and sediment flux from each source type requires consideration of substrate characteristics, heterogeneity, and spatial connectivity. The subsurface architecture of the Le Sueur drainage basin is defined by a layer cake sequence of fine-grained tills, interbedded with fluvioglacial sands. Nearly instantaneous baselevel fall of 65 m occurred at 11.5 ka, as a result of the catastrophic draining of glacial Lake Agassiz through the Minnesota River, to which the Le Sueur is a tributary. The major knickpoint that was generated from that event has propagated 40 km into the Le Sueur network, initiating an incised river valley with tall, retreating bluffs and actively incising ravines. Loading estimates constrained by river gaging records that bound the knick zone indicate that bluffs connected to the river are retreating at an average rate of less than 2 cm per year and ravines are incising at an average rate of less than 0.8 mm per year, consistent with the Holocene average incision rate on the main stem of the river of less than 0.6 mm per year. Ongoing work with cosmogenic nuclide sediment tracers, ground-based LiDAR, historic aerial photos, and field mapping will be combined to represent the diversity of erosional environments and processes in a single coherent routing model.
Conjugated Polymers Atypically Prepared in Water
Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.
2010-01-01
Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869
NASA Astrophysics Data System (ADS)
Wang, Pei-Hsun; Ferdous, Fahmida; Miao, Houxun; Wang, Jian; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.
2012-12-01
Microresonator optical frequency combs based on cascaded four-wave mixing are potentially attractive as a multi-wavelength source for on-chip optical communications. In this paper we compare time domain coherence, radio-frequency (RF) intensity noise, and individual line optical communications performance for combs generated from two different silicon nitride microresonators. The comb generated by one microresonator forms directly with lines spaced by a single free spectral range (FSR) and exhibits high coherence, low noise, and excellent 10 Gbit/s optical communications results. The comb generated by the second microresonator forms initially with multiple FSR line spacing, with additional lines later filling to reach single FSR spacing. This comb exhibits degraded coherence, increased intensity noise, and severely degraded communications performance. This study is to our knowledge the first to simultaneously investigate and observe a correlation between the route to comb formation, the coherence, noise, and optical communications performance of a Kerr comb.
Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor
NASA Astrophysics Data System (ADS)
Ganesan, Ramakrishnan; Safari Dinachali, Saman; Lim, Su Hui; Saifullah, M. S. M.; Tit Chong, Wee; Lim, Andrew H. H.; Jie Yong, Jin; San Thian, Eng; He, Chaobin; Low, Hong Yee
2012-08-01
Nanostructuring of Al2O3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al2O3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al2O3. Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ˜100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al2O3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol-gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides.
Detection of Chemical Precursors of Explosives
NASA Technical Reports Server (NTRS)
Li, Jing
2012-01-01
Certain selected chemicals associated with terrorist activities are too unstable to be prepared in final form. These chemicals are often prepared as precursor components, to be combined at a time immediately preceding the detonation. One example is a liquid explosive, which usually requires an oxidizer, an energy source, and a chemical or physical mechanism to combine the other components. Detection of the oxidizer (e.g. H2O2) or the energy source (e.g., nitromethane) is often possible, but must be performed in a short time interval (e.g., 5 15 seconds) and in an environment with a very small concentration (e.g.,1 100 ppm), because the target chemical(s) is carried in a sealed container. These needs are met by this invention, which provides a system and associated method for detecting one or more chemical precursors (components) of a multi-component explosive compound. Different carbon nanotubes (CNTs) are loaded (by doping, impregnation, coating, or other functionalization process) for detecting of different chemical substances that are the chemical precursors, respectively, if these precursors are present in a gas to which the CNTs are exposed. After exposure to the gas, a measured electrical parameter (e.g. voltage or current that correlate to impedance, conductivity, capacitance, inductance, etc.) changes with time and concentration in a predictable manner if a selected chemical precursor is present, and will approach an asymptotic value promptly after exposure to the precursor. The measured voltage or current are compared with one or more sequences of their reference values for one or more known target precursor molecules, and a most probable concentration value is estimated for each one, two, or more target molecules. An error value is computed, based on differences of voltage or current for the measured and reference values, using the most probable concentration values. Where the error value is less than a threshold, the system concludes that the target molecule is likely. Presence of one, two, or more target molecules in the gas can be sensed from a single set of measurements.
Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.
Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less
Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I
Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.; ...
2017-01-23
Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less
Saranathan, Vinodkumar; Osuji, Chinedum O; Mochrie, Simon G J; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R; Prum, Richard O
2010-06-29
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.
2010-01-01
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. PMID:20547870
Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng
2018-05-22
Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.
NASA Astrophysics Data System (ADS)
Sathiyaraj, Ethiraj; Padmavathy, Krishnaraj; Kumar, Chandran Udhaya; Krishnan, Kannan Gokula; Ramalingan, Chennan
2017-11-01
Bis(N-cyclopropyl-N-4-chlorobenzyldithiocarbamato-S,S‧)cadmium(II) (1) and (2,2‧-bipyridine) bis(N-cyclopropyl-N-4-chlorobenzyldithiocarbamato-S,S‧)cadmium(II) (2) have been synthesized and characterized by FT-IR, 1HNMR and 13C NMR analyses. For the complex 2, single crystal X-ray diffraction analysis and computational studies (optimized geometry, HOMO-LUMO and MEP) have been executed employing DFT/B3LYP method with LANL 2DZ basic set. The optimized bond lengths and bond angles agree well with the experimental results. The complexes 1 and 2 have been used as single source precursors for the synthesis of ethyleneglycol capped CdS1 and CdS2 nanoparticles, respectively. CdS1 and CdS2 nanoparticles have been synthesized by solvothermal method. PXRD, SEM, Elemental colour mapping, EDAX, TEM and UV-Vis spectroscopy have been used to characterize the as-prepared CdS nanoparticles. The X-ray diffraction pattern confirms both their hexagonal structures.
Chemical precursors to non-oxide ceramics: Macro to nanoscale materials
NASA Astrophysics Data System (ADS)
Forsthoefel, Kersten M.
Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a molecular precursor and porous alumina templating routes paired with solution-based methodologies are shown to generate non-oxide ceramic nanotubules of boron carbide, boron nitride and silicon carbide compositions. In the final phase of this work, a new metal-catalyzed route to poly(1-alkenyl- o-carborane) homopolymers and related copolymers was developed. Both homopolymers of 1-alkenyl-o-carboranes (1-vinyl-, 1-butenyl-, 1-hexenyl-) and copolymers of 1-hexenyl-o-carborane and allyltrimethylsilane or 1-hexenyl-o-carborane and 6-hexenyldecaborane were synthesized via the Cp2ZrMe2/B(C6F5) 3 catalyst system. A copolymer containing 1-hexenyl-o-carborane and the cross-linking agent, 6-hexenyldecaborane, was synthetically designed which exhibits initial cross-linking at ˜250°C and then converts in 75% yields to boron carbide at 1250°C.
2018-01-01
Colloidal nanoparticles (NPs) with myriads of compositions and morphologies have been synthesized and characterized in recent years. For wüstite FexO, however, obtaining phase-pure NPs with homogeneous morphologies have remained challenging. Herein, we report the colloidal synthesis of phase-pure FexO (x ≈ 0.94) popcorn-shaped NPs by decomposition of a single-source precursor, [Fe3(μ3-O)(CF3COO)(μ-CF3COO)6(H2O)2]·CF3COOH. The popcorn shape and multigrain structure had been reconstructed using high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) tomography. This morphology offers a large surface area and internal channels and prevents further agglomeration and thermal tumbling of the subparticles. [Fe3(μ3-O)(CF3COO)(μ-CF3COO)6(H2O)2]·CF3COOH behaves as an antiferromagnetic triangle whose magnetic frustration is mitigated by the low symmetry of the complex. The popcorn-shaped FexO NPs show the typical wüstite antiferromagnetic transition at approximately 200 K, but behave very differently to their bulk counterpart below 200 K. The magnetization curves show a clear, unsymmetrical hysteresis, which arises from a combined effect of the superparamagnetic behavior and exchange bias. PMID:29606798
Guntlin, Christoph P; Ochsenbein, Stefan T; Wörle, Michael; Erni, Rolf; Kravchyk, Kostiantyn V; Kovalenko, Maksym V
2018-02-27
Colloidal nanoparticles (NPs) with myriads of compositions and morphologies have been synthesized and characterized in recent years. For wüstite Fe x O, however, obtaining phase-pure NPs with homogeneous morphologies have remained challenging. Herein, we report the colloidal synthesis of phase-pure Fe x O ( x ≈ 0.94) popcorn-shaped NPs by decomposition of a single-source precursor, [Fe 3 (μ 3 -O)(CF 3 COO)(μ-CF 3 COO) 6 (H 2 O) 2 ]·CF 3 COOH. The popcorn shape and multigrain structure had been reconstructed using high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) tomography. This morphology offers a large surface area and internal channels and prevents further agglomeration and thermal tumbling of the subparticles. [Fe 3 (μ 3 -O)(CF 3 COO)(μ-CF 3 COO) 6 (H 2 O) 2 ]·CF 3 COOH behaves as an antiferromagnetic triangle whose magnetic frustration is mitigated by the low symmetry of the complex. The popcorn-shaped Fe x O NPs show the typical wüstite antiferromagnetic transition at approximately 200 K, but behave very differently to their bulk counterpart below 200 K. The magnetization curves show a clear, unsymmetrical hysteresis, which arises from a combined effect of the superparamagnetic behavior and exchange bias.
Xue, Runmiao; Donovan, Ariel; Zhang, Haiting; Ma, Yinfa; Adams, Craig; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd; Shi, Honglan
2018-02-01
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. Copyright © 2017. Published by Elsevier B.V.
The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis
NASA Astrophysics Data System (ADS)
Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng
2018-04-01
Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.
Dielectric and magnetic behavior of nanocrystalline Cu{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4} ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadoun, Priya, E-mail: priya4jadoun@gmail.com; Sharma, Jyoti; Prashant, B. L.
2016-05-23
The mixed copper cobalt ferrite nanoparticles (Cu{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) have been synthesized by sol-gel auto combustion route with aqueous metal nitrates and citric acid as the precursor. The crystal structure has been analyzed by X-Ray diffraction (XRD) method. XRD reveals the formation of single phase cubic spinel structure. The Scanning Electron Microscopy (SEM) is used for morphological studies. The dielectric measurements at room temperature show the decrease in dielectric constant with increasing frequency which is attributed to Maxwell Wagner model and conduction mechanism in ferrites.The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observedmore » on cooling down the temperature to 20 K.« less
Multidisciplinary Analysis of the NEXUS Precursor Space Telescope
NASA Astrophysics Data System (ADS)
de Weck, Olivier L.; Miller, David W.; Mosier, Gary E.
2002-12-01
A multidisciplinary analysis is demonstrated for the NEXUS space telescope precursor mission. This mission was originally designed as an in-space technology testbed for the Next Generation Space Telescope (NGST). One of the main challenges is to achieve a very tight pointing accuracy with a sub-pixel line-of-sight (LOS) jitter budget and a root-mean-square (RMS) wavefront error smaller than λ/50 despite the presence of electronic and mechanical disturbances sources. The analysis starts with the assessment of the performance for an initial design, which turns out not to meet the requirements. Twentyfive design parameters from structures, optics, dynamics and controls are then computed in a sensitivity and isoperformance analysis, in search of better designs. Isoperformance allows finding an acceptable design that is well "balanced" and does not place undue burden on a single subsystem. An error budget analysis shows the contributions of individual disturbance sources. This paper might be helpful in analyzing similar, innovative space telescope systems in the future.
NASA Astrophysics Data System (ADS)
Perdigon-Melon, José Antonio; Auroux, Aline; Guimon, Claude; Bonnetot, Bernard
2004-02-01
Thin powders and foams of boron nitride have been prepared from molecular precursors for use as noble metal supports in the catalytic conversion of methane. Different precursors originating from borazines have been tested. The best results were obtained using a precursor derived from trichloroborazine (TCB) which, after reacting with ammonia at room temperature and then thermolyzing up to 1800°C, led to BN powders with a specific area of more than 300 m 2 g -1 and a micrometric spherical texture. Comparable results were obtained using polyborazylene under similar conditions. Aminoborazine-derived precursors did not yield such high specific area ceramics but the BN microstructure resembled a foam with a crystallized skin and amorphous internal part. These differences were related to the chemical mechanism of the conversion of the precursor into BN. Polyhaloborazines and polyborazines yielded BN through gas-solid reactions whereas aminoborazine polymers could be kept waxy up to high temperatures, which favored the glassy foam. Catalysts composed of BN support and platinum have been prepared using two routes: from a mixture of precursor or by impregnation of a BN powder leading to very different catalysts.
A novel precursor system and its application to produce tin doped indium oxide.
Veith, M; Bubel, C; Zimmer, M
2011-06-14
A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me(2)In(O(t)Bu)(3)Sn (Me = CH(3), O(t)Bu = OC(CH(3))(3)), which is in equilibrium with an excess of Me(2)In(O(t)Bu). This quasi single-source precursor is applied in a sol-gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state (119)Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.
Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields
NASA Astrophysics Data System (ADS)
Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.
2016-08-01
A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.
New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khani, Zohreh; Taillades-Jacquin, Melanie; Taillades, Gilles
2009-04-15
Low temperature routes have been developed for the preparation of BaCe{sub 0.9}Y{sub 0.1}O{sub 2.95} (BCY10) and BaZr{sub 0.9}Y{sub 0.1}O{sub 2.95} (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 deg. C for 4more » h for BCY10 and 800 deg. C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (>=95%) are obtained by sintering BCY10 pellets at 1350 deg. C and BZY10 pellets at 1500 deg. C for 10 h. The water uptake of compacted samples at 500 deg. C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 deg. C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8x10{sup -2} S/cm for BCY10 and 2x10{sup -3} S/cm for BZY10 at 600 deg. C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates. - Graphical Abstract: Low temperature hydrogelation and micro-emulsion routes have been developed for the preparation of rare earth doped barium and zirconium cerates in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell.« less
Ehsan, Muhammad Ali; Peiris, T A Nirmal; Wijayantha, K G Upul; Olmstead, Marilyn M; Arifin, Zainudin; Mazhar, Muhammad; Lo, K M; McKee, Vickie
2013-08-14
Symmetrical and unsymmetrical dithiocarbamato pyridine solvated and non-solvated complexes of indium(III) with the general formula [In(S2CNRR')3]·n(py) [where py = pyridine; R,R' = Cy, n = 2 (1); R,R' = (i)Pr, n = 1.5 (2); NRR' = Pip, n = 0.5 (3) and R = Bz, R' = Me, n = 0 (4)] have been synthesized. The compositions, structures and properties of these complexes have been studied by means of microanalysis, IR and (1)H-NMR spectroscopy, X-ray single crystal and thermogravimetric (TG/DTG) analyses. The applicability of these complexes as single source precursors (SSPs) for the deposition of β-In2S3 thin films on fluorine-doped SnO2 (FTO) coated conducting glass substrates by aerosol-assisted chemical vapour deposition (AACVD) at temperatures of 300, 350 and 400 °C is studied. All films have been characterized by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDX) for the detection of phase and stoichiometry of the deposit. Scanning electron microscopy (SEM) studies reveal that precursors (1)-(4), irrespective of different metal ligand design, generate comparable morphologies of β-In2S3 thin films at different temperatures. Direct band gap energies of 2.2 eV have been estimated from the UV-vis spectroscopy for the β-In2S3 films fabricated from precursors (1) and (4). The photoelectrochemical (PEC) properties of β-In2S3 were confirmed by recording the current-voltage plots under light and dark conditions. The plots showed anodic photocurrent densities of 1.25 and 0.65 mA cm(-2) at 0.23 V vs. Ag/AgCl for the β-In2S3 films made at 400 and 350 °C from the precursors (1) and (4), respectively. The photoelectrochemical performance indicates that the newly synthesised precursors are highly useful in fabricating β-In2S3 electrodes for solar energy harvesting and optoelectronic application.
Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.
2017-04-01
Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.
Chandra, P. Manish; Brannigan, James A.; Prabhune, Asmita; Pundle, Archana; Turkenburg, Johan P.; Dodson, G. Guy; Suresh, C. G.
2005-01-01
The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme. PMID:16508111
Li, Jialiang; Todaro, Louis; Mootoo, David R
2011-11-01
We describe a synthetic strategy for the angelimicin family of anthraquinoid natural products that involves converting a central highly oxygenated decalin intermediate to the AB and A'B' subunits. Herein, we report the synthesis of the bicyclic A'B' subunit that complements our earlier route to the tricyclic AB framework. The differentiating tact in the two syntheses focused on controlling the Suárez radical fragmentation of lactol precursors by modulating the substrate's structural rigidity. A more flexible lactol gave the tricyclic AB framework, whereas a more rigid substrate led to the bicyclic A'B' precursor, presumably through divergent pathways from the radical produced in the initial fragmentation step. These results establish a versatile advanced synthetic precursor for the angelimicins, and on a more general note, illustrate strategies for applying the Suárez fragmentation to diverse and complex molecular frameworks.
Kim, Jin-Man; Kim, Mi Yeong; Lee, Kyunghee; Jeong, Daewon
2016-12-05
Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Polymeric routes to silicon carbide and silicon oxycarbide CMC
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Heimann, Paul J.; Gyekenyesi, John Z.; Masnovi, John; Bu, Xin YA
1991-01-01
An overview of two approaches to the formation of ceramic composite matrices from polymeric precursors is presented. Copolymerization of alkyl- and alkenylsilanes (RSiH3) represents a new precursor system for the production of Beta-SiC on pyrolysis, with copolymer composition controlling polymer structure, char yield, and ceramic stoichiometry and morphology. Polysilsesquioxanes which are synthesized readily and can be handled in air serve as precursors to Si-C-O ceramics. Copolymers of phenyl and methyl silsesquioxanes display rheological properties favorable for composite fabrication; these can be tailored by control of pH, water/methoxy ratio and copolymer composition. Composites obtained from these utilize a carbon coated, eight harness satin weave Nicalon cloth reinforcement. The material exhibits nonlinear stress-strain behavior in tension.
Controlled synthesis and luminescence properties of β-NaGdF4: Yb3+, Er3+ upconversion nanoparticles
NASA Astrophysics Data System (ADS)
Zhang, Yueli; Yao, Lu; Xu, Dekang; Lin, Hao; Yang, Shenghong
2018-06-01
β-NaGdF4:Yb3+,Er3+ upconversion (UC) nanoparticles (UCNPs) were prepared by a facile hydrothermal process with the assistance of sodium ethylene diaminetetraacetate salt (EDTA-2Na). The morphologies of the β-NaGdF4 UCNPs were controlled by changing the doses of EDTA-2Na and NaOH in precursor. With increasing concentration of EDTA-2Na in precursor, the size of crystals decreased, resulting in the decreasing of luminescence intensity. With increasing concentration of NaOH in precursor, the morphology became more homogeneous. However, due to the reduction of grain size and crystal quality, the luminescence intensity decreased. Nevertheless, the above results demonstrated a simple route to fabricate homogeneous UCNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Michael S., E-mail: mmcconn5@nd.edu; Schneider, Louisa C.; Karbasian, Golnaz
This work describes the fabrication of single electron transistors using electron beam lithography and atomic layer deposition to form nanoscale tunnel transparent junctions of alumina (Al{sub 2}O{sub 3}) on platinum nanowires using either water or ozone as the oxygen precursor and trimethylaluminum as the aluminum precursor. Using room temperature, low frequency conductance measurements between the source and drain, it was found that devices fabricated using water had higher conductance than devices fabricated with ozone. Subsequent annealing caused both water- and ozone-based devices to increase in conductance by more than 2 orders of magnitude. Furthermore, comparison of devices at low temperaturesmore » (∼4 K) showed that annealed devices displayed much closer to the ideal behavior (i.e., constant differential conductance) outside of the Coulomb blockade region and that untreated devices showed nonlinear behavior outside of the Coulomb blockade region (i.e., an increase in differential conductance with source-drain voltage bias). Transmission electron microscopy cross-sectional images showed that annealing did not significantly change device geometry, but energy dispersive x-ray spectroscopy showed an unusually large amount of oxygen in the bottom platinum layer. This suggests that the atomic layer deposition process results in the formation of a thin platinum surface oxide, which either decomposes or is reduced during the anneal step, resulting in a tunnel barrier without the in-series native oxide contribution. Furthermore, the difference between ozone- and water-based devices suggests that ozone promotes atomic layer deposition nucleation by oxidizing the surface but that water relies on physisorption of the precursors. To test this theory, devices were exposed to forming gas at room temperature, which also reduces platinum oxide, and a decrease in resistance was observed, as expected.« less
Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.
Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W
2013-06-01
Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lu; Zhang, Guo-Hua; Chou, Kuo-Chih
2017-10-01
In the present wok, single-crystalline spherical γ-Mo2N powders was successfully prepared by the temperature-programmed reaction of single-crystal spherical β-MoO3 with NH3 in the temperature ranges of 1013-1073 K. Herein, the Mo source used was monoclinic system, β-MoO3, a metastable phase of MoO3. It is found that the characterizations of the as-prepared γ-Mo2N powders are strongly depended on the selection of the MoO3 precursor. In other words, the as-prepared γ-Mo2N powders inherited the shape, size and structure of the used β-MoO3 precursors upon reaction with NH3. In order to make a comparison, β-MoO3 was also reduced by the mixed gases of N2 and H2 with the flow rate ratio of 1:3 at the identical conditions. It was found that pure β-Mo2N polycrystalline can be obtained when the temperature was 1013 K; while further increasing the reaction temperature, metal Mo powder will be turned up.
Onwudiwe, Damian C; Strydom, Christien A; Oluwafemi, Oluwatobi S; Hosten, Eric; Jordaan, Anine
2014-06-21
The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compounds undergo fast weight loss, and the temperature at maximum rate of decomposition is at 277 °C and 265 °C respectively, to give the metal (Zn or Cd) sulphide residues. These compounds were used as single molecule precursors to produce nanocrystalline MS (M = Zn, Cd) after thermolysis in hexadecylamine. The morphological and optical properties of the resulting MS nanocrystallites were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and photoluminescence (PL) spectroscopy, and powdered X-ray diffraction (XRD). By varying the growth time, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated.
Determination of 14 nitrosamines at nanogram per liter levels in drinking water.
Qian, Yichao; Wu, Minghuo; Wang, Wei; Chen, Beibei; Zheng, Hao; Krasner, Stuart W; Hrudey, Steve E; Li, Xing-Fang
2015-01-20
N-Nitrosamines, probable human carcinogens, are a group of disinfection byproducts under consideration for drinking water regulation. Currently, no method can determine trace levels of alkyl and tobacco-specific nitrosamines (TSNAs) of varying physical and chemical properties in water by a single analysis. To tackle this difficulty, we developed a single solid-phase extraction (SPE) method with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of 14 nitrosamines of health concern with widely differing properties. We made a cartridge composed of a vinyl/divinylbenzene polymer that efficiently concentrated the 14 nitrosamines in 100 mL of water (in contrast to 500 mL in other methods). This single SPE-HPLC-MS/MS technique provided calculated method detection limits of 0.01-2.7 ng/L and recoveries of 53-93% for the 14 nitrosamines. We have successfully demonstrated that this method can determine the presence or absence of the 14 nitrosamines in drinking water systems (eight were evaluated in Canada and the U.S.), with occurrence similar to that in other surveys. N-Nitrosodimethylamine (NDMA), N-nitrosodiphenylamine, and the TSNA 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were identified and quantified in authentic drinking water. Formation potential (FP) tests demonstrated that NDMA and TSNA precursors were present in (1) water samples in which tobacco was leached and (2) wastewater-impacted drinking water. Our results showed that prechlorination or ozonation destroyed most of the nitrosamine precursors in water. Our new single method determination of alkylnitrosamines and TSNAs significantly reduced the time and resource demands of analysis and will enable other studies to more efficiently study precursor sources, formation mechanisms, and removal techniques. It will be useful for human exposure and health risk assessments of nitrosamines in drinking water.
Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide.
Prabakar, Sujay; Collins, Sean; Northover, Bryan; Tilley, Richard D
2011-01-07
The synthesis of inorganic fullerene (IF) nanoparticles and IF hollow spheres of titanium disulfide by a simple colloidal route is reported. The injection temperature of the titanium precursor into the solvent mixture was found to be important in controlling the morphology.
Glass-ceramic route of BSCCO superconductors - Fabrication of amorphous precursor
NASA Astrophysics Data System (ADS)
Nilsson, Andreas; Gruner, Wolfgang; Acker, Jörg; Wetzig, Klaus
2007-09-01
It is well known that many Bi-Sr-Ca-Cu-O compositions are glass-forming and some Bi-based glasses such as Bi 2Sr 2CaCu 2O x and Bi 2Sr 2Ca 2Cu 3O x are converted into high critical temperature superconductors after proper annealing. In order to fabricate superconductors having high- Tc and high critical current density using the glass-ceramic route, it is necessary to clarify the total chemical composition of the quenched glasses prepared in most cases by rapid quenching of melts from around 1200 °C in air. The total oxygen content measured directly reflects a significant oxygen deficit due to the melting process. We have also investigated the cation content in quenched Bi 2Sr 2Ca 2Cu 3O x precursors and found that there are substantial differences from the nominal composition to the quenched materials especially for calcium. Such glasses also show some CaO crystalline reflexes in the XRD patterns.
NASA Astrophysics Data System (ADS)
Palm, Brett Brian
Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic compounds; S/IVOCs) were present in ambient air and were the likely source of SOA formation that could not be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air.
Qi, Wang; Fang Yee, Lim; Jiangyong, Hu
2014-12-01
The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.
Effect of synthesis methods on the Ca{sub 3}Co{sub 4}O{sub 9} thermoelectric ceramic performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotelo, A.; Rasekh, Sh.; Torres, M.A.
2015-01-15
Three different synthesis methods producing nanometric grain sizes, coprecipitation with ammonium carbonate, oxalic acid, and by attrition milling have been studied to produce Ca{sub 3}Co{sub 4}O{sub 9} ceramics and compared with the classical solid state route. These three processes have produced high reactive precursors and all the organic material and CaCO{sub 3}·have been decomposed in a single thermal treatment. Coprecipitation leads to pure Ca{sub 3}Co{sub 4}O{sub 9} phase, while attrition milling and classical solid state produce small amounts of Ca{sub 3}Co{sub 2}O{sub 6} secondary phase. Power factor values are similar for all three samples, being slightly lower for the onesmore » produced by attrition milling. These values are much higher than the obtained in samples prepared by the classical solid state method, used as reference. The maximum power factor values determined at 800 °C (∼0.43 mW/K{sup 2} m) are slightly higher than the best reported values obtained in textured ones which also show much higher density values. - Graphical abstract: Impressive raise of PF in Ca{sub 3}Co{sub 4}O{sub 9} thermoelectric materials obtained from nanometric grains. - Highlights: • Ca{sub 3}Co{sub 4}O{sub 9} has been produced by four different methods. • Precursors particle sizes influences on the final performances. • Coprecipitation methods produce single Ca{sub 3}Co{sub 4}O{sub 9} phase. • Power factor reaches values comparable to high density textured materials.« less
Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae.
Wagner, Andrea; Grillitsch, Karlheinz; Leitner, Erich; Daum, Günther
2009-02-01
In the yeast as in other eukaryotes, formation and hydrolysis of steryl esters (SE) are processes linked to lipid storage. In Saccharomyces cerevisiae, the three SE hydrolases Tgl1p, Yeh1p and Yeh2p contribute to SE mobilization from their site of storage, the lipid particles/droplets. Here, we provide evidence for enzymatic and cellular properties of these three hydrolytic enzymes. Using the respective single, double and triple deletion mutants and strains overexpressing the three enzymes, we demonstrate that each SE hydrolase exhibits certain substrate specificity. Interestingly, disturbance in SE mobilization also affects sterol biosynthesis in a type of feedback regulation. Sterol intermediates stored in SE and set free by SE hydrolases are recycled to the sterol biosynthetic pathway and converted to the final product, ergosterol. This recycling implies that the vast majority of sterol precursors are transported from lipid particles to the endoplasmic reticulum, where sterol biosynthesis is completed. Ergosterol formed through this route is then supplied to its subcellular destinations, especially the plasma membrane. Only a minor amount of sterol precursors are randomly distributed within the cell after cleavage from SE. Conclusively, SE storage and mobilization although being dispensable for yeast viability contribute markedly to sterol homeostasis and distribution.
NASA Astrophysics Data System (ADS)
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-10-01
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k
Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...
NASA Astrophysics Data System (ADS)
Mehic, M.; Fazio, P.; Voznak, M.; Partila, P.; Komosny, D.; Tovarek, J.; Chmelikova, Z.
2016-05-01
A mobile ad hoc network is a collection of mobile nodes which communicate without a fixed backbone or centralized infrastructure. Due to the frequent mobility of nodes, routes connecting two distant nodes may change. Therefore, it is not possible to establish a priori fixed paths for message delivery through the network. Because of its importance, routing is the most studied problem in mobile ad hoc networks. In addition, if the Quality of Service (QoS) is demanded, one must guarantee the QoS not only over a single hop but over an entire wireless multi-hop path which may not be a trivial task. In turns, this requires the propagation of QoS information within the network. The key to the support of QoS reporting is QoS routing, which provides path QoS information at each source. To support QoS for real-time traffic one needs to know not only minimum delay on the path to the destination but also the bandwidth available on it. Therefore, throughput, end-to-end delay, and routing overhead are traditional performance metrics used to evaluate the performance of routing protocol. To obtain additional information about the link, most of quality-link metrics are based on calculation of the lost probabilities of links by broadcasting probe packets. In this paper, we address the problem of including multiple routing metrics in existing routing packets that are broadcasted through the network. We evaluate the efficiency of such approach with modified version of DSDV routing protocols in ns-3 simulator.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip P.; Hepp, Aloysius F.; Power, Michael B.; Macinnes, Andrew N.; Barron, Andrew R.
1993-01-01
A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster (/t-Bu/GaS)4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally-characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.
Fast transient X-rays and gamma ray bursts - Are they stellar flares?
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilert, André; Roberts, F. Sloan; Friebel, Daniel
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, P. Manish; Brannigan, James A., E-mail: jab@ysbl.york.ac.uk; Prabhune, Asmita
The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants willmore » provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.« less
NASA Astrophysics Data System (ADS)
Agarwal, Shikha; Agarwal, Dinesh Kr.; Kalal, Priyanka; Gandhi, Divyani
2018-05-01
Multicomponent reactions (MCRs) have been discovered as a powerful method for the synthesis of organic molecules, since the products are formed in a single step and the building blocks with diverse range of complexity can be obtained from easily available precursors. This strategy has become important in drug designing and discovery in the context of synthesis of biologically active compounds. In the today's scenario, MCRs are influenced by greener conditions as a powerful alternative over the conventional synthesis. In the last few years, a number of scientific publications have been appeared in the literature depicting the synthesis of pyrimidobenzothiazoles via greener routes which clearly states its importance in pharmaceutical chemistry for the drug development. Our article describes the synthesis of substituted pyrimidobenzothiazoles via one pot multicomponent reaction with structural diversity through conventional and greener pathways using different catalysts, ionic liquids, agar, resins etc.
Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites
Koza, Jakub A.; Hill, James C.; Demster, Ashley C.; ...
2015-12-16
Here, an electrochemical/chemical route is introduced to deposit both textured and epitaxial films of methylammonium lead iodide (MAPbI 3) perovskites. The perovskite films are produced by chemical conversion of lead dioxide films that have been electrodeposited as either textured or epitaxial films onto [111]-textured Au and [100] and [111] single-crystal Au substrates. The epitaxial relationships for the MAPbI 3 films are MAPbI 3(001)[010]∥PbO 2(100)<001> and MAPbI 3(110)[111]∥PbO 2(100)<001> regardless of the Au substrate orientation, because the in-plane order of the converted film is controlled by the epitaxial PbO 2 precursor film. The textured and epitaxial MAPbI 3 films both havemore » trap densities lower than and photoluminescence intensities higher than those of polycrystalline films produced by spin coating.« less
Inorganic fullerene-like structures and nanotubes of MX{sub 2} (M = W, Mo; X = S, Se)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenne, R.; Homyonfer, M.; Frey, G.L.
Extensive investigation of the newly discovered inorganic fullerene-like (IF-MX{sub 2}) and nanotubes of metal dichalcogenides, is reported. Our findings suggest that the IF-MX{sub 2} material constitute a new phase between the low temperature amorphous precursor and the bulk 2H polymorph, which is obtained upon annealing above 950{degrees}C. The energy bandgap of the NP, was found to be somewhat smaller than that of the bulk 2H phase, and possible explanations for that phenomenon are forwarded. New synthetic routes allow for the production of a few grams of IF-WS{sub 2} (macrosynthesis), on the one hand, and a single IF in a predeterminedmore » position (nanosynthesis), on the other hand. Synthesis of new IF-MX{sub 2} from different layered compounds, will be reported. Measurements of the optical properties; photocatalytic and photoelectrochemical effects of these materials, will be reported.« less
A facile route to ketene-functionalized polymers for general materials applications
NASA Astrophysics Data System (ADS)
Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.
2010-03-01
Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.
Scalzullo, Stefania; Mondal, Kartick; Witcomb, Mike; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik
2008-02-20
A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures.
From iron coordination compounds to metal oxide nanoparticles.
Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria
2016-01-01
Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.
From iron coordination compounds to metal oxide nanoparticles
Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel
2016-01-01
Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555
2018-01-01
We propose here a new colloidal approach for the synthesis of both all-inorganic and hybrid organic–inorganic lead halide perovskite nanocrystals (NCs). The main limitation of the protocols that are currently in use, such as the hot injection and the ligand-assisted reprecipitation routes, is that they employ PbX2 (X = Cl, Br, or I) salts as both lead and halide precursors. This imposes restrictions on being able to precisely tune the amount of reaction species and, consequently, on being able to regulate the composition of the final NCs. In order to overcome this issue, we show here that benzoyl halides can be efficiently used as halide sources to be injected in a solution of metal cations (mainly in the form of metal carboxylates) for the synthesis of APbX3 NCs (in which A = Cs+, CH3NH3+, or CH(NH2)2+). In this way, it is possible to independently tune the amount of both cations and halide precursors in the synthesis. The APbX3 NCs that were prepared with our protocol show excellent optical properties, such as high photoluminescence quantum yields, low amplified spontaneous emission thresholds, and enhanced stability in air. It is noteworthy that CsPbI3 NCs, which crystallize in the cubic α phase, are stable in air for weeks without any postsynthesis treatment. The improved properties of our CsPbX3 perovskite NCs can be ascribed to the formation of lead halide terminated surfaces, in which Cs cations are replaced by alkylammonium ions. PMID:29378131
Imran, Muhammad; Caligiuri, Vincenzo; Wang, Mengjiao; Goldoni, Luca; Prato, Mirko; Krahne, Roman; De Trizio, Luca; Manna, Liberato
2018-02-21
We propose here a new colloidal approach for the synthesis of both all-inorganic and hybrid organic-inorganic lead halide perovskite nanocrystals (NCs). The main limitation of the protocols that are currently in use, such as the hot injection and the ligand-assisted reprecipitation routes, is that they employ PbX 2 (X = Cl, Br, or I) salts as both lead and halide precursors. This imposes restrictions on being able to precisely tune the amount of reaction species and, consequently, on being able to regulate the composition of the final NCs. In order to overcome this issue, we show here that benzoyl halides can be efficiently used as halide sources to be injected in a solution of metal cations (mainly in the form of metal carboxylates) for the synthesis of APbX 3 NCs (in which A = Cs + , CH 3 NH 3 + , or CH(NH 2 ) 2 + ). In this way, it is possible to independently tune the amount of both cations and halide precursors in the synthesis. The APbX 3 NCs that were prepared with our protocol show excellent optical properties, such as high photoluminescence quantum yields, low amplified spontaneous emission thresholds, and enhanced stability in air. It is noteworthy that CsPbI 3 NCs, which crystallize in the cubic α phase, are stable in air for weeks without any postsynthesis treatment. The improved properties of our CsPbX 3 perovskite NCs can be ascribed to the formation of lead halide terminated surfaces, in which Cs cations are replaced by alkylammonium ions.
Source Attribution of Tropospheric Ozone using a Global Model
NASA Astrophysics Data System (ADS)
Coates, J.; Lupascu, A.; Butler, T. M.; Zhu, S.
2016-12-01
Tropospheric ozone is both a short-lived climate forcing pollutant and a radiatively active greenhouse gas. Ozone is not directly emitted into the troposphere but photochemically produced from chemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Emissions of ozone precursors (NOx and VOCs) have both natural and anthropogenic sources and may be transported away from their sources to produce ozone downwind. Also, transport of ozone from the stratosphere into the troposphere also influences tropospheric ozone levels in some regions. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used to inform the emission reduction strategies of ozone precursors by indicating which emission sources could be targeted for effective reductions thus reducing the burden of ozone pollution. We use a "tagging" approach within the CESM global model to attribute ozone levels to their source emissions. We use different tags to quantify the impact from natural (soils, lightning, stratospheric transport) and anthropogenic (aircraft, biomass burning) sources of NOx and VOCs (including methane) on ozone levels. These source sectors of different global regions are assigned based on the global emissions specified by HTAPv2.2. Using these results, we develop a transboundary source-receptor relationship of ozone concentration to its precursor emission regions. Additionally, the transport of ozone precursors from regional anthropogenic sources is analysed to illustrate the extent to which mitigation strategies of regional emissions aid in mitigating global ozone levels.
Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form.
Nielsen, Morten T; Ranberg, Johan Andersen; Christensen, Ulla; Christensen, Hanne Bjerre; Harrison, Scott J; Olsen, Carl Erik; Hamberger, Björn; Møller, Birger Lindberg; Nørholm, Morten H H
2014-12-01
Forskolin is a promising medicinal compound belonging to a plethora of specialized plant metabolites that constitute a rich source of bioactive high-value compounds. A major obstacle for exploitation of plant metabolites is that they often are produced in small amounts and in plants difficult to cultivate. This may result in insufficient and unreliable supply leading to fluctuating and high sales prices. Hence, substantial efforts and resources have been invested in developing sustainable and reliable supply routes based on microbial cell factories. Here, we report microbial synthesis of (13R)-manoyl oxide, a proposed intermediate in the biosynthesis of forskolin and other medically important labdane-type terpenoids. Process optimization enabled synthesis of enantiomerically pure (13R)-manoyl oxide as the sole metabolite, providing a pure compound in just two steps with a yield of 10 mg/liter. The work presented here demonstrates the value of a standardized bioengineering pipeline and the large potential of microbial cell factories as sources for sustainable synthesis of complex biochemicals. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Superchiral Light Generation on Degenerate Achiral Surfaces
NASA Astrophysics Data System (ADS)
Vázquez-Guardado, Abraham; Chanda, Debashis
2018-03-01
A novel route of superchiral near-field generation is demonstrated based on geometrically achiral systems supporting degenerate and spatially superimposed plasmonic modes. Such systems generate a single-handed chiral near field with simultaneous zero far-field circular dichroism. The phenomenon is theoretically elucidated with a rotating dipole model, which predicts a uniform single-handed chiral near field that flips handedness solely by reversing the handedness of the source. This property allows detection of pure background free molecular chirality through near-field light-matter interaction, which is experimentally demonstrated in the precise identification of both handedness of a chiral molecule on a single substrate with about four orders of magnitude enhancement in detection sensitivity compared to its conventional volumetric counterpart.
Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication
NASA Astrophysics Data System (ADS)
Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert
As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.
Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Benzene concentration. An estimate of the average gasoline benzene concentration corresponding to the time... engineering and permitting, Procurement and Construction, and Commissioning and startup. (7) Basic information regarding the selected technology pathway for compliance (e.g., precursor re-routing or other technologies...
Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A
2014-11-01
The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.
NASA Astrophysics Data System (ADS)
Dingman, Sean Douglas
I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and LiNH2 in a molten alkali-halide eutectic, KBr: Liar (60:40), at 400°C. The molten salt acts as an appropriate recrystallization medium for InN. Large InN platelets up to 500 nm could be synthesized. This is a significant step in finding mild reaction conditions that yield large InN crystals.
The rational design of a Au(I) precursor for focused electron beam induced deposition
Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M
2017-01-01
Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au–Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe3, they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe3 and MeAuPMe3 shows that Au–Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au–Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au. PMID:29354346
The rational design of a Au(I) precursor for focused electron beam induced deposition.
Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M; van Dorp, Willem F
2017-01-01
Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au-Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe 3 , they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe 3 and MeAuPMe 3 shows that Au-Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe 3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au-Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au.
Single-photon routing with whispering-gallery resonators
NASA Astrophysics Data System (ADS)
Huang, Jin-Song; Zhang, Jia-Hao; Wei, L. F.
2018-04-01
Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. Using a real-space full quantum theory, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. The routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing.
Choi, Inyoung; Choi, Ran; Lee, Jonghyun
2010-01-01
Objectives The objective of this research is to introduce the unique approach of the Catholic Medical Center (CMC) integrate network hospitals with organizational and technical methodologies adopted for seamless implementation. Methods The Catholic Medical Center has developed a new hospital information system to connect network hospitals and adopted new information technology architecture which uses single source for multiple distributed hospital systems. Results The hospital information system of the CMC was developed to integrate network hospitals adopting new system development principles; one source, one route and one management. This information architecture has reduced the cost for system development and operation, and has enhanced the efficiency of the management process. Conclusions Integrating network hospital through information system was not simple; it was much more complicated than single organization implementation. We are still looking for more efficient communication channel and decision making process, and also believe that our new system architecture will be able to improve CMC health care system and provide much better quality of health care service to patients and customers. PMID:21818432
Preparation & characterization of high purity Cu2 ZnSn(SxSe1-x)4 nanoparticles
NASA Astrophysics Data System (ADS)
Negash, Bethlehem G.
Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, colloidal synthesis of Cu 2ZnSn(SxSe1-x)4 offers a scalable, low cost and high-throughput route for manufacturing high efficiency thin-film solar cells. Hydrazine processed Cu2ZnSn(SxSe1-x )4 devices have reached a record power conversion efficiency (PCE) of 12.6%, much higher than the 9.6% reported for physical vapor deposition (PVD) systems.6,7. Despite high efficiencies, wet synthesis of nanoparticles, however, is made more complicated in multi-element, quaternary and quinary systems such as copper zinc tin sulfoselenide (CZTSSe) and copper indium gallium diselenide (CIGSe). One major disadvantage in these systems is growth of the desired quaternary or quinary phase in competition with unwanted binary and ternary phases with low energy of formation.8,9 Moreover, various reaction parameters such as reaction time, temperature, and choice of ligand also affect, chemical as well as physical properties of resulting nanoparticles. Understanding of the formation mechanisms of the particles is necessary in order to address some of these challenges in wet synthesis of CZTSSe nanoparticles. In this study, we investigate synthesis conditions & reaction parameters which yield high purity Cu2ZnSn(SxSe1-x) 4 nanoparticles as well as attempt to understand the growth mechanism of these nanoparticles. This was achieved by manipulating anion precursor preparation routes as well order in which precursors are introduced into a reaction system. We report a new solution based sulfoselenide preparation route which has been used to synthesize high purity Cu2ZnSn(S xSe1-x)4 nanoparticles. Uniform phase Cu 2ZnSn(SxSe1-x)4 nanoparticles were successfully synthesized over a wide range of varying chalcogen ratios. It was found that anion precursor solution plays a key role in determining the morphology & phase purity of the final nanoparticles, as observed from X-ray Diffraction (XRD) and Raman spectroscopy. A uniform sulfoselenide solution is needed to produce high purity Cu2ZnSn(SxSe1-x )4 nanoparticles with narrow phase distribution. Moreover, the relative reactivity of each anion must be balanced in order to yield uniform phase nanoparticles. The findings of this study as well as the reported mixed chalcogen precursor preparation route can be applied in various industries, including photovoltaics to produce uniform phase, solution processed sulfoselenide nanoparticles.
Metal-doped single-walled carbon nanotubes and production thereof
Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.
2007-01-09
Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.
Gordillo, Alvaro; Ortuño, Manuel A; López-Mardomingo, Carmen; Lledós, Agustí; Ujaque, Gregori; de Jesús, Ernesto
2013-09-18
The mechanism of the Pd-catalyzed vinylation of aryl halides with vinylalkoxysilanes in water has been studied using different catalytic precursors. The NaOH promoter converts the initial vinylalkoxysilane into a highly reactive water-soluble vinylsilanolate species. Similarly, deuterium-labeling experiments have shown that, irrespective of the catalytic precursor used, vinylation occurs exclusively at the CH vinylic functionality via a Heck reaction and not at the C-Si bond via a Hiyama cross-coupling. The involvement of a Heck mechanism is interpreted in terms of the reduced nucleophilicity of the base in water, which disfavors the transmetalation step. The Heck product (β-silylvinylarene) undergoes partial desilylation, with formation of a vinylarene, by three different routes: (a) hydrolytic desilylation by the aqueous solvent (only at high temperature); (b) transmetalation of the silyl olefin on the PdH Heck intermediate followed by reductive elimination of vinylarene; (c) reinsertion of the silyl olefin into the PdH bond of the Heck intermediate followed by β-Si syn-elimination. Both the Hiyama and Heck catalytic cycles and desilylation mechanisms b and c have been computationally evaluated for the [Pd(en)Cl2] precursor in water as solvent. The calculated Gibbs energy barriers support the reinsertion route proposed on the basis of the experimental results.
NASA Astrophysics Data System (ADS)
Cosico, J. A. M.; Ruales, P. K.; Marquez, M. C.
2017-06-01
In the age where application of nanotechnology in our society has proven to be eminent, different routes of synthesizing nanoparticles have emerged. In this study nanoparticles of cuprous oxide (Cu2O) doped with different amounts of europium was prepared by using solution precursor route approach with the aid of ultrasonic sound. Copper sulphate and europium (III) nitrate pentahydrate was used as source for copper ions and europium ions respectively. X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR) were used to elucidate the cubic crystal structure and organic impurities present on Cu2Onanoparticles. UV-Vis spectroscopy was used to determine the absorption spectrum of the nanoparticles in the wavelength range of 400nm to 700nm. The bandgap of the undoped and doped Cu2O were found to fall between 2.1eV - 2.3eV. Scanning Electron Microscopy (SEM) coupled with energy dispersive x-ray was used to observe the dendritic and rodlike morphology and the presence of europium in the synthesized Cu2O nanoparticles. The observed effect on the absorbance of Cu2O upon adding Eu and a facile way of synthesizing Cu2O nanoparticles could bring a positive impact on the production of functional devices for optoelectronic and energy applications.
Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors.
Conejero Jarque, E; San Roman, J; Silva, F; Romero, R; Holgado, W; Gonzalez-Galicia, M A; Alonso, B; Sola, I J; Crespo, H
2018-02-02
Gas-filled hollow-core fiber (HCF) pulse post-compressors generating few- to single-cycle pulses are a key enabling tool for attosecond science and ultrafast spectroscopy. Achieving optimum performance in this regime can be extremely challenging due to the ultra-broad bandwidth of the pulses and the need of an adequate temporal diagnostic. These difficulties have hindered the full exploitation of HCF post-compressors, namely the generation of stable and high-quality near-Fourier-transform-limited pulses. Here we show that, independently of conditions such as the type of gas or the laser system used, there is a universal route to obtain the shortest stable output pulse down to the single-cycle regime. Numerical simulations and experimental measurements performed with the dispersion-scan technique reveal that, in quite general conditions, post-compressed pulses exhibit a residual third-order dispersion intrinsic to optimum nonlinear propagation within the fiber, in agreement with measurements independently performed in several laboratories around the world. The understanding of this effect and its adequate correction, e.g. using simple transparent optical media, enables achieving high-quality post-compressed pulses with only minor changes in existing setups. These optimized sources have impact in many fields of science and technology and should enable new and exciting applications in the few- to single-cycle pulse regime.
On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.
Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D
2017-08-30
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
NASA Astrophysics Data System (ADS)
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-01
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08632a
Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot
Reilly, Peter T. A.
2007-03-20
The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.
Preparation of core-shell Ti-Nb oxide nanocrystals
NASA Astrophysics Data System (ADS)
Simakov, David S. A.; Tsur, Yoed
2008-01-01
Nanosized powders of Ti-Nb oxide core-shell nanocrystals with atomic ratios of Nb/Ti = 0.11, 0.25, and 0.38 have been prepared by two preparation routes. The first route was co-precipitation, followed by␣annealing, using NbCl5 as a source of Nb. The second route was coating of pure TiO2 nanocrystals by Nb-isopropoxide in liquid medium, followed by impregnation of the Nb into the nanoparticles by annealing. Both methods yielded anatase nanocrystals with a Nb-rich shell and a core, which had much lower Nb loadings. The anatase structure solid solution (with Nb incorporated) was stable under annealing up to 760°C. The particle size remained within the nanometric scale ( <50 nm) under heat-treatment up to 760°C. It has been shown that the fabricated powders can be redispersed in aqueous media by simple ultrasound treatment, resulting in nanosized dispersions. Using a variety of analytical techniques, including depth profiling of single nanocrystallites by AES combined with sputtering by Ar ions, the mechanism of the core-shell structure creation was studied. It is proposed that the formation of the core-shell structure is governed by solubility limitations in the co-precipitation route and by solubility and diffusion limitations in the coating-incorporation route.
Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Cela, R
2013-05-01
The suitability of bulk silicone as support to follow the degradation of chemical compounds under environmental conditions and UV radiation is illustrated selecting three fungicides (fenhexamid, FEN; triadimenol, TRI and difenoconazole, DIF) as model compounds. These precursor species were first absorbed in silicone supports (10 mm length × 2 mm i.d. and 0.5 mm thickness) and then kept outdoors for several days (up to 2 months) or exposed to UV radiation (254 nm), from a low pressure mercury lamp, in the laboratory. Degradation of precursor fungicides and by-products formation was followed by liquid chromatography (LC) quadrupole time-of-flight (QTOF) mass spectrometry (MS), after desorption of silicone supports using 0.5 mL of acetonitrile. Half-lives (t(1/2)) measured under UV exposure varied from 5 to 100 min. As regards environmental conditions, the most stable fungicide was DIF, degraded by just 15 % after 2 months; whereas, t(1/2) values of 30 and 83 h were calculated for FEN during summer and autumn, respectively. Supports contained by-products arising from precursor species through de-chlorination, cleavage, hydroxylation, intra-molecular cyclation and oligomerization reactions. Most of them have been previously identified in soil surface, vegetable leaves and water after application of fungicides in agriculture fields. The low cost of silicone tubes (ca. 0.4 Euros), added to their excellent chemical stability and capability to retain precursor species and their by-products, make them ideal supports to follow the transformation routes of organic compounds under environmental and simulated conditions, even for relatively stable species with t(1/2) in the range of weeks or months.
Lessons Learned from OMI Observations of Point Source SO2 Pollution
NASA Technical Reports Server (NTRS)
Krotkov, N.; Fioletov, V.; McLinden, Chris
2011-01-01
The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.
Acquisition and expression of memories of distance and direction in navigating wood ants.
Fernandes, A Sofia D; Philippides, Andrew; Collett, Tom S; Niven, Jeremy E
2015-11-01
Wood ants, like other central place foragers, rely on route memories to guide them to and from a reliable food source. They use visual memories of the surrounding scene and probably compass information to control their direction. Do they also remember the length of their route and do they link memories of direction and distance? To answer these questions, we trained wood ant (Formica rufa) foragers in a channel to perform either a single short foraging route or two foraging routes in opposite directions. By shifting the starting position of the route within the channel, but keeping the direction and distance fixed, we tried to ensure that the ants would rely upon vector memories rather than visual memories to decide when to stop. The homeward memories that the ants formed were revealed by placing fed or unfed ants directly into a channel and assessing the direction and distance that they walked without prior performance of the food-ward leg of the journey. This procedure prevented the distance and direction walked being affected by a home vector derived from path integration. Ants that were unfed walked in the feeder direction. Fed ants walked in the opposite direction for a distance related to the separation between start and feeder. Vector memories of a return route can thus be primed by the ants' feeding state and expressed even when the ants have not performed the food-ward route. Tests on ants that have acquired two routes indicate that memories of the direction and distance of the return routes are linked, suggesting that they may be encoded by a common neural population within the ant brain. © 2015. Published by The Company of Biologists Ltd.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-16
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.
Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi
2016-06-21
A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.
NASA Astrophysics Data System (ADS)
Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad
2014-08-01
We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.
The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.
2003-01-01
We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.
1992-01-01
The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.
2004-12-01
abundance and neutron cross-section of 17~r (the precursor of 171 Er~~limit,tb~’Xi!Y o~_ 171Er that could be produced and delivered to Suf field to about...the radioisotope being produced. Additional factors relate to the irradiation conditions and include the reactor neutron flux and the irradiation...generally be desirable to have single radioisotopic sources with nuclear characteristics (e.g., half-life, gamma-ray energies and emission rates
NASA Astrophysics Data System (ADS)
Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish
2018-07-01
This paper reports the detailed study of the effect of different wet chemical synthesis routes (solution combustion, co-precipitation, and sol-gel route) on the microstructure, phase formation, dielectric, electrical, and ferroelectric properties of five-layered Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb, and Sr). Different synthesis parameters like the precursors used, synthesis temperature, and reaction time affects the morphology of the ceramics. Microstructure in turn influences the dielectric and ferroelectric properties. It was observed that the sol-gel-synthesized ceramics possess higher dielectric constant and remanent polarization, low dielectric loss due to lower conductivity in these samples as a result of higher density in these compounds as compared to those synthesized by other wet chemical synthesis routes such as solution combustion route and co-precipitation technique. The XRD data are used for phase analysis and surface morphology is studied using SEM images. Dielectric and electrical properties are investigated as a function of frequency and temperature.
Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.
Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M
2015-03-01
This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chemiluminescence of Secondary Peroxyesters.
1980-11-14
phenylethylperoxybenzoates was investiqlated. Thermolysis in benzene gives acetophenone and the corresponding carboxYlic acid . The study of the reactiol...these compounds undergo unimolecular thermolysis to qenerate the appropriate carboxylic acid add carbonyl compound; eq. 2. We estimated, using...prepared by reaction of 1 -phenylethyl hydroperoxide with the appropriate activated acid precursor. We prepared the hydroperoxide by two different routes
Biemelt, T; Wegner, K; Teichert, J; Kaskel, S
2015-04-07
A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.
Microwave assisted synthesis of bridgehead alkenes.
Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J
2011-04-01
A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels-Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times, and lower reaction temperatures provide a general and efficient route to this interesting class of molecules.
Microwave Assisted Synthesis of Bridgehead Alkenes
Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J.
2011-01-01
A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels–Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times and lower reaction temperatures provide a general and efficient route to this interesting class of molecules. PMID:21384818
High-fraction brookite films from amorphous precursors.
Haggerty, James E S; Schelhas, Laura T; Kitchaev, Daniil A; Mangum, John S; Garten, Lauren M; Sun, Wenhao; Stone, Kevin H; Perkins, John D; Toney, Michael F; Ceder, Gerbrand; Ginley, David S; Gorman, Brian P; Tate, Janet
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2 , where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2 , a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.
A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders
NASA Astrophysics Data System (ADS)
Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog
2008-02-01
Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.
Rodríguez-Navarro, Carlos; Ruiz-Agudo, Encarnación; Harris, Joe; Wolf, Stephan E
2016-11-01
Recent research has shown that biominerals and their biomimetics (i) typically form via an amorphous precursor phase, and (ii) commonly display a nanogranular texture. Apparently, these two key features are closely related, underlining the fact that the formation of biominerals and their biomimetics does not necessarily follow classical crystallization routes, and leaves a characteristic nanotextural imprint which may help to disclose their origins and formation mechanisms. Here we present a general overview of the current theories and models of nonclassical crystallization and their applicability for the advance of our current understanding of biomineralization and biomimetic mineralization. We pay particular attention to the link between nonclassical crystallization routes and the resulting nanogranular textures of biomimetic CaCO 3 mineral structures. After a general introductory section, we present an overview of classical nucleation and crystal growth theories and their limitations. Then, we introduce the Ostwald's step rule as a general framework to explain nonclassical crystallization. Subsequently, we describe nonclassical crystallization routes involving stable prenucleation clusters, dense liquid and solid amorphous precursor phases, as well as current nonclassical crystal growth models. The latter include oriented attachment, mesocrystallization and the new model based on the colloidal growth of crystals via attachment of amorphous nanoparticles. Biomimetic examples of nanostructured CaCO 3 minerals formed via these nonclassical routes are presented which help us to show that colloid-mediated crystal growth can be regarded as a wide-spread growth mechanism. Implications of these observations for the advance in the current understanding on the formation of biomimetic materials and biominerals are finally outlined. Copyright © 2016 Elsevier Inc. All rights reserved.
Uchida, Yasuto; Uchida, Yasumi; Maezawa, Yoshiro; Maezawa, Yuko; Tabata, Tsuyoshi
2012-01-01
It was previously thought that arteriogenesis and venogenesis are induced not only by proliferation of vessel-resident smooth muscle cells (SMCs) and endothelial cells (ECs) but also by migration of their precursors. However, it is not well understood through what route(s) the precursors migrate into the existing vessels.We examined through what route or routes circulating mononuclear cells expressing β-actin (β-MNCs), which we identified in canine coronary vessels, migrate into coronary vessel walls and cause arteriogenesis and venogenesis at 1, 2, 4 and 8 weeks after induction of myocardial infarction.The following changes were observed: (1) The β-MNCs migrated via coronary microvessels to the interstitial space at one week; (2) β-MNCs traversed the adventitia into the media and settled in parallel with pre-existing smooth muscle cells (SMCs) in arterioles and arteries and lost β-actin and acquired α-smooth muscle actin (α-SMA) to become mature SMCs at 2-4 weeks; (3) at the same time, other β-MNCs migrated across the adventitia and media into the intima and settled in parallel with pre-existing endothelial cells (ECs) and lost β-actin, while acquiring CD(31), to become mature ECs, resulting in arteriogenesis; (4) Similarly, β-MNCs migrated into venular and venous walls and became SMCs or ECs, resulting in venogenesis.β-MNCs in the interstitial space expressed CD(34) but not other major vascular cell markers.β-MNCs, possibly a vascular progenitor, migrate not from the lumen but across the adventitia into the media or intima of coronary vessels and transit to SMCs or ECs, and participate in arteriogenesis and venogenesis in ischemic myocardium.
van der Leij, F R; Visser, R G; Ponstein, A S; Jacobsen, E; Feenstra, W J
1991-08-01
The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type sequence with a cDNA sequence from the literature and a newly isolated cDNA revealed the presence of 13 introns, the first of which is located in the untranslated leader. The promoter contains a G-box-like sequence. The deduced amino acid sequence of the precursor of GBSS shows a high degree of identity with monocot waxy protein sequences in the region corresponding to the mature form of the enzyme. The transit peptide of 77 amino acids, required for routing of the precursor to the plastids, shows much less identity with the transit peptides of the other waxy preproteins, but resembles the hydropathic distributions of these peptides. Alignment of the amino acid sequences of the four mature starch synthases with the Escherichia coli glgA gene product revealed the presence of at least three conserved boxes; there is no homology with previously proposed starch-binding domains of other enzymes involved in starch metabolism. We report the use of chimeric constructs with wild-type and amf sequences to localize, via complementation experiments, the region of the amf allele in which the mutation resides. Direct sequencing of polymerase chain reaction products confirmed that the amf mutation is a deletion of a single AT basepair in the region coding for the transit peptide.(ABSTRACT TRUNCATED AT 250 WORDS)
Molaee, Hajar; Nabavizadeh, S Masoud; Jamshidi, Mahboubeh; Vilsmeier, Max; Pfitzner, Arno; Samandar Sangari, Mozhgan
2017-11-28
Heterobimetallic compounds [(C^N)LMe 2 Pt(μ-O)ReO 3 ] (C^N = ppy, L = PPh 3 , 2a; C^N = ppy, L = PMePh 2 , 2b; C^N = bhq, L = PPh 3 , 2c; C^N = bhq, L = PMePh 2 , 2d) containing a discrete unsupported Pt(iv)-O-Re(vii) bridge have been synthesized through a targeted synthesis route. The compounds have been prepared by a single-pot synthesis in which the Pt(iv) precursor [PtMe 2 I(C^N)L] complexes are allowed to react easily with AgReO 4 in which the iodide ligand of the starting Pt(iv) complex is replaced by an ReO 4 - anion. In these Pt-O-Re complexes, the Pt(iv) centers have an octahedral geometry, completed by a cyclometalated bidentate ligand (C^N), two methyl groups and a phosphine ligand, while the Re(vii) centers have a tetrahedral geometry. Elemental analysis, single crystal X-ray diffraction analysis and multinuclear NMR spectroscopy are used to establish their identities. The new complexes exhibit phosphorescence emission in the solid and solution states at 298 and 77 K, which is an uncommon property of platinum complexes with an oxidation state of +4. According to DFT calculations, we found that this emission behavior in the new complexes originates from ligand centered 3 LC (C^N) character with a slight amount of metal to ligand charge transfer ( 3 MLCT). The solid-state emission data of the corresponding cycloplatinated(iv) precursor complexes [PtMe 2 I(C^N)L], 1a-1d, pointed out that the replacement of I - by an ReO 4 - anion helps enhancing the emission efficiency besides shifting the emission wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Sue, E-mail: s.chang@mmm.com
Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) was one of the key building blocks for many of the perfluorooctanesulfonyl-based chemistry and laboratory studies have shown that EtFOSE can metabolically degrade to perfluorooctanesulfonate (PFOS). Non-occupational contribution sources to PFOS are thought to occur in general population via diets, drinking water, air and dust. For workers, however, the exposure route was mostly airborne and the exposure source was predominantly to precursor compounds such as EtFOSE. We undertook this study to investigate how much EtFOSE was converted to PFOS in the serum for male rats after 6 h of exposure to EtFOSE vapor (whole body) at ambient temperature,more » which simulated a work place exposure scenario. There were no abnormal clinical observations and all rats gained weight during study. Interim tail-vein blood samples, collected up to 21 days after exposure, were analyzed for Et-FOSE and PFOS concentrations by LC-MS/MS. Upon inhalation exposure, the biotransformation of EtFOSE to PFOS in serum in the male rats was rapid and very little EtFOSE was detected in the serum within 24 h after EtFOSE exposure. The highest conversion to PFOS in serum after exposure to EtFOSE vapor appeared to occur between Day 8−14 post exposure. Considering the potential surface and fur adsorption of test compound in the whole-body exposure system, our data would support that at least 10% of the inhaled EtFOSE was biotransformed to PFOS in the serum based on the range of lower 95% CI (confidence interval) values. This information is valuable because it quantitatively translates EtFOSE exposure into serum PFOS concentration, which serves as a matrix for internal dosimetry (of PFOS exposure) that can be used as an anchor across species as well as between different exposure routes. - Highlights: • First inhalation study reported in rats that investigates the conversion of a major precursor compound (EtFOSE) to form PFOS. • Systemic absorption of EtFOSE in rats can occur upon inhalation exposure. • Our data suggest that at least 10% of the inhaled EtFOSE can be biotransformed to PFOS in the serum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, Craig M.; Barry, Matthew C.; Wei, Zheng
A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of M xM' 3–xO 4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [Fe III(acac) 3][Co II(hfac) 2] (1), [Co II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2] (2), and [Fe II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2]more » (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring Fe III metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of Fe III- and Co II-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of Fe III, Fe II, and Co II species for complex 3. Theoretical investigation of two possible “valent isomers”, [Fe III(acac) 3][Co II(hfac) 2] (1) and [Co III(acac) 3][Fe II(hfac) 2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement with the presence of high-spin FeIII and CoII magnetic centers with weak anti-ferromagnetic coupling between those in molecules of 1 and 2. Highly volatile heterometallic complexes 1–3 were found to act as effective single-source precursors for the low-temperature preparation of iron–cobalt spinel oxides Fe xCo 3–xO 4 known as important materials for diverse energy-related applications.« less
Wang, Na; Zeng, Jiwen
2017-03-17
Wireless sensor networks are deployed to monitor the surrounding physical environments and they also act as the physical environments of parasitic sensor networks, whose purpose is analyzing the contextual privacy and obtaining valuable information from the original wireless sensor networks. Recently, contextual privacy issues associated with wireless communication in open spaces have not been thoroughly addressed and one of the most important challenges is protecting the source locations of the valuable packages. In this paper, we design an all-direction random routing algorithm (ARR) for source-location protecting against parasitic sensor networks. For each package, the routing process of ARR is divided into three stages, i.e., selecting a proper agent node, delivering the package to the agent node from the source node, and sending it to the final destination from the agent node. In ARR, the agent nodes are randomly chosen in all directions by the source nodes using only local decisions, rather than knowing the whole topology of the networks. ARR can control the distributions of the routing paths in a very flexible way and it can guarantee that the routing paths with the same source and destination are totally different from each other. Therefore, it is extremely difficult for the parasitic sensor nodes to trace the packages back to the source nodes. Simulation results illustrate that ARR perfectly confuses the parasitic nodes and obviously outperforms traditional routing-based schemes in protecting source-location privacy, with a marginal increase in the communication overhead and energy consumption. In addition, ARR also requires much less energy than the cloud-based source-location privacy protection schemes.
Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films
NASA Astrophysics Data System (ADS)
Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.
2006-06-01
The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.
Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum
NASA Technical Reports Server (NTRS)
Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)
2014-01-01
Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.
Fan, Ping; Gu, Di; Liang, Guang-Xing; Luo, Jing-Ting; Chen, Ju-Long; Zheng, Zhuang-Hao; Zhang, Dong-Ping
2016-01-01
In this work, an alternative route to fabricating high-quality CH3NH3PbI3 thin films is proposed. Single-source physical vapour deposition (SSPVD) without a post-heat-treating process was used to prepare CH3NH3PbI3 thin films at room temperature. This new process enabled complete surface coverage and moisture stability in a non-vacuum solution. Moreover, the challenges of simultaneously controlling evaporation processes of the organic and inorganic sources via dual-source vapour evaporation and the heating process required to obtain high crystallization were avoided. Excellent composition with stoichiometry transferred from the powder material, a high level of tetragonal phase-purity, full surface coverage, well-defined grain structure, high crystallization and reproducibility were obtained. A PCE of approximately 10.90% was obtained with a device based on SSPVD CH3NH3PbI3. These initial results suggest that SSPVD is a promising method to significantly optimize perovskite CH3NH3PbI3 solar cell efficiency. PMID:27426686
Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.
de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L
2016-08-17
We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Dinh; Dinh, Cao-Thang; Do, Trong-On
2011-04-01
A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxidenanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO4, La2(MoO4)3 can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO4, La2(MoO4)3) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxidenanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO2 nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied.A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxidenanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO4, La2(MoO4)3 can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO4, La2(MoO4)3) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxidenanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO2 nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied. Electronic supplementary information (ESI) available: Additional TEM, XRD, XPS, FTIR, UV-vis and photoluminescence results of the nanocrystals. See DOI: 10.1039/c1nr10109a
Anatomical classification of breast sentinel lymph nodes using computed tomography-lymphography.
Fujita, Tamaki; Miura, Hiroyuki; Seino, Hiroko; Ono, Shuichi; Nishi, Takashi; Nishimura, Akimasa; Hakamada, Kenichi; Aoki, Masahiko
2018-05-03
To evaluate the anatomical classification and location of breast sentinel lymph nodes, preoperative computed tomography-lymphography examinations were retrospectively reviewed for sentinel lymph nodes in 464 cases clinically diagnosed with node-negative breast cancer between July 2007 and June 2016. Anatomical classification was performed based on the numbers of lymphatic routes and sentinel lymph nodes, the flow direction of lymphatic routes, and the location of sentinel lymph nodes. Of the 464 cases reviewed, anatomical classification could be performed in 434 (93.5 %). The largest number of cases showed single route/single sentinel lymph node (n = 296, 68.2 %), followed by multiple routes/multiple sentinel lymph nodes (n = 59, 13.6 %), single route/multiple sentinel lymph nodes (n = 53, 12.2 %), and multiple routes/single sentinel lymph node (n = 26, 6.0 %). Classification based on the flow direction of lymphatic routes showed that 429 cases (98.8 %) had outward flow on the superficial fascia toward axillary lymph nodes, whereas classification based on the height of sentinel lymph nodes showed that 323 cases (74.4 %) belonged to the upper pectoral group of axillary lymph nodes. There was wide variation in the number of lymphatic routes and their branching patterns and in the number, location, and direction of flow of sentinel lymph nodes. It is clinically very important to preoperatively understand the anatomical morphology of lymphatic routes and sentinel lymph nodes for optimal treatment of breast cancer, and computed tomography-lymphography is suitable for this purpose.
Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho
2016-09-06
Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems.
Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.
Multi-hop routing mechanism for reliable sensor computing.
Chen, Jiann-Liang; Ma, Yi-Wei; Lai, Chia-Ping; Hu, Chia-Cheng; Huang, Yueh-Min
2009-01-01
Current research on routing in wireless sensor computing concentrates on increasing the service lifetime, enabling scalability for large number of sensors and supporting fault tolerance for battery exhaustion and broken nodes. A sensor node is naturally exposed to various sources of unreliable communication channels and node failures. Sensor nodes have many failure modes, and each failure degrades the network performance. This work develops a novel mechanism, called Reliable Routing Mechanism (RRM), based on a hybrid cluster-based routing protocol to specify the best reliable routing path for sensor computing. Table-driven intra-cluster routing and on-demand inter-cluster routing are combined by changing the relationship between clusters for sensor computing. Applying a reliable routing mechanism in sensor computing can improve routing reliability, maintain low packet loss, minimize management overhead and save energy consumption. Simulation results indicate that the reliability of the proposed RRM mechanism is around 25% higher than that of the Dynamic Source Routing (DSR) and ad hoc On-demand Distance Vector routing (AODV) mechanisms.
Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi
2014-12-01
Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.
In-flight source noise of an advanced full-scale single-rotation propeller
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Loffler, Irvin J.
1991-01-01
Flight tests to define the far-field tone source at cruise conditions have been completed on the full-scale SR-7L advanced turboprop, which was installed on the left wing of a Gulfstream II aircraft. These measurements defined source levels for input into long-distance propagation models to predict en route noise. Infight data were taken for seven test cases. The sideline directivities measured showed expected maximum levels near 105 deg from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. The tone level reduction associated with reductions in propeller tip speed is shown to be more significant in the horizontal plane than below the aircraft.
BARKER, BRITTANY S.; ANDONIAN, KRIKOR; SWOPE, SARAH M.; LUSTER, DOUGLAS G.; DLUGOSCH, KATRINA M.
2017-01-01
Identifying sources of genetic variation and reconstructing invasion routes for non-native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome-wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe, and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic ‘bridgehead’ for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of California’s interior. These results reveal a long history of colonization, admixture, and trait evolution in C. solstitialis, and suggest routes for improving evidence-based management decisions for one of the most ecologically and economically damaging invasive species in the western United States. PMID:28029713
NASA Astrophysics Data System (ADS)
Charatan, R. M.; Gross, M. E.; Eaglesham, D. J.
1994-10-01
The use of a low oxidation state Ti compound, cyclopentadienyl cycloheptatrienyl titanium, (C5H5) Ti(C7H7) (CPCHT), as a potential source for TiN and Ti in plasma enhanced chemical vapor deposition processes has been investigated. This precursor provides us with a new chemical vapor deposition route to TiN films that offer an interesting contrast to films deposited from Ti(IV) precursors. Film depositions were carried out by introducing CPCHT, with H2 carrier gas, into the downstream region of a NH3, N2, H2, or mixed H2/N2 plasma. Low resistivity (100-250 micro-ohm cm) nitrogen-rich TiN films with little carbon or oxygen incorporation and good conformality were deposited with activated N2 or NH3 at deposition temperatures of 300-600 C, inclusive. Mixed H2/N2 plasmas resulted in more stoichiometric TiN films with similar properties. The most striking feature of these films is the absence of columnar grain growth, in contrast to TiN films deposited using TiCl4 or Ti(NR(2))(4). Although the film texture was influenced by the plasma gas, the average grain size of the films deposited using activated N2 and NH3 was similar. The TiN films that we deposited were effective diffusion barriers between aluminum and silicon up to 575 C. Depositions using activated H2 resulted in films with significantly less carbon than CPCHT, but still having a minimum of 2.7:1 C:Ti. The lower oxidation state of the precursor did not facilitate the deposition of a Ti-rich film. No depositions were observed with any of the reactant gases in the absence of plasmas activation.
Activated carbon fibers and engineered forms from renewable resources
Baker, Frederick S
2013-02-19
A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.
Activated carbon fibers and engineered forms from renewable resources
Baker, Frederick S.
2010-06-01
A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.
Saber, Alan A; Elgamal, Mohamed H; El-Ghazaly, Tarek H; Elian, Alain R; Dewoolkar, Aditya V; Akl, Abir Hassan
2010-01-01
Laparoscopic Roux-en-Y gastric bypass is the gold standard bariatric procedure. Typically, the procedure necessitates five to seven small skin incisions for trocar placement. The senior author (AA Saber) has developed a three-trocar approach for laparoscopic Roux-en-Y gastric bypass. Sixteen patients underwent triple-incision laparoscopic Roux-en-Y gastric bypass between May 2009 and August 2009. The same surgeon performed all surgical interventions. The umbilicus was the main point of entry for all patients and the same operative technique and perioperative protocol were used in all patients. A total of sixteen triple-incision laparoscopic Roux-en-Y gastric bypasses were performed. The procedures were successfully performed in all patients. Mean operating time was 145.4 min. None of the patients required conversion to an open procedure. There were no mortalities or post-operative technical complications noted during the immediate post-operative period. Three trocar laparoscopic Roux-en-Y gastric bypass is safe, technically feasible and reproducible. This technique may be considered a "precursor" to single-incision laparoscopic Roux-en-Y gastric bypass. Copyright 2009 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Varghese, Donna; Tom, Catherine; Krishna Chandar, N.
2017-11-01
CuO (Copper Oxide) nanoparticles were synthesized by a simple coprecipitation route by using copper acetate, sodium hydroxide as precursors and cetyltrimethyl ammonium bromide (CTAB) as surfactant. For the purpose of the study, the surfactant-CTAB treated and non-treated samples were synthesized separately. Both the synthesized samples were studied to understand their structural and optical properties. The formation of CuO and its crystallinity was confirmed by XRD. Further, the optical studies showed a defined blue shift in CTAB treated sample which is clear evidence that the particles undergo confinement when they are nano-regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh, E-mail: bibhutoshadhikary@yahoo.in
2014-01-01
Graphical abstract: - Highlights: • γ-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM)more » and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared γ-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.« less
Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...
2016-04-04
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less
Facile electrosynthesis of silicon carbide nanowires from silica/carbon precursors in molten salt.
Zou, Xingli; Ji, Li; Lu, Xionggang; Zhou, Zhongfu
2017-08-30
Silicon carbide nanowires (SiC NWs) have attracted intensive attention in recent years due to their outstanding performances in many applications. A large-scale and facile production of SiC NWs is critical to its successful application. Here, we report a simple method for the production of SiC NWs from inexpensive and abundantly available silica/carbon (SiO 2 /C) precursors in molten calcium chloride. The solid-to-solid electroreduction and dissolution-electrodeposition mechanisms can easily lead to the formation of homogenous SiC NWs. This template/catalyst-free approach greatly simplifies the synthesis procedure compared to conventional methods. This general strategy opens a direct electrochemical route for the conversion of SiO 2 /C into SiC NWs, and may also have implications for the electrosynthesis of other micro/nanostructured metal carbides/composites from metal oxides/carbon precursors.
Schroeder, Mark A.; Rettig, Michael P.; Lopez, Sandra; Christ, Stephanie; Fiala, Mark; Eades, William; Mir, Fazia A.; Shao, Jin; McFarland, Kyle; Trinkaus, Kathryn; Shannon, William; Deych, Elena; Yu, Jinsheng; Vij, Ravi; Stockerl-Goldstein, Keith; Cashen, Amanda F.; Uy, Geoffrey L.; Abboud, Camille N.; Westervelt, Peter
2017-01-01
A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849. PMID:28292947
NASA Astrophysics Data System (ADS)
De Paz-Simon, Héloïse; Chemtob, Abraham; Croutxé-Barghorn, Céline; Rigolet, Séverinne; Michelin, Laure; Vidal, Loïc; Lebeau, Bénédicte
2014-11-01
In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting in ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.
Wang, Na; Zeng, Jiwen
2017-01-01
Wireless sensor networks are deployed to monitor the surrounding physical environments and they also act as the physical environments of parasitic sensor networks, whose purpose is analyzing the contextual privacy and obtaining valuable information from the original wireless sensor networks. Recently, contextual privacy issues associated with wireless communication in open spaces have not been thoroughly addressed and one of the most important challenges is protecting the source locations of the valuable packages. In this paper, we design an all-direction random routing algorithm (ARR) for source-location protecting against parasitic sensor networks. For each package, the routing process of ARR is divided into three stages, i.e., selecting a proper agent node, delivering the package to the agent node from the source node, and sending it to the final destination from the agent node. In ARR, the agent nodes are randomly chosen in all directions by the source nodes using only local decisions, rather than knowing the whole topology of the networks. ARR can control the distributions of the routing paths in a very flexible way and it can guarantee that the routing paths with the same source and destination are totally different from each other. Therefore, it is extremely difficult for the parasitic sensor nodes to trace the packages back to the source nodes. Simulation results illustrate that ARR perfectly confuses the parasitic nodes and obviously outperforms traditional routing-based schemes in protecting source-location privacy, with a marginal increase in the communication overhead and energy consumption. In addition, ARR also requires much less energy than the cloud-based source-location privacy protection schemes. PMID:28304367
NASA Astrophysics Data System (ADS)
Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai
2016-09-01
Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.
NASA Astrophysics Data System (ADS)
Osuntokun, Jejenija; Ajibade, Peter A.
2015-07-01
[Cd(diptu)2(ced)], [Cd(diptu)2(ced)(bpy)], [Cd(diptu)2(ced)(phen)], (where diptu = diisopropyl thiourea; ced = 1-cyano-1-carboethoxylethylene-2,2‧-dithiolate; bpy = 2,2‧-bipyridine and phen = 1,10-phenanthroline) have been prepared and used as single source precursors for the preparation of hexadecylamine capped CdS nanoparticles. The precursor complexes were characterized by elemental analysis, FTIR and TGA. The structural properties of the nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy techniques (SEM). The optical properties of the nanoparticles were studied using UV-Visible and photoluminescence spectroscopy. The XRD analysis showed that the nanoparticles were indexed to the hexagonal phase of CdS and the TEM results showed CdS nanoparticles with average crystallite sizes of 4.00-8.80 nm.
Femtosecond-laser hyperdoping silicon in an SF{sub 6} atmosphere: Dopant incorporation mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sher, Meng-Ju, E-mail: msher@stanford.edu; Mangan, Niall M.; Lin, Yu-Ting
2015-03-28
In this paper, we examine the fundamental processes that occur during femtosecond-laser hyperdoping of silicon with a gas-phase dopant precursor. We probe the dopant concentration profile as a function of the number of laser pulses and pressure of the dopant precursor (sulfur hexafluoride). In contrast to previous studies, we show the hyperdoped layer is single crystalline. From the dose dependence on pressure, we conclude that surface adsorbed molecules are the dominant source of the dopant atoms. Using numerical simulation, we estimate the change in flux with increasing number of laser pulses to fit the concentration profiles. We hypothesize that themore » native oxide plays an important role in setting the surface boundary condition. As a result of the removal of the native oxide by successive laser pulses, dopant incorporation is more efficient during the later stage of laser irradiation.« less
The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles
NASA Astrophysics Data System (ADS)
Taniguchi, Masahiko; Ptaszek, Marcin; Chandrashaker, Vanampally; Lindsey, Jonathan S.
2017-03-01
Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen ( PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid ( ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.
Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki
2014-12-15
Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin
2017-04-01
Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, Anelia; Booth, Samuel
Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensivemore » overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.« less
Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E
2017-11-01
Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.
Development of an industrializable fermentation process for propionic acid production.
Stowers, Chris C; Cox, Brad M; Rodriguez, Brandon A
2014-05-01
Propionic acid (PA) is a short-chain fatty acid with wide industrial application including uses in pharmaceuticals, herbicides, cosmetics, and food preservatives. As a three-carbon building block, PA also has potential as a precursor for high-volume commodity chemicals such as propylene. Currently, most PA is manufactured through petrochemical routes, which can be tied to increasing prices and volatility due to difficulty in demand forecasting and feedstock availability. Herein described are research advancements to develop an industrially feasible, renewable route to PA. Seventeen Propionibacterium strains were screened using glucose and sucrose as the carbon source to identify the best platform strain. Propionibacterium acidipropionici ATCC 4875 was selected as the platform strain and subsequent fermentation optimization studies were performed to maximize productivity and yield. Fermentation productivity was improved three-fold to exceed 2 g/l/h by densifying the inoculum source. Byproduct levels, particularly lactic and succinic acid, were reduced by optimizing fermentor headspace pressure and shear. Following achievement of commercially viable productivities, the lab-grade medium components were replaced with industrial counterparts to further reduce fermentation costs. A pure enzymatically treated corn mash (ECM) medium improved the apparent PA yield to 0.6 g/g (PA produced/glucose consumed), but it came at the cost of reduced productivity. Supplementation of ECM with cyanocobalamin restored productivity to near lab-grade media levels. The optimized ECM recipe achieved a productivity of 0.5 g/l/h with an apparent PA yield of 0.60 g/g corresponding to a media cost <1 USD/kg of PA. These improvements significantly narrow the gap between the fermentation and incumbent petrochemical processes, which is estimated to have a manufacturing cost of 0.82 USD/kg in 2017.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
Mechanically activated synthesis of PZT and its electromechanical properties
NASA Astrophysics Data System (ADS)
Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.
2005-08-01
Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan
Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less
He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; ...
2017-07-31
Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less
Serov, Alexey; Halevi, Barr; Artyushkova, Kateryna; Atanassov, Plamen B; Martinez, Ulises A
2017-04-25
A method of preparing M-N--C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Control of single-photon routing in a T-shaped waveguide by another atom
NASA Astrophysics Data System (ADS)
Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen
2018-04-01
Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.
Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak
2014-08-22
The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.
Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration.
Williams, Jason S; Hsu, Jessica Y; Rossi, Christy Cortez; Artinger, Kristin Bruk
2018-03-29
Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in pigmentation of the skin and epidermal appendages. In most vertebrates, melanocyte precursor cells migrate solely along the dorsolateral pathway to populate the skin. However, zebrafish melanocyte precursors also migrate along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration. pcdh10a and pcdh10b are expressed in a subset of melanocyte precursor and somatic cells respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pcdh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and pcdh10b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potentially interact for proper transient migration along the ventromedial pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
A Python Analytical Pipeline to Identify Prohormone Precursors and Predict Prohormone Cleavage Sites
Southey, Bruce R.; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.
2008-01-01
Neuropeptides and hormones are signaling molecules that support cell–cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides. PMID:19169350
A facile molten-salt route to graphene synthesis.
Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus
2014-01-15
Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Planning chemical syntheses with deep neural networks and symbolic AI
NASA Astrophysics Data System (ADS)
Segler, Marwin H. S.; Preuss, Mike; Waller, Mark P.
2018-03-01
To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
Multimedia Analysis plus Visual Analytics = Multimedia Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinchor, Nancy; Thomas, James J.; Wong, Pak C.
2010-10-01
Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.
Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films
NASA Astrophysics Data System (ADS)
Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.
Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.
Obsidian trade routes in the mayan area.
Hammond, N
1972-12-08
Obsidian from two sources in highland Guatemala has been found at 23 sites of the Classic Mayan civilization, mainly in the nonvolcanic lowlands to the north. The distribution, together with trade routes suggested by topography and documentary sources, suggests efficient waterborne transport and competition between sources for the lowland market.
Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701
Deposition and properties of cobalt- and ruthenium-based ultra-thin films
NASA Astrophysics Data System (ADS)
Henderson, Lucas Benjamin
Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua
Finely controlled synthesis of high active and robust non-precious metal catalysts with excellent electrocatalytic efficiency towards oxygen reduction reaction is extremely vital for successful implementation of fuel cells and metal batteries. Unprecedented oxygen reduction reaction electrocatalytic performances and the diversified synthetic procedure in term of favorable structure/morphology characteristics make transition metals-derived M–N–C (M=Fe, Co) structures the most promising nanocatalysts. Herein, using the nitrogen-containing small molecular and inorganic salt as precursors and ultrathin tellurium nanowires as templates, we successfully synthesized a series of well-defined M-N-doped hollow carbon nanowire aerogels through one step hydrothermal route and subsequent facile annealing treatment. Taking advantagemore » of the porous nanostructures, one-dimensional building block as well as homogeneity of active sites, the resultant Fe-N-doped carbon hollow nanowire aerogels exhibited excellent ORR electrocatalytic performance even better than commercial Pt/C in alkaline solution, holding great potential in fuel cell applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
Multi-photon excited coherent random laser emission in ZnO powders
NASA Astrophysics Data System (ADS)
Tolentino Dominguez, Christian; Gomes, Maria De A.; Macedo, Zélia S.; de Araújo, Cid B.; Gomes, Anderson S. L.
2014-11-01
We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback.
Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi
2008-01-01
The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413
Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell
Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle
2016-01-01
Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas. PMID:28144515
Kong, Qinglu; Zhang, Lingxia; Liu, Jianan; Wu, Meiying; Chen, Yu; Feng, Jingwei; Shi, Jianlin
2014-12-25
Hydrophilic mesoporous carbon nanoparticles (MCNs) have been synthesized via an extremely facile precursor carbonization-in-hot solvent route. The synthesized MCNs show well-defined particle and pore size distribution at around 100 nm and 2.7 nm, respectively, and multicolor and upconversion photoluminescence, which endow the MCNs with multicolor/upconversion bioimaging and drug delivery properties.
USDA-ARS?s Scientific Manuscript database
A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...
High-fraction brookite films from amorphous precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating themore » previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.« less
Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew
2009-06-01
Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed.more » Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.« less
Photon-assisted electron energy loss spectroscopy and ultrafast imaging.
Howie, Archie
2009-08-01
A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.
Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources
NASA Astrophysics Data System (ADS)
Davoodi, M.; Mesgari, M. S.
2015-12-01
Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah
2013-07-01
This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.
2017-01-01
The synthesis of iron oxide nanoparticles (NPs) by thermal decomposition of iron precursors using oleic acid as surfactant has evolved to a state-of-the-art method to produce monodisperse, spherical NPs. The principles behind such monodisperse syntheses are well-known: the key is a separation between burst nucleation and growth phase, whereas the size of the population is set by the precursor-to-surfactant ratio. Here we follow the thermal decomposition of iron pentacarbonyl in the presence of oleic acid via in situ X-ray scattering. This method allows reaction kinetics and precursor states to be followed with high time resolution and statistical significance. Our investigation demonstrates that the final particle size is directly related to a phase of inorganic cluster formation that takes place between precursor decomposition and particle nucleation. The size and concentration of clusters were shown to be dependent on precursor-to-surfactant ratio and heating rate, which in turn led to differences in the onset of nucleation and concentration of nuclei after the burst nucleation phase. This first direct observation of prenucleation formation of inorganic and micellar structures in iron oxide nanoparticle synthesis by thermal decomposition likely has implications for synthesis of other NPs by similar routes. PMID:28572705
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1990-01-01
The level of skill in predicting the size of the sunspot cycle is investigated for the two types of precursor techniques, single variate and bivariate fits, both applied to cycle 22. The present level of growth in solar activity is compared to the mean level of growth (cycles 10-21) and to the predictions based on the precursor techniques. It is shown that, for cycle 22, both single variate methods (based on geomagnetic data) and bivariate methods suggest a maximum amplitude smaller than that observed for cycle 19, and possibly for cycle 21. Compared to the mean cycle, cycle 22 is presently behaving as if it were a +2.6 sigma cycle (maximum amplitude of about 225), which means that either it will be the first cycle not to be reliably predicted by the combined precursor techniques or its deviation relative to the mean cycle will substantially decrease over the next 18 months.
Kraus, T.E.C.; Bergamaschi, B.A.; Hernes, P.J.; Spencer, R.G.M.; Stepanauskas, R.; Kendall, C.; Losee, R.F.; Fujii, R.
2008-01-01
This study assesses how rivers, wetlands, island drains and open water habitats within the Sacramento-San Joaquin River Delta affect dissolved organic matter (DOM) content and composition, and disinfection byproduct (DBP) formation. Eleven sites representative of these habitats were sampled on six dates to encompass seasonal variability. Using a suite of qualitative analyses, including specific DBP formation potential, absorbance, fluorescence, lignin content and composition, C and N stable isotopic compositions, and structural groupings determined using CPMAS (cross polarization, magic angle spinning) 13C NMR, we applied a geochemical fingerprinting approach to characterize the DOM from different Delta habitats, and infer DOM and DBP precursor sources and estimate the relative contribution from different sources. Although river input was the predominant source of dissolved organic carbon (DOC), we observed that 13-49% of the DOC exported from the Delta originated from sources within the Delta, depending on season. Interaction with shallow wetlands and subsided islands significantly increased DOC and DBP precursor concentrations and affected DOM composition, while deep open water habitats had little discernable effect. Shallow wetlands contributed the greatest amounts of DOM and DBP precursors in the spring and summer, in contrast to island drains which appeared to be an important source during winter months. The DOM derived from wetlands and island drains had greater haloacetic acid precursor content relative to incoming river water, while two wetlands contributed DOM with greater propensity to form trihalomethanes. These results are pertinent to restoration of the Delta. Large scale introduction of shallow wetlands, a proposed restoration strategy, could alter existing DOC and DBP precursor concentrations, depending on their hydrologic connection to Delta channels. ?? 2008 Elsevier Ltd.
Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.
2010-01-01
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.
Preserving Source Location Privacy for Energy Harvesting WSNs.
Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng
2017-03-30
Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes.
Preserving Source Location Privacy for Energy Harvesting WSNs
Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng
2017-01-01
Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes. PMID:28358341
da Cruz-Landim, Carminda; Roat, Thaisa Cristina; Berger, Bruno
2013-08-01
The yolk protein precursor, vitellogenin (Vg), in bees is synthesized in the fat body trophocytes, delivered to the hemolymph and ultimately absorbed from there during the vitellogenic phase of oocytes in the active ovary. The routes tracing the material exchange that occurs between the trophocytes and the hemolymph, in addition to the transportation from the hemolymph to the ovarian follicles, were marked by alkaline phosphatase and lanthanum nitrate (LN). Active ovaries from nurse workers and physogastric queens, as well as inactive ovaries of virgin queens, were examined by transmission electron microscopy. The LN permitted better visualization of the routes of exchanges between the organs and the hemolymph. Both methods demonstrate the apparent differences between the phases of the ovary and the bee caste. In inactive ovaries of the virgin queens, the routes from the follicular epithelium to the oocyte remain closed; conversely, they are open in active ovaries of the nurse workers and physogastric queens. The differences between the methods and classes of bees are discussed.
The relationship between elastic constants and structure of shock waves in a zinc single crystal
NASA Astrophysics Data System (ADS)
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
Statistical study of single and multiple pulse laser-induced damage in glasses.
Gallais, L; Natoli, J; Amra, C
2002-12-16
Single and multiple pulse laser damage studies are performed in Suprasil silica and BK-7 borosilicate glasses. Experiments are made in the bulk of materials at 1.064microm with nanosecond pulses, using an accurate and reliable measurement system. By means of a statistical study on laser damage probabilities, we demonstrate that the same nano-precursors could be involved in the multiple shot and single shot damage process. A damage mechanism with two stages is then proposed to explain the results. Firstly, a pre-damage process, corresponding to material changes at a microscopic level, leads the precursor to a state that can induce a one-pulse damage. And secondly a final damage occurs, with a mechanism identical to the single shot case. For each material, a law is found to predict the precursor life-time. We can then deduce the long term life of optical elements in high-power laser systems submitted to multipulse irradiation.
Photochemical grid model implementation and application of ...
For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to track source impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned am
Maino, G; Carleer, R; Marchal, W; Bonneux, G; Hardy, A; Van Bael, M K
2017-11-07
LiMn 2 O 4 (LMO) is interesting from the viewpoint of its energy storage applications as it is a cathode in lithium ion batteries (LIB), which contains no rare, toxic or expansive elements, while it provides a high theoretical capacity (148 mA h g -1 ) at a reasonable voltage (4 V region) and a higher thermal stability compared to cobalt based cathodes and has a good rechargeability and cycling stability due to its spinel structure. Low temperature synthesis routes for cathode materials are currently gaining attention, in order to decrease the ecological footprint of the final LIB. Here, the crystallization temperature of LMO by a citrate based solution-gel synthesis was significantly lowered, to as low as 250 °C by the addition of ethanol to the precursor. The role of ethanol in this synthesis process was explored. It was found to lead to a considerable increase in the oxidation rate of the redox couple Mn 2+ /Mn 3+ , a lowering of the precursor decomposition temperature by 200 °C, besides a drastic decrease in the crystallization temperature (reaching 250 °C). Moreover, the main cause was identified to be an esterification reaction of ethanol with the carboxylic acid in the precursor complexes, taking place before the oxide formation. The insights obtained strengthen the knowledge regarding citrato-Mn 2+ /Mn 3+ complexes present in aqueous solution-gel synthesis routes and are relevant for the preparation of various manganese containing oxides. Moreover, the precursor developed opens up a new possibility for the low temperature synthesis of LMO powders and thin films for application in LIB. In the case of thin film batteries, the low temperature processing provides compatibility with other materials in the thin film battery stack, avoiding undesired oxidations or interfacial reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Abhishek Kumar; Verma, Yogendra Lal; Singh, Manish Pratap
In the present study, ionogels have been synthesized by immobilizing IL (1-ethyl-3-methylimidazolium tetrafluoroborate) in silica gel matrices using non-aqueous route. In this process, tetraethyl orho-silane (TEOS) as a precursor to silicon dioxide and formic acid as a solvolytic gelating reagent in reduced molar ratio 1:4 were used. We find that reduced molar concentration of formic acid results the formation of ionogels having less number of closed pores (totally isolated from their neighbours), larger density and stable monolithic form. TEM and SEM measurements are used to visualize the morphology of sample and closed pores present in the sample. N{sub 2}-sorption measurementmore » is used to measure the pore parameters of the silica matrices which shows the mesoporous structure. DSC and TGA results show the change in phase transition temperature and thermal stability of IL upon confinement in silica matrices. Moreover, ionic conductivity of bulk and confined IL is measured using impedance spectroscopy and it has been found that it increases with increasing the temperature as well as concentration of IL in ionogels. Apart from these characterization techniques, ionogels have been characterized using FTIR and fluorescence spectroscopy which exhibit the change in vibrational frequencies and fluorescence behaviour of confined IL. - Highlights: • Synthesis of stable ionogel using non-hydrolytic route with reduced precursor and solvolytic reagent molar ratio. • Ionogels are free from entrapped residual reaction product. • The ionogels synthesized with higher amount of ionic liquids show bulk liquid like electrical behaviour.« less
Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan
2017-07-24
Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.
Producing aglycons of ginsenosides in bakers' yeast
Dai, Zhubo; Wang, Beibei; Liu, Yi; Shi, Mingyu; Wang, Dong; Zhang, Xianan; Liu, Tao; Huang, Luqi; Zhang, Xueli
2014-01-01
Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative route compared to traditional extraction methods. Synthetic pathways of these three aglycons were constructed in S. cerevisiae by introducing β-amyrin synthase, oleanolic acid synthase, dammarenediol-II synthase, protopanaxadiol synthase, protopanaxatriol synthase and NADPH-cytochrome P450 reductase from different plants. In addition, a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase and 2,3-oxidosqualene synthase genes were overexpressed to increase the precursor supply for improving aglycon production. Strain GY-1 was obtained, which produced 17.2 mg/L protopanaxadiol, 15.9 mg/L protopanaxatriol and 21.4 mg/L oleanolic acid. The yeast strains engineered in this work can serve as the basis for creating an alternative way for producing ginsenosides in place of extractions from plant sources. PMID:24424342
NASA Astrophysics Data System (ADS)
Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita; Jana, Sumanta; Chattopadhyay, Dipankar; Mondal, Anup; Seok, Sang Il; Bera, Pulakesh
2016-10-01
Hexagonal copper-deficient copper(I) sulfide (Cu2- x S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa)2][CuCl2], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN2S2 chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu2- x S ( x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH2SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of CuI-complex to Cu2- x S ( x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu1.97S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu1.8S. The optical band gap values (2.25-2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity ( 87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).
Influence of polyols on the formation of nanocrystalline nickel ferrite inside silica matrices
NASA Astrophysics Data System (ADS)
Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Bunoiu, Mădălin
2017-01-01
We have synthesized nickel ferrite/silica nanocomposites, using a modified sol-gel method that combines the sol-gel processing with the thermal decomposition of metal-organic precursors, leading to a homogenous dispersion of ferrite nanoparticles within the silica matrix and a narrow size distribution. We used as starting materials tetraethyl orthosilicate (TEOS) as source of silica, Fe(III) and Ni(II) nitrates as sources of metal cations, and polyols as reducing agent (polyvinyl alcohol, 1,4-butanediol and their mixture). TG/DTA coupled technique evidenced the redox interaction between the polyol and the mixture of metal nitrates during the heating of the gel, with formation of nickel ferrite precursors in the pores of the silica-gels. FT-IR spectroscopy confirmed the formation of metal carboxylates inside the silica-gels and the interaction of the polyols with the Si-OH groups of the polysiloxane network. X-ray diffractometry evidenced that in case of nanocomposites obtained by using a single polyol, nickel ferrite forms as single crystalline phase inside the amorphous silica matrix, while in case of using a mixture of polyols the nickel oxide appears as a secondary phase. TEM microscopy and elemental mapping evidenced the fine nature of the obtained nickel ferrite nanoparticles that are homogenously dispersed within the silica matrix. The obtained nanocomposites exhibit magnetic behavior very close to superparamagnetism slightly depending on the presence and nature of the organic compounds used in synthesis; the magnetization reached at 5 kOe magnetic field was 7 emu/g for all composites.
Christie, Kimberly J.; Turnley, Ann M.
2012-01-01
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046
Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C
2015-08-05
Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.
A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control.
Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Ostrowski, Andrzej; Malinowska, Karolina; Herbich, Jerzy; Golec, Barbara; Wielgus, Ireneusz; Pron, Adam
2014-05-19
A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 °C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core.
NASA Astrophysics Data System (ADS)
Schütte, Kai; Doddi, Adinarayana; Kroll, Clarissa; Meyer, Hajo; Wiktor, Christian; Gemel, Christian; van Tendeloo, Gustaaf; Fischer, Roland A.; Janiak, Christoph
2014-04-01
Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions.Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions. Electronic supplementary information (ESI) available: Ni-Ga phase diagrams, EDX (XPS) of NP1-NP8, table of Ni : Ga ratios, TG of Ni-Ga SSPs, analysis of NP4, dec. of [Ni(GaCp*)3(PCy3)] with characterization, local resolution EDX of NP3-IL, Ni-NP characterization from Ni(COD)2 and details of (semi-)hydrogenation catalysis. See DOI: 10.1039/c4nr00111g
Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition
Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)
2016-01-01
Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116
Mondal, Sandip; Bera, Sachinath; Maity, Suvendu; Ghosh, Prasanta
2017-11-06
The study discloses that the redox activity of N-(1,4-naphthoquinone)-o-aminophenol derivatives (L R H 2 ) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L R H 2 is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2-) (L R 2- ) and SQ-N-(1,4-naphthoquinone) (L R •- ) states in the complexes. Reactions of L R H 2 with cobalt(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives ( OX L R ) in good yields, when R = H, Me, t Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L R H 2 → OX L R in MeOH is a (6H + + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C-O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L Me •- )Co III Cl 2 ] (A). Notably, formation of a spiro derivative was not detected in CH 3 CN and the reaction ends up furnishing A. The route of the reaction is tunable by R, when R = NO 2 , it is a (2e + 4H + ) oxidation reaction affording a dinuclear L R 2- complex of cobalt(III) of the type [(L NO2 2- ) 2 Co III 2 (OMe) 2 (H 2 O) 2 ] (1) in good yields. No cascade occurs with zinc(II) ion even in MeOH and produces a L Me •- complex of type [(L Me •- )Zn II Cl 2 ] (2). The intermediate A and 2 exhibit strong EPR signals at g = 2.008 and 1.999, confrming the existence of L Me •- coordinated to low-spin cobalt(III) and zinc(II) ions. The intermediates of L R H 2 → OX L R conversion were analyzed by ESI mass spectrometry. The molecular geometries of OX L R and 1 were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations.
Mallick, Debkrishna; Thapa, Rajoo; Biswas, Biswajit
2016-02-01
Acute leukaemias occur as the result of clonal expansion subsequent to transformation and arrest at a normal differentiation stage of haematopoietic precursors, which commit to a single lineage, such as myeloid or B-lymphoid or T-lymphoid cells. Biphenotypic acute leukaemia (BAL) constitutes a biologically different group of leukaemia arising from a precursor stem cell and co-expressing more than one lineage specific marker. The present report describes a child with unusual co-occurrence of biphenotypic (B-precursor cell and Myeloid) acute leukaemia, haemoglobin E trait and glucose 6-phosphate dehydrogenase (G6-PD) deficiency. To the best of our knowledge, this constellation of haematological conditions in a single child has never been described before. 2016 BMJ Publishing Group Ltd.
Chemical Routes to Ceramics With Tunable Properties and Structures
2006-07-26
thermolytic or chemical reactions, and then dissolution of the alumina membrane to leave the free standing fibers. In our work, we used alumina membranes ...converted the precursor to a boron carbide coating. Dissolution of the coated alumina membranes with HF then yielded free-standing nanocylindrical...construct, via sol-gel condensations, ordered macroporous arrays of titania , zirconia, and alumina . Other work employing the silica templates have
Terrier, Victor P; Delmas, Agnès F; Aucagne, Vincent
2017-01-04
We herein introduce a straightforward synthetic route to cysteine-containing cyclic peptides based on the intramolecular native chemical ligation of in situ generated thioesters. Key precursors are N-Hnb-Cys crypto-thioesters, easily synthesized by Fmoc-based SPPS. The strategy is applied to a representative range of naturally occurring cyclic disulfide-rich peptide sequences.
Rapid, General Access to Chiral β-Fluoroamines and β, β-Difluoroamines via Organocatalysis
Fadeyi, Olugbeminiyi O.; Lindsley, Craig W.
2011-01-01
A rapid, general route to enantiopure β-fluoroamines and β,β-difluoroamines has been developed employing organocatalysis in both a two-pot and a one-pot procedure. Both chemical yields (64–82%) and enantioselectivity (94–98% ee) were excellent and represent a significant improvement in the art of preparing chemically diverse β-fluoroamines from readily available precursors. PMID:19159275
An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks
Tufail, Ali; Khayam, Syed Ali; Raza, Muhammad Taqi; Ali, Amna; Kim, Ki-Hyung
2010-01-01
An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability. PMID:22294890
NASA Astrophysics Data System (ADS)
Guron, Marta
There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.
Fabricating Large-Area Sheets of Single-Layer Graphene by CVD
NASA Technical Reports Server (NTRS)
Bronikowski, Michael; Manohara, Harish
2008-01-01
This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one monolayer of the target material.
Sources of Information on Sex and Antecedents of Early Sexual Initiation among Urban Latino Youth
ERIC Educational Resources Information Center
Fuxman, Shai; De Los Santos, Sabrina; Finkelstein, Daniel; Landon, Mary Kay; O'Donnell, Lydia
2015-01-01
The study examined the relationship between young adolescents' sources of information on sex and precursors to sexual activity. Surveys were conducted with 3,940 Latino sixth grade students. According to results, girls who received information from their parents were less likely to engage in sex precursors. For boys, getting information from other…
KINETICS OF LOW SOURCE REACTOR STARTUPS. PART II
DOE Office of Scientific and Technical Information (OSTI.GOV)
hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.
1962-06-01
A computational technique is described for computation of the probability distribution of power level for a low source reactor startup. The technique uses a mathematical model, for the time-dependent probability distribution of neutron and precursor concentration, having finite neutron lifetime, one group of delayed neutron precursors, and no spatial dependence. Results obtained by the technique are given. (auth)
Hurski, Alaksiej L; Zhabinskii, Vladimir N; Khripach, Vladimir A
2012-06-01
A new synthetic route to 22S-hydroxy-24R-methyl steroids has been developed and applied for the preparation of cathasterone, (22S)-hydroxycampesterol, and 6-deoxocathasterone, which are precursors in the early stages of the biosynthesis of brassinolide. The construction of the steroid side chain with the correct stereochemistry at C-24 is based on the use of Claisen rearrangement. The introduction of the 22-hydroxyl group has been achieved by epoxidation of the Δ(22)-double bond, nucleophilic opening of the intermediate mesyl epoxide with sodium sulfide, and desulfurization of the formed tetrahydrothiophenes with Raney nickel. Copyright © 2012 Elsevier Inc. All rights reserved.
A facile thermal decomposition route to synthesise CoFe2O4 nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
2014-01-01
The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.
Solution synthesis of germanium nanocrystals
Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH
2009-09-22
A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.
Synthesis of noble metal/carbon nanotube composites in supercritical methanol.
Sun, Zhenyu; Fu, Lei; Liu, Zhimin; Han, Buxing; Liu, Yunqi; Du, Jimin
2006-03-01
A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.
The influence of precursor addition order on the porosity of sol-gel bioactive glasses.
Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina
2018-06-16
The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Intrusion Detection for Defense at the MAC and Routing Layers of Wireless Networks
2007-01-01
Space DoS Denial of Service DSR Dynamic Source Routing IDS Intrusion Detection System LAR Location-Aided Routing MAC Media Access Control MACA Multiple...different mobility parameters. 10 They simulate interaction between three MAC protocols ( MACA , 802.11 and CSMA) and three routing protocols (AODV, DSR
Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites
NASA Astrophysics Data System (ADS)
De, Arijit; Kundu, Susmita
2016-07-01
Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
This paper presents an approach for creating common weather avoidance reroutes for multiple flights and the associated benefits analysis, which is an extension of the single flight advisories generated using the Dynamic Weather Routes (DWR) concept. These multiple flight advisories are implemented in the National Airspace System (NAS) Constraint Evaluation and Notification Tool (NASCENT), a nation-wide simulation environment to generate time- and fuel-saving alternate routes for flights during severe weather events. These single flight advisories are clustered together in the same Center by considering parameters such as a common return capture fix. The clustering helps propose routes called, Multi-Flight Common Routes (MFCR), that avoid weather and other airspace constraints, and save time and fuel. It is expected that these routes would also provide lower workload for traffic managers and controllers since a common route is found for several flights, and presumably the route clearances would be easier and faster. This study was based on 30-days in 2014 and 2015 each, which had most delays attributed to convective weather. The results indicate that many opportunities exist where individual flight routes can be clustered to fly along a common route to save a significant amount of time and fuel, and potentially reducing the amount of coordination needed.
NASA Astrophysics Data System (ADS)
Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui
2015-12-01
In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.
Thompson, David; Kranbuehl, David; Espuche, Eliane
2016-10-18
This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.
Facile Syntheses of Monodisperse Ultra-Small Au Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui
2006-11-02
During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Paz-Simon, Héloïse; Chemtob, Abraham, E-mail: abraham.chemtob@uha.fr; Croutxé-Barghorn, Céline
2014-11-01
In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting inmore » ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.« less
Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina
2015-05-20
Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka,; Kumar, Bharat; Kumar, Sandeep
The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetatemore » (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.« less
The DZERO Level 3 Data Acquisition System
NASA Astrophysics Data System (ADS)
Angstadt, R.; Brooijmans, G.; Chapin, D.; Clements, M.; Cutts, D.; Haas, A.; Hauser, R.; Johnson, M.; Kulyavtsev, A.; Mattingly, S. E. K.; Mulders, M.; Padley, P.; Petravick, D.; Rechenmacher, R.; Snyder, S.; Watts, G.
2004-06-01
The DZERO experiment began RunII datataking operation at Fermilab in spring 2001. The physics program of the experiment requires the Level 3 data acquisition (DAQ) system system to handle average event sizes of 250 kilobytes at a rate of 1 kHz. The system routes and transfers event fragments of approximately 1-20 kilobytes from 63 VME crate sources to any of approximately 100 processing nodes. It is built upon a Cisco 6509 Ethernet switch, standard PCs, and commodity VME single board computers (SBCs). The system has been in full operation since spring 2002.
Yamamoto, Shigeru; Suga, Kazuyoshi; Maeda, Kazunari; Maeda, Noriko; Yoshimura, Kiyoshi; Oka, Masaaki
2016-05-01
To evaluate the utility of three-dimensional (3D) computed tomography (CT)-lymphography (LG) breast sentinel lymph node navigation in our institute. Between 2002 and 2013, we preoperatively identified sentinel lymph nodes (SLNs) in 576 clinically node-negative breast cancer patients with T1 and T2 breast cancer using 3D CT-LG method. SLN biopsy (SLNB) was performed in 557 of 576 patients using both the images of 3D CT-LG for guidance and the blue dye method. Using 3D CT-LG, SLNs were visualized in 569 (99%) of 576 patients. Of 569 patients, both lymphatic draining ducts and SLNs from the peritumoral and periareolar areas were visualized in 549 (96%) patients. Only SLNs without lymphatic draining ducts were visualized in 20 patients. Drainage lymphatic pathways visualized with 3D CT-LG (549 cases) were classified into four patterns: single route/single SLN (355 cases, 65%), multiple routes/single SLN (59 cases, 11%) single route/multiple SLNs (62 cases, 11%) and multiple routes/multiple SLNs (73 cases, 13%). SLNs were detected in 556 (99.8%) of 557 patients during SLNB. CT-LG is useful for preoperative visualization of SLNs and breast lymphatic draining routes. This preoperative method should contribute greatly to the easy detection of SLNs during SLNB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, E.; Floether, F. F.; Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE
Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using themore » on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.« less
Falls, Roman; Seman, Michael; Braat, Sabine; Sortino, Joshua; Allen, Jason D; Neil, Christopher J
2017-08-08
Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO 3 ) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.
NASA Astrophysics Data System (ADS)
Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng
2016-05-01
Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant.
Zhao, B.; Wang, S. X.; Xing, J.; ...
2015-01-30
An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less
Spatial localization of nanoparticle growth in photoinduced nanocomposites
NASA Astrophysics Data System (ADS)
Smirnov, Anton A.; Pikulin, Alexander; Bityurin, Nikita
2018-02-01
Photoinduced nanocomposites are the polymer materials where the nanoparticles can be generated by the light irradiation. The single atoms of metal are formed due to the photoreduction of the metal-containing precursor added to the polymer matrix. Then the atoms precipitate into the nanoparticles (NPs). Similarly, semiconductor NPs are assembled from the monomer species such as CdS, which can be released due to the photodestruction of the appropriate precursor. We analyze theoretically the possibility of spatial confinement of growing nanoparticles in a domain where the elementary species are generated by a three-dimensionally localized source. It is shown that the effective confinement can be achieved only if the size of the generation domain exceeds some critical spatial scale determined by the parameters of the system. The confinement is provided by the trapping of the diffusing elementary species by the growing nanoparticles. The proposed model considers the irreversible particle growth, typical for the noble metals. Both the nucleation and the particle growth processes are suggested to be diffusion controlled.
Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.
2006-01-01
Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.
NASA Astrophysics Data System (ADS)
Onwudiwe, Damian C.; Strydom, Christien A.
2015-01-01
Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML12L2] (M = Cd(II), Zn(II); L1 = N-phenyldithiocarbamate, L2 = 2,2‧ bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M = Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained.
Pugh, David; Bloor, Leanne G; Parkin, Ivan P; Carmalt, Claire J
2012-05-07
The donor-functionalised alkoxides {Me(3-x)N(CH(2)CH(2)O)(x)} (L(x); x = 1, 2) have been used to form gallium hydride complexes [{GaH(2)(L(1))}(2)] and [{GaH(L(2))}(2)] that are stable and isolable at room temperature. Along with a heteroleptic gallium tris(alkoxide) complex [Ga(L(1))(3)] and the dimeric complex [{GaMe(L(2))}(2)], these compounds have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted chemical vapour deposition (AACVD) with toluene as solvent. The resulting films were mostly transparent, indicating low levels of carbon contamination, and they were also mainly amorphous. However, [Ga(L(1))(3)] did contain visibly crystalline material deposited at a substrate temperature of 450 °C, by far the lowest ever observed for the CVD of gallium oxide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation-Induced Processing of Hydrocarbons in Environments Relevant to Pluto
2001-05-07
energetic’ (characterized by high levels of electrical and geothermal activity) liquid water environment, are capable of generating significant prebiotic ...synthesis of biogenic molecules (Chyba & Sagan 1992). In this light, a potential cometary source of prebiotic organics (the precursors of biological...precursors for prebiotic molecules. This exogenous source of prebiotic organics on early Earth could provide an alternative method of accounting for
A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan
2011-02-01
A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.
Near-field interferometry of a free-falling nanoparticle from a point-like source
NASA Astrophysics Data System (ADS)
Bateman, James; Nimmrichter, Stefan; Hornberger, Klaus; Ulbricht, Hendrik
2014-09-01
Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
NASA Astrophysics Data System (ADS)
Bonatto, Cristian; Endler, Antonio
2017-07-01
We investigate the occurrence of extreme and rare events, i.e., giant and rare light pulses, in a periodically modulated CO2 laser model. Due to nonlinear resonant processes, we show a scenario of interaction between chaotic bands of different orders, which may lead to the formation of extreme and rare events. We identify a crisis line in the modulation parameter space, and we show that, when the modulation amplitude increases, remaining in the vicinity of the crisis, some statistical properties of the laser pulses, such as the average and dispersion of amplitudes, do not change much, whereas the amplitude of extreme events grows enormously, giving rise to extreme events with much larger deviations than usually reported, with a significant probability of occurrence, i.e., with a long-tailed non-Gaussian distribution. We identify recurrent regular patterns, i.e., precursors, that anticipate the emergence of extreme and rare events, and we associate these regular patterns with unstable periodic orbits embedded in a chaotic attractor. We show that the precursors may or may not lead to the emergence of extreme events. Thus, we compute the probability of success or failure (false alarm) in the prediction of the extreme events, once a precursor is identified in the deterministic time series. We show that this probability depends on the accuracy with which the precursor is identified in the laser intensity time series.
MacLachlan, Andrew J; Rath, Thomas; Cappel, Ute B; Dowland, Simon A; Amenitsch, Heinz; Knall, Astrid-Caroline; Buchmaier, Christine; Trimmel, Gregor; Nelson, Jenny; Haque, Saif A
2015-01-01
In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials. PMID:25866496
The removal of disinfection by-product precursors from water with ceramic membranes.
Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M
2010-01-01
The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.
R L Morlighem, Jean-Étienne; Huang, Chen; Liao, Qiwen; Braga Gomes, Paula; Daniel Pérez, Carlos; de Brandão Prieto-da-Silva, Álvaro Rossan; Ming-Yuen Lee, Simon; Rádis-Baptista, Gandhi
2018-06-13
Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis , looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.
NASA Astrophysics Data System (ADS)
Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.
2017-09-01
Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, B. P.; Valdez, C. A.; DeHope, A. J.
Critical to many modern forensic investigations is the chemical attribution of the origin of an illegal drug. This process greatly relies on identification of compounds indicative of its clandestine or commercial production. The results of these studies can yield detailed information on method of manufacture, sophistication of the synthesis operation, starting material source, and final product. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3- methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods were studied in an effort to identify and classify route-specific signatures. These methods were chosen to minimize the use of scheduledmore » precursors, complicated laboratory equipment, number of overall steps, and demanding reaction conditions. Using gas and liquid chromatographies combined with mass spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductivelycoupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements were monitored. As seen in our previous work with CAS of fentanyl synthesis the complexity of the resultant data matrix necessitated the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically significant, route-specific CAS were identified. Statistical classification models using a variety of machine learning techniques were then developed with the ability to predict the method of 3-methylfentanyl synthesis from three blind crude samples generated by synthetic chemists without prior experience with these methods.« less
Design of Polymers with Semiconductor, NLO and Structural Properties.
1991-04-22
polymer thin films. + 14 KV Needle electrod Polymer layer ITO electrode Substrate Heater and temperature control unit The second harmonic coefficients of...the solubily and processability through utilization of derivitization and precursor routes we have been able to form the first optical quality films...ethylene spacer, and therefore 14 possesses a great degree of solubility in organic solvents, necessary for the fabrication of optical quality thin films
Stereocontrolled synthesis of polyhydroxylated bicyclic azetidines as a new class of iminosugars.
Malinowski, Maciej; Hensienne, Raphaël; Kern, Nicolas; Tardieu, Damien; Bodlenner, Anne; Hazelard, Damien; Compain, Philippe
2018-06-12
We report herein the development of a stereodivergent route towards polyhydroxylated bicyclic azetidine scaffolds, namely 6-azabicyclo[3.2.0]heptane derivatives. The strategy hinges on a common bicyclic β-lactam precursor, which is forged by way of a rare example of a cationic Dieckmann-type reaction, followed by IBX-mediated desaturation. Substrate-controlled diastereoselective oxidations then allow the divergent preparation of novel iminosugar mimics.
High-performance and scalable metal-chalcogenide semiconductors and devices via chalco-gel routes
Jo, Jeong-Wan; Kim, Hee-Joong; Kwon, Hyuck-In; Kim, Jaekyun; Ahn, Sangdoo; Kim, Yong-Hoon; Lee, Hyung-ik
2018-01-01
We report a general strategy for obtaining high-quality, large-area metal-chalcogenide semiconductor films from precursors combining chelated metal salts with chalcoureas or chalcoamides. Using conventional organic solvents, such precursors enable the expeditious formation of chalco-gels, which are easily transformed into the corresponding high-performance metal-chalcogenide thin films with large, uniform areas. Diverse metal chalcogenides and their alloys (MQx: M = Zn, Cd, In, Sb, Pb; Q = S, Se, Te) are successfully synthesized at relatively low processing temperatures (<400°C). The versatility of this scalable route is demonstrated by the fabrication of large-area thin-film transistors (TFTs), optoelectronic devices, and integrated circuits on a 4-inch Si wafer and 2.5-inch borosilicate glass substrates in ambient air using CdS, CdSe, and In2Se3 active layers. The CdSe TFTs exhibit a maximum field-effect mobility greater than 300 cm2 V−1 s−1 with an on/off current ratio of >107 and good operational stability (threshold voltage shift < 0.5 V at a positive gate bias stress of 10 ks). In addition, metal chalcogenide–based phototransistors with a photodetectivity of >1013 Jones and seven-stage ring oscillators operating at a speed of ~2.6 MHz (propagation delay of < 27 ns per stage) are demonstrated. PMID:29662951
Valdehuesa, Kris Niño G; Liu, Huaiwei; Nisola, Grace M; Chung, Wook-Jin; Lee, Seung Hwan; Park, Si Jae
2013-04-01
Development of sustainable technologies for the production of 3-hydroxypropionic acid (3HP) as a platform chemical has recently been gaining much attention owing to its versatility in applications for the synthesis of other specialty chemicals. Several proposed biological synthesis routes and strategies for producing 3HP from glucose and glycerol are reviewed presently. Ten proposed routes for 3HP production from glucose are described and one of which was recently constructed successfully in Escherichia coli with malonyl-Coenzyme A as a precursor. This resulted in a yield still far from the required level for industrial application. On the other hand, strategies employing engineered E. coli and Klebsiella pneumoniae capable of producing 3HP from glycerol are also evaluated. The titers produced by these recombinant strains reached around 3 %. At its current state, it is evident that a bulk of engineering works is yet to be done to acquire a biosynthesis route for 3HP that is acceptable for industrial-scale production.
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.
1989-01-01
Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.
Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.
Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man
2018-02-13
Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.
Kitterick, Pádraig T; O'Donoghue, Gerard M; Edmondson-Jones, Mark; Marshall, Andrew; Jeffs, Ellen; Craddock, Louise; Riley, Alison; Green, Kevin; O'Driscoll, Martin; Jiang, Dan; Nunn, Terry; Saeed, Shakeel; Aleksy, Wanda; Seeber, Bernhard U
2014-01-01
Individuals with a unilateral severe-to-profound hearing loss, or single-sided deafness, report difficulty with listening in many everyday situations despite having access to well-preserved acoustic hearing in one ear. The standard of care for single-sided deafness available on the UK National Health Service is a contra-lateral routing of signals hearing aid which transfers sounds from the impaired ear to the non-impaired ear. This hearing aid has been found to improve speech understanding in noise when the signal-to-noise ratio is more favourable at the impaired ear than the non-impaired ear. However, the indiscriminate routing of signals to a single ear can have detrimental effects when interfering sounds are located on the side of the impaired ear. Recent published evidence has suggested that cochlear implantation in individuals with a single-sided deafness can restore access to the binaural cues which underpin the ability to localise sounds and segregate speech from other interfering sounds. The current trial was designed to assess the efficacy of cochlear implantation compared to a contra-lateral routing of signals hearing aid in restoring binaural hearing in adults with acquired single-sided deafness. Patients are assessed at baseline and after receiving a contra-lateral routing of signals hearing aid. A cochlear implant is then provided to those patients who do not receive sufficient benefit from the hearing aid. This within-subject longitudinal design reflects the expected care pathway should cochlear implantation be provided for single-sided deafness on the UK National Health Service. The primary endpoints are measures of binaural hearing at baseline, after provision of a contra-lateral routing of signals hearing aid, and after cochlear implantation. Binaural hearing is assessed in terms of the accuracy with which sounds are localised and speech is perceived in background noise. The trial is also designed to measure the impact of the interventions on hearing- and health-related quality of life. This multi-centre trial was designed to provide evidence for the efficacy of cochlear implantation compared to the contra-lateral routing of signals. A purpose-built sound presentation system and established measurement techniques will provide reliable and precise measures of binaural hearing. Current Controlled Trials http://www.controlled-trials.com/ISRCTN33301739 (05/JUL/2013).
Single-Photon Routing for a L-Shaped Channel
NASA Astrophysics Data System (ADS)
Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun
2018-02-01
We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.
Li, Li; Brown, Jaclyn L; Toske, Steven G
2018-04-06
The analysis of organic impurities plays an important role in the impurity profiling of methamphetamine, which in turn provides valuable information about methamphetamine manufacturing, in particular its synthetic route, chemicals, and precursors used. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is ideally suited for this purpose due to its excellent sensitivity, selectivity, and wide linear range in multiple reaction monitoring (MRM) mode. In this study, a dilute-and-shoot UHPLC-MS/MS method was developed for the simultaneous identification and quantitation of 23 organic manufacturing impurities in illicit methamphetamine. The developed method was validated in terms of stability, limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, and precision. More than 100 illicitly prepared methamphetamine samples were analyzed. Due to its ability to detect ephedrine/pseudoephedrine and its high sensitivity for critical target markers (eg, chloro-pseudoephedrine, N-cyclohexylamphetamine, and compounds B and P), more impurities and precursor/pre-precursors were identified and quantified versus the current procedure by gas chromatography-mass spectrometry (GC-MS). Consequently, more samples could be classified by their synthetic routes. However, the UHPLC-MS/MS method has difficulty in detecting neutral and untargeted emerging manufacturing impurities and can therefore only serve as a complement to the current method. Despite this deficiency, the quantitative information acquired by the presented UHPLC-MS/MS methodology increased the sample discrimination power, thereby enhancing the capacity of methamphetamine profiling program (MPP) to conduct sample-sample comparisons. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Hauser, Frank M; Rößler, Thorsten; Hulshof, Janneke W; Weigel, Diana; Zimmermann, Ralf; Pütz, Michael
2018-04-01
α-Phenylacetoacetonitrile (APAAN) is one of the most important pre-precursors for amphetamine production in recent years. This assumption is based on seizure data but there is little analytical data available showing how much amphetamine really originated from APAAN. In this study, several syntheses of amphetamine following the Leuckart route were performed starting from different organic compounds including APAAN. The organic phases were analysed using gas chromatography-mass spectrometry (GC-MS) to search for signals caused by possible APAAN markers. Three compounds were discovered, isolated, and based on the performed syntheses it was found that they are highly specific for the use of APAAN. Using mass spectra, high resolution MS and nuclear magnetic resonance (NMR) data the compounds were characterised and identified as 2-phenyl-2-butenenitrile, 3-amino-2-phenyl-2-butenenitrile, and 4-amino-6-methyl-5-phenylpyrimidine. To investigate their significance, they were searched in data from seized amphetamine samples to determine to what extent they were present in illicitly produced amphetamine. Data of more than 580 cases from amphetamine profiling databases in Germany and the Netherlands were used for this purpose. These databases allowed analysis of the yearly occurrence of the markers going back to 2009. The markers revealed a trend that was in agreement with seizure reports and reflected an increasing use of APAAN from 2010 on. This paper presents experimental proof that APAAN is indeed the most important pre-precursor of amphetamine in recent years. It also illustrates how important it is to look for new ways to identify current trends in drug production since such trends can change within a few years. Copyright © 2017 John Wiley & Sons, Ltd.
Summer, Elizabeth J.; Cline, Kenneth
1999-01-01
Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways. PMID:9952453
Integrated five-port non-blocking optical router based on mode-selective property
NASA Astrophysics Data System (ADS)
Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin
2018-05-01
In this paper, we propose and demonstrate a five-port optical router based on mode-selective property. It utilizes different combinations of four spatial modes at input and output ports as labels to distinguish its 20 routing paths. It can direct signals from the source port to the destination port intelligently without power consumption and additional switching time to realize various path steering. The proposed architecture is constructed by asymmetric directional coupler based mode-multiplexers/de-multiplexers, multimode interference based waveguide crossings and single-mode interconnect waveguides. The broad optical bandwidths of these constituents make the device suitable to combine with wavelength division multiplexing signal transmission, which can effectively increase the data throughput. Measurement results show that the insertion loss of its 20 routing paths are lower than 8.5 dB and the optical signal-to-noise ratios are larger than 16.3 dB at 1525-1565 nm. To characterize its routing functionality, a 40-Gbps data transmission with bit-error-rate (BER) measurement is implemented. The power penalties for the error-free switching (BER<10-9) are 1.0 dB and 0.8 dB at 1545 nm and 1565 nm, respectively.
A novel communication mechanism based on node potential multi-path routing
NASA Astrophysics Data System (ADS)
Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen
2016-10-01
With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.
Bennett, Kelly Louise; Shija, Fortunate; Linton, Yvonne-Marie; Misinzo, Gerald; Kaddumukasa, Martha; Djouaka, Rousseau; Anyaele, Okorie; Harris, Angela; Irish, Seth; Hlaing, Thaung; Prakash, Anil; Lutwama, Julius; Walton, Catherine
2016-09-01
Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human-modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make-up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out-of-Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Biswas, S.; Ram, S.
2004-11-01
Nanoparticles of stable CrO2 of a half-metallic ferromagnet are synthesized with a novel chemical method involving a Cr4+-polymer composite precursor. A single phase CrO2 of D4h 14 : P42 / mnm tetragonal crystal structure (lattice parameters a = 0.4250 and c = 0.3190 nm) lies after firing the precursor at 350 °C for 1 h in air. Microstructure reveals single domain CrO2 particles of thin platelets (aspect ratio ∼1) of average 50 nm diameter and 35 nm thickness. In air, unless heating at temperatures above 500 °C, no due CrO2 → Cr2O3 phase transformation encounters. The results are presented in terms of X-ray diffraction and thermal or thermogravimetric analysis of precursor and derived CrO2 powder.
He, Xiang; Gan, Zhuoran; Fisenko, Sergey; Wang, Dawei; El-Kaderi, Hani M; Wang, Wei-Ning
2017-03-22
A copper-based metal-organic framework (MOF), [Cu 3 (TMA) 2 (H 2 O) 3 ] n (also known as HKUST-1, where TMA stands for trimesic acid), and its TiO 2 nanocomposites were directly synthesized in micrometer-sized droplets via a rapid aerosol route for the first time. The effects of synthesis temperature and precursor component ratio on the physicochemical properties of the materials were systematically investigated. Theoretical calculations on the mass and heat transfer within the microdroplets revealed that the fast solvent evaporation and high heat transfer rates are the major driving forces. The fast droplet shrinkage because of evaporation induces the drastic increase in the supersaturation ratio of the precursor, and subsequently promotes the rapid nucleation and crystal growth of the materials. The HKUST-1-based nanomaterials synthesized via the aerosol route demonstrated good crystallinity, large surface area, and great photostability, comparable with those fabricated by wet-chemistry methods. With TiO 2 embedded in the HKUST-1 matrix, the surface area of the composite is largely maintained, which enables significant improvement in the CO 2 photoreduction efficiency, as compared with pristine TiO 2 . In situ diffuse reflectance infrared Fourier transform spectroscopy analysis suggests that the performance enhancement was due to the stable and high-capacity reactant adsorption by HKUST-1. The current work shows great promise in the aerosol route's capability to address the mass and heat transfer issues of MOFs formation at the microscale level, and ability to synthesize a series of MOFs-based nanomaterials in a rapid and scalable manner for energy and environmental applications.
On-chip electrically controlled routing of photons from a single quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentham, C.; Coles, R. J.; Royall, B.
2015-06-01
Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integratedmore » quantum photonic circuits.« less
Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models
NASA Astrophysics Data System (ADS)
Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.
2017-12-01
Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.
Boiteux, Virginie; Dauchy, Xavier; Bach, Cristina; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François
2017-04-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota and humans. Drinking water is a route of exposure for populations using water contaminated by PFAS discharges. This research entailed measuring concentrations, mass flows and investigating the fate of dozens PFASs in a river receiving effluents from a fluorochemical manufacturing facility. To measure the total concentration of perfluoroalkyl carboxylic acid (PFCA) precursors, an oxidative conversion method was used. Several dozen samples were collected in the river (water and sediment), in drinking water resources and at different treatment steps on four sampling dates. One PFCA and three fluorotelomers (FTs) were detected up to 62km downstream from the manufacturing facility. 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) was the predominant PFAS with a mass flow of 3830g/day 5.2km downstream from the facility. At all sampling points, PFAS concentrations in sediment were quite low (<6ng/g dw). Five of the 11 investigated wells showed detectable concentrations of PFASs. Interestingly, their profile patterns were different from those observed in the river, suggesting a transformation of PFCA precursors in the sediments of alluvial groundwater. Conventional drinking water treatments (aeration, sand or granular activated carbon filtration, ozonation or chlorination) did not efficiently remove PFASs. Furthermore, an increase in concentration of certain PFASs was observed after ozonation, suggesting that some FTs such as 6:2 FTAB can break down. Only nanofiltration was able to remove all the analyzed PFASs. In the treated water, total PFAS concentrations never exceeded 60ng/L. The oxidative conversion method revealed the presence of unidentified PFCA precursors in the river. Therefore, 18 to 77% of the total PFCA content after oxidation consisted of unidentified chemical species. In the treated water, these percentages ranged from 0 to 29%, relatively and reassuringly low values. Copyright © 2017 Elsevier B.V. All rights reserved.
The integrated model for solving the single-period deterministic inventory routing problem
NASA Astrophysics Data System (ADS)
Rahim, Mohd Kamarul Irwan Abdul; Abidin, Rahimi; Iteng, Rosman; Lamsali, Hendrik
2016-08-01
This paper discusses the problem of efficiently managing inventory and routing problems in a two-level supply chain system. Vendor Managed Inventory (VMI) policy is an integrating decisions between a supplier and his customers. We assumed that the demand at each customer is stationary and the warehouse is implementing a VMI. The objective of this paper is to minimize the inventory and the transportation costs of the customers for a two-level supply chain. The problem is to determine the delivery quantities, delivery times and routes to the customers for the single-period deterministic inventory routing problem (SP-DIRP) system. As a result, a linear mixed-integer program is developed for the solutions of the SP-DIRP problem.
A new powder production route for transparent spinel windows: powder synthesis and window properties
NASA Astrophysics Data System (ADS)
Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim
2005-05-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.
Wu, Qihua; Shi, Honglan; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Timmons, Terry; Jiang, Hua
2015-01-01
N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 μg/L to 1 μg/L except EMA (5 μg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.
Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution.
Aydin, Egemen; Yaman, Fatma Busra; Ates Genceli, Esra; Topuz, Emel; Erdim, Esra; Gurel, Melike; Ipek, Murat; Pehlivanoglu-Mantas, Elif
2012-06-30
In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and <2 and 1648ng/L NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eason, Paul Duane
The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of preventing the attack by alloying techniques used in traditional alloys were explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, E.A.F.
A series of new tetranuclear molybdenum(II) nitrile cluster derivatives is reported. Improvements in the synthetic routes to these and other derivatives is also reported. The single crystal x-ray structure of Mo/sub 4/Cl/sub 12//sup 4/minus// is modeled. New tetrameric nitrile derivatives with the stoichiometry Mo/sub 4/Cl/sub 8/(RCN)/sub 4/ (R = Pr/sup n/, Pr/sup i/, Bu/sup t/, PhCH/sub 2/) have been isolated by ligand exchange from Mo/sub 4/Cl/sub 8/(EtCN)/sub 4/ and/or direct synthesis from Mo/sub 4/Cl/sub 8/(PBu/sup n/sub 3//)/sub 4/. Mo/sub 4/Cl/sub 8/(Pr/sup n/CN)/sub 4/ was synthesized with higher yields and with simpler reaction conditions than Mo/sub 4/Cl/sub 8/(EtCN)/sub 4/. Improved syntheticmore » routes for R/sub 4/Mo/sub 4/Cl/sub 12/ (R = Et/sub 4/N, Pr/sub 4/N) have been developed. (Et/sub 4/N)/sub 4/Mo/sub 4/Cl/sub 12/ can be directly synthesized from the phosphine tetramer, circumventing the preparation of the reactive species-Mo/sub 4/Cl/sub 8/(EtCN)/sub 4/, which is the most difficult precursor to prepare. A change in reaction solvent, from dichloromethane or dichloroethane to chlorobenzene, in the preparation of (Pr/sub 4/N)/sub 4/Mo/sub 4/Cl/sub 12/ has permitted its isolation under less rigorous conditions and in high yield. A single crystal structure determination has been done on a sample of (Ph/sub 4/P)/sub 4/Mo/sub 4/Cl/sub 12/. Although, the quality of the data is poor, the structure of the Mo/sub 4/Cl/sub 12/ cluster core was refined. Four complex types have been found to fit the data. 22 refs., 12 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki
2016-02-01
The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.
NASA Astrophysics Data System (ADS)
Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.
1997-10-01
Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.
Inflight source noise of an advanced full-scale single-rotation propeller
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Loeffler, Irvin J.
1991-01-01
Flight tests to define the far field tone source at cruise conditions were completed on the full scale SR-7L advanced turboprop which was installed on the left wing of a Gulfstream II aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long distance propagation models to predict en route noise. Inflight data were taken for 7 test cases. The sideline directivities measured by the Learjet showed expected maximum levels near 105 degrees from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. An investigation of the effect of propeller tip speed showed that the tone level of reduction associated with reductions in propeller tip speed is more significant in the horizontal plane than below the aircraft.
Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices
NASA Technical Reports Server (NTRS)
Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.
1998-01-01
Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.
On the origin of cratonic `high-mu' isotopic signatures
NASA Astrophysics Data System (ADS)
Reimink, J. R.; Carlson, R.; Shirey, S. B.; Pearson, D. G.; Kamber, B. S.
2017-12-01
Some Archean cratons (i.e. Slave, Wyoming) contain Neoarchean granitoids with initial Pb isotopic compositions indicative of derivation from sources characterized by high time-integrated U/Pb ratios (high-mu [1]). Single-stage high-m precursor source reservoir separation from the depleted mantle occurred no later than 3.9 Ga [2]. However, multi-stage separation could have occurred in the Hadean, suggesting that recycling or reworking of Eoarchean/Hadean crust played a significant role in the generation of Neoarchean granitic crust in many cratons. The Sm-Nd system is similar to the U-Pb system in that it has a short-lived parent-daughter pair (146Sm-142Nd) that is sensitive to very early differentiation events, as well as a long-lived parent-daughter pair (147Sm-143Nd) that is sensitive to differentiation throughout all of Earth history. The 103 Ma half-life of 146Sm makes it sensitive only to Sm/Nd fractionation that occurred in the Hadean, providing a useful tracker for very early differentiation events. Indeed, evidence for Neoarchean remelting of ancient crust in another craton has come from analyses of the paired Sm-Nd isotope systems from the Hudson Bay terrane of the northeastern Superior Province. These results indicate that the source of 2.7 Ga Hudson Bay terrane granitoids was Hadean mafic crust, and not Eoarchean felsic crust [3]. Here, we present new data from Neoarchean granites located in the Slave and Wyoming cratons, along with modeling of the dual paired-isotope systems of U-Pb and Sm-Nd to achieve a tighter constraint on the composition of the precursors and the timing of their melting. Combining our newly collected 142Nd data with the high-m signature of these Neoarchean rocks, we evaluate precursor source separation ages along with the source Sm/Nd and U/Pb compositions. In the simplest end-member scenarios, use of the 142Nd system allows us to test whether the cratonic high-mu signature was created by melting of Hadean mafic crust or Eoarchean felsic crust. Differences between these models have major implications for the longevity of mafic crust on the ancient Earth as well as the growth rate and recycling history of the continents. [1] Oversby, 1978, EPSL; [2] Kamber et al., 2003, CMP; [3] O'Neil and Carlson, 2017; Science
Francisco-Cruz, Alejandro; Mata-Espinosa, Dulce; Ramos-Espinosa, Octavio; Marquina-Castillo, Brenda; Estrada-Parra, Sergio; Xing, Zhou; Hernández-Pando, Rogelio
2016-09-01
Tuberculosis (TB), although a curable disease, remains a major cause of morbidity and mortality worldwide. It is necessary to develop a short-term therapy with reduced drug toxicity in order to improve adherence rate and control disease burden. Granulocyte-macrophage colony-stimulating factor (GM-CSF) may be a key cytokine in the treatment of pulmonary TB since it primes the activation and differentiation of myeloid and non-myeloid precursor cells, inducing the release of protective Th1 cytokines. In this work, we administrated by intratracheal route recombinant adenoviruses encoding GM-CSF (AdGM-CSF). This treatment produced significant bacterial elimination when administered in a single dose at 60 days of infection with drug sensitive or drug resistant Mtb strains in a murine model of progressive disease. Moreover, AdGM-CSF combined with primary antibiotics produced more rapid elimination of pulmonary bacterial burdens than conventional chemotherapy suggesting that this form of treatment could shorten the conventional treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-28
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.
PCDD/F-isomers signature - Effect of metal chlorides and oxides.
Zhang, Mengmei; Buekens, Alfons; Olie, Kees; Li, Xiaodong
2017-10-01
A recent paper presented the results from de novo tests, involving 11 distinct catalytic systems (oxides and chlorides of Cd, Cr, Cu, Ni, and Zn, as well as a blank sample). Their PCDD and PCDF formation activity was shown. This paper further assesses their isomer signature, with special emphasis on those congeners associated with chlorophenol precursor routes, and on 2,3,7,8- and 1,9-substituted congeners. Each metal catalyst generates a significantly different signature, also affected by the presence or absence of oxygen in the reaction atmosphere. Oxide and chloride catalysts supply distinctive signatures, suggesting singly weighted pathways. Quite a large number of data was handled, so that throughout this analysis special attention was given to testing and developing an appropriate methodology, allowing appropriate correlation analysis and statistical data treatment. The large tables resulting relate to the 11 catalytic systems, studied at 3 levels of oxygen concentration, with 94 PCDD/F-congeners considered individually. They constitute an extensive reference data bank for confronting novel experimental data with this vast data set. Copyright © 2017. Published by Elsevier Ltd.
Synthesis of substituted isoquinolines utilizing palladium-catalyzed α-arylation of ketones
Donohoe, Timothy J.; Pilgrim, Ben S.; Jones, Geraint R.; Bassuto, José A.
2012-01-01
The utilization of sequential palladium-catalyzed α-arylation and cyclization reactions provides a general approach to an array of isoquinolines and their corresponding N-oxides. This methodology allows the convergent combination of readily available precursors in a regioselective manner and in excellent overall yields. This powerful route to polysubstituted isoquinolines, which is not limited to electron rich moieties, also allows rapid access to analogues of biologically active compounds. PMID:22753504
Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications
Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani
2007-12-25
Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.
Hsieh, Yu-Chi; Chir, Jiun-Ly; Zou, Wei; Wu, Hsiu-Han; Wu, An-Tai
2009-05-26
A short and highly efficient route to the alpha-anomer of a furanoid sugar-aza-crown ether was developed by a one-pot reductive amination of an alpha-anomer C-ribosyl azido aldehyde. In addition, the beta-anomer furanoid sugar-aza-crown ether was synthesized from a linear disaccharide precursor via amidation and then followed by microwave-assisted amide reduction.
Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.
2017-10-01
We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.
Synthesis and development of low cost, high temperature N-arylene polybenzimidazole foam material
NASA Technical Reports Server (NTRS)
Harrison, E. S.
1975-01-01
Polymer (and foam) studies followed two basic routes: (1) formation of high molecular weight uncyclized polyamide followed by subsequent fusion and cyclodehydration to yield NABI (foam) and (2) polymer and foam formation by reaction of diphenyl esters (or anhydrides) with the tetramine. The latter route was found much more attractive since considerable versatility in both basic polymer structure and crosslinkability is achievable. Preliminary studies on BAB, phthalic anhydride (PA), and 3, 3 (prime), 4, 4(prime) benzo pheno netetracarboxylic acid dianhydride (BTDA) as crosslinked polymer precursors were conducted. Nonmelting rigid char forming foams with densities as low as 2.7 lb/cubic ft. were achieved. The program was successful in the preparation of a potentially low cost, low density, high char yield, high temperature foam material.
Solid-state NMR study of geopolymer prepared by sol-gel chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling, E-mail: yuanlinglee@ntu.edu.t
2010-12-15
Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract:more » Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted« less
Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells
NASA Astrophysics Data System (ADS)
Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho
2018-03-01
Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.
Design of a mesoscale continuous flow route towards lithiated methoxyallene.
Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor
2018-05-11
The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d
NASA Astrophysics Data System (ADS)
Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.
This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.
Preparation of glass-forming materials from granulated blast furnace slag
NASA Astrophysics Data System (ADS)
Alonso, M.; Sáinz, E.; Lopez, F. A.
1996-10-01
Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.
Masolo, Elisabetta; Meloni, Manuela; Garroni, Sebastiano; Mulas, Gabriele; Enzo, Stefano; Baró, Maria Dolors; Rossinyol, Emma; Rzeszutek, Agnieszka; Herrmann-Geppert, Iris; Pilo, Maria
2014-01-01
We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25. PMID:28344237
Congestion control and routing over satellite networks
NASA Astrophysics Data System (ADS)
Cao, Jinhua
Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).
Direct Growth of CdTe on a (211) Si Substrate with Vapor Phase Epitaxy Using a Metallic Cd Source
NASA Astrophysics Data System (ADS)
Iso, Kenji; Gokudan, Yuya; Shiraishi, Masumi; Murakami, Hisashi; Koukitu, Akinori
2017-10-01
We successfully performed epitaxial CdTe growth on a Si (211) substrate with vapor-phase epitaxy using a cost-effective metallic cadmium source as a group-II precursor. The thermodynamic data demonstrate that the combination of metallic Cd and diisopropyl-telluride (DiPTe) with a H2 carrier gas enables the growth of CdTe crystals. A CdTe single crystal with a (422) surface orientation was obtained when a growth temperature between 600°C and 650°C was employed. The surface morphology and crystalline quality were improved with increasing film thickness. The full-width at half-maximum of the x-ray rocking curves with a film thickness of 15.7 μm for the skew-symmetrical (422) and asymmetrical (111) reflection were 528 arcsec and 615 arcsec, respectively.
Reverse Flood Routing with the Lag-and-Route Storage Model
NASA Astrophysics Data System (ADS)
Mazi, K.; Koussis, A. D.
2010-09-01
This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted Kalinin-Miljukov model. The latter applies the lag-and-route model’s single-reservoir inversion scheme sequentially to its cascade of linear reservoirs, the number of which is related to the stream's hydromorphology. For this purpose, we used the example of Bruen & Dooge (2007), who back-routed flow hydrographs in a 100-km long prismatic channel using a scheme for the reverse solution of the St. Venant equations of flood wave motion. The lag-and-route reverse routing model recovered the inflow hydrograph with comparable accuracy to that of the multi-reservoir, inverted Kalinin-Miljukov model, both performing as well as the box-scheme for reverse routing with the St. Venant equations. In conclusion, the success in the regaining of the inflow signal by the devised single-reservoir reverse routing procedure, with multipoint low-pass filtering, can be attributed to its simple computational structure that endows it with remarkable robustness and exceptional efficiency.
Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources
NASA Astrophysics Data System (ADS)
Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.
2018-05-01
Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.
Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation
Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...
2014-10-19
Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe 2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substratemore » by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe 2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less
Recent advances in understanding atmospheric CO based on stable isotope measurements
NASA Astrophysics Data System (ADS)
Popa, Maria Elena; Naus, Stijn; Ferrero Lopez, Noelia; Vijverberg, Sem; de Leeuw, Selma; Röckmann, Thomas
2017-04-01
Carbon monoxide (CO) plays an important role for atmospheric chemistry and for carbon cycling in the atmosphere. Via its reaction with the OH radical it influences concentrations of many other trace gases, it is an important precursor for O3 formation, and its oxidation leads to the formation of about 1 Pg C per year of CO2. The natural and anthropogenic sources of CO are subject to relatively large temporal changes due to natural variability (e.g. biomass burning), industrial activity and mitigation measures (e.g. fossil fuel burning), variations in precursor compounds (e.g. CH4 and VOC) and variations in the abundance of the OH radical in the atmosphere, which are difficult to quantify. Isotope measurements can be used to distinguish between the effects of individual sources and sinks to put tighter constrains on its budget, but the isotopic characterization of the CO sources is in many cases still based on a few relatively old measurements that did not allow to account for dependence on parameters. We will present an update of the isotopic composition of several sources and removal processes of CO that have been carried out in the past years with the automated continuous-flow IRMS system at Utrecht University. This includes: - the previously unknown isotopic composition of direct biogenic CO emissions - a surprisingly large variability in the isotopic composition of CO emitted by different vehicles and single vehicles under various driving conditions - previously very poorly investigated signatures, like the fractionation in the removal of CO by soils, and its interaction with CO that is simultaneously emitted from soil. These results from process specific investigations will be linked to recent atmospheric measurements at various locations.
NASA Astrophysics Data System (ADS)
Ma, Yan; Chen, Zhaohui
2013-09-01
A way to improve the ablation properties of the C/SiC composites in an oxyacetylene torch environment was investigated by the precursor infiltration and pyrolysis route using three organic precursors (zirconium butoxide, polycarbosilane, and divinylbenzene). The ceramic matrix derived from the precursors at 1200 °C was mainly a mixture of SiC, ZrO2, and C. After annealing at 1600 °C for 1 h, ZrO2 partly transformed to ZrC because of the carbothermic reductions and completely transformed to ZrC at 1800 °C in 1 h. The mechanical properties of the composites decreased with increasing temperature, while the ablation resistance increased due to the increasing content of ZrC. Compared with C/SiC composites, the ablation resistance of the C/Zr-O-Si-C composites overwhelms because of the oxide films which formed on the ablation surfaces. And, the films were composed of two layers: the porous surface layer (the mixture of ZrO2 and SiO2) and the dense underlayer (SiO2).
Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew
1994-01-01
Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
mRM - multiscale Routing Model for Land Surface and Hydrologic Models
NASA Astrophysics Data System (ADS)
Cuntz, M.; Thober, S.; Mai, J.; Samaniego, L. E.; Gochis, D. J.; Kumar, R.
2015-12-01
Routing streamflow through a river network is a basic step within any distributed hydrologic model. It integrates the generated runoff and allows comparison with observed discharge at the outlet of a catchment. The Muskingum routing is a textbook river routing scheme that has been implemented in Earth System Models (e.g., WRF-HYDRO), stand-alone routing schemes (e.g., RAPID), and hydrologic models (e.g., the mesoscale Hydrologic Model). Most implementations suffer from a high computational demand because the spatial routing resolution is fixed to that of the elevation model irrespective of the hydrologic modeling resolution. This is because the model parameters are scale-dependent and cannot be used at other resolutions without re-estimation. Here, we present the multiscale Routing Model (mRM) that allows for a flexible choice of the routing resolution. mRM exploits the Multiscale Parameter Regionalization (MPR) included in the open-source mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) that relates model parameters to physiographic properties and allows to estimate scale-independent model parameters. mRM is currently coupled to mHM and is presented here as stand-alone Free and Open Source Software (FOSS). The mRM source code is highly modular and provides a subroutine for internal re-use in any land surface scheme. mRM is coupled in this work to the state-of-the-art land surface model Noah-MP. Simulation results using mRM are compared with those available in WRF-HYDRO for the Red River during the period 1990-2000. mRM allows to increase the routing resolution from 100m to more than 10km without deteriorating the model performance. Therefore, it speeds up model calculation by reducing the contribution of routing to total runtime from over 80% to less than 5% in the case of WRF-HYDRO. mRM thus makes discharge data available to land surface modeling with only little extra calculations.
2014-01-01
Background Individuals with a unilateral severe-to-profound hearing loss, or single-sided deafness, report difficulty with listening in many everyday situations despite having access to well-preserved acoustic hearing in one ear. The standard of care for single-sided deafness available on the UK National Health Service is a contra-lateral routing of signals hearing aid which transfers sounds from the impaired ear to the non-impaired ear. This hearing aid has been found to improve speech understanding in noise when the signal-to-noise ratio is more favourable at the impaired ear than the non-impaired ear. However, the indiscriminate routing of signals to a single ear can have detrimental effects when interfering sounds are located on the side of the impaired ear. Recent published evidence has suggested that cochlear implantation in individuals with a single-sided deafness can restore access to the binaural cues which underpin the ability to localise sounds and segregate speech from other interfering sounds. Methods/Design The current trial was designed to assess the efficacy of cochlear implantation compared to a contra-lateral routing of signals hearing aid in restoring binaural hearing in adults with acquired single-sided deafness. Patients are assessed at baseline and after receiving a contra-lateral routing of signals hearing aid. A cochlear implant is then provided to those patients who do not receive sufficient benefit from the hearing aid. This within-subject longitudinal design reflects the expected care pathway should cochlear implantation be provided for single-sided deafness on the UK National Health Service. The primary endpoints are measures of binaural hearing at baseline, after provision of a contra-lateral routing of signals hearing aid, and after cochlear implantation. Binaural hearing is assessed in terms of the accuracy with which sounds are localised and speech is perceived in background noise. The trial is also designed to measure the impact of the interventions on hearing- and health-related quality of life. Discussion This multi-centre trial was designed to provide evidence for the efficacy of cochlear implantation compared to the contra-lateral routing of signals. A purpose-built sound presentation system and established measurement techniques will provide reliable and precise measures of binaural hearing. Trial registration Current Controlled Trials http://www.controlled-trials.com/ISRCTN33301739 (05/JUL/2013) PMID:25152694
Zamarreno-Ramos, C; Linares-Barranco, A; Serrano-Gotarredona, T; Linares-Barranco, B
2013-02-01
This paper presents a modular, scalable approach to assembling hierarchically structured neuromorphic Address Event Representation (AER) systems. The method consists of arranging modules in a 2D mesh, each communicating bidirectionally with all four neighbors. Address events include a module label. Each module includes an AER router which decides how to route address events. Two routing approaches have been proposed, analyzed and tested, using either destination or source module labels. Our analyses reveal that depending on traffic conditions and network topologies either one or the other approach may result in better performance. Experimental results are given after testing the approach using high-end Virtex-6 FPGAs. The approach is proposed for both single and multiple FPGAs, in which case a special bidirectional parallel-serial AER link with flow control is exploited, using the FPGA Rocket-I/O interfaces. Extensive test results are provided exploiting convolution modules of 64 × 64 pixels with kernels with sizes up to 11 × 11, which process real sensory data from a Dynamic Vision Sensor (DVS) retina. One single Virtex-6 FPGA can hold up to 64 of these convolution modules, which is equivalent to a neural network with 262 × 10(3) neurons and almost 32 million synapses.
Oxide-based method of making compound semiconductor films and making related electronic devices
Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.
2000-01-01
A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.
Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
NASA Astrophysics Data System (ADS)
Köllner, Franziska; Schneider, Johannes; Willis, Megan D.; Klimach, Thomas; Helleis, Frank; Bozem, Heiko; Kunkel, Daniel; Hoor, Peter; Burkart, Julia; Leaitch, W. Richard; Aliabadi, Amir A.; Abbatt, Jonathan P. D.; Herber, Andreas B.; Borrmann, Stephan
2017-11-01
Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50-3000 m) were conducted in July 2014 in the Canadian high Arctic during an aircraft-based measurement campaign (NETCARE 2014). We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200-1000 nm) to identify different particle types and their mixing states. On the basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). Two main pieces of evidence suggest that these TMA-containing particles originated from emissions within the Arctic boundary layer. First, the maximum fraction of particulate TMA occurred in the Arctic boundary layer. Second, compared to particles observed aloft, TMA particles were smaller and less oxidized. Further, air mass history analysis, associated wind data and comparison with measurements of methanesulfonic acid give evidence of a marine-biogenic influence on particulate TMA. Moreover, the external mixture of TMA-containing particles and sodium and chloride (Na / Cl-
) containing particles, together with low wind speeds, suggests particulate TMA results from secondary conversion of precursor gases released by the ocean. In contrast to TMA-containing particles originating from inner-Arctic sources, particles with biomass burning markers (such as levoglucosan and potassium) showed a higher fraction at higher altitudes, indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for composition and growth of summertime Arctic aerosol.
Schneiders, S; Holdermann, T; Dahlenburg, R
2009-06-01
The isotope ratios of amphetamine type stimulants (ATS) depend as well on the precursor as the synthetic pathway. For clandestine production of amphetamine and methamphetamine, 1-phenyl-2-propanone (P2P, benzylmethylketone) is a commonly used precursor. Our aim was to determine the variation of the isotope ratios within precursor samples of one manufacturer and to compare seized samples of unknown sources to these values. delta13C(V-PDB), delta2H(V-SMOW) and delta118O(V-SMOW) isotope ratios were determined using elemental analysis (EA) and gas chromatography (GC) coupled toan isotope ratio mass spectrometer (IRMS). The comparison of all seized samples to the data of the samples of one manufacturer revealed considerable differences. The results show that IRMS provides a high potential in differentiating between precursors from different manufacturers for the clandestine production of ATS and identifying corresponding sources.
Antarctic new particle formation from continental biogenic precursors
NASA Astrophysics Data System (ADS)
Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.
2012-12-01
Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in the continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time when freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.
Antarctic new particle formation from continental biogenic precursors
NASA Astrophysics Data System (ADS)
Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.
2013-04-01
Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.
Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review.
Krasner, Stuart W; Mitch, William A; McCurry, Daniel L; Hanigan, David; Westerhoff, Paul
2013-09-01
This review summarizes major findings over the last decade related to nitrosamines in drinking water, with a particular focus on N-nitrosodimethylamine (NDMA), because it is among the most widely detected nitrosamines in drinking waters. The reaction of inorganic dichloramine with amine precursors is likely the dominant mechanism responsible for NDMA formation in drinking waters. Even when occurrence surveys found NDMA formation in chlorinated drinking waters, it is unclear whether chloramination resulted from ammonia in the source waters. NDMA formation has been associated with the use of quaternary amine-based coagulants and anion exchange resins, and wastewater-impaired source waters. Specific NDMA precursors in wastewater-impacted source waters may include tertiary amine-containing pharmaceuticals or other quaternary amine-containing constituents of personal care products. Options for nitrosamine control include physical removal of precursors by activated carbon or precursor deactivation by application of oxidants, particularly ozone or chlorine, upstream of chloramination. Although NDMA has been the most prevalent nitrosamine detected in worldwide occurrence surveys, it may account for only ≈ 5% of all nitrosamines in chloraminated drinking waters. Other significant contributors to total nitrosamines are poorly characterized. However, high levels of certain low molecular weight nitrosamines have been detected in certain Chinese waters suspected to be impaired by industrial effluents. The review concludes by identifying research needs that should be addressed over the next decade. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative study on the uptake and bioimpact of metal nanoparticles released into environment
NASA Astrophysics Data System (ADS)
Andries, Maria; Pricop, Daniela; Grigoras, Marian; Lupu, Nicoleta; Sacarescu, Liviu; Creanga, Dorina; Iacomi, Felicia
2015-12-01
Metallic particles of very small size are ubiquitously released in the air, water and soil from various natural and artificial sources - the last ones with enhanced extent since nanotechnology development accelerated exponentially. In this study we focused on the impact of metal nanoparticles in vegetal species of agroindustrial interest namely the maize (Zea mais L.). Laboratory simulation of environmental pollution was carried out by using engineered nanoparticles of two types: iron oxides with magnetic properties and gold nanoparticles supplied in the form of dilutes stable suspensions in the culture medium of maize seedlings. Magnetic nanoparticle (MNPs) preparation was performed by applying chemical route from iron ferric and ferrous precursor salts in alkali reaction medium at relatively high temperature (over 80 °C). Gold nanoparticles (GNPs) synthesis was accomplished from auric hydrochloride acid in alkali reaction medium in similar temperature conditions. In both types of metallic nanoparticles citrate ions were used as coating shell with role of suspension stabilization. Plantlet response was assessed at the level of assimilatory pigment contents in green tissue of seedlings in early ontogenetic stages.
Atmospheric production of glycolaldehyde under hazy prebiotic conditions.
Harman, Chester E; Kasting, James F; Wolf, Eric T
2013-04-01
The early Earth's atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1 × 10(7) mol yr(-1). Somewhat greater amounts of GA production, up to 2 × 10(8) mol yr(-1), could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1-2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239-242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth.
NASA Technical Reports Server (NTRS)
Rowsell, J.; Hepp, A. F.; Harris, J. D.; Raffaelle, R. P.; Cowen, J. C.; Scheiman, D. A.; Flood, D. M.; Flood, D. J.
2009-01-01
Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cyclooctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth (i.e., MWNT orientation) of the nanotubes, as well as the amount of iron in the deposited material. As deposited, the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and a preferred orientation. Subsequently, a small start-up was founded to commercialize the deposition equipment. The contrast between the research and entrepreneurial environments will be discussed.
NASA Astrophysics Data System (ADS)
Zuo, Pingping; Duan, Jiaqi; Fan, Huailin; Qu, Shijie; Shen, Wenzhong
2018-03-01
Nitrogen-doping porous carbon-based nanosheets were fabricated from pemole peel and melamine through hydrothermal route and carbonization. The pomelo peel with sponge-like natural structure was employed as carbon source, and melamine was used both as nitrogen precursors and as nanosheet structure directing. The morphology and chemical composition of the obtained porous carbon nanosheet carbon materials were characterized by scanning electron microscopy, thermogravimetric analyzer, Fourier transform infrared spectra, transmission electron microscopy, BET surface area measurement, X-ray photoelectron spectroscopy and X-ray powder diffraction. The result indicated that the nanosheet thickness, nitrogen-doped amount and surface area were determined by the ratio of pomelo peel to melamine and carbonization temperature. The catalytic nitrobenzene hydrogenation was evaluated after Pd was loaded on nitrogen-doping porous carbon-based nanosheet. The results showed Pd@PCN had almost 100% conversion and good cycling performance towards the hydrogenation of nitrobenzene due to the developed pore structure, high nitrogen-doping and well dispersed less Pd particle; it was superior to other nanomaterial supports and demonstrated great potential application.
Neuronal cell fate specification in Drosophila.
Jan, Y N; Jan, L Y
1994-02-01
Recent work indicates that the Drosophila nervous system develops in a progressive process of cell fate specification. Expression of specific proneural genes in clusters of cells (the proneural clusters) in the cellular blastoderm endows these cells with the potential to form certain types of neural precursors. Intercellular interactions that involve both proneural genes and neurogenic genes then allow the neural precursors to be singled out from the proneural clusters. Expression of neural precursor genes in all neural precursors is likely to account for the universal aspects of neuronal differentiation, such as axonal outgrowth. Selective expression of certain neuronal-type selector genes further specifies the type of neuron(s) that a neural precursor will produce.
52. Virginia Route 666. This single span structure, built in ...
52. Virginia Route 666. This single span structure, built in 1962, is an example of a spandrel arch grade separation structure with a roman arch over a state secondary road. The bridge is constructed of reinforced concrete, backfilled with earth and has a thick stone veneer. Looking east-northeast at elevation. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
NASA Astrophysics Data System (ADS)
Xue, Ke
Manufacturing of carbon nanotubes (CNTs) via chemical vapor deposition (CVD) calls for thermal treatment associated with gas-phase rearrangement and catalyst deposition to achieve high cost efficiency and limited influence on environmental impact. Taking advantage of higher degree of structure control and economical efficiency, catalytic chemical vapor deposition (CCVD) has currently become the most prevailing synthesis approach for the synthesis of large-scale pure CNTs in past years. Because the synthesis process of CNTs dominates the potential ecotoxic impacts, materials consumption, energy consumption and greenhouse gas emissions should be further limited to efficiently reduce life cycle ecotoxicity of carbon naotubes. However, efforts to reduce energy and material requirements in synthesis of CNTs by CCVD are hindered by a lack of mechanistic understanding. In this thesis, the effect of operating parameters, especially the temperature, carbon source concentration, and residence time on the synthesis were studied to improve the production efficiency in a different angle. Thus, implications on the choice of operating parameters could be provided to help the synthesis of carbon nanotubes. Here, we investigated the typical operating parameters in conditions that have yielded successful CNT production in the published academic literature of over seventy articles. The data were filtered by quality of the resultant product and deemed either "successful" or "unsuccessful" according to the authors. Furthermore, growth rate data were tabulated and used as performance metric for the process whenever possible. The data provided us an opportunity to prompt possible and common methods for practioners in the synthesis of CNTs and motivate routes to achieve energy and material minimization. The statistical analysis revealed that methane and ethylene often rely on thermal conversion process to form direct carbon precursor; further, methane and ethylene could not be the direct CNT precursors by themselves. Acetylene does not show an additional energy demand or thermal conversion in the synthesis, and it could be the direct CNT precursors by itself; or at least, it would be most easily to get access to carbon nanotube growth while minimizing synthesis temperature. In detail, methane employs more energy demand (Tavg=883°C) than ethylene (Tavg=766°C), which in turn demands more energy than acetylene (Tavg=710°C) to successfully synthesize carbon nanotubes. The distinction in energy demand could be the result of kinetic energy requirements by the thermal conversion process of methane and ethylene to form direct CNT precursors, and methane employs the highest activation demand among three hydrocarbons. Thus, these results support the hypothesis that methane and ethylene could be thermally converted to form acetylene before CNT incorporation. In addition, methane and ethylene show the demand for hydrogen in thermal conversion process before CNT incorporation; whereas, hydrogen does not contribute to the synthesis via acetylene before CNT incorporation, except the reduction of catalyst. At relatively low hydrogen concentration, this work suggests that hydrogen prompts growth of carbon nanotubes via methane and ethylene, probably by reducing the catalysts or participating thermal reactions. In addition, "polymerization-like formation mechanism" could be supported by the higher growth rate of CNTs via ethylene than acetylene. There could be an optimum residence time to maintain a relatively higher growth rate. At too low residence time, carbon source could not be accumulated, causing a waste of material; while too high residence time may cause the limitation of carbon source supplement and accumulation of byproducts. At last, high concentration of carbon source and hydrogen could cause more energy consumption, while it helps to achieve a high growth rate, due to the more presence of direct carbon precursor.
Development of new inorganic luminescent materials by organic-metal complex route
NASA Astrophysics Data System (ADS)
Manavbasi, Alp
The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the Fluorescence Spectrometer, and Diffuse Reflectance Spectroscopy, the Time Resolved Spectroscopy technique was also used to study the photoluminescence characteristics of the synthesized phosphors. Using these characterization techniques, and through careful comparisons with related studies in the literature, the mechanisms of luminescence for each of the new phosphor materials synthesized here was discussed in a detail.
Silva-Hidalgo, Gabriela; López-Moreno, Héctor Samuel; Ortiz-Navarrete, Vianney Francisco; Alpuche-Aranda, Celia; Rendón-Maldonado, José Guadalupe; López-Valenzuela, José Angel; López-Valenzuela, Martin; Juárez-Barranco, Felipe
2013-03-01
Salmonellosis is an important zoonotic disease but little is known about the role that free-living animals play as carriers of this pathogen. Moreover, the primary route of infection in the wild needs to be elucidated. The aim of this study was to determine the source and the route of transmission of Salmonella enterica serovar Albany (S. Albany) infection in captive zoo wild animals in the Culiacán Zoo. A total of 267 samples were analyzed including 220 fecal samples from zoo animals, 15 fecal samples from rodents, 5 pooled samples each of two insects (Musca domestica and Periplaneta americana), and 22 samples of animal feed. We detected S. Albany in 28 (10.5%) of the samples analyzed, including in samples from raw chicken meat. Characterization of isolates was performed by serotyping and pulsed-field gel electrophoresis. All isolates shared a single pulsed-field gel electrophoresis profile, indicating a possible common origin. These data suggest that the infected meat consumed by the wild felines was the primary source of infection in this zoo. It is likely that the pathogen was shed in the feces and disseminated by insects and rats to other locations in the zoo.
Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haiping; Liu, Jingyi; Hu, Tingxia
2016-05-15
Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1)more » facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.« less
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
Liu, Yong-Jun; Aizawa, Mami; Wang, Zheng-Ming; Hatori, Hiroaki; Uekawa, Naofumi; Kanoh, Hirofumi
2008-06-15
Titanium dioxide nanocrystalline particles were synthesized by peroxo titanium acid (PTA) approach from titanium alkoxide and inorganic salt precursors, and their structural and surface properties, porosities, and photocatalytic activities were comparatively examined by XRD, TG/DTA, DRIFT, UV-vis, low temperature N(2) adsorption, and methyl orange (MO) degradation. It was found that nanoparticles with single anatase phase can be obtained from alkoxide precursor even near room temperature if synthesis conditions are appropriately controlled. PTA-derived anatase nanoparticles from titanium alkoxide precursor have smaller crystalline sizes and better porosities, and contain less amount of peroxo group and no organic impurities as compared to those from TiCl(4) precursor. The advantages in structural property, porosity, and surface properties (few deficiencies) lead to a much better photocatalytic activity for TiO(2) nanoparticles from titanium alkoxide precursor in comparison with those from TiCl(4) precursor.
On the Plausibility of Pseudosugar Formation in Cometary Ices and Oxygen-rich Tholins
NASA Astrophysics Data System (ADS)
Lavado, Nieves; Ávalos, Martín; Babiano, Reyes; Cintas, Pedro; Light, Mark E.; Jiménez, José Luis; Palacios, Juan C.
2016-03-01
We revisit herein the formation and structure of dihydroxy dioxanes, which can be obtained from prebiotically available precursors and can be regarded as primeval sugar surrogates. Previous studies dealing with the heterogeneous composition of interstellar bodies point to the existence of significant amounts of small polyalcohols along with oxygen-containing oligomers. Even though such derivatives did not give rise to nucleosides and oligonucleotides, nor they were incorporated into subsequent metabolic routes, molecular chimeras based on sugar-like species could be opportunistic scaffolds in pre-evolutionary scenarios. We could figure out that pseudosugars, assembled by hemiacetalic bonds from available precursors in both interstellar and terrestrial scenarios, were presumably more abundant than thought. Moreover, these species share some key features with naturally-occurring sugar rings, such as anomeric preferences, coordinating ability, and the prevalent occurrence of racemic compounds.
Titania-catalyzed radiofluorination of tosylated precursors in highly aqueous medium
Sergeev, Maxim E.; Morgia, Federica; Lazari, Mark; ...
2015-04-10
Nucleophilic radiofluorination is an efficient synthetic route to many positron-emission tomography (PET) probes, but removal of water to activate the cyclotron-produced [ 18F]fluoride has to be performed prior to reaction, which significantly increases overall radiolabeling time and causes radioactivity loss. In this paper, we demonstrate the possibility of 18F-radiofluorination in highly aqueous medium. The method utilizes titania nanoparticles, 1:1 (v/v) acetonitrile–thexyl alcohol solvent mixture, and tetra-n-butylammonium bicarbonate as a phase-transfer agent. Efficient radiolabeling is directly performed with aqueous [ 18F]fluoride without the need for a drying/azeotroping step to significantly reduce radiosynthesis time. High radiochemical purity of the target compound ismore » also achieved. Finally, the substrate scope of the synthetic strategy is demonstrated with a range of aromatic, aliphatic, and cycloaliphatic tosylated precursors.« less