Science.gov

Sample records for single-spin optimal control

  1. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical

  2. Coherent control of single spins in silicon carbide at room temperature

    NASA Astrophysics Data System (ADS)

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S. Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

  3. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  4. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  5. Electrically controlling single-spin qubits in a continuous microwave field

    PubMed Central

    Laucht, Arne; Muhonen, Juha T.; Mohiyaddin, Fahd A.; Kalra, Rachpon; Dehollain, Juan P.; Freer, Solomon; Hudson, Fay E.; Veldhorst, Menno; Rahman, Rajib; Klimeck, Gerhard; Itoh, Kohei M.; Jamieson, David N.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Morello, Andrea

    2015-01-01

    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources. PMID:26601166

  6. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  7. TRANSVERSITY SINGLE SPIN ASYMMETRIES.

    SciTech Connect

    BOER,D.

    2001-04-27

    The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

  8. Optimizing the spin sensitivity of grain boundary junction nanoSQUIDs—towards detection of small spin systems with single-spin resolution

    NASA Astrophysics Data System (ADS)

    Wölbing, R.; Schwarz, T.; Müller, B.; Nagel, J.; Kemmler, M.; Kleiner, R.; Koelle, D.

    2014-12-01

    We present an optimization study of the spin sensitivity of nano superconducting quantum interference devices (SQUIDs) based on resistively shunted grain boundary Josephson junctions. In addition the direct current SQUIDs contain a narrow constriction onto which a small magnetic particle can be placed (with its magnetic moment in the plane of the SQUID loop and perpendicular to the grain boundary) for efficient coupling of its stray magnetic field to the SQUID loop. The separation of the location of optimum coupling from the junctions allows for an independent optimization of the coupling factor {{φ }μ } and junction properties. We present different methods for calculating {{φ }μ } (for a magnetic nanoparticle placed 10 nm above the constriction) as a function of device geometry and show that those yield consistent results. Furthermore, by numerical simulations we obtain a general expression for the dependence of the SQUID inductance on geometrical parameters of our devices, which allows to estimate their impact on the spectral density of flux noise {{S}Φ } of the SQUIDs in the thermal white noise regime. Our analysis of the dependence of {{S}Φ } and {{φ }μ } on the geometric parameters of the SQUID layout yields a spin sensitivity Sμ 1/2=SΦ 1/2/{{φ }μ } of a few {{μ }B} H{{z}-1/2} ({{μ }B} is the Bohr magneton) for optimized parameters, respecting technological constraints. However, by comparison with experimentally realized devices we find significantly larger values for the measured white flux noise, as compared to our theoretical predictions. Still, a spin sensitivity on the order of 10 {{μ }B} H{{z}-1/2} for optimized devices seems to be realistic.

  9. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  10. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  11. Theoretical Study of Interaction between Photons and Single Spins

    NASA Astrophysics Data System (ADS)

    Chen, Ting

    . In the three-level system, the exact solution for the driving pulse shows Markovian approximation applies for relatively slow pulses, while non-Markovian dynamics is essential for rapid operation near the cut-off frequency of the waveguide. Secondly, we investigate the dynamic evolution of a single two-level system embedded in the one-dimensional waveguide. It is well known that if the transition frequency of the two-level system is below the cut-off frequency of the one-dimensional waveguide, the spontaneous emission decay will be totally inhibited. However, we find that even the transition frequency is set above the cut-off frequency, the decay is partly suppressed due to the existence of an exciton bound state. When the transition frequency is tuned to the edge of the cut-off frequency, the decay rate is remarkably enhanced. And the Rabi oscillation appears between the discrete bound state and a resonance with finite lifetime. The Non-Markovian spontaneous emission near the band edge reveals the strong coupling between the atom and the continuum. The trapped polariton makes the optical system behave like a cavity without mirror. And the individual quantum dot has shown to be potential to serve as the deterministic single-photon source. Another limit of spin-photon interaction is the weak interaction regime, which often occurs in optical detection of single spins. The interaction between a single spin and a probe device is extremely weak, making measurement difficult. The measurement thus is weak. But disturbance caused by the measurement is also weak. In the weak interaction region, correlations of sequential or continuous weak measurement reveal faithfully dynamics of a single spin. We study the weak measurement of a single spin by a continuouswave light, which is based on the weak Faraday rotation effect. (Abstract shortened by UMI.)

  12. Optimal control computer programs

    NASA Technical Reports Server (NTRS)

    Kuo, F.

    1992-01-01

    The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.

  13. Optimal Linear Control.

    DTIC Science & Technology

    1979-12-01

    OPTIMAL LINEAR CONTROL C.A. HARVEY M.G. SAFO NOV G. STEIN J.C. DOYLE HONEYWELL SYSTEMS & RESEARCH CENTER j 2600 RIDGWAY PARKWAY j [ MINNEAPOLIS...RECIPIENT’S CAT ALC-’ W.IMIJUff’? * J~’ CR2 15-238-4F TP P EI)ŕll * (~ Optimal Linear Control ~iOGRPR UBA m a M.G Lnar o Con_ _ _ _ _ _ R PORT__ _ _ I RE...Characterizations of optimal linear controls have been derived, from which guides for selecting the structure of the control system and the weights in

  14. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  15. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  16. Discrete Variational Optimal Control

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Kobilarov, Marin; Martín de Diego, David

    2013-06-01

    This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.

  17. Transverse single-spin asymmetries: Challenges and recent progress

    DOE PAGES

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less

  18. Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation.

    PubMed

    Zhang, Y; Lapert, M; Sugny, D; Braun, M; Glaser, S J

    2011-02-07

    We consider the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence of relaxation and radiation damping effects, whose dynamics is governed by nonlinear equations generalizing the standard linear Bloch equations. For a single spin, the optimal control strategy can be fully characterized analytically. However, in order to take into account the inhomogeneity of the static magnetic field, an ensemble of isochromats at different frequencies must be considered. For this case, numerically optimized pulse sequences are computed and the dynamics under the corresponding optimal field is experimentally demonstrated using nuclear magnetic resonance techniques.

  19. Optimal Periodic Control Theory.

    DTIC Science & Technology

    1980-08-01

    are control variables. For many aircraft, this energy state space produces a hodograph which is not convex. The physical explanation for this is that...convexity in the hodograph and preserve an "optimal" steady-state cruise, Schultz and Zagalsky [61 revised the energy state model so that altitude becomes a

  20. Optimized joystick controller.

    PubMed

    Ding, D; Cooper, R A; Spaeth, D

    2004-01-01

    The purpose of the study was to develop an optimized joystick control interface for electric powered wheelchairs and thus provide safe and effective control of electric powered wheelchairs to people with severe physical disabilities. The interface enables clinicians to tune joystick parameters for each individual subject through selecting templates, dead zones, and bias axes. In terms of hand tremor usually associated with people with traumatic brain injury, cerebral palsy, and multiple sclerosis, fuzzy logic rules were applied to suppress erratic hand movements and extract the intended motion from the joystick. Simulation results were presented to show the graphical tuning interface as well as the performance of the fuzzy logic controller.

  1. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    i k+l since the cost to be minimized in (D.2.3) increases withXk (for fixed xsk). When we have b k _ x~ ji ] Aj M 2a(j) R(j) x bOk +l x]rkt] -b (j...22, pp. 236-239. 69. D.D.Sworder and L.L. Choi (1976): Stationary Cost Densities for Optimally Controlled Stochastic Systems, IEEE Trans. Automatic

  2. Unvail the Mysterious of the Single Spin Asymmetry

    SciTech Connect

    Yuan, Feng

    2010-01-05

    Single transverse-spin asymmetry in high energy hadronic reaction has been greatly investigated from both experiment and theory sides in the last few years. In this talk, I will summarize some recent theoretical developments, which, in my opinion, help to unvail the mysterious of the single spin asymmetry.

  3. Coherent single-spin source based on topological insulators

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Yang, Zhong-Liu; Sun, Qing-Feng; Wang, Jian

    2015-03-01

    We report on the injection of quantized pure spin current into quantum conductors. In particular, we propose an on-demand single-spin source generated by periodically varying the gate voltages of two quantum dots that are connected to a two-dimensional topological insulator via tunneling barriers. Due to the nature of the helical states of the topological insulator, one or several spin pairs can be pumped out per cycle giving rise to a pure quantized alternating spin current. Depending on the phase difference between two gate voltages, this device can serve as an on-demand single-spin emitter or single-charge emitter. Again, due to the helicity of the topological insulator, the single-spin emitter or charge emitter is dissipationless and immune to disorder. The proposed single-spin emitter can be an important building block of future spintronic devices. We gratefully acknowledge the financial support from from NSF-China under Grant (Nos. 11174032 and 11374246), NBRP of China (2012CB921303), and a RGC Grant (HKU 705212P) from the Government of HKSAR.

  4. Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong-Peng; Shao, Bin; Zou, Jian

    2017-02-01

    Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.

  5. Single-spin observables and orbital structures in hadronic distributions

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2006-11-01

    Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.

  6. Single spin relaxometry of spin noise from a ferromagnet

    NASA Astrophysics Data System (ADS)

    Casola, Francesco; van der Sar, Toeno; Walsworth, Ronald; Yacoby, Amir

    2015-03-01

    The introduction of new schemes for the measurement of spatially resolved dynamic magnetic properties of strongly correlated electrons is essential for the study of condensed matter magnetism and the development of novel spintronic devices. Here we show the possibility to detect the magnetic spin noise produced by a thin (~ 30 nm) layer of a patterned micro-sized ferromagnet (Ni81Fe19) by optical initialization and read-out of the single spin state of a nearby nitrogen vacancy center (NV) in diamond. For the interpretation of our results, we develop a general framework describing single-spin stray field detection in terms of a filter function sensitive mostly to spin fluctuations with wavevector ~ 1 / d , where d is the NV-ferromagnet distance. Our results pave the way towards quantitative and non-perturbative detection of spectral properties in nanomagnets, establishing NV center magnetometry as an emergent probe of collective spin dynamics in condensed matter.

  7. Optimal Flow Control Design

    NASA Technical Reports Server (NTRS)

    Allan, Brian; Owens, Lewis

    2010-01-01

    In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements

  8. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-02-17

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network.

  9. Supercomputer optimizations for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang

    1991-01-01

    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.

  10. Optimal Control of Electrodynamic Tethers

    DTIC Science & Technology

    2008-06-01

    method.46 Even though the derivation that produced Eq. (11) required integration over a hypothetical integer number of revolutions, the optimizer ... approach to multi-revolution, long time scale optimal control of an electrodynamic tether is investigated for a tethered satellite system in Low Earth...time scale approach is used to capture the effects of the Earth’s rotating tilted magnetic field. Optimal control solutions are achieved using a

  11. Asymptotic controllability and optimal control

    NASA Astrophysics Data System (ADS)

    Motta, M.; Rampazzo, F.

    We consider a control problem where the state must approach asymptotically a target C while paying an integral cost with a non-negative Lagrangian l. The dynamics f is just continuous, and no assumptions are made on the zero level set of the Lagrangian l. Through an inequality involving a positive number p and a Minimum Restraint FunctionU=U(x) - a special type of Control Lyapunov Function - we provide a condition implying that (i) the system is asymptotically controllable, and (ii) the value function is bounded by U/p. The result has significant consequences for the uniqueness issue of the corresponding Hamilton-Jacobi equation. Furthermore it may be regarded as a first step in the direction of a feedback construction.

  12. Metacognitive control and optimal learning.

    PubMed

    Son, Lisa K; Sethi, Rajiv

    2006-07-08

    The notion of optimality is often invoked informally in the literature on metacognitive control. We provide a precise formulation of the optimization problem and show that optimal time allocation strategies depend critically on certain characteristics of the learning environment, such as the extent of time pressure, and the nature of the uptake function. When the learning curve is concave, optimality requires that items at lower levels of initial competence be allocated greater time. On the other hand, with logistic learning curves, optimal allocations vary with time availability in complex and surprising ways. Hence there are conditions under which optimal strategies will be relatively easy to uncover, and others in which suboptimal time allocation might be expected. The model can therefore be used to address the question of whether and when learners should be able to exercise good metacognitive control in practice.

  13. Dual approximations in optimal control

    NASA Technical Reports Server (NTRS)

    Hager, W. W.; Ianculescu, G. D.

    1984-01-01

    A dual approximation for the solution to an optimal control problem is analyzed. The differential equation is handled with a Lagrange multiplier while other constraints are treated explicitly. An algorithm for solving the dual problem is presented.

  14. Nanoscale imaging of paramagnetic spin labels using a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Myers, Bryan; Pelliccione, Matthew; Jayich, Ania

    Spin-labeling molecules with paramagnetic species is a powerful technique for probing molecular structure. However, current techniques are ensemble measurements, inherently lacking the sensitivity to detect a single spin or the conformational properties of a single biomolecule. In this talk, we demonstrate an imaging technique that has the promise of single-spin imaging and ultimately molecular structure imaging. We present two-dimensional nanoscale imaging of a monolayer of gadolinium (Gd) atomic spin labels at ambient conditions. The sensing element is a single nitrogen-vacancy (NV) center in diamond. A patterned monolayer of Gd atoms self-assembled on a Si atomic force microscopy tip is controllably interacted with and detected by the NV center. The fluctuating magnetic field generated by GHz-scale Gd spin flips relaxes the NV center in a manner that depends strongly on the Gd-NV separation. Using this technique, we demonstrate a Gd-induced reduction of the T1 relaxation time of the NV center with nm spatial resolution. Our results indicate that nanometer-scale imaging of individual electronic spins at ambient conditions is within reach. This will ultimately enable the study of structural and functional studies of single biomolecules in their native, folded state.

  15. Observation of a single spin by transferring its coherence to a high level macroscopic pure state

    SciTech Connect

    Kawamura, Minaru

    2014-12-04

    We discuss about quantum measurement of a single spin in a superconducting RF resonator, where amplification of coherence of the spin is enabled by transferring its coherence to the harmonic oscillator in an non-coherent state with high energy level. This quantum amplification allows that a single spin can induce macroscopic current to permits observation of a single spin state in the number and phase uncertainty relation.

  16. Optimal control of motorsport differentials

    NASA Astrophysics Data System (ADS)

    Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.

    2015-12-01

    Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.

  17. Optimal control of native predators

    USGS Publications Warehouse

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  18. Unifying process control and optimization

    SciTech Connect

    Makansi, J.

    2005-09-01

    About 40% of US generation is now subject to wholesale competition. To intelligently bid into these new markets, real-time prices must be aligned with real-time costs. It is time to integrate the many advanced applications, sensors, and analyzers used for control, automation, and optimization into a system that reflects process and financial objectives. The paper reports several demonstration projects in the USA revealing what is being done in the area of advanced process optimization (by Alliant Energy, American Electric Power, PacifiCorp, Detroit Edison and Tennessee Valley Authority). In addition to these projects US DOE's NETL has funded the plant environment and cost optimization system, PECOS which combines physical models, neural networks and fuzzy logic control to provide operators with least cost setpoints for controllable variables. At Dynegy Inc's Baldwin station in Illinois the DOE is subsidizing a project where real time, closed-loop IT systems will optimize combustion, soot-blowing and SCR performance as well as unit thermal performance and plant economic performance. Commercial products such as Babcock and Wilcox's Flame Doctor, continuous emissions monitoring systems and various real-time predictive monitoring systems are also available. 4 figs.

  19. Gain optimization with nonlinear controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Kandadai, R. D.

    1982-01-01

    An algorithm has been developed for the analysis and design of controls for nonlinear systems. The technical approach is to use statistical linearization to model the nonlinear dynamics of a system. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this report is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general however and numerical computation requires only that the specific nonlinearity be considered in the analysis.

  20. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  1. Single-spin beam asymmetry in semi-exclusive deep-inelastic electroproduction

    SciTech Connect

    Andrei Afanasev; C. E. Carlson

    2003-05-01

    Recent measurements from Jefferson Lab show significant beam single spin asymmetries in deep inelastic scattering. The asymmetry is due to interference of longitudinal and transverse photoabsorption amplitudes which have different phases induced by the final-state interaction between the struck quark and the target spectators. We developed a dynamical model for a single-spin beam asymmetry in deep-inelastic scattering. Our results are consistent with the experimentally observed magnitude of this effect. We conclude that similar mechanisms involving quark orbital angular momentum ('Sivers effect') are responsible for both target and beam single-spin asymmetries.

  2. Optimal control of two coupled spinning particles in the Euler-Lagrange picture

    NASA Astrophysics Data System (ADS)

    Delgado-Téllez, M.; Ibort, A.; Rodríguez de la Peña, T.; Salmoni, R.

    2016-01-01

    A family of optimal control problems for a single and two coupled spinning particles in the Euler-Lagrange formalism is discussed. A characteristic of such problems is that the equations controlling the system are implicit and a reduction procedure to deal with them must be carried out. The reduction of the implicit control equations arising in these problems will be discussed in the slightly more general setting of implicit equations defined by invariant one-forms on Lie groups. As an example the first order differential equations describing the extremal solutions of an optimal control problem for a single spinning particle, obtained by using Pontryagin’s Maximum Principle (PMP), will be found and shown to be completely integrable. Then, again using PMP, solutions for the problem of two coupled spinning particles will be characterized as solutions of a system of coupled non-linear matrix differential equations. The reduction of the implicit system will show that the reduced space for them is the product of the space of states for the independent systems, implying the absence of ‘entanglement’ in this instance. Finally, it will be shown that, in the case of identical systems, the degree three matrix polynomial differential equations determined by the optimal feedback law, constitute a completely integrable Hamiltonian system and some of its solutions are described explicitly.

  3. Optimal control of overdamped systems

    NASA Astrophysics Data System (ADS)

    Zulkowski, Patrick R.; DeWeese, Michael R.

    2015-09-01

    Nonequilibrium physics encompasses a broad range of natural and synthetic small-scale systems. Optimizing transitions of such systems will be crucial for the development of nanoscale technologies and may reveal the physical principles underlying biological processes at the molecular level. Recent work has demonstrated that when a thermodynamic system is driven away from equilibrium then the space of controllable parameters has a Riemannian geometry induced by a generalized inverse diffusion tensor. We derive a simple, compact expression for the inverse diffusion tensor that depends solely on equilibrium information for a broad class of potentials. We use this formula to compute the minimal dissipation for two model systems relevant to small-scale information processing and biological molecular motors. In the first model, we optimally erase a single classical bit of information modeled by an overdamped particle in a smooth double-well potential. In the second model, we find the minimal dissipation of a simple molecular motor model coupled to an optical trap. In both models, we find that the minimal dissipation for the optimal protocol of duration τ is proportional to 1 /τ , as expected, though the dissipation for the erasure model takes a different form than what we found previously for a similar system.

  4. Adaptive, predictive controller for optimal process control

    SciTech Connect

    Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.

    1995-12-01

    One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.

  5. AN APPLICATION OF OPTIMAL CONTROL THEORY.

    DTIC Science & Technology

    The purpose of this article is to show that optimal control theory can be used to develop a control strategy for a practical system, namely a distillation column. The approach will be to model the complex system with a simple model, use optimal control theory to determine a control strategy for the simple model, and then apply the results to the original system. (Author)

  6. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  7. Linear quadratic optimal control for symmetric systems

    NASA Technical Reports Server (NTRS)

    Lewis, J. H.; Martin, C. F.

    1983-01-01

    Special symmetries are present in many control problems. This paper addresses the problem of determining linear-quadratic optimal control problems whose solutions preserve the symmetry of the initial linear control system.

  8. Optimal digital redesign of cascaded analogue controllers

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Decrocq, B. B.; Zhang, J. L.

    1991-01-01

    This paper presents a new, optimal digital redesign technique for finding an optimal cascaded digital controller from the given continuous-time counterpart by minimizing a quadratic performance index. The control gains can be obtained by solving a set of Liapunov equations. The developed optimal cascaded digital controller enables the state and/or outputs of the digitally controlled closed-loop sampled-data system to optimally match those of the original continuous-time closed-loop system at any instant between sampling periods. The developed control law can be implemented using inexpensive and reliable digital electronics with a relatively long sampling period.

  9. Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe

    NASA Astrophysics Data System (ADS)

    Glaser, Steffen J.; Boscain, Ugo; Calarco, Tommaso; Koch, Christiane P.; Köckenberger, Walter; Kosloff, Ronnie; Kuprov, Ilya; Luy, Burkhard; Schirmer, Sophie; Schulte-Herbrüggen, Thomas; Sugny, Dominique; Wilhelm, Frank K.

    2015-12-01

    It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems. We address key challenges and sketch a roadmap for future developments.

  10. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  11. Optimal singular control with applications to trajectory optimization

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.

    1977-01-01

    A comprehensive discussion of the problem of singular control is presented. Singular control enters an optimal trajectory when the so called switching function vanishes identically over a finite time interval. Using the concept of domain of maneuverability, the problem of optical switching is analyzed. Criteria for the optimal direction of switching are presented. The switching, or junction, between nonsingular and singular subarcs is examined in detail. Several theorems concerning the necessary, and also sufficient conditions for smooth junction are presented. The concepts of quasi-linear control and linearized control are introduced. They are designed for the purpose of obtaining approximate solution for the difficult Euler-Lagrange type of optimal control in the case where the control is nonlinear.

  12. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  13. Optimal management strategies in variable environments: Stochastic optimal control methods

    USGS Publications Warehouse

    Williams, B.K.

    1985-01-01

    Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both

  14. Geometric Computational Mechanics and Optimal Control

    DTIC Science & Technology

    2011-12-02

    methods. Further methods that depend on global optimization problems are in development and preliminary versions of these results, many of which...de la Sociedad Espanola de Matimatica Aplicada (SeMA), 50, 2010, pp 61-81. K. Flaßkamp, S. Ober-Blöbaum, M. Kobilarov, Solving optimal control...continuous setting. Consequently, globally optimal methods for computing optimal trajectories for vehicles with complex dynamics were developed. The

  15. Optimal control concepts in design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Belegundu, Ashok D.

    1987-01-01

    A close link is established between open loop optimal control theory and optimal design by noting certain similarities in the gradient calculations. The resulting benefits include a unified approach, together with physical insights in design sensitivity analysis, and an efficient approach for simultaneous optimal control and design. Both matrix displacement and matrix force methods are considered, and results are presented for dynamic systems, structures, and elasticity problems.

  16. Semiclassical guided optimal control of molecular dynamics

    SciTech Connect

    Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.

    2005-10-15

    An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.

  17. Quantum control implemented as combinatorial optimization.

    PubMed

    Strohecker, Traci; Rabitz, Herschel

    2010-01-15

    Optimal control theory provides a general means for designing controls to manipulate quantum phenomena. Traditional implementation requires solving coupled nonlinear equations to obtain the optimal control solution, whereas this work introduces a combinatorial quantum control (CQC) algorithm to avoid this complexity. The CQC technique uses a predetermined toolkit of small time step propagators in conjunction with combinatorial optimization to identify a proper sequence for the toolkit members. Results indicate that the CQC technique exhibits invariance of search effort to the number of system states and very favorable scaling upon comparison to a standard gradient algorithm, taking into consideration that CQC is easily parallelizable.

  18. Linear optimal control of tokamak fusion devices

    SciTech Connect

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  19. Final-State Interactions and Single-Spin Asymmetries in Semi-inclusive Deep Inelastic Scattering

    SciTech Connect

    Brodsky, Stanley J.; Hwang, Dae Sung; Schmidt, Ivan; /Santa Maria U., Valparaiso

    2007-11-14

    Recent measurements from the HERMES and SMC collaborations show a remarkably large azimuthal single-spin asymmetries A{sub UL} and A{sub UT} of the proton in semi-inclusive pion leptoproduction {gamma}*(q)p {yields} {pi}X. We show that final-state interactions from gluon exchange between the outgoing quark and the target spectator system leads to single-spin asymmetries in deep inelastic lepton-proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality q{sup 2} at fixed x{sub bj}. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with J{sup z}{sub p} = {+-}1/2 to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum L{sup z} of the proton's constituents and thus is distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of structure function and fragmentation function, and it is not related to the transversity distribution {delta}q(x;Q) which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon.

  20. Time evolution of a single spin inhomogeneously coupled to an interacting spin environment.

    PubMed

    Huang, Zhen; Sadiek, Gehad; Kais, Sabre

    2006-04-14

    We study the time evolution of a single spin coupled by exchange interaction to an environment of interacting spin bath modeled by the XY Hamiltonian. By evaluating the spin correlator of the single spin, we observed that the decay rate of the spin oscillations strongly depends on the relative magnitude of the exchange coupling between the single spin and its nearest neighbor J(') and coupling among the spins in the environment J. The decoherence time varies significantly based on the relative coupling magnitudes of J and J('). The decay rate law has a Gaussian profile when the two exchange couplings are of the same order J(') approximately J but converts to exponential and then a power law as we move to the regimes of J(')>J and J(')single spin to the environmental spins with a certain speed. The effect of varying the anisotropic parameter, external magnetic field, and temperature on the decaying rate of the spin state is also discussed.

  1. Optimal control, optimization and asymptotic analysis of Purcell's microswimmer model

    NASA Astrophysics Data System (ADS)

    Wiezel, Oren; Or, Yizhar

    2016-11-01

    Purcell's swimmer (1977) is a classic model of a three-link microswimmer that moves by performing periodic shape changes. Becker et al. (2003) showed that the swimmer's direction of net motion is reversed upon increasing the stroke amplitude of joint angles. Tam and Hosoi (2007) used numerical optimization in order to find optimal gaits for maximizing either net displacement or Lighthill's energetic efficiency. In our work, we analytically derive leading-order expressions as well as next-order corrections for both net displacement and energetic efficiency of Purcell's microswimmer. Using these expressions enables us to explicitly show the reversal in direction of motion, as well as obtaining an estimate for the optimal stroke amplitude. We also find the optimal swimmer's geometry for maximizing either displacement or energetic efficiency. Additionally, the gait optimization problem is revisited and analytically formulated as an optimal control system with only two state variables, which can be solved using Pontryagin's maximum principle. It can be shown that the optimal solution must follow a "singular arc". Numerical solution of the boundary value problem is obtained, which exactly reproduces Tam and Hosoi's optimal gait.

  2. Optimal birth control of population dynamics.

    PubMed

    Chan, W L; Guo, B Z

    1989-11-01

    The authors studied optimal birth control policies for an age-structured population of McKendrick type which is a distributed parameter system involving 1st order partial differential equations with nonlocal bilinear boundary control. The functional analytic approach of Dubovitskii and Milyutin is adopted in the investigation. Maximum principles for problems with a free end condition and fixed final horizon are developed, and the time optimal control problems, the problem with target sets, and infinite planning horizon case are investigated.

  3. Optimal Quantum Control Using Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Barends, R.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Hoi, I.-C.; Jeffrey, E.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.

    2014-06-01

    We present a method for optimizing quantum control in experimental systems, using a subset of randomized benchmarking measurements to rapidly infer error. This is demonstrated to improve single- and two-qubit gates, minimize gate bleedthrough, where a gate mechanism can cause errors on subsequent gates, and identify control crosstalk in superconducting qubits. This method is able to correct parameters so that control errors no longer dominate and is suitable for automated and closed-loop optimization of experimental systems.

  4. Optimal magnetic attitude control of small spacecraft

    NASA Astrophysics Data System (ADS)

    Liang, Jinsong

    Spacecraft attitude control, using only magnetic coils, suffers from being unable to apply a torque about the axis defined by the magnetic field of the earth. This lack of controllability results in marginal stability, slow slew maneuvering and convergence to equilibrium positions. Currently available control schemes typically require one or more orbits to finish a large angle attitude maneuver, which severely restricts the application of magnetic control in projects requiring fast attitude maneuvers. In this dissertation, the open-loop time-optimal magnetic control is first presented to show the potential performance increase of the magnetic attitude control method. Nonlinear time-varying models with constrained inputs are considered instead of the linearized model generally used. The results show that time-optimal magnetic attitude control can be considerably faster, than the current available control schemes. The inherent weakness of the open-loop method is its lack of robustness; specifically, its response is sensitive to small changes in the system. Two methods, model predictive control and continuous optimization approach, are presented as closed-loop control strategies to increase the robustness of the time-optimal approach. Simulation results show that these two feedback control schemes effectively improve the robustness of the control system. Finally, magnetic attitude regulation after the time-optimal magnetic control is discussed. The main contribution of this work shows that magnetic attitude control is not necessarily slow, as commonly believed, as long as an appropriate control algorithm is applied. The different time-optimal controllers presented show considerable convergence time reduction for large angle attitude maneuvers; which enables magnetic attitude control to be applied to more time-critical applications.

  5. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  6. Vehicle dynamics applications of optimal control theory

    NASA Astrophysics Data System (ADS)

    Sharp, R. S.; Peng, Huei

    2011-07-01

    The aim of the paper is to survey the various forms of optimal-control theory which have been applied to automotive problems and to present illustrative examples of applications studies, with assessments of the state of the art and of the contributions made through the use of optimal-control ideas. After a short introduction to the topic mentioning several questions to which optimal-control theory has been addressed, brief reviews of automotive-applicable optimal-control theory are given. There are outlines of the Linear Quadratic Regulator, without and with state reconstruction and then with the addition of disturbance preview, the nonlinear regulator or state-dependent-Riccati equation method, general numerical optimal-control theory including indirect and direct methods, model predictive control and robust control. Applications of the theory to active and semi-active suspension design and performance, worst-case manoeuvring, minimum-time manoeuvring and high-quality driving are then discussed in detail. Application sections describe the problem, the theory that has been used, what has been discovered and what remains to be found. The record of optimal-control theory in aiding the understanding of the various issues, in helping with system designs and knowledge of what is possible, and in guiding future research is assessed. Some ideas about future work are included.

  7. Direct Optimal Control of Duffing Dynamics

    NASA Technical Reports Server (NTRS)

    Oz, Hayrani; Ramsey, John K.

    2002-01-01

    The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.

  8. Optimal energy growth and optimal control in swept Hiemenz flow

    NASA Astrophysics Data System (ADS)

    Guégan, Alan; Schmid, Peter J.; Huerre, Patrick

    2006-11-01

    The objective of the study is first to examine the optimal transient growth of Görtler Hämmerlin perturbations in swept Hiemenz flow. This configuration constitutes a model of the flow in the attachment-line boundary layer at the leading-edge of swept wings. The optimal blowing and suction at the wall which minimizes the energy of the optimal perturbations is then determined. An adjoint-based optimization procedure applicable to both problems is devised, which relies on the maximization or minimization of a suitable objective functional. The variational analysis is carried out in the framework of the set of linear partial differential equations governing the chordwise and wall-normal velocity fluctuations. Energy amplifications of up to three orders of magnitude are achieved at low spanwise wavenumbers (k {˜} 0.1) and large sweep Reynolds number (textit{Re} {˜} 2000). Optimal perturbations consist of spanwise travelling chordwise vortices, with a vorticity distribution which is inclined against the sweep. Transient growth arises from the tilting of the vorticity distribution by the spanwise shear via a two-dimensional Orr mechanism acting in the basic flow dividing plane. Two distinct regimes have been identified: for k {≤sssim} 0.25, vortex dipoles are formed which induce large spanwise perturbation velocities; for k {gtrsim} 0.25, dipoles are not observed and only the Orr mechanism remains active. The optimal wall blowing control yields for instance an 80% decrease of the maximum perturbation kinetic energy reached by optimal disturbances at textit{Re} {=} 550 and k {=} 0.25. The optimal wall blowing pattern consists of spanwise travelling waves which follow the naturally occurring vortices and qualitatively act in the same manner as a more simple constant gain feedback control strategy.

  9. Single spin magnetometry with nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chisholm, Nicholas Edward Kennedy

    The nitrogen-vacancy (NV) center in diamond is a solid-state point defect with an electronic spin that has accessible quantum mechanical properties. At room temperature, the electronic ground state sub-levels of the NV center can be initialized and read out using optical pumping, as well as coherently controlled using microwave frequency fields. This thesis focuses on using the spin state of the NV center for highly-sensitive magnetometry under ambient conditions. In particular, when the diamond surface is properly prepared, we demonstrate that NV centers can be used to measure the magnetic fluctuations stemming from individual molecules and ions attached or adsorbed to the surface. This thesis begins by introducing the physical and electronic structure of the NV center at room temperature, followed by the fundamental measurements that allow us to use the NV center as a sensitive magnetometer. Combining our sensitive NV center magnetometer with techniques from chemistry and atomic force microscopy (AFM), we demonstrate the all-optical detection of a single-molecule electron spin at room temperature. Finally, we discuss the time-resolved detection of individual electron spins adsorbing onto the surface of nano-diamonds. By extending our techniques to nano-diamonds, we move closer towards textit{in vitro} magnetic field sensing that could be pivotal for better disease diagnosis and drug development.

  10. Optimal control problems with switching points

    NASA Astrophysics Data System (ADS)

    Seywald, Hans

    1991-09-01

    An overview is presented of the problems and difficulties that arise in solving optimal control problems with switching points. A brief discussion of existing optimality conditions is given and a numerical approach for solving the multipoint boundary value problems associated with the first-order necessary conditions of optimal control is presented. Two real-life aerospace optimization problems are treated explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in the presence of a dynamic pressure limit, and range maximization for a supersonic aircraft flying in the vertical, also in the presence of a dynamic pressure limit. In the second problem singular control appears along arcs with active dynamic pressure limit, which in the context of optimal control, represents a first-order state inequality constraint. An extension of the Generalized Legendre-Clebsch Condition to the case of singular control along state/control constrained arcs is presented and is applied to the aircraft range maximization problem stated above. A contribution to the field of Jacobi Necessary Conditions is made by giving a new proof for the non-optimality of conjugate paths in the Accessory Minimum Problem. Because of its simple and explicit character, the new proof may provide the basis for an extension of Jacobi's Necessary Condition to the case of the trajectories with interior point constraints. Finally, the result that touch points cannot occur for first-order state inequality constraints is extended to the case of vector valued control functions.

  11. Optimized chaos control with simple limiters.

    PubMed

    Wagner, C; Stoop, R

    2001-01-01

    We present an elementary derivation of chaos control with simple limiters using the logistic map and the Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic orbits of a chaotic attractor.

  12. Optimal Corrosion Control Treatment Evaluation Technical Recommendations

    EPA Pesticide Factsheets

    This document provides technical recommendations that both systems and primacy agencies can use to comply with LCR CCT requirements and effective evaluation and designation of optimal corrosion control treatment (OCCT).

  13. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit.

    PubMed

    Kolkowitz, S; Safira, A; High, A A; Devlin, R C; Choi, S; Unterreithmeier, Q P; Patterson, D; Zibrov, A S; Manucharyan, V E; Park, H; Lukin, M D

    2015-03-06

    Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems.

  14. Neuro-optimal control of helicopter UAVs

    NASA Astrophysics Data System (ADS)

    Nodland, David; Ghosh, Arpita; Zargarzadeh, H.; Jagannathan, S.

    2011-05-01

    Helicopter UAVs can be extensively used for military missions as well as in civil operations, ranging from multirole combat support and search and rescue, to border surveillance and forest fire monitoring. Helicopter UAVs are underactuated nonlinear mechanical systems with correspondingly challenging controller designs. This paper presents an optimal controller design for the regulation and vertical tracking of an underactuated helicopter using an adaptive critic neural network framework. The online approximator-based controller learns the infinite-horizon continuous-time Hamilton-Jacobi-Bellman (HJB) equation and then calculates the corresponding optimal control input that minimizes the HJB equation forward-in-time. In the proposed technique, optimal regulation and vertical tracking is accomplished by a single neural network (NN) with a second NN necessary for the virtual controller. Both of the NNs are tuned online using novel weight update laws. Simulation results are included to demonstrate the effectiveness of the proposed control design in hovering applications.

  15. Optimal disturbance rejecting control of hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.; Ahmed, N. U.

    1994-01-01

    Optimal regulation of hyperbolic systems in the presence of unknown disturbances is considered. Necessary conditions for determining the optimal control that tracks a desired trajectory in the presence of the worst possible perturbations are developed. The results also characterize the worst possible disturbance that the system will be able to tolerate before any degradation of the system performance. Numerical results on the control of a vibrating beam are presented.

  16. Stochastic Optimal Control and Linear Programming Approach

    SciTech Connect

    Buckdahn, R.; Goreac, D.; Quincampoix, M.

    2011-04-15

    We study a classical stochastic optimal control problem with constraints and discounted payoff in an infinite horizon setting. The main result of the present paper lies in the fact that this optimal control problem is shown to have the same value as a linear optimization problem stated on some appropriate space of probability measures. This enables one to derive a dual formulation that appears to be strongly connected to the notion of (viscosity sub) solution to a suitable Hamilton-Jacobi-Bellman equation. We also discuss relation with long-time average problems.

  17. Automated beam steering using optimal control

    SciTech Connect

    Allen, C. K.

    2004-01-01

    We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.

  18. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  19. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  20. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  1. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Gary, Sanjay; Schmidt, David K.

    1987-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  2. Stochastic Optimal Control via Bellman's Principle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Sun, Jian Q.

    2003-01-01

    This paper presents a method for finding optimal controls of nonlinear systems subject to random excitations. The method is capable to generate global control solutions when state and control constraints are present. The solution is global in the sense that controls for all initial conditions in a region of the state space are obtained. The approach is based on Bellman's Principle of optimality, the Gaussian closure and the Short-time Gaussian approximation. Examples include a system with a state-dependent diffusion term, a system in which the infinite hierarchy of moment equations cannot be analytically closed, and an impact system with a elastic boundary. The uncontrolled and controlled dynamics are studied by creating a Markov chain with a control dependent transition probability matrix via the Generalized Cell Mapping method. In this fashion, both the transient and stationary controlled responses are evaluated. The results show excellent control performances.

  3. System Optimization by Periodic Control.

    DTIC Science & Technology

    1982-06-01

    1979-80 the main thrust was in finding finite step algorithms for the Cesaro average payoffs when the law of motion is completely controlled by one...II be numbered as 1,2,...m and 1,2,...n. Let *ij(s) be the expected Cesaro average income if pure stationary strff9 o 0Ymf!F1P AR*% ’rW by NOTI CE CO

  4. Plasma Flow Control Optimized Airfoil

    NASA Astrophysics Data System (ADS)

    Voikov, Vladimir; Patel, Mehul

    2005-11-01

    Recent advances in flow control research have demonstrated that plasma actuators can be efficient in different aerodynamic applications, particularly in providing flight control without conventional moving surfaces. The concept involves the use of a laminar airfoil design that employs a separation ramp at the trailing edge that can be manipulated by a plasma actuator to control lift, similar to trailing-edge flaps. The advantages are lower drag by a combination of the laminar flow design, and elimination of parasitic drag associated with wing-flap junctions. This work involves numerical simulations and experiments on a HSNLF(1)-0213 airfoil. The numerical results are obtained using an unsteady, compressible Navier-Stokes simulation that includes a model for the plasma actuators. The experiments are performed on a 2-D airfoil section that is mounted on a lift-drag force balance. The results demonstrate lift enhancement produced by the plasma actuator that is comparable to a plane flap. They also reveal an optimum actuator unsteady frequency that scales with the length of the separated region and local velocity, and is associated with the generation of a train of spanwise vortices. Other scaling including the effect of Reynolds number is presented.

  5. Optimal control of the sweeping process over polyhedral controlled sets

    NASA Astrophysics Data System (ADS)

    Colombo, G.; Henrion, R.; Nguyen, D. Hoang; Mordukhovich, B. S.

    2016-02-01

    The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W 1 , 2-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples.

  6. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  7. The synthesis of optimal controls for linear, time-optimal problems with retarded controls.

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Jacobs, M. Q.; Latina, M. R.

    1971-01-01

    Optimization problems involving linear systems with retardations in the controls are studied in a systematic way. Some physical motivation for the problems is discussed. The topics covered are: controllability, existence and uniqueness of the optimal control, sufficient conditions, techniques of synthesis, and dynamic programming. A number of solved examples are presented.

  8. Rényi information flow in the Ising model with single-spin dynamics.

    PubMed

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  9. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

    SciTech Connect

    Bermeister, Adam; Keith, Daniel; Culcer, Dimitrie

    2014-11-10

    Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

  10. Recent Results of Target Single-Spin Asymmetry Experiments at Jefferson Lab

    SciTech Connect

    Jiang, Xiaodong

    2013-08-01

    We report recent results from Jefferson Lab Hall A “Neutron Transversity” experiment (E06-010). Transversely polarized target single-spin asymmetry AUT and beam-target double-spin asymmetry A{sub LT} have been measured in semi-inclusive deep-inelastic scattering (SIDIS) reactions on a polarized neutron ({sup 3}He) target. Collins-type and Sivers-type asymmetries have been extracted from A{sub UT} for charged pion SIDIS productions, which are sensitive to quark transversity and Sivers distributions, correspondingly. Double spin asymmetry A{sub LT} is sensitive to a specific quark transverse momentum dependent parton distribution (TMD), the so-called “ transverse helicity” (g{sub 1T} ) distributions. In addition, target single-spin asymmetries A{sub y} in inclusive electron scattering on a transversely polarized {sup 3}He target in quasi-elastic and deep inelastic kinematics were also measured in Hall A.

  11. Rényi information flow in the Ising model with single-spin dynamics

    NASA Astrophysics Data System (ADS)

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n -index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  12. Bifurcation and Optimal Stochastic Control.

    DTIC Science & Technology

    1982-03-01

    as soon as luX InW w’(0) n L nis boundeI. To sir.iplity the notations, we denote by u = 1 . Without loss of n generality we may assume that c l...Stochastic Control. F O R M I II I • Il I i ,iii i, DD I JAP7 1473 EDITION OF I NOV S IS OSOLE’TE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE i(,en bot. EntereJ) DAT FILMEI DIC

  13. Single-spin asymmetries from two-photon exchange in elastic electron proton scattering

    SciTech Connect

    A.V. Afanasev; N.P. Merenkov

    2005-02-01

    The parity-conserving single-spin beam asymmetry of elastic electron-proton scattering is induced by an absorptive part of the two-photon exchange amplitude. We demonstrate that this asymmetry has logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. An optical theorem is used to evaluate the asymmetry in terms of the total photoproduction cross section on the proton.

  14. AN INTRODUCTION TO OPTIMAL CONTROL THEORY.

    DTIC Science & Technology

    The report presents an introduction to some of the concepts and results currently popular in optimal control theory . The introduction is intended...for someone acquainted with ordinary differential equations and real variables, but with no prior knowledge of control theory . The material covered

  15. OPTIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution.An optimized combined-sewer-overflow (CSO) control system requires a manage...

  16. Centralized Stochastic Optimal Control of Complex Systems

    SciTech Connect

    Malikopoulos, Andreas

    2015-01-01

    In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.

  17. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  18. Protecting quantum information with optimal control

    NASA Astrophysics Data System (ADS)

    Grace, Matthew

    Quantum computation (QC) holds the promise of efficiently solving problems which are practically intractable for classical computers. However, realizing this advantage requires the precise control of a quantum information processor (QIP) and effective protection of this processor from the pernicious inuence of decoherence induced by the surrounding environment. Therefore, the ability to generate high-fidelity logical operations in the presence of environmental coupling is crucial. Methods of optimal control are applied to the field of quantum information processing, providing practical solutions for the generation of logical operations and the suppression of undesired environmental effects. The work contained in this dissertation explores important aspects of system and control design. Results obtained in this work (i) illustrate how practical QC can be greatly facilitated by optimal control theory and (ii) reveal interesting physical insights through the discovery of effective control mechanisms. A special design of the physical structure of quantum information systems is formulated which is naturally immune to certain types of decoherence and yields tremendous flexibility in the construction of logical operations for QC. A fundamental component of this design involves encoding the logical basis states of a quantum bit into multiple physical levels of the corresponding quantum system. This design also makes the QIP better suited for the interaction with ultrafast broadband laser fields used in quantum control applications. Numerical simulations demonstrate the utility of this encoding approach for thermally excited quantum systems. Optimization algorithms are developed which generate controls that protect the QIP from the effects of the environment, with or without the weak-coupling or Born approximation, and simultaneously achieve a target objective, e.g., a state-to-state transition or unitary quantum operation. For the optimal control of quantum operations, a

  19. Trajectory Control and Optimization for Responsive Spacecraft

    DTIC Science & Technology

    2012-03-22

    36 3.2.2 Controlling the Position of the Spacecraft Within the Orbit . . 37 vi Page 3.2.3 Thrust-coast Duty...focuses on methods for performing minimum time in-plane maneuvers. The optimal control problem for an orbiting spacecraft perturbed by a small, constant...focuses on feedback control methods for performing in-plane maneuvers. Lyapunov theory is applied to the nonlinear equations of motion for an orbiting space

  20. Multimodel methods for optimal control of aeroacoustics.

    SciTech Connect

    Chen, Guoquan; Collis, Samuel Scott

    2005-01-01

    A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully applied to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.

  1. Optimal, real-time control--colliders

    SciTech Connect

    Spencer, J.E.

    1991-05-01

    With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs.

  2. Quadratic optimal cooperative control synthesis with flight control application

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Innocenti, M.

    1984-01-01

    An optimal control-law synthesis approach is presented that involves simultaneous solution for two cooperating controllers operating in parallel. One controller's structure includes stochastic state estimation and linear feedback of the state estimates, while the other controller involves direct linear feedback of selected system output measurements. This structure is shown to be optimal under the constraint of linear feedback of system outputs in one controller. Furthermore, it is appropriate for flight control synthesis where the full-state optimal stochastic controller can be adjusted to be representative of an optimal control model of the human pilot in a stochastic regulation task. The method is experimentally verified in the case of the selection of pitch-damper gain for optimum pitch tracking, where optimum implies the best subjective pilot rating in the task. Finally, results from application of the method to synthesize a controller for a multivariable fighter aircraft are presented, and implications of the results of this method regarding the optimal plant dynamics for tracking are discussed.

  3. Optimal control of anthracnose using mixed strategies.

    PubMed

    Fotsa Mbogne, David Jaures; Thron, Christopher

    2015-11-01

    In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions.

  4. Optimal control of circular cylinder wakes using long control horizons

    NASA Astrophysics Data System (ADS)

    Flinois, Thibault L. B.; Colonius, Tim

    2015-08-01

    The classical problem of suppressing vortex shedding in the wake of a circular cylinder by using body rotation is revisited in an adjoint-based optimal control framework. The cylinder's unsteady and fully unconstrained rotation rate is optimized at Reynolds numbers between 75 and 200 and over horizons that are longer than in previous studies, where they are typically of the order of a vortex shedding period or shorter. In the best configuration, the drag is reduced by 19%, the vortex shedding is effectively suppressed, and this low drag state is maintained with minimal cylinder rotation after transients. Unlike open-loop control, the optimal control is shown to maintain a specific phase relationship between the actuation and the shedding in order to stabilize the wake. A comparison is also given between the performance of optimizations for different Reynolds numbers, cost functions, and horizon lengths. It is shown that the long horizons used are necessary in order to stabilize the vortex shedding efficiently.

  5. Optimization-based controller design for rotorcraft

    NASA Technical Reports Server (NTRS)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  6. Linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, F. K. B.

    1980-01-01

    Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.

  7. Stochastic Linear Quadratic Optimal Control Problems

    SciTech Connect

    Chen, S.; Yong, J.

    2001-07-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well.

  8. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  9. Optimal control solutions to sodic soil reclamation

    NASA Astrophysics Data System (ADS)

    Mau, Yair; Porporato, Amilcare

    2016-05-01

    We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.

  10. Adaptive control based on retrospective cost optimization

    NASA Astrophysics Data System (ADS)

    Santillo, Mario A.

    This dissertation studies adaptive control of multi-input, multi-output, linear, time-invariant, discrete-time systems that are possibly unstable and nonminimum phase. We consider both gradient-based adaptive control as well as retrospective-cost-based adaptive control. Retrospective cost optimization is a measure of performance at the current time based on a past window of data and without assumptions about the command or disturbance signals. In particular, retrospective cost optimization acts as an inner loop to the adaptive control algorithm by modifying the performance variables based on the difference between the actual past control inputs and the recomputed past control inputs based on the current control law. We develop adaptive control algorithms that are effective for systems that are nonminimum phase. We consider discrete-time adaptive control since these control laws can be implemented directly in embedded code without requiring an intermediate discretization step. Furthermore, the adaptive controllers in this dissertation are developed under minimal modeling assumptions. In particular, the adaptive controllers require knowledge of the sign of the high-frequency gain and a sufficient number of Markov parameters to approximate the nonminimum-phase zeros (if any). No additional modeling information is necessary. The adaptive controllers presented in this dissertation are developed for full-state-feedback stabilization, static-output-feedback stabilization, as well as dynamic compensation for stabilization, command following, disturbance rejection, and model reference adaptive control. Lyapunov-based stability and convergence proofs are provided for special cases. We present numerical examples to illustrate the algorithms' effectiveness in handling systems that are unstable and/or nonminimum phase and to provide insight into the modeling information required for controller implementation.

  11. Optimal singular control for nonlinear semistabilisation

    NASA Astrophysics Data System (ADS)

    L'Afflitto, Andrea; Haddad, Wassim M.

    2016-06-01

    The singular optimal control problem for asymptotic stabilisation has been extensively studied in the literature. In this paper, the optimal singular control problem is extended to address a weaker version of closed-loop stability, namely, semistability, which is of paramount importance for consensus control of network dynamical systems. Three approaches are presented to address the nonlinear semistable singular control problem. Namely, a singular perturbation method is presented to construct a state-feedback singular controller that guarantees closed-loop semistability for nonlinear systems. In this approach, we show that for a non-negative cost-to-go function the minimum cost of a nonlinear semistabilising singular controller is lower than the minimum cost of a singular controller that guarantees asymptotic stability of the closed-loop system. In the second approach, we solve the nonlinear semistable singular control problem by using the cost-to-go function to cancel the singularities in the corresponding Hamilton-Jacobi-Bellman equation. For this case, we show that the minimum value of the singular performance measure is zero. Finally, we provide a framework based on the concepts of state-feedback linearisation and feedback equivalence to solve the singular control problem for semistabilisation of nonlinear dynamical systems. For this approach, we also show that the minimum value of the singular performance measure is zero. Three numerical examples are presented to demonstrate the efficacy of the proposed singular semistabilisation frameworks.

  12. Optimal and robust control of transition

    NASA Technical Reports Server (NTRS)

    Bewley, T. R.; Agarwal, R.

    1996-01-01

    Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

  13. Distributed optimization and flight control using collectives

    NASA Astrophysics Data System (ADS)

    Bieniawski, Stefan Richard

    The increasing complexity of aerospace systems demands new approaches for their design and control. Approaches are required to address the trend towards aerospace systems comprised of a large number of inherently distributed and highly nonlinear components with complex and sometimes competing interactions. This work introduces collectives to address these challenges. Although collectives have been used for distributed optimization problems in computer science, recent developments based upon Probability Collectives (PC) theory enhance their applicability to discrete, continuous, mixed, and constrained optimization problems. Further, they are naturally applied to distributed systems and those involving uncertainty, such as control in the presence of noise and disturbances. This work describes collectives theory and its implementation, including its connections to multi-agent systems, machine learning, statistics, and gradient-based optimization. To demonstrate the approach, two experiments were developed. These experiments built upon recent advances in actuator technology that resulted in small, simple flow control devices. Miniature-Trailing Edge Effectors (MiTE), consisting of a small, 1-5% chord, moveable surface mounted at the wing trailing edge, are used for the experiments. The high bandwidth, distributed placement, and good control authority make these ideal candidates for rigid and flexible mode control of flight vehicles. This is demonstrated in two experiments: flutter suppression of a flexible wing, and flight control of a remotely piloted aircraft. The first experiment successfully increased the flutter speed by over 25%. The second experiment included a novel distributed flight control system based upon the MiTEs that includes distributed sensing, logic, and actuation. Flight tests validated the control capability of the MiTEs and the associated flight control architecture. The collectives approach was used to design controllers for the distributed

  14. Relaxed controls and the convergence of optimal control algorithms

    NASA Technical Reports Server (NTRS)

    Williamson, L. J.; Polak, E.

    1976-01-01

    This paper presents a framework for the study of the convergence properties of optimal control algorithms and illustrates its use by means of two examples. The framework consists of an algorithm prototype with a convergence theorem, together with some results in relaxed controls theory.

  15. Optimization for efficient structure-control systems

    NASA Technical Reports Server (NTRS)

    Oz, Hayrani; Khot, Narendra S.

    1993-01-01

    The efficiency of a structure-control system is a nondimensional parameter which indicates the fraction of the total control power expended usefully in controlling a finite-dimensional system. The balance of control power is wasted on the truncated dynamics serving no useful purpose towards the control objectives. Recently, it has been demonstrated that the concept of efficiency can be used to address a number of control issues encountered in the control of dynamic systems such as the spillover effects, selection of a good input configuration and obtaining reduced order control models. Reference (1) introduced the concept and presented analyses of several Linear Quadratic Regulator designs on the basis of their efficiencies. Encouraged by the results of Ref. (1), Ref. (2) introduces an efficiency modal analysis of a structure-control system which gives an internal characterization of the controller design and establishes the link between the control design and the initial disturbances to affect efficient structure-control system designs. The efficiency modal analysis leads to identification of principal controller directions (or controller modes) distinct from the structural natural modes. Thus ultimately, many issues of the structure-control system revolve around the idea of insuring compatibility of the structural modes and the controller modes with each other, the better the match the higher the efficiency. A key feature in controlling a reduced order model of a high dimensional (or infinity-dimensional distributed parameter system) structural dynamic system must be to achieve high efficiency of the control system while satisfying the control objectives and/or constraints. Formally, this can be achieved by designing the control system and structural parameters simultaneously within an optimization framework. The subject of this paper is to present such a design procedure.

  16. Algorithms for optimizing CT fluence control

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).

  17. Optimality principles in sensorimotor control (review)

    PubMed Central

    Todorov, Emanuel

    2006-01-01

    The sensorimotor system is a product of evolution, development, learning, adaptation – processes that work on different time scales to improve behavioral performance. Consequenly, many theories of motor function are based on the notion of optimal performance: they quantify the task goals, and apply the sophisticated tools of optimal control theory to obtain detailed behavioral predictions. The resulting models, although not without limitations, has explained a wider range of empirical phenomena than any other class of models. Traditional emphasis has been on optimizing average trajectories while ignoring sensory feedback. Recent work has redefined optimality on the level of feedback control laws, and focused on the mechanisms that generate behavior online. This has made it possible to fit a number of previously unrelated concepts and observations into what may become a unified theoretical framework for interpreting motor function. At the heart of the framework is the relationship between high-level goals, and the realtime sensorimotor control strategies most suitable for accomplishing those goals. PMID:15332089

  18. Helicopter trajectory planning using optimal control theory

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  19. Gain optimization with non-linear controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Kandadai, R. D.

    1984-01-01

    An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.

  20. Twist-3 Single-Spin Asymmetry for SIDIS and its Azimuthal Structure

    SciTech Connect

    Koike, Yuji; Tanaka, Kazuhiro

    2009-08-04

    We derive the complete twist-3 single-spin-dependent cross section for semi-inclusive DIS, ep{sup {up_arrow}}{yields}e{pi}X, associated with the complete set of the twist-3 quark-gluon correlation functions in the transversely polarized nucleon, extending our previous study. The cross section consists of five independent structure functions with different azimuthal dependences, consistently with the transverse-momentum-dependent (TMD) factorization approach in the low q{sup T} region. Correspondence with the inclusive DIS limit and comparison with the TMD approach are briefly discussed.

  1. Twist-3 predictions for single spin asymmetry for light-hadron productions at RHIC

    SciTech Connect

    Kanazawa, Koichi

    2011-12-14

    We present several predictions for the single spin asymmetry for the {pi}, K, and {eta}-meson productions at RHIC kinematics using the twist-3 quark-gluon correlation functions determined from our analysis of RHIC data. After discussing the P{sub T}-dependence of A{sub N}, we give predictions for A{sub N} for pions and kaons at {radical}(S) = 500 GeV and A{sub N} for the {eta}-meson at {radical}(S) = 200 GeV.

  2. Clocked single-spin source based on a spin-split superconductor

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Giazotto, Francesco

    2016-08-01

    We propose an accurate clocked single-spin source for ac-spintronic applications. Our device consists of a superconducting island covered by a ferromagnetic insulator (FI) layer through which it is coupled to superconducting leads. Single-particle transfer relies on the energy gaps and the island's charging energy, and is enabled by a bias and a time-periodic gate voltage. Accurate spin transfer is achieved by the FI layer which polarizes the island, provides spin-selective tunneling barriers and improves the precision by suppressing Andreev reflection. We analyze realistic material combinations and experimental requirements which allow for a clocked spin current in the MHz regime.

  3. Optimal control in a noisy system

    NASA Astrophysics Data System (ADS)

    Asenjo, F.; Toledo, B. A.; Muñoz, V.; Rogan, J.; Valdivia, J. A.

    2008-09-01

    We describe a simple method to control a known unstable periodic orbit (UPO) in the presence of noise. The strategy is based on regarding the control method as an optimization problem, which allows us to calculate a control matrix A. We illustrate the idea with the Rossler system, the Lorenz system, and a hyperchaotic system that has two exponents with positive real parts. Initially, a UPO and the corresponding control matrix are found in the absence of noise in these systems. It is shown that the strategy is useful even if noise is added as control is applied. For low noise, it is enough to find a control matrix such that the maximum Lyapunov exponent λmax<0, and with a single non-null entry. If noise is increased, however, this is not the case, and the full control matrix A may be required to keep the UPO under control. Besides the Lyapunov spectrum, a characterization of the control strategies is given in terms of the average distance to the UPO and the control effort required to keep the orbit under control. Finally, particular attention is given to the problem of handling noise, which can affect considerably the estimation of the UPO itself and its exponents, and a cleaning strategy based on singular value decomposition was developed. This strategy gives a consistent manner to approach noisy systems, and may be easily adapted as a parametric control strategy, and to experimental situations, where noise is unavoidable.

  4. Vision-controlled paint spray optimization

    NASA Astrophysics Data System (ADS)

    Ettinger, Gary; Christian, Donald J.

    1992-04-01

    This paper is a case history of spray paint optimization system based on machine vision technology in a factory automation application. The system is implemented as an industrial control for a reciprocating electrostatic sprayer used for priming and painting of armor plate for military ground vehicles. Incoming plates are highly variable in size, shape, and orientation, and are processes in very small production lots. A laser imager is used to digitize visual cross sections of each plate one line at a time. The raster lines are then assembled into a two dimensional image and processed. The spray pattern is optimized for precise paint coverage with minimum overspray. The paint optimizer system has yielded a measured 25 percent savings in bulk paint use, resulting in less booth and equipment maintenance, reduced paint fumes in the atmosphere, and reduced waste disposal, and now has several months of successful production history.

  5. Modal methods in optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Bryson, A. E., Jr.; Hall, W. E., Jr.

    1980-01-01

    Efficient algorithms for solving linear smoother-follower problems with quadratic criteria are presented. For time-invariant systems, the algorithm consists of one backward integration of a linear vector equation and one forward integration of another linear vector equation. Furthermore, the backward and forward Riccati matrices can be expressed in terms of the eigenvalues and eigenvectors of the Euler-Lagrange equations. Hence, the gains of the forward and backward Kalman-Bucy filters and of the optimal state-feedback regulator can be determined without integration of matrix Riccati equations. A computer program has been developed, based on this method of determining the gains, to synthesize the optimal time-invariant compensator in the presence of random disturbance inputs and random measurement errors. The program also computes the rms state and control variables of the optimal closed-loop system.

  6. PDEMOD: Software for control/structures optimization

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Zimmerman, David

    1991-01-01

    Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.

  7. Optimal control of multiplicative control systems arising from cancer therapy

    NASA Technical Reports Server (NTRS)

    Bahrami, K.; Kim, M.

    1975-01-01

    This study deals with ways of curtailing the rapid growth of cancer cell populations. The performance functional that measures the size of the population at the terminal time as well as the control effort is devised. With use of the discrete maximum principle, the Hamiltonian for this problem is determined and the condition for optimal solutions are developed. The optimal strategy is shown to be a bang-bang control. It is shown that the optimal control for this problem must be on the vertices of an N-dimensional cube contained in the N-dimensional Euclidean space. An algorithm for obtaining a local minimum of the performance function in an orderly fashion is developed. Application of the algorithm to the design of antitumor drug and X-irradiation schedule is discussed.

  8. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  9. Optimal Control via Self-Generated Stochasticity

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.

  10. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons.

    PubMed

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun; Liu, Yu-Shen; Wang, Xue-Feng; Feng, Jin-Fu

    2015-01-14

    Ab initio calculations combining density-functional theory and nonequilibrium Green's function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.

  11. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons

    SciTech Connect

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun; Liu, Yu-Shen Feng, Jin-Fu; Wang, Xue-Feng

    2015-01-14

    Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.

  12. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun; Liu, Yu-Shen; Wang, Xue-Feng; Feng, Jin-Fu

    2015-01-01

    Ab initio calculations combining density-functional theory and nonequilibrium Green's function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.

  13. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle

    NASA Astrophysics Data System (ADS)

    Bulgakov, V. K.; Strigunov, V. V.

    2009-05-01

    The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.

  14. Quantum computing gates via optimal control

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2014-10-01

    We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13C2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.

  15. Augmented Lagrangian method for optimal laser control

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pierre; Bandrauk, Andre D.

    1994-06-01

    We use penalty methods derived from Augmented Lagrangians coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schodinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  16. Cancer Behavior: An Optimal Control Approach

    PubMed Central

    Gutiérrez, Pedro J.; Russo, Irma H.; Russo, J.

    2009-01-01

    With special attention to cancer, this essay explains how Optimal Control Theory, mainly used in Economics, can be applied to the analysis of biological behaviors, and illustrates the ability of this mathematical branch to describe biological phenomena and biological interrelationships. Two examples are provided to show the capability and versatility of this powerful mathematical approach in the study of biological questions. The first describes a process of organogenesis, and the second the development of tumors. PMID:22247736

  17. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  18. Optimal control of complex atomic quantum systems

    NASA Astrophysics Data System (ADS)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  19. Beam normal single spin asymmetry in forward angle inelastic electron-proton scattering using the q-weak apparatus

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, FNU

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (Bn) on H2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic Bn is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of Bn background studies, we made the first measurement of Bn in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be Bn = 42.82 +- 2.45 (stat) +- 16.07 (sys) ppm at beam energy Ebeam = 1.155 GeV, scattering angle theta = 8.3 degrees, and missing mass W = 1.2 GeV. Bn from electron-nucleon scattering is a unique tool to study the gamma*DeltaDelta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ˜10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has

  20. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect

    ., Nuruzzaman

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  1. Design, optimization, and control of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Masic, Milenko

    The contributions of this dissertation may be divided into four categories. The first category involves developing a systematic form-finding method for general and symmetric tensegrity structures. As an extension of the available results, different shape constraints are incorporated in the problem. Methods for treatment of these constraints are considered and proposed. A systematic formulation of the form-finding problem for symmetric tensegrity structures is introduced, and it uses the symmetry to reduce both the number of equations and the number of variables in the problem. The equilibrium analysis of modular tensegrities exploits their peculiar symmetry. The tensegrity similarity transformation completes the contributions in the area of enabling tools for tensegrity form-finding. The second group of contributions develops the methods for optimal mass-to-stiffness-ratio design of tensegrity structures. This technique represents the state-of-the-art for the static design of tensegrity structures. It is an extension of the results available for the topology optimization of truss structures. Besides guaranteeing that the final design satisfies the tensegrity paradigm, the problem constrains the structure from different modes of failure, which makes it very general. The open-loop control of the shape of modular tensegrities is the third contribution of the dissertation. This analytical result offers a closed form solution for the control of the reconfiguration of modular structures. Applications range from the deployment and stowing of large-scale space structures to the locomotion-inducing control for biologically inspired structures. The control algorithm is applicable regardless of the size of the structures, and it represents a very general result for a large class of tensegrities. Controlled deployments of large-scale tensegrity plates and tensegrity towers are shown as examples that demonstrate the full potential of this reconfiguration strategy. The last

  2. Methods for combined control-structure optimization

    NASA Technical Reports Server (NTRS)

    Milman, M.; Scheid, R. E.; Salama, M.; Bruno, R.

    1989-01-01

    This paper outlines the development of methods for the combined control-structure optimization of physical systems encountered in the technology of large space structures. The objective of the approach taken in this paper is not to produce the 'best' optimized design, but rather to efficiently produce a family of design options so as to asist in early trade studies, typically before hard design constraints are imposed. The philosophy is that these are candidate designs to be passed on for further consideration, and their function is more to guide the development of the system design rather than to represent the ultimate product. A homotopy approach involving multi-objective functions is developed for this purpose, and a numerical example is presented.

  3. Optimal control of HIV/AIDS dynamic: Education and treatment

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  4. Optimal Control of Active Recoil Mechanisms

    DTIC Science & Technology

    1977-02-01

    forces from 25 to 2.5% for lower zones and cavitation was avoided for zone 8. Tachometer feedback was shown to be effective for low zones. The...concept of feedback control system coupled with optimization procedure to design recoil mechanisms was demonstrated to be an efficient and very effective ...122o •nl260 .01300 .01340 .01380 • ouzo #01460 •01500 •01540 •01580 •0162" .0166 i 309o,6 504P.6 9964.5 10075,9 39121.5 75397.3

  5. Single spin asymmetry in forward p A collisions. II. Fragmentation contribution

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yoshida, Shinsuke; Yuan, Feng

    2017-01-01

    We compute the twist-three fragmentation contribution to the transverse single spin asymmetry (SSA) in light hadron production p↑p →h X and p↑A →h X including the gluon saturation effect in the unpolarized nucleon/nucleus. Together with the results in our previous paper, this completes the full evaluation of the SSA in this process in the "hybrid" formalism. We argue that the dependence of SSAs on the atomic mass number in the forward region can elucidate the relative importance of the soft gluon pole contribution from the twist-three quark-gluon-quark correlation in the polarized nucleon and the twist-three fragmentation contribution from the final state hadron.

  6. Single-spin asymmetries in the leptoproduction of transversely polarized Λ hyperons

    SciTech Connect

    Kanazawa, K.; Metz, A.; Pitonyak, D.; Schlegel, M.

    2015-04-13

    We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Λ hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑ p → π X, which has become an important part to that reaction. With this in mind, we also verify the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions. (author)

  7. Single-spin asymmetries in the leptoproduction of transversely polarized Λ hyperons

    DOE PAGES

    Kanazawa, K.; Metz, A.; Pitonyak, D.; ...

    2015-04-13

    We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Λ hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑ p → π X, which has become an important part to that reaction. With this in mind, we also verifymore » the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions. (author)« less

  8. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond

    PubMed Central

    Toyli, David M.; de las Casas, Charles F.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.

    2013-01-01

    We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK⋅Hz−1/2 based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV center's spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center’s temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems. PMID:23650364

  9. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    SciTech Connect

    Barbara Pasquini; Marc Vanderhaeghen

    2004-07-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of {gamma}* N {yields} {pi} N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress.

  10. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe.

    PubMed

    Kaufmann, Stefan; Simpson, David A; Hall, Liam T; Perunicic, Viktor; Senn, Philipp; Steinert, Steffen; McGuinness, Liam P; Johnson, Brett C; Ohshima, Takeshi; Caruso, Frank; Wrachtrup, Jörg; Scholten, Robert E; Mulvaney, Paul; Hollenberg, Lloyd

    2013-07-02

    Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here, we demonstrate the detection of gadolinium spin labels in an artificial cell membrane under ambient conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in the lipid bilayer were optically detected and found to be sensitive to near-individual (4 ± 2) proximal gadolinium atomic labels. The detection of such small numbers of spins in a model biological setting, with projected detection times of 1 s [corresponding to a sensitivity of ∼5 Gd spins per Hz(1/2)], opens a pathway for in situ nanoscale detection of dynamical processes in biology.

  11. Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation

    NASA Technical Reports Server (NTRS)

    Clifton, C.; Homaifax, A.; Bikdash, M.

    1997-01-01

    This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.

  12. Optimization of structure and control system

    NASA Technical Reports Server (NTRS)

    Khot, N. S.; Grandhi, Ramana V.

    1989-01-01

    The objective of this study is the simultaneous design of the structural and control system for space structures. This study is focused on considering the effect of the number and the location of the actuators on the minimum weight of the structure, and the total work done by the actuators for specified constraints and disturbance. The controls approach used is the linear quadratic regulator theory with constant feedback. At the beginning collocated actuators and sensors are provided in all the elements. The actuator doing the least work is removed one at a time, and the structure is optimized for the specified constraints on the closed-loop eigenvalues and the damping parameters. The procedure of eliminating an actuator is continued until an acceptable design satisfying the constraints is obtained. The study draws some conclusions on the trade between the total work done by the actuators, and the optimum weight and the number of actuators.

  13. Optimal haptic feedback control of artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas

    2014-03-01

    As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.

  14. Hypersonic Vehicle Trajectory Optimization and Control

    NASA Technical Reports Server (NTRS)

    Balakrishnan, S. N.; Shen, J.; Grohs, J. R.

    1997-01-01

    Two classes of neural networks have been developed for the study of hypersonic vehicle trajectory optimization and control. The first one is called an 'adaptive critic'. The uniqueness and main features of this approach are that: (1) they need no external training; (2) they allow variability of initial conditions; and (3) they can serve as feedback control. This is used to solve a 'free final time' two-point boundary value problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out conditions in velocity, flightpath angle, and altitude. The second neural network is a recurrent network. An interesting feature of this network formulation is that when its inputs are the coefficients of the dynamics and control matrices, the network outputs are the Kalman sequences (with a quadratic cost function); the same network is also used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use it to control a system whose parameters are uncertain. Numerical results are presented which illustrate the potential of these methods.

  15. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  16. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  17. Optimal Feedback Controlled Assembly of Perfect Crystals.

    PubMed

    Tang, Xun; Rupp, Bradley; Yang, Yuguang; Edwards, Tara D; Grover, Martha A; Bevan, Michael A

    2016-07-26

    Perfectly ordered states are targets in diverse molecular to microscale systems involving, for example, atomic clusters, protein folding, protein crystallization, nanoparticle superlattices, and colloidal crystals. However, there is no obvious approach to control the assembly of perfectly ordered global free energy minimum structures; near-equilibrium assembly is impractically slow, and faster out-of-equilibrium processes generally terminate in defective states. Here, we demonstrate the rapid and robust assembly of perfect crystals by navigating kinetic bottlenecks using closed-loop control of electric field mediated crystallization of colloidal particles. An optimal policy is computed with dynamic programming using a reaction coordinate based dynamic model. By tracking real-time stochastic particle configurations and adjusting applied fields via feedback, the evolution of unassembled particles is guided through polycrystalline states into single domain crystals. This approach to controlling the assembly of a target structure is based on general principles that make it applicable to a broad range of processes from nano- to microscales (where tuning a global thermodynamic variable yields temporal control over thermal sampling of different states via their relative free energies).

  18. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  19. Computational methods to obtain time optimal jet engine control

    NASA Technical Reports Server (NTRS)

    Basso, R. J.; Leake, R. J.

    1976-01-01

    Dynamic Programming and the Fletcher-Reeves Conjugate Gradient Method are two existing methods which can be applied to solve a general class of unconstrained fixed time, free right end optimal control problems. New techniques are developed to adapt these methods to solve a time optimal control problem with state variable and control constraints. Specifically, they are applied to compute a time optimal control for a jet engine control problem.

  20. Numerical methods for control optimization in linear systems

    NASA Astrophysics Data System (ADS)

    Tyatyushkin, A. I.

    2015-05-01

    Numerical methods are considered for solving optimal control problems in linear systems, namely, terminal control problems with control and phase constraints and time-optimal control problems. Several algorithms with various computer storage requirements are proposed for solving these problems. The algorithms are intended for finding an optimal control in linear systems having certain features, for example, when the reachable set of a system has flat faces.

  1. Optimal control theory for sustainable environmental management.

    PubMed

    Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto

    2008-07-15

    Sustainable ecosystem management aims to promote the structure and operation of the human components of the system while simultaneously ensuring the persistence of the structures and operation of the natural component. Given the complexity of this task owing to the diverse temporal and spatial scales and multidisciplinary interactions, a systems theory approach based on sound mathematical techniques is essential. Two important aspects of this approach are formulation of sustainability-based objectives and development of the management strategies. Fisher information can be used as the basis of a sustainability hypothesis to formulate relevant mathematical objectives for disparate systems, and optimal control theory provides the means to derive time-dependent management strategies. Partial correlation coefficient analysis is an efficient technique to identify the appropriate control variables for policy development. This paper represents a proof of concept for this approach using a model system that includes an ecosystem, humans, a very rudimentary industrial process, and a very simple agricultural system. Formulation and solution of the control problems help in identifying the effective management options which offer guidelines for policies in real systems. The results also emphasize that management using multiple parameters of different nature can be distinctly effective.

  2. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  3. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    SciTech Connect

    Di Donato, Daniela; Mugnai, Dimitri

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  4. Optimal control of a dynamical system representing a gantry crane

    SciTech Connect

    Karihaloo, B.L.; Parbery, R.D.

    1982-03-01

    Problems arising in the optimal control of gantry crane installations are considered. Continuous controls to minimize a control squared objective function are obtained. The amplitude of in-plane oscillations of the suspended mass is assumed small. The optimal controls are sufficiently simple for practical realization.

  5. Frequency domain quantum optimal control under multiple constraints

    NASA Astrophysics Data System (ADS)

    Shu, Chuan-Cun; Ho, Tak-San; Xing, Xi; Rabitz, Herschel

    2016-03-01

    Optimal control of quantum systems with complex constrained external fields is one of the longstanding theoretical and numerical challenges at the frontier of quantum control research. Here, we present a theoretical method that can be utilized to optimize the control fields subject to multiple constraints while guaranteeing monotonic convergence towards desired physical objectives. This optimization method is formulated in the frequency domain in line with the current ultrafast pulse shaping technique, providing the possibility for performing quantum optimal control simulations and experiments in a unified fashion. For illustrations, this method is successfully employed to perform multiple constraint spectral-phase-only optimization for maximizing resonant multiphoton transitions with desired pulses.

  6. Differentiating a Finite Element Biodegradation Simulation Model for Optimal Control

    NASA Astrophysics Data System (ADS)

    Minsker, Barbara S.; Shoemaker, Christine A.

    1996-01-01

    An optimal control model for improving the design of in situ bioremediation of groundwater has been developed. The model uses a finite element biodegradation simulation model called Bio2D to find optimal pumping strategies. Analytical derivatives of the bioremediation finite element model are derived; these derivatives must be computed for the optimal control algorithm. The derivatives are complex and nonlinear; the bulk of the computational effort in solving the optimal control problem is required to calculate the derivatives. An overview of the optimal control and simulation model formulations is also given.

  7. Skyrmions and Single Spin Flips in the Odd Integer Quantized Hall Effect

    NASA Astrophysics Data System (ADS)

    Schmeller, Andreas

    1996-03-01

    For an (ideal) two-dimensional electron system in an odd integer quantized Hall state, the energy Δ needed to excite a quasiparticle pair is the sum of the Zeeman energy Sgμ_BB_tot (S is the number of flipped spins) and the many body contribution Δ_ex, where Δ_ex depends only on the perpendicular magnetic field component B_⊥. If the sample is tilted with respect to the field B_tot and B_⊥ is kept constant, the rate of change of Δ with B_tot gives S. We measure the energy gap Δ by thermally-activated magneto-transport experiments in tilted magnetic fields. We find: 1. At ν=1, where the ground state is fully spin polarized with only one spin level occupied, the lowest lying charged excitations have S >> 1. This reflects the excitation of quasiparticle pairs, with spins of up to 7/2 per particle, a value that is in good agreement with recent results of Knight shift experiments [1]. 2. In contrast we observe only single spin flips (S=1) at the higher odd integer filling factors ν=3 and 5. These results lend support to recent suggestions[2] that Skyrmions, which are topological distortions of the spin field that involve large spin values, form the lowest-lying charged excitations in the fully-polarized ν =1 quantum Hall fluid, but are energetically unfavorable with respect to single spin flips at the higher odd-integer filling factors. This work was done in collaboration with J.P. Eisenstein, L.N. Pfeiffer and K.W. West. 1: S.E. Barrett, G. Dabbagh, L.N. Pfeiffer, K.W. West, and Z. Tycko, Phys. Rev. Lett. 74, 5112 (1995). 2: S.L. Sondhi et al. Phys. Rev. B47, 16419 (1993). J. K. Jain and X. G. Wu, Phys. Rev. B49, 5085 (1994). X.-G. Wu and S.L. Sondhi, preprint (1995).

  8. Practical synchronization on complex dynamical networks via optimal pinning control

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  9. Practical synchronization on complex dynamical networks via optimal pinning control.

    PubMed

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  10. Optimal and suboptimal control technique for aircraft spin recovery

    NASA Technical Reports Server (NTRS)

    Young, J. W.

    1974-01-01

    An analytic investigation has been made of procedures for effecting recovery from equilibrium spin conditions for three assumed aircraft configurations. Three approaches which utilize conventional aerodynamic controls are investigated. Included are a constant control recovery mode, optimal recoveries, and a suboptimal control logic patterned after optimal recovery results. The optimal and suboptimal techniques are shown to yield a significant improvement in recovery performance over that attained by using a constant control recovery procedure.

  11. Global optimization strategies for high-performance controls

    SciTech Connect

    Hartman, T.B.

    1995-12-31

    The current trend of extending digital heating, ventilating, and air-conditioning (HVAC) and lighting controls to terminal devices has had an enormous impact on the role of global strategies for energy and comfort optimization. In some respects optimization algorithms are becoming simpler because more complete information about conditions throughout the building is now available to the control system. However, the task of analyzing this information often adds a new layer of complexity to the process of developing these algorithms. Also, the extension of direct digital control (DDC) to terminal devices offers new energy and comfort control optimization opportunities that require additional global optimization algorithms. This paper discusses the changing role of global optimization strategies as the integration of DDC systems is extended to terminal equipment. The discussion offers suggestions about how the development of more powerful global optimization strategies needs to be considered in the design of the mechanical equipment. Specifically, four areas of global optimization are discussed: optimization of variable-air-volume (VAV) airflow, optimization of lighting level via dimming ballasts, optimization of space temperature setpoint, and optimization of chiller and boiler operation. In each of these categories, a control philosophy employing global optimization is discussed, sample control algorithms are provided, and a discussion of the implication of these new control opportunities on the design of the mechanical components is included.

  12. Gradient Optimization for Analytic conTrols - GOAT

    NASA Astrophysics Data System (ADS)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  13. Two level optimization of a redundant linear control system

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Harding, R. S.

    1975-01-01

    A linear system with two sets of controls, one primary and the other redundant, is considered. A two level optimization procedure is used to control the system and to maintain maximal availability of the primary control.

  14. Accessing sea quark's angular momentum through polarized target Drell-Yan single-spin asymmetry measurements

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaodong; P-1039 Collaboration

    2013-10-01

    A Letter-Of-Intent (P-1039) has been submitted to the Fermilab's Program Advisory Committee in May 2013, for a measurement of transversely polarized proton target (NH3) single-spin asymmetry (SSA) in Drell-Yan reaction with a 120 GeV/c unpolarized proton beam using a similar setup as in the ongoing unpolarized target experiment (E906). The goal of this LOI is to clearly pin down the u -quark Sivers distribution in the x range of 0.1-0.3, where a large sea flavor asymmetry (d / u) has been observed. A non-vanishing quark Sivers distribution arises from the imaginary piece of amplitudes interference between quark angular momentum L = 0 , and L ≠ 0 wave functions. Existing semi-inclusive DIS Sivers-type SSA data from HERMES, COMPASS and JLab-Hall A, while sensitive to valence quarks' Sivers distributions, do not provide much constrains on sea quarks' Sivers distributions. In the case that u -quark carries zero angular momentum, one expects u -quark's Sivers distribution to vanish, therefore observing a zero target SSA in Drell-Yan reaction in P-1039.

  15. Freezing motion-induced dephasing for single spin-state stored in atomic ensemble

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Jun, Rui; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-05-01

    Atomic-ensemble quantum memories are well considered as a promising approach of long-distance quantum communication and computation for strong light-matter interaction. While the storage lifetime is limited by the motion-induced dephasing. Spin-echo technique, increasing wavelength of spin-wave, as well as optical lattice are used commonly to overcome this dephasing process. However, these techniques either need extremely high fidelity of echo pulse or put high restriction on filter and experimental complexity. In this poster, we demonstrate a convenient technique to freeze the motion-induced dephasing without population inversion and can be used in large storage angles. Combined with ``clock states'', the lifetime is extended by one order of magnitude to the limit of the thermal expansion. What's more, high non-classical correlation above 20 has been achieved to guarantee the memory in quantum regime.By making the advance from passive engineering to coherent manipulation of single spin-wave states, our work enriches the experimental toolbox of harnessing atomic ensembles for high-performance quantum memories, especially for holographic quantum memories where many spin-waves with different wave-vectors are used.

  16. Single-spin asymmetries in semi-inclusive deep inelastic scattering and Drell-Yan processes

    SciTech Connect

    Brodsky, Stanley J.; Hwang, Dae Sung; Kovchegov, Yuri V.; Schmidt, Ivan; Sievert, Matthew D.

    2013-07-01

    We examine in detail the diagrammatic mechanisms which provide the change of sign between the single transverse spin asymmetries measured in semi-inclusive deep inelastic scattering (SIDIS) and in the Drell-Yan process (DY). This asymmetry is known to arise due to the transverse spin dependence of the target proton combined with a T-odd complex phase. Using the discrete symmetry properties of transverse spinors, we show that the required complex phase originates in the denominators of rescattering diagrams and their respective cuts. For simplicity, we work in a model where the proton consists of a valence quark and a scalar diquark. We then show that the phases generated in SIDIS and in DY originate from distinctly different cuts in the amplitudes, which at first appears to obscure the relationship between the single-spin asymmetries in the two processes. Nevertheless, further analysis demonstrates that the contributions of these cuts are identical in the leading-twist Bjorken kinematics considered, resulting in the standard sign-flip relation between the Sivers functions in SIDIS and DY. Physically, this fundamental, but yet untested, prediction occurs because the Sivers effect in the Drell-Yan reaction is modified by the initial-state “lensing” interactions of the annihilating antiquark, in contrast to the final-state lensing which produces the Sivers effect in deep inelastic scattering.

  17. A Multiobjective Optimization Framework for Stochastic Control of Complex Systems

    SciTech Connect

    Malikopoulos, Andreas; Maroulas, Vasileios; Xiong, Professor Jie

    2015-01-01

    This paper addresses the problem of minimizing the long-run expected average cost of a complex system consisting of subsystems that interact with each other and the environment. We treat the stochastic control problem as a multiobjective optimization problem of the one-stage expected costs of the subsystems, and we show that the control policy yielding the Pareto optimal solution is an optimal control policy that minimizes the average cost criterion for the entire system. For practical situations with constraints consistent to those we study here, our results imply that the Pareto control policy may be of value in deriving online an optimal control policy in complex systems.

  18. Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints.

    PubMed

    Kunisch, Karl; Wang, Lijuan

    2012-11-01

    Time optimal control governed by the internally controlled linear Fitzhugh-Nagumo equation with pointwise control constraint is considered. Making use of Ekeland's variational principle, we obtain Pontryagin's maximum principle for a time optimal control problem. Using the maximum principle, the bang-bang property of the optimal controls is established under appropriate assumptions.

  19. Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints

    PubMed Central

    Kunisch, Karl; Wang, Lijuan

    2012-01-01

    Time optimal control governed by the internally controlled linear Fitzhugh–Nagumo equation with pointwise control constraint is considered. Making use of Ekeland’s variational principle, we obtain Pontryagin’s maximum principle for a time optimal control problem. Using the maximum principle, the bang–bang property of the optimal controls is established under appropriate assumptions. PMID:23576818

  20. Aircraft nonlinear optimal control using fuzzy gain scheduling

    NASA Astrophysics Data System (ADS)

    Nusyirwan, I. F.; Kung, Z. Y.

    2016-10-01

    Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.

  1. Optimality Conditions for Semilinear Hyperbolic Equations with Controls in Coefficients

    SciTech Connect

    Li Bo; Lou Hongwei

    2012-06-15

    An optimal control problem for semilinear hyperbolic partial differential equations is considered. The control variable appears in coefficients. Necessary conditions for optimal controls are established by method of two-scale convergence and homogenized spike variation. Results for problems with state constraints are also stated.

  2. Optimal Control Strategies for Constrained Relative Orbits

    DTIC Science & Technology

    2007-09-01

    in the next chapter. 50 IV. The Optimal Trajectory The optimal trajectory will be the output of a nonlinear programming algo- rithm that searches for...surface and watch the iteration path of the nonlinear programming algorithm. Let ψ1 = π 4 The results of the optimization algorithm for each of the...T̃max 170 since kz is an integer kz = ⌈ T̃T T̃max ⌉ (134) where d e represents the ceiling function. The total ∆V expended performing these optimal

  3. RTM And VARTM Design, Optimization, And Control With SLIC

    DTIC Science & Technology

    2003-07-02

    UD-CCM l 2 July 2003 1 RTM AND VARTM DESIGN, OPTIMIZATION, AND CONTROL WITH SLIC Kuang-Ting Hsiao UD-CCM Report Documentation Page Form ApprovedOMB...COVERED - 4. TITLE AND SUBTITLE RTM And VARTM Design, Optimization, And Control With SLIC 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ONR Workshop - 5 Simulation-based Liquid Injection Control: Philosophy SLIC Artificial Intelligence Optimized Design For RTM / VARTM Sensors

  4. Optimal stochastic control in natural resource management: Framework and examples

    USGS Publications Warehouse

    Williams, B.K.

    1982-01-01

    A framework is presented for the application of optimal control methods to natural resource problems. An expression of the optimal control problem appropriate for renewable natural resources is given and its application to Markovian systems is presented in some detail. Three general approaches are outlined for determining optimal control of infinite time horizon systems and three examples from the natural resource literature are used for illustration.

  5. Searching for quantum optimal controls under severe constraints

    SciTech Connect

    Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; Long, Ruixing; Wu, Re-Bing; Ho, Tak-San; Rabitz, Herschel

    2015-04-06

    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, but certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.

  6. Searching for quantum optimal controls under severe constraints

    DOE PAGES

    Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; ...

    2015-04-06

    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, butmore » certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.« less

  7. Minimum energy control and optimal-satisfactory control of Boolean control network

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Lu, Xiwen

    2013-12-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  8. Computer simulation for time optimal or energy optimal attitude control of spin-stabilized spacecraft.

    NASA Technical Reports Server (NTRS)

    Woolley, R. D.; Werking, R. D.

    1973-01-01

    An original technique for determining the optimal magnetic torque strategy for control of the attitude of spin stabilized spacecraft is presented. By employing Lagrange multipliers and the Calculus of Variations, optimal control equations are derived which define minimum time and minimum energy attitude maneuvers. Computer program algorithms to numerically solve these optimal control equations are also described. The performance of this technique is compared with a commonly employed planning method.

  9. Optimal control for a parallel hybrid hydraulic excavator using particle swarm optimization.

    PubMed

    Wang, Dong-yun; Guan, Chen

    2013-01-01

    Optimal control using particle swarm optimization (PSO) is put forward in a parallel hybrid hydraulic excavator (PHHE). A power-train mathematical model of PHHE is illustrated along with the analysis of components' parameters. Then, the optimal control problem is addressed, and PSO algorithm is introduced to deal with this nonlinear optimal problem which contains lots of inequality/equality constraints. Then, the comparisons between the optimal control and rule-based one are made, and the results show that hybrids with the optimal control would increase fuel economy. Although PSO algorithm is off-line optimization, still it would bring performance benchmark for PHHE and also help have a deep insight into hybrid excavators.

  10. Adaptive and Optimal Control of Stochastic Dynamical Systems

    DTIC Science & Technology

    2015-09-14

    control and stochastic differential games . Stochastic linear-quadratic, continuous time, stochastic control problems are solved for systems with noise...control problems for systems with arbitrary correlated n 15. SUBJECT TERMS Adaptive control, optimal control, stochastic differential games 16. SECURITY...explicit results have been obtained for problems of stochastic control and stochastic differential games . Stochastic linear- quadratic, continuous time

  11. Optimal control theory for unitary transformations

    SciTech Connect

    Palao, Jose P.; Kosloff, Ronnie

    2003-12-01

    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time-dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory is used to solve the inversion problem irrespective of the initial input state. A unified formalism based on the Krotov method is developed leading to a different scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X {sup 1}{sigma}{sub g}{sup +} electronic state of Na{sub 2}. Raman-like transitions through the A {sup 1}{sigma}{sub u}{sup +} electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Of the schemes studied, the square modulus scheme converges fastest. A study of the implementation of the Q qubit Fourier transform in the Na{sub 2} molecule was carried out for up to five qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.

  12. H2-optimal control with generalized state-space models for use in control-structure optimization

    NASA Technical Reports Server (NTRS)

    Wette, Matt

    1991-01-01

    Several advances are provided solving combined control-structure optimization problems. The author has extended solutions from H2 optimal control theory to the use of generalized state space models. The generalized state space models preserve the sparsity inherent in finite element models and hence provide some promise for handling very large problems. Also, expressions for the gradient of the optimal control cost are derived which use the generalized state space models.

  13. Quadratic coupling between a classical nanomechanical oscillator and a single spin

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali

    Though the motions of macroscopic objects must ultimately be governed by quantum mechanics, the distinctive features of quantum mechanics can be hidden or washed out by thermal excitations and coupling to the environment. For the work of this thesis, we tried to develop a hybrid system consisting a classical and a quantum component, which can be used to probe the quantum nature of both these components. This hybrid system quadratically coupled a nanomechanical oscillator (NMO) with a single spin in presence of a uniform external magnetic field. The NMO was fabricated out of single-layer graphene, grown using Chemical Vapor Deposition (CVD) and patterned using various lithography and etching techniques. The NMO was driven electrically and detected optically. The NMO's resonant frequencies, and their stabilities were studied. The spin originated from a nitrogen vacancy (NV) center in a diamond nanocrystal which is positioned on the NMO. In presence of an external magnetic field, we show that the NV centers are excellen theta2 sensors. Their sensitivity is shown to increase much faster than linearly with the external magnetic field and diverges as the external field approaches an internally-defined limit. Both these components of the hybrid system get coupled by physical placement of NVcontaining diamond nanocrystals on top of NMO undergoing torsional mode of oscillation, in presence of an external magnetic field. The capability of the NV centers to detect the quadratic behavior of the oscillation angle of the NMO with excellent sensitivity, ensures quantum non-demolition (QND) measurement of both components of the hybrid system. This enables a bridge between the quantum and classical worlds for a simple readout of the NV center spin and observation of the discrete states of the NMO. This system could become the building block for a wide range of quantum nanomechanical devices.

  14. Lessons from the quantum control landscape: Robust optimal control of quantum systems and optimal control of nonlinear Schrodinger equations

    NASA Astrophysics Data System (ADS)

    Hocker, David Lance

    The control of quantum systems occurs across a broad range of length and energy scales in modern science, and efforts have demonstrated that locating suitable controls to perform a range of objectives has been widely successful. The justification for this success arises from a favorable topology of a quantum control landscape, defined as a mapping of the controls to a cost function measuring the success of the operation. This is summarized in the landscape principle that no suboptimal extrema exist on the landscape for well-suited control problems, explaining a trend of successful optimizations in both theory and experiment. This dissertation explores what additional lessons may be gleaned from the quantum control landscape through numerical and theoretical studies. The first topic examines the experimentally relevant problem of assessing and reducing disturbances due to noise. The local curvature of the landscape is found to play an important role on noise effects in the control of targeted quantum unitary operations, and provides a conceptual framework for assessing robustness to noise. Software for assessing noise effects in quantum computing architectures was also developed and applied to survey the performance of current quantum control techniques for quantum computing. A lack of competition between robustness and perfect unitary control operation was discovered to fundamentally limit noise effects, and highlights a renewed focus upon system engineering for reducing noise. This convergent behavior generally arises for any secondary objective in the situation of high primary objective fidelity. The other dissertation topic examines the utility of quantum control for a class of nonlinear Hamiltonians not previously considered under the landscape principle. Nonlinear Schrodinger equations are commonly used to model the dynamics of Bose-Einstein condensates (BECs), one of the largest known quantum objects. Optimizations of BEC dynamics were performed in which the

  15. Stochastic Optimal Control for Series Hybrid Electric Vehicles

    SciTech Connect

    Malikopoulos, Andreas

    2013-01-01

    Increasing demand for improving fuel economy and reducing emissions has stimulated significant research and investment in hybrid propulsion systems. In this paper, we address the problem of optimizing online the supervisory control in a series hybrid configuration by modeling its operation as a controlled Markov chain using the average cost criterion. We treat the stochastic optimal control problem as a dual constrained optimization problem. We show that the control policy that yields higher probability distribution to the states with low cost and lower probability distribution to the states with high cost is an optimal control policy, defined as an equilibrium control policy. We demonstrate the effectiveness of the efficiency of the proposed controller in a series hybrid configuration and compare it with a thermostat-type controller.

  16. A Framework for Optimal Control Allocation with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc

    2010-01-01

    Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.

  17. Pilot-optimal multivariable control synthesis by output feedback

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Innocenti, M.

    1981-01-01

    A control system design approach for optimal stability augmentation, systems, using limited state feedback theory with the specific inclusion of the human pilot in the loop is presented. The methodology is especially suitable for application to flight vehicles exhibiting nonconventional dynamic characteristics and for which quantitative handling qualities specifications are not available. The design is based on a correlation between pilot ratings and objective function of the optimal control model of the human pilot. Simultaneous optimization for augmentation and pilot gains are required.

  18. Robustified time-optimal control of uncertain structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Liu, Qiang; Wie, Bong

    1991-01-01

    A new approach for computing open-loop time-optimal control inputs for uncertain linear dynamical systems is developed. In particular, the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the presence of uncertainty in model parameters is considered. Robustified time-optimal control inputs are obtained by solving a parameter optimization problem subject to robustness constraints. A simple dynamical system with a rigid-body mode and one flexible mode is used to illustrate the concept.

  19. Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies

    ERIC Educational Resources Information Center

    Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.

    2012-01-01

    In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…

  20. Pseudospectral Optimal Control: Hidden Properties and Flight Results

    DTIC Science & Technology

    2011-11-30

    on solving optimal control problems , we focus on developing PS methods over arbitrary grids for Problem B. Such research can provides a unified...more efficient algorithms for solving optimal control problems , for example, multiscale PS methods for dynamical systems with different timescales

  1. A criterion for joint optimization of identification and robust control

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Yam, Y.; Mettler, E.

    1992-01-01

    A criterion for system identification is developed that is consistent with the intended used of the fitted model for modern robust control synthesis. Specifically, a joint optimization problem is posed which simultaneously solves the plant model estimate and control design, so as to optimize robust performance over the set of plants consistent with a specified experimental data set.

  2. Attitude Control Optimization for ROCSAT-2 Operation

    NASA Astrophysics Data System (ADS)

    Chern, Jeng-Shing; Wu, A.-M.

    one revolution. The purpose of this paper is to present the attitude control design optimization such that the maximum solar energy is ingested while minimum maneuvering energy is dissipated. The strategy includes the maneuvering sequence design, the minimization of angular path, the sizing of three magnetic torquers, and the trade-off of the size, number and orientations arrangement of momentum wheels.

  3. In-flight performance optimization for rotorcraft with redundant controls

    NASA Astrophysics Data System (ADS)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to

  4. A multidisciplinary approach to optimization of controlled space structures

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Padula, Sharon L.; Graves, Philip C.; James, Benjamin B.

    1990-01-01

    A fundamental problem facing controls-structures analysts is a means of determining the trade-offs between structural design parameters and control design parameters in meeting some particular performance criteria. Developing a general optimization-based design methodology integrating the disciplines of structural dynamics and controls is a logical approach. The objective of this study is to develop such a method. Classical design methodology involves three phases. The first is structural optimization, wherein structural member sizes are varied to minimize structural mass, subject to open-loop frequency constraints. The next phase integrates control and structure design with control gains as additional design variables. The final phase is analysis of the 'optimal' integrated design phase considering 'real' actuators and 'standard' member sizes. The control gains could be further optimized for fixed structure, and actuator saturation constraints could be imposed. However, such an approach does not take full advantage of opportunities to tailor the structure and control system design as one system.

  5. Matching trajectory optimization and nonlinear tracking control for HALE

    NASA Astrophysics Data System (ADS)

    Lee, Sangjong; Jang, Jieun; Ryu, Hyeok; Lee, Kyun Ho

    2014-11-01

    This paper concerns optimal trajectory generation and nonlinear tracking control for stratospheric airship platform of VIA-200. To compensate for the mismatch between the point-mass model of optimal trajectory and the 6-DOF model of the nonlinear tracking problem, a new matching trajectory optimization approach is proposed. The proposed idea reduces the dissimilarity of both problems and reduces the uncertainties in the nonlinear equations of motion for stratospheric airship. In addition, its refined optimal trajectories yield better results under jet stream conditions during flight. The resultant optimal trajectories of VIA-200 are full three-dimensional ascent flight trajectories reflecting the realistic constraints of flight conditions and airship performance with and without a jet stream. Finally, 6-DOF nonlinear equations of motion are derived, including a moving wind field, and the vectorial backstepping approach is applied. The desirable tracking performance is demonstrated that application of the proposed matching optimization method enables the smooth linkage of trajectory optimization to tracking control problems.

  6. Optimization and Control of Electric Power Systems

    SciTech Connect

    Lesieutre, Bernard C.; Molzahn, Daniel K.

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  7. Dynamics systems vs. optimal control--a unifying view.

    PubMed

    Schaal, Stefan; Mohajerian, Peyman; Ijspeert, Auke

    2007-01-01

    In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

  8. Exact optimal solution for a class of dual control problems

    NASA Astrophysics Data System (ADS)

    Cao, Suping; Qian, Fucai; Wang, Xiaomei

    2016-07-01

    This paper considers a discrete-time stochastic optimal control problem for which only measurement equation is partially observed with unknown constant parameters taking value in a finite set of stochastic systems. Because of the fact that the cost-to-go function at each stage contains variance and the non-separability of the variance is so complicated that the dynamic programming cannot be successfully applied, the optimal solution has not been found. In this paper, a new approach to the optimal solution is proposed by embedding the original non-separable problem into a separable auxiliary problem. The theoretical condition on which the optimal solution of the original problem can be attained from a set of solutions of the auxiliary problem is established. In addition, the optimality of the interchanging algorithm is proved and the analytical solution of the optimal control is also obtained. The performance of this controller is illustrated with a simple example.

  9. A sequential linear optimization approach for controller design

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.; Junkins, J. L.

    1985-01-01

    A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.

  10. Optimal Control In Predation Of Models And Mimics

    NASA Astrophysics Data System (ADS)

    Tsoularis, A.

    2007-09-01

    This paper examines optimal predation by a predator preying upon two types of prey, modes and mimics. Models are unpalatable prey and mimics are palatable prey resembling the models so as to derive some protection from predation. This biological phenomenon is known in Ecology as Batesian mimicry. An optimal control problem in continuous time is formulated with the sole objective to maximize the net energetic benefit to the predator from predation in the presence of evolving prey populations. The constrained optimal control is bang-bang with the scalar control taken as the probability of attacking prey. Conditions for the existence of singular controls are obtained.

  11. Optimization of microstructure development during hot working using control theory

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Frazier, W. Garth; Medina, Enrique A.; Medeiros, Steven; Mullins, W. M.; Chaudhary, Anil; Venugopal, S.; Irwin, R. Dennis; Srinivasan, Raghavan

    1997-09-01

    A new approach for controlling microstructure development during hot working processes is proposed. This approach is based on optimal control theory and involves state-space type models for describing the material behavior and the mechanics of the process. The effect of process control parameters such as strain, strain rate, and temperature on important microstructural features can be systematically formulated and then solved as an optimal control problem. This method has been applied to the optimization of grain size and process parameters such as die geometry and ram velocity during the extrusion of plain carbon steel. Experimental results of this investigation show good agreement with those predicted in the design stage.

  12. Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach.

    PubMed

    Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing

    2015-07-01

    In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.

  13. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  14. Design of Optimally Robust Control Systems.

    DTIC Science & Technology

    1980-01-01

    approach is that the optimization framework is an artificial device. While some design constraints can easily be incorporated into a single cost function...indicating that that point was indeed the solution. Also, an intellegent initial guess for k was important in order to avoid being hung up at the double

  15. Transverse single-spin asymmetries of weak bosons and Drell-Yan production at STAR

    NASA Astrophysics Data System (ADS)

    Fazio, Salvatore

    2017-01-01

    The three-dimensional structure of the proton in momentum space can be described via Transverse Momentum Dependent (TMDs) parton distribution functions. One of these TMDs, known as the Sivers function f1T ⊥, describes the correlation of parton transverse momentum with the transverse spin of the nucleon. In Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes in e+p collisions, the quark Sivers function is associated with a final state effect from the gluon exchange between the struck quark and the target nucleon remnants. On the other hand, in p+p collisions processes, the Sivers asymmetry appears as an initial state interaction effect. As a consequence, the quark Sivers functions are of opposite sign in SIDIS and in p+p and this non-universality is a fundamental prediction from the gauge invariance of QCD. The experimental test of this sign change is one of the open questions in hadronic physics, and can provide a direct verification of color interactions of partons (quarks and gluons) inside the hadrons. Accessing the Sivers TMD function in proton+proton collisions through the measurement of transverse single spin asymmetries (TSSAs) in weak boson production is an effective path to test the fundamental QCD prediction of the non-universality of the Sivers function. Furthermore, it provides data to study the spin-flavor structure of valence and sea quarks inside the proton and to test the evolution of parton distributions. RHIC is the world's only facility that can run transversely polarized p+p collisions at a center-of-mass energy large enough to produce weak bosons. The TSSA amplitude, AN, has been measured at STAR in p+p collisions at √{ s} = 500 GeV, with a recorded integrated luminosity of 25pb-1 . Within relatively large statistical uncertainties, the current data favor theoretical models that include change of sign for the Sivers function relative to observations in SIDIS measurements, if TMD evolution effects are small. RHIC plans to run proton

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED ''SINGLE SPIN ASYMMETRIES'' (VOLUME 75)

    SciTech Connect

    YUAN, F.; VOGELSANG, W.

    2005-06-01

    Inelastic Scattering, the Drell-Yan process, and in inclusive hadron production and dijet correlations at hadron colliders. There were not only discussions on possible interpretations of the existing SSA data, but also on the future observables for the ongoing experiments as well as for planned experiments (such as RHIC II and eRHIC). On the theory side, the talks ranged from overviews and descriptions of the fundamental aspects of SSAs, to presentations of detailed phenomenological studies. All of the talks attracted much interest and initiated active discussions. Directions for future measurements were pointed out, in particular for studies at RHIC. Also, significant theoretical advances were made that may tie together some of the currently proposed mechanisms for single-spin asymmetries. This was a very successful workshop. It stimulated many discussions and new collaborations.

  17. Optimization of Feedback Control of Flow over a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Son, Donggun; Kim, Euiyoung; Choi, Haecheon

    2012-11-01

    We perform a feedback gain optimization of the proportional-integral-differential (PID) control for flow over a circular cylinder at Re = 60 and 100. We measure the transverse velocity at a centerline location in the wake as a sensing variable and provide blowing and suction at the upper and lower slots on the cylinder surface as an actuation. The cost function to minimize is defined as the mean square of the sensing variable, and the PID control gains are optimized by iterative feedback tuning method which is a typical model free gain optimization method. In this method, the control gains are iteratively updated by the gradient of cost function until the control system satisfies a certain stopping criteria. The PID control with optimal control gains successfully reduces the velocity fluctuations at the sensing location and attenuates (or annihilates) vortex shedding in the wake, resulting in the reduction in the mean drag and lift fluctuations. Supported by the NRF Program (2011-0028032).

  18. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  19. Applying new optimization algorithms to more predictive control

    SciTech Connect

    Wright, S.J.

    1996-03-01

    The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.

  20. Asymptotically optimal feedback control for a system of linear oscillators

    NASA Astrophysics Data System (ADS)

    Ovseevich, Alexander; Fedorov, Aleksey

    2013-12-01

    We consider problem of damping of an arbitrary number of linear oscillators under common bounded control. We are looking for a feedback control steering the system to the equilibrium. The obtained control is asymptotically optimal: the ratio of motion time to zero with this control to the minimum one is close to 1, if the initial energy of the system is large.

  1. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  2. Optimization of the observations and control of aircraft

    NASA Astrophysics Data System (ADS)

    Malyshev, Veniamin V.; Krasil'Shchikov, Mikhail N.; Karlov, Valerii I.

    Problems related to the optimization of the measured parameters, navigational equipment operation, aircraft control, and combined operation of control and navigation equipment are analyzed. The problems considered rely on probabilistic optimality criteria, with varying availability of data on the uncontrolled factors, such as measurement errors and perturbations. A new generalized approach is proposed which makes it possible to reduce the initially nonlinear control problems to equivalent linear (with respect to phase variables) problems by using the analytical properties of the Riccati problem.

  3. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  4. Optimal control problem for impulsive systems with integral boundary conditions

    NASA Astrophysics Data System (ADS)

    Ashyralyev, Allaberen; Sharifov, Y. A.

    2012-08-01

    In the present work the optimal control problem is considered, when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.

  5. Robust control systems design by H-infinity optimization theory

    NASA Technical Reports Server (NTRS)

    Chang, B. C.; Li, X. P.; Banda, S. S.; Yeh, H. H.

    1991-01-01

    In this paper, step-by-step procedures of applying the H-infinity theory to robust control systems design are given. The objective of the paper is to eliminate the possible difficulties a control engineer may encounter in applying H-infinity control theory and to clear up some misconceptions about H-infinity theory like high-gain controller and numerical obstacles, etc. An efficient algorithm is used to compute the optimal H-infinity norm. The Glover and Doyle (1988) controller formulas are slightly modified and used to construct an optimal controller without any numerical difficulties.

  6. Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields.

    PubMed

    Gollub, Caroline; Kowalewski, Markus; de Vivie-Riedle, Regina

    2008-08-15

    We present a modified optimal control scheme based on the Krotov method, which allows for strict limitations on the spectrum of the optimized laser fields. A frequency constraint is introduced and derived mathematically correct, without losing monotonic convergence of the algorithm. The method guarantees a close link to learning loop control experiments and is demonstrated for the challenging control of nonresonant Raman transitions, which are used to implement a set of global quantum gates for molecular vibrational qubits.

  7. Control strategy optimization of HVAC plants

    SciTech Connect

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  8. Optimal control of Atlantic population Canada geese

    USGS Publications Warehouse

    Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.

    2007-01-01

    Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.

  9. Computational Methods for Design, Control and Optimization

    DTIC Science & Technology

    2007-10-01

    34scenario" that applies to channel flows ( Poiseuille flows , Couette flow ) and pipe flows . Over the past 75 years many complex "transition theories" have... Simulation of Turbulent Flows , Springer Verlag, 2005. Additional Publications Supported by this Grant 1. J. Borggaard and T. Iliescu, Approximate Deconvolution...rigorous analysis of design algorithms that combine numerical simulation codes, approximate sensitivity calculations and optimization codes. The fundamental

  10. Time-optimal control of the magnetically levitated photolithography platen

    SciTech Connect

    Redmond, J.; Tucker, S.

    1995-01-01

    This report summarizes two approaches to time-optimal control of a nonlinear magnetically levitated platen. The system of interest is a candidate technology for next-generation photolithography machines used in the manufacture of integrated circuits. The dynamics and the variable peak control force of the electro-magnetic actuators preclude the direct application of classical time-optimal control methodologies for determining optimal rest-to-rest maneuver strategies. Therefore, this study explores alternate approaches using a previously developed computer simulation. In the first approach, conservative estimates of the available control forces are used to generate suboptimal switching curves. In the second approach, exact solutions are determined iteratively and used as a training set for an artificial neural network. The trained network provides optimal actuator switching times that incorporate the full nonlinearities of the magnetic levitation actuators. Sample problems illustrate the effectiveness of these techniques as compared to traditional proportional-derivative control.

  11. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  12. A duality framework for stochastic optimal control of complex systems

    SciTech Connect

    Malikopoulos, Andreas A.

    2016-01-01

    In this study, we address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations having constraints consistent with those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.

  13. Time dependent optimal switching controls in online selling models

    SciTech Connect

    Bradonjic, Milan; Cohen, Albert

    2010-01-01

    We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.

  14. Optimal Stationary Linear Control of the Wiener Process.

    DTIC Science & Technology

    1980-02-29

    OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS. (U) FES 80 V E BENES. I KARATZAS AFOSR-76-3063 UNCLASSIFIED AFOSR -TR-8O-0338 NL...mElllllllllll mhmmmmmmmmm mmmmmmmr( EFOSR-TR- 2 0-0S8 0 3 OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS by LEVEL CVACLAV E. BENES Bell Telephone...or " DIst. special D U L I. F UNCLASSIFIED _ _ _ , ,_I_ _ _ _ _ _. OPTIMAL STATIONARY LINEAR CONTROL OF TIlE WIENER PROCESS V’aclav E. Benes and

  15. Optimal Control of the Starfire Beam Director

    DTIC Science & Technology

    1992-12-01

    amplifier has built-in proportional plus integral ( PI ) control circuitry for the purpose of rejecting the back EMF. Since measured closed-loop amplifier...throughout a satellite pass. PI control yields zero steady state error to a step input. At worse case the commanded position input has a small...designed in a classical sense in that it consists of PI control and a lead, where high gain and the lead are required to achieve the necessary bandwidth

  16. Toward real-time en route air traffic control optimization

    NASA Astrophysics Data System (ADS)

    Jardin, Matthew Robert

    The increase in air traffic along the existing jet route structure has led to inefficiencies and frequent congestion in en route airspace. Analysis of air-traffic data suggests that direct operating costs might be reduced by about 4.5%, or $500 million per year, if aircraft were permitted to fly optimal wind routes instead of the structured routes allowed today. To enable aircraft to fly along unstructured optimal routes safely, automation is required to aid air-traffic controllers. This requires the global solution for conflict-free optimal routes for many aircraft in real time. The constraint that all aircraft must maintain adequate separation from one another results in a greater-than-exponential increase in the complexity of the multi-aircraft optimization problem. The main challenges addressed in this dissertation are in the areas of optimal wind routing, computationally efficient aircraft conflict detection, and efficient conflict resolution. A core contribution is the derivation of an analytical neighboring optimal control solution for the efficient computation of optimal wind routes. The neighboring optimal control algorithm uses an order of magnitude less computational effort to achieve the same performance as existing algorithms, and is easily extended to compute near-optimal conflict free trajectories. A conflict detection algorithm as been developed which eliminates the need to compute inter-aircraft distances. Simulation results are presented to demonstrate an integrated horizontal route-optimization and conflict-resolution method for air-traffic control. Conflict-free solutions have been computed for roughly double the current-day traffic density for a single flight level (over 600 aircraft) in less than 1 minute on a 450-MHz UNIX work station. This corresponds to a computation rate of better than 25 optimal routes per second. Extrapolation of the two-dimensional results to the multi-flight-level domain suggests that the complete solution for optimal

  17. Optimal actuator location of minimum norm controls for heat equation with general controlled domain

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Zhu; Xu, Yashan; Yang, Dong-Hui

    2016-09-01

    In this paper, we study optimal actuator location of the minimum norm controls for a multi-dimensional heat equation with control defined in the space L2 (Ω × (0 , T)). The actuator domain is time-varying in the sense that it is only required to have a prescribed Lebesgue measure for any moment. We select an optimal actuator location so that the optimal control takes its minimal norm over all possible actuator domains. We build a framework of finding the Nash equilibrium so that we can develop a sufficient and necessary condition to characterize the optimal relaxed solutions for both actuator location and corresponding optimal control of the open-loop system. The existence and uniqueness of the optimal classical solutions are therefore concluded. As a result, we synthesize both optimal actuator location and corresponding optimal control into a time-varying feedbacks.

  18. Deterministic methods for multi-control fuel loading optimization

    NASA Astrophysics Data System (ADS)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  19. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  20. Optimal control of quantum superpositions in a bosonic Josephson junction

    NASA Astrophysics Data System (ADS)

    Lapert, M.; Ferrini, G.; Sugny, D.

    2012-02-01

    We show how to optimally control the creation of quantum superpositions in a bosonic Josephson junction within the two-site Bose-Hubbard-model framework. Both geometric and purely numerical optimal-control approaches are used, the former providing a generalization of the proposal of Micheli [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.67.013607 67, 013607 (2003)]. While this method is shown not to lead to significant improvements in terms of time of formation and fidelity of the superposition, a numerical optimal-control approach appears more promising, as it allows creation of an almost perfect superposition, within a time short compared to other existing protocols. We analyze the robustness of the optimal solution against atom-number variations. Finally, we discuss the extent to which these optimal solutions could be implemented with state-of-the-art technology.

  1. Understanding Product Optimization: Kinetic versus Thermodynamic Control.

    ERIC Educational Resources Information Center

    Lin, King-Chuen

    1988-01-01

    Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)

  2. Optimal Control of the Parametric Oscillator

    ERIC Educational Resources Information Center

    Andresen, B.; Hoffmann, K. H.; Nulton, J.; Tsirlin, A.; Salamon, P.

    2011-01-01

    We present a solution to the minimum time control problem for a classical harmonic oscillator to reach a target energy E[subscript T] from a given initial state (q[subscript i], p[subscript i]) by controlling its frequency [omega], [omega][subscript min] less than or equal to [omega] less than or equal to [omega][subscript max]. A brief synopsis…

  3. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  4. Design of a Helicopter Stability and Control Augmentation System Using Optimal Control Theory.

    DTIC Science & Technology

    technique is described for the design of multivariable feedback controllers based upon results in optimal control theory . For a specified performance...helicopter flight envelope. The results show that optimal control theory can be used to design a helicopter stability and control augmentation system

  5. The discrete complementary variational principle and optimal control systems

    NASA Technical Reports Server (NTRS)

    Chan, W. L.; Leininger, G. G.

    1974-01-01

    A discrete complementary variational principle is developed and applied to linear and nonlinear discrete-time optimal control systems. Using the variational approach, a primal-dual relationship is established. This relationship provides a precise measure of system suboptimality independent of any a priori knowledge of the optimal solution.

  6. OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES

    EPA Science Inventory

    An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...

  7. Optimal guidance law for cooperative attack of multiple missiles based on optimal control theory

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Xia, Yuanqing

    2012-08-01

    This article considers the problem of optimal guidance laws for cooperative attack of multiple missiles based on the optimal control theory. New guidance laws are presented such that multiple missiles attack a single target simultaneously. Simulation results show the effectiveness of the proposed algorithms.

  8. Optimal-control theoretic methods for optimization and regulation of distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Goss, Jennifer Dawn

    Optimal control and optimization of distributed parameter systems are discussed in the context of a common control framework. The adjoint method of optimization and the traditional linear quadratic regulator implementation of optimal control both employ adjoint or costate variables in the determination of control variable progression. As well both theories benefit from a reduced order model approximation in their execution. This research aims to draw clear parallels between optimization and optimal control utilizing these similarities. Several applications are presented showing the use of adjoint/costate variables and reduced order models in optimization and optimal control problems. The adjoint method for shape optimization is derived and implemented for the quasi-one-dimensional duct and two variations of a two-dimensional double ramp inlet. All applications are governed by the Euler equations. The quasi-one-dimensional duct is solved first to test the adjoint method and to verify the results against an analytical solution. The method is then adapted to solve the shape optimization of the double ramp inlet. A finite volume solver is tested on the flow equations and then implemented for the corresponding adjoint equations. The gradient of the cost function with respect to the shape parameters is derived based on the computed adjoint variables. The same inlet shape optimization problem is then solved using a reduced order model. The basis functions in the reduced order model are computed using the method of snapshots form of proper orthogonal decomposition. The corresponding weights are derived using an optimization in the design parameter space to match the reduced order model to the original snapshots. A continuous map of these weights in terms of the design variables is obtained via a response surface approximations and artificial neural networks. This map is then utilized in an optimization problem to determine the optimal inlet shape. As in the adjoint method

  9. Inverse Optimal Pinning Control for Complex Networks of Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sanchez, Edgar N.; Rodriguez, David I.

    In this paper, a control strategy based on the inverse optimal control approach is applied for pinning weighted complex networks with chaotic systems at their nodes; additionally, a cost functional is minimized. This control strategy does not require to have the same coupling strength for all node connections.

  10. Adjoint optimal control problems for the RANS system

    NASA Astrophysics Data System (ADS)

    Attavino, A.; Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.

    2017-01-01

    Adjoint optimal control in computational fluid dynamics has become increasingly popular recently because of its use in several engineering and research studies. However the optimal control of turbulent flows without the use of Direct Numerical Simulation is still an open problem and various methods have been proposed based on different approaches. In this work we study optimal control problems for a turbulent flow modeled with a Reynolds-Averaged Navier-Stokes system. The adjoint system is obtained through the use of a Lagrangian multiplier method by setting as objective of the control a velocity matching profile or an increase or decrease in the turbulent kinetic energy. The optimality system is solved with an in-house finite element code and numerical results are reported in order to show the validity of this approach.

  11. Dual structural-control optimization of large space structures

    NASA Technical Reports Server (NTRS)

    Messac, A.; Turner, J.

    1984-01-01

    A new approach is proposed for solving dual structural-control optimization problems for high-order flexible space structures where reduced-order structural models are employed. For a given initial structural dessign, a quadratic control cost is minimized subject to a constant-mass constraint. The sensitivity of the optimal control cost with respect to the stuctural design variables is then determined and used to obtain successive structural redesigns using a contrained gradient optimization algorithm. This process is repeated until the constrained control cost sensitivity becomes negligible. A numerical example is presented which demonstrates that this new approach effectively addresses the problem of dual optimization for potentially very high-order structures.

  12. Optimal control of wind turbines in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  13. Optimal Control Surface Layout for an Aeroservoelastic Wingbox

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.

    2017-01-01

    This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.

  14. EPA Optimal Corrosion Control Treatment Regional Training Workshops

    EPA Pesticide Factsheets

    EPA is hosting face-to-face regional training workshops throughout 2016-2017 on optimal corrosion control treatment (OCCT). These will be held at each of the Regions and is intended for primacy agency staff and technical assistance providers.

  15. Optimal feedback control of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz

    1993-01-01

    Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.

  16. Optimal control studies of solar heating systems

    SciTech Connect

    Winn, C B

    1980-01-01

    In the past few years fuel prices have seen steady increases. Also, the supply of fuel has been on the decline. Because of these two problems there has been an increase in the number of solar heated buildings. Since conventional fuel prices are increasing and as a solar heating system represents a high capital cost it is desirable to obtain the maximum performance from a solar heating system. The control scheme that is used in a solar heated building has an effect on the performance of the solar system. The best control scheme possible would, of course, be desired. This report deals with the control problems of a solar heated building. The first of these problems is to control the inside temperature of the building and to minimize the fuel consumption. This problem applies to both solar and conventionally heated buildings. The second problem considered is to control the collector fluid flow to maximize the difference between the useful energy collected and the energy required to pump the fluid. The third problem is to control the enclosure temperature of a building which has two sources of heat, one solar and the other conventional.

  17. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-10-29

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs.

  18. Contribution of twist-3 multigluon correlation functions to single spin asymmetry in semi-inclusive deep inelastic scattering

    SciTech Connect

    Beppu, Hiroo; Yoshida, Shinsuke; Koike, Yuji; Tanaka, Kazuhiro

    2010-09-01

    As a possible source of the single transverse-spin asymmetry, we study the contribution from purely gluonic correlation represented by the twist-3 ''three-gluon correlation'' functions in the transversely polarized nucleon. We first define a complete set of the relevant three-gluon correlation functions, and then derive its contribution to the twist-3 single-spin-dependent cross section for the D-meson production in semi-inclusive deep inelastic scattering, which is relevant to determine the three-gluon correlations. Our cross-section formula differs from the corresponding result in the literature, and the origin of the discrepancy is clarified.

  19. Measurement of the Transverse Single-Spin Asymmetry in p↑+p→W±/Z0 at RHIC

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-04-01

    In this paper, we present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √s = 500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. In conclusion, these data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  20. Experimental test of Born's rule by inspecting third-order quantum interference on a single spin in solids

    NASA Astrophysics Data System (ADS)

    Jin, Fangzhou; Liu, Ying; Geng, Jianpei; Huang, Pu; Ma, Wenchao; Shi, Mingjun; Duan, Chang-Kui; Shi, Fazhan; Rong, Xing; Du, Jiangfeng

    2017-01-01

    As a fundamental postulate of quantum mechanics, Born's rule assigns probabilities to the measurement outcomes of quantum systems and excludes multiorder quantum interference. Here we report an experiment on a single spin in diamond to test Born's rule by inspecting the third-order quantum interference. The ratio of the third-order quantum interference to the second order in our experiment is bounded to the scale of 1 ×10-3 , which provides a stringent constraint on the potential breakdown of Born's rule.

  1. Measurement of the Transverse Single-Spin Asymmetry in p↑+p →W±/Z0 at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, B.; Huang, T.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, L.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, G.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, X.; Xie, W.; Xin, K.; Xu, N.; Xu, Y. F.; Xu, Z.; Xu, Q. H.; Xu, J.; Xu, H.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, Z.; Zhang, S.; Zhang, J. B.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-04-01

    We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √{s }=500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  2. Measurement of the Transverse Single-Spin Asymmetry in p^{↑}+p→W^{±}/Z^{0} at RHIC.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, X; Chen, J H; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, X; Huang, H Z; Huang, B; Huang, T; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, C; Li, Y; Li, W; Li, X; Li, X; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, L; Ma, G L; Ma, Y G; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; McDonald, D; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, D; Smirnov, N; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Y; Sun, Z; Sun, X M; Surrow, B; Svirida, D N; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, J S; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, G; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, X; Xie, W; Xin, K; Xu, N; Xu, Y F; Xu, Z; Xu, Q H; Xu, J; Xu, H; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Yang, Y; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, S; Zhang, Z; Zhang, S; Zhang, J B; Zhang, Y; Zhang, J; Zhang, J; Zhang, X P; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-04-01

    We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at sqrt[s]=500  GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  3. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  4. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE PAGES

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  5. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase.

  6. Multiobjective optimization design of a fractional order PID controller for a gun control system.

    PubMed

    Gao, Qiang; Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.

  7. Optimization of a fluidic temperature control device

    NASA Technical Reports Server (NTRS)

    Zabsky, J. M.; Rask, D. R.; Starr, J. B.

    1970-01-01

    Refinements are described to an existing fluidic temperature control system developed under a prior study which modulated temperature at the inlet to the liquid-cooled garment by using existing liquid supply and return lines to transmit signals to a fluidic controller located in the spacecraft. This earlier system produced a limited range of garment inlet temperatures, requiring some bypassing of flow around the suit to make the astronaut comfortable at rest conditions. Refinements were based on a flow visualization study of the key element in the fluidic controller: the fluidic mixing valve. The valve's mixing-ratio range was achieved by making five key changes: (1) geometrical changes to the valve; (2) attenuation of noise generated in proportional amplifier cascades; (3) elimination of vortices at the exit of the fluidic mixing valve; (4) reduction of internal heat transfer; and (5) flow balancing through venting. As a result, the refined system is capable of modulating garment inlet temperature from 45 F to 70 F with a single manual control valve in series with the garment. This control valve signals without changing or bypassing flow through the garment.

  8. Multidimensional optimal droop control for wind resources in DC microgrids

    NASA Astrophysics Data System (ADS)

    Bunker, Kaitlyn J.

    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

  9. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  10. Preconception optimization of glycaemic control in diabetes.

    PubMed

    Islam, Najmul

    2016-09-01

    The prevalence of Diabetes Mellitus is increasing worldwide. In developing countries 25% of adult females with diabetes are in the reproductive age. Thus in developing countries increased number of pregnancies are complicated by diabetes. Uncontrolled diabetes in pregnancy is associated with increased risk for both mother and foetus. These risks can be minimized by good control of diabetes before and during pregnancy. Management in the preconception period is discussed in this review article. Detailed management involves general advice of lifestyle modification followed by specific details of screening for complications of diabetes. Changes in the drugs for both glycaemic control and other co-morbid conditions are discussed. The recommended insulin regimen in the preconception period and monitoring of glycaemic control by self-monitoring of blood glucose (SMBG) and HbA1C has also been highlighted.

  11. Optimal control design of pulse shapes as analytic functions.

    PubMed

    Skinner, Thomas E; Gershenzon, Naum I

    2010-06-01

    Representing NMR pulse shapes by analytic functions is widely employed in procedures for optimizing performance. Insights concerning pulse dynamics can be applied to the choice of appropriate functions that target specific performance criteria, focusing the solution search and reducing the space of possible pulse shapes that must be considered to a manageable level. Optimal control theory can accommodate significantly larger parameter spaces and has been able to tackle problems of much larger scope than more traditional optimization methods. However, its numerically generated pulses, as currently constructed, do not readily incorporate the capabilities of particular functional forms, and the pulses are not guaranteed to vary smoothly in time, which can be a problem for faithful implementation on older hardware. An optimal control methodology is derived for generating pulse shapes as simple parameterized functions. It combines the benefits of analytic and numerical protocols in a single powerful algorithm that both complements and enhances existing optimization strategies.

  12. Symmetries in the Optimal Control of Solar Sail Spacecraft

    NASA Astrophysics Data System (ADS)

    Kim, M.; Hall, C. D.

    2005-08-01

    The theory of optimal control is applied to obtain minimum-time trajectories for solar sail spacecraft for interplanetary missions. We consider the gravitational and solar radiation forces due to the Sun. The spacecraft is modelled as a flat sail of mass m and surface area A and is treated dynamically as a point mass. Coplanar circular orbits are assumed for the planets. We obtain optimal trajectories for several interrelated problem families and develop symmetry properties that can be used to simplify the solution-finding process. For the minimum-time planet rendezvous problem we identify different solution branches resulting in multiple solutions to the associated boundary value problem. We solve the optimal control problem via an indirect method using an efficient cascaded computational scheme. The global optimizer uses a technique called Adaptive Simulated Annealing. Newton and Quasi-Newton Methods perform the terminal fine tuning of the optimization parameters.

  13. Impulsive optimal control model for the trajectory of horizontal wells

    NASA Astrophysics Data System (ADS)

    Li, An; Feng, Enmin; Wang, Lei

    2009-01-01

    This paper presents an impulsive optimal control model for solving the optimal designing problem of the trajectory of horizontal wells. We take fully into account the effect of unknown disturbances in drilling. The optimal control problem can be converted into a nonlinear parametric optimization by integrating the state equation. We discuss here that the locally optimal solution depends in a continuous way on the parameters (disturbances) and utilize this property to propose a revised Hooke-Jeeves algorithm. The uniform design technique is incorporated into the revised Hooke-Jeeves algorithm to handle the multimodal objective function. The numerical simulation is in accordance with theoretical results. The numerical results illustrate the validity of the model and efficiency of the algorithm.

  14. Optimal Control of the Obstacle for an Elliptic Variational Inequality

    SciTech Connect

    Adams, D. R.; Lenhart, S. M.; Yong, J.

    1998-09-15

    An optimal control problem for an elliptic obstacle variational inequality is considered. The obstacle is taken to be the control and the solution to the obstacle problem is taken to be the state. The goal is to find the optimal obstacle from H{sup 1}{sub 0} ({omega}) so that the state is close to the desired profile while the H{sup 1}({omega}) norm of the obstacle is not too large. Existence, uniqueness, and regularity as well as some characterizations of the optimal pairs are established.

  15. Performance investigation of multigrid optimization for DNS-based optimal control problems

    NASA Astrophysics Data System (ADS)

    Nita, Cornelia; Vandewalle, Stefan; Meyers, Johan

    2016-11-01

    Optimal control theory in Direct Numerical Simulation (DNS) or Large-Eddy Simulation (LES) of turbulent flow involves large computational cost and memory overhead for the optimization of the controls. In this context, the minimization of the cost functional is typically achieved by employing gradient-based iterative methods such as quasi-Newton, truncated Newton or non-linear conjugate gradient. In the current work, we investigate the multigrid optimization strategy (MGOpt) in order to speed up the convergence of the damped L-BFGS algorithm for DNS-based optimal control problems. The method consists in a hierarchy of optimization problems defined on different representation levels aiming to reduce the computational resources associated with the cost functional improvement on the finest level. We examine the MGOpt efficiency for the optimization of an internal volume force distribution with the goal of reducing the turbulent kinetic energy or increasing the energy extraction in a turbulent wall-bounded flow; problems that are respectively related to drag reduction in boundary layers, or energy extraction in large wind farms. Results indicate that in some cases the multigrid optimization method requires up to a factor two less DNS and adjoint DNS than single-grid damped L-BFGS. The authors acknowledge support from OPTEC (OPTimization in Engineering Center of Excellence, KU Leuven, Grant No PFV/10/002).

  16. Stability and optimal parameters for continuous feedback chaos control.

    PubMed

    Kouomou, Y Chembo; Woafo, P

    2002-09-01

    We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control. Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is discussed. The analytic approach is confirmed by numerical simulations.

  17. Optimal Discounted Linear Control of the Wiener Process.

    DTIC Science & Technology

    1979-09-01

    1r~~ ~~ • 7 ~O—AO7 8 ~87 BROWN UNIV PROVIDENCE R I LEFSCHETZ CENTER FOR DYNAM— ETC F/s IUt I OPTIMAL DISCOUNTED LINEAR CONTROL OF THE WIENER...4I • —~~~~~ A — --a -I’ p.posa-ra- 79~~ 124 9 OPTIMAL DISCOU NTED LINEAR CONTROL OF THE WIENER PROCESS~ by -J loannis Kara t:as Lefsche tz Center for...DISCOUNTED LINEAR CONTROL OF THE WIENER PROCESS~ loannis Karat zas ABSTRACT The following stochastic control problem is considered

  18. Mechanisms of Molecular Response in the Optimal Control of Photoisomerization

    SciTech Connect

    Dietzek, Benjamin; Brueggemann, Ben; Pascher, Torbjoern; Yartsev, Arkady

    2006-12-22

    We report on adaptive feedback control of photoinduced barrierless isomerization of 1,1'-diethyl-2,2'-cyanine in solution. We compare the effect of different fitness parameters and show that optimal control of the absolute yield of isomerization (photoisomer concentration versus excitation photons) can be achieved, while the relative isomerization yield (photoisomer concentration versus number of relaxed excited-state molecules) is unaffected by adaptive feedback control. The temporal structure of the optimized excitation pulses allows one to draw clear mechanistic conclusions showing the critical importance of coherent nuclear motion for the control of isomerization.

  19. Numerical methods for solving terminal optimal control problems

    NASA Astrophysics Data System (ADS)

    Gornov, A. Yu.; Tyatyushkin, A. I.; Finkelstein, E. A.

    2016-02-01

    Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.

  20. Backward bifurcation and optimal control of Plasmodium Knowlesi malaria

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2014-07-01

    A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.

  1. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  2. Combining optimal control theory and molecular dynamics for protein folding.

    PubMed

    Arkun, Yaman; Gur, Mert

    2012-01-01

    A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.

  3. Optimal Control through Biologically-Inspired Pursuit

    DTIC Science & Technology

    2004-01-01

    Transactions on Automatic Control 48, 988– 1001. Roumeliotis, S.I. and G.A. Bekey (2002). Distributed multi-robot localization. IEEE Transactions on Robotics and...1999). Distributed covering by ant- robots using evaporating traces. IEEE Transactions on Robotics and Automation 15(5), 918–933.

  4. Decentralized Control Using Global Optimization (DCGO) (Preprint)

    DTIC Science & Technology

    2007-03-01

    simulation environment using BAE System’s proprietary M2CS (multi-vehicle mission control system) planner running in version 1.3 of the Boeing OEP...copies of M2CS are allowed to create plans for a SEAD mission. The coordination between the planners is handled using either an ideal communication

  5. Decentralized Control Using Global Optimization (DCGO) (Postprint)

    DTIC Science & Technology

    2007-03-01

    protocol was used in a simulation environment using BAE System’s proprietary M2CS (multi-vehicle mission control system) planner running in version 1.3...system delays. vehicles utilizing identical copies of M2CS are allowed to create plans for a SEAD mission. The coordination between the planners is handled

  6. Turbine engine power optimization control system

    SciTech Connect

    Moore, M.S.

    1984-09-04

    Pushbutton controls are provided for the power management of a turbine powered aircraft; and these pushbuttons may be mounted on the aircraft pilot's control handwheel. The turbine engine has a maximum rated permissible rotational speed which initially increases with increasing air temperature and with increasing altitude or reduced pressure; and has an absolute maximum limitation, with this maximum permissible rotational speed decreasing at increasing temperatures starting at about 10 or 15 degrees below zero, centigrade; and these limitations are reduced when supplemental equipment such as de-icing equipment is turned on. In accordance with the present invention, a series of ''maps'', or rotational speed control characteristics reflecting the factors mentioned above, are provided, and the pushbutton controls select among these characteristics, with the ''take-off'' power button permitting the highest maximum speeds, etc. In addition, automatic timing to reduce the maximum power levels, such as ''Take-Off'' power or ''Performance Climb'' power, is provided, to avoid over-stressing the turbine engines. The system may include additional arrangements for limiting the maximum allowable rotational speed of the turbine engine to a speed below that indicated by any of the ''maps'', when certain pushbuttons such as the ''Approach'' pushbutton is actuated.

  7. Linear stochastic optimal control and estimation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, F. K. B.

    1976-01-01

    Digital program has been written to solve the LSOCE problem by using a time-domain formulation. LSOCE problem is defined as that of designing controls for linear time-invariant system which is disturbed by white noise in such a way as to minimize quadratic performance index.

  8. Optimal charge control strategies for stationary photovoltaic battery systems

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Danzer, Michael A.

    2014-07-01

    Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.

  9. Total energy control system autopilot design with constrained parameter optimization

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Voth, Christopher

    1990-01-01

    A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.

  10. Linear quadratic optimal controller for cable-driven parallel robots

    NASA Astrophysics Data System (ADS)

    Abdolshah, Saeed; Shojaei Barjuei, Erfan

    2015-12-01

    In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work-space, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional- integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cable-driven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.

  11. Adaptive control based on retrospective cost optimization

    NASA Technical Reports Server (NTRS)

    Santillo, Mario A. (Inventor); Bernstein, Dennis S. (Inventor)

    2012-01-01

    A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.

  12. LQ (optimal) control of hyperbolic PDAEs

    NASA Astrophysics Data System (ADS)

    Alizadeh Moghadam, Amir; Aksikas, Ilyasse; Dubljevic, Stevan; Fraser Forbes, J.

    2014-10-01

    The linear quadratic control synthesis for a set of coupled first-order hyperbolic partial differential and algebraic equations is presented by using the infinite-dimensional Hilbert state-space representation of the system and the well-known operator Riccati equation (ORE) method. Solving the algebraic equations and substituting them into the partial differential equations (PDEs) results in a model consisting of a set of pure hyperbolic PDEs. The resulting PDE system involves a hyperbolic operator in which the velocity matrix is spatially varying, non-symmetric, and its eigenvalues are not necessarily negative through of the domain. The C0-semigroup generation property of such an operator is proven and it is shown that the generated C0-semigroup is exponentially stable and, consequently, the ORE has a unique and non-negative solution. Conversion of the ORE into a matrix Riccati differential equation allows the use of a numerical scheme to solve the control problem.

  13. Optimal chaos control through reinforcement learning.

    PubMed

    Gadaleta, Sabino; Dangelmayr, Gerhard

    1999-09-01

    A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (c) 1999 American Institute of Physics.

  14. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    NASA Technical Reports Server (NTRS)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  15. Control optimization of the cryoplant warm compressor station for EAST

    SciTech Connect

    Zhuang, M.; Hu, L. B.; Zhou, Z. W.; Xia, G. H.

    2014-01-29

    The cryogenic control system for EAST (Experimental Advanced Superconducting Tokamak) was designed based on DeltaV DCS of Emerson Corporation. The automatic control of the cryoplant warm compressors has been implemented. However, with ever-degrading performance of critical equipment, the cryoplant operation in the partial design conditions makes the control system fluctuate and unstable. In this paper, the warm compressor control system was optimized to eliminate the pressure oscillation based on the expert PID theory.

  16. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  17. Near-time-optimal control for quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Ming; Wu, Re-Bing; Zhang, Tian-Ming; Rabitz, Herschel

    2015-12-01

    For a quantum system controlled by an external field, time-optimal control is referred to as the shortest-time-duration control that can still permit maximizing an objective function J , which is especially a desirable goal for engineering quantum dynamics against decoherence effects. However, since rigorously finding a time-optimal control is usually very difficult and in many circumstances the control is only required to be sufficiently short and precise, one can design algorithms seeking such suboptimal control solutions for much reduced computational effort. In this paper, we propose an iterative algorithm for finding near-time-optimal control in a high level set (i.e., the set of controls that achieves the same value of J ) that can be arbitrarily close to the global optima. The algorithm proceeds seeking to decrease the time duration T while the value of J remains invariant, until J leaves the level-set value; the deviation of J due to numerical errors is corrected by gradient climbing that brings the search back to the level-set J value. Since the level set is very close to the maximum value of J , the resulting control solution is nearly time optimal with manageable precision. Numerical examples demonstrate the effectiveness and general applicability of the algorithm.

  18. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  19. The First Transverse Single Spin Measurement in High Energy Polarized Proton-Nucleus Collision at the PHENIX experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Nakagawa, I.

    2016-08-01

    Large single spin asymmetries in very forward neutron production seen using the PHENIX zero-degree calorimeters are a long established feature of transversely polarized proton-proton collisions at RHIC. Neutron production near zero degrees is well described by the one-pion exchange framework. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However, the amplitude predicted by the OPE is too small to explain the large observed asymmetries. A model introducing interference of pion and a 1-Reggeon exchanges has been successful in reproducing the experimental data. During the RHIC experiment in year 2015, RHIC delivered polarized proton collisions with Au and Al nuclei for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. The observed asymmetries showed surprisingly strong A-dependence in the inclusive forward neutron production, while the existing framework which was successfull in p+p only predicts moderate A- dependence. Thus the observed data are absolutely unexpected and unpredicted. In this report, experimental and theoretical efforts are discussed to disentangle the observed A-dependence using somewhat semi-inclusive type measurements and Monte-Carlo study, respectively.

  20. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    NASA Astrophysics Data System (ADS)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  1. Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures

    NASA Astrophysics Data System (ADS)

    Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin

    2012-08-01

    Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.

  2. Optimal Control of Mixing in Stokes Fluid Flows

    NASA Astrophysics Data System (ADS)

    Mathew, George; Mezic, Igor; Grivopoulos, Symeon; Vaidya, Umesh; Petzold, Linda

    2006-11-01

    Motivated by the problem of microfluidic mixing, the problem of optimal control of advective mixing in Stokes fluid flows is considered. The velocity field is assumed to be induced by a finite set of spatially distributed force fields that can be modulated arbitrarily with time and a passive material is advected by the flow. To quantify the degree of mixedness of a density field, we use a Sobolev space norm of negative index. We pose a finite-time optimal control problem where we aim to achieve the best mixing for a fixed value of the action (time integral of the kinetic energy of the fluid body) per unit mass. We derive the first order necessary conditions for optimality that can be expressed as a two point boundary value problem and we discuss some elementary properties that the optimal controls need to satisfy. A conjugate gradient descent method is used to solve the optimal control problem and we present numerical results for two problems involving arrays of vortices. A comparison of the mixing performance shows that optimal aperiodic inputs can do better than periodic inputs.

  3. Sensitivity Analysis and Optimal Control of Anthroponotic Cutaneous Leishmania

    PubMed Central

    Zamir, Muhammad; Zaman, Gul; Alshomrani, Ali Saleh

    2016-01-01

    This paper is focused on the transmission dynamics and optimal control of Anthroponotic Cutaneous Leishmania. The threshold condition R0 for initial transmission of infection is obtained by next generation method. Biological sense of the threshold condition is investigated and discussed in detail. The sensitivity analysis of the reproduction number is presented and the most sensitive parameters are high lighted. On the basis of sensitivity analysis, some control strategies are introduced in the model. These strategies positively reduce the effect of the parameters with high sensitivity indices, on the initial transmission. Finally, an optimal control strategy is presented by taking into account the cost associated with control strategies. It is also shown that an optimal control exists for the proposed control problem. The goal of optimal control problem is to minimize, the cost associated with control strategies and the chances of infectious humans, exposed humans and vector population to become infected. Numerical simulations are carried out with the help of Runge-Kutta fourth order procedure. PMID:27505634

  4. Optimal Control of a Dengue Epidemic Model with Vaccination

    NASA Astrophysics Data System (ADS)

    Rodrigues, Helena Sofia; Teresa, M.; Monteiro, T.; Torres, Delfim F. M.

    2011-09-01

    We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.

  5. An adaptive precision gradient method for optimal control.

    NASA Technical Reports Server (NTRS)

    Klessig, R.; Polak, E.

    1973-01-01

    This paper presents a gradient algorithm for unconstrained optimal control problems. The algorithm is stated in terms of numerical integration formulas, the precision of which is controlled adaptively by a test that ensures convergence. Empirical results show that this algorithm is considerably faster than its fixed precision counterpart.-

  6. OPTIMIZATION OF DECENTRALIZED BMP CONTROLS IN URBAN AREAS

    EPA Science Inventory

    This paper will present an overview of a recently completed project for the US EPA entitled Optimization of Urban Wet-weather Flow Control Systems. The focus of this effort is on techniques that are suitable for evaluating decentralized BMP controls. The four major components o...

  7. Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control

    SciTech Connect

    Masiero, Federica

    2005-03-15

    Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations.

  8. OPTIMIZATION OF DECENTRALIZED BMP CONTROLS IN URBAN AREAS

    EPA Science Inventory

    This paper will present an overview of a recently completed project for the US EPA entitled, Optimization of Urban Wet-weather Flow Control Systems. The focus of this effort is on techniques that are suitable for evaluating decentralized BMP controls. The four major components ...

  9. Optimal birth control of age-dependent competitive species

    NASA Astrophysics Data System (ADS)

    He, Ze-Rong

    2005-05-01

    We study optimal birth policies for two age-dependent populations in a competing system, which is controlled by fertilities. New results on problems with free final time and integral phase constraints are presented, and the approximate controllability of system is discussed.

  10. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  11. Optimal member damper controller design for large space structures

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Groom, N. J.

    1980-01-01

    Consideration is given to the selection of velocity feedback gains for individual dampers for the members of a structurally controlled large flexible space structure. The problem is formulated as an optimal output feedback regulator problem, and necessary conditions are derived for minimizing a quadratic performance function. The diagonal nature of the gain matrix is taken into account, along with knowledge of noise covariances. It is pointed out that the method presented offers a systematic approach to the design of a class of controllers for enhancing structural damping, which have significant potential if used in conjunction with a reduced-order optimal controller for rigid-body modes and selected structural modes.

  12. Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.

    2015-01-01

    This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.

  13. State-Constrained Optimal Control Problems of Impulsive Differential Equations

    SciTech Connect

    Forcadel, Nicolas; Rao Zhiping Zidani, Hasnaa

    2013-08-01

    The present paper studies an optimal control problem governed by measure driven differential systems and in presence of state constraints. The first result shows that using the graph completion of the measure, the optimal solutions can be obtained by solving a reparametrized control problem of absolutely continuous trajectories but with time-dependent state-constraints. The second result shows that it is possible to characterize the epigraph of the reparametrized value function by a Hamilton-Jacobi equation without assuming any controllability assumption.

  14. Recursive multibody dynamics and discrete-time optimal control

    NASA Technical Reports Server (NTRS)

    Deleuterio, G. M. T.; Damaren, C. J.

    1989-01-01

    A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.

  15. Increasing Wind Turbine Power Generation Through Optimized Flow Control Design

    NASA Astrophysics Data System (ADS)

    Cooney, John; Williams, Theodore; Corke, Thomas

    2013-11-01

    A practical, validated methodology is outlined for implementing flow control systems into wind turbine designs to maximize power generation. This approach involves determining optimal flow control strategies to minimize aerodynamic losses for horizontal axis wind turbines during Region II operation. A quantitative design optimization (QDO) process is completed for the wind turbine utilized in the Notre Dame Laboratory for Enhanced Wind Energy Research. QDO utilizes CFD simulations and shape optimization tools to maximize effectiveness of flow control. Here, only flow control schemes that could be retrofitted on the existing turbine were explored. The final geometry is discussed along with accompanying validations of the predicted performance from wind tunnel experiments at full-scale conditions. Field data from the wind energy laboratory is included.

  16. Quantum optimal control within the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Keck, Maximilian; Müller, Matthias M.; Calarco, Tommaso; Montangero, Simone

    2015-09-01

    We study the interplay between rotating-wave approximation and optimal control. In particular, we show that for a wide class of optimal control problems one can choose the control field such that the Hamiltonian becomes time independent under the rotating-wave approximation. Thus, we show how to recast the functional minimization defined by the optimal control problem into a simpler multivariable function minimization. We provide the analytic solution to the state-to-state transfer of the paradigmatic two-level system and to the more general star configuration of an N -level system. We demonstrate numerically the usefulness of this approach in the more general class of connected acyclic N -level systems with random spectra. Finally, we use it to design a protocol to entangle Rydberg via constant laser pulse atoms in an experimentally relevant range of parameters.

  17. Topology of classical molecular optimal control landscapes in phase space

    NASA Astrophysics Data System (ADS)

    Joe-Wong, Carlee; Ho, Tak-San; Long, Ruixing; Rabitz, Herschel; Wu, Rebing

    2013-03-01

    Optimal control of molecular dynamics is commonly expressed from a quantum mechanical perspective. However, in most contexts the preponderance of molecular dynamics studies utilize classical mechanical models. This paper treats laser-driven optimal control of molecular dynamics in a classical framework. We consider the objective of steering a molecular system from an initial point in phase space to a target point, subject to the dynamic constraint of Hamilton's equations. The classical control landscape corresponding to this objective is a functional of the control field, and the topology of the landscape is analyzed through its gradient and Hessian with respect to the control. Under specific assumptions on the regularity of the control fields, the classical control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating the presence of an inherent degree of robustness to control noise. Extensive numerical simulations are performed to illustrate the theoretical principles on (a) a model diatomic molecule, (b) two coupled Morse oscillators, and (c) a chaotic system with a coupled quartic oscillator, confirming the absence of traps in the classical control landscape. We compare the classical formulation with the mathematically analogous quantum state-to-state transition probability control landscape.

  18. Optimal Control of Transitions between Nonequilibrium Steady States

    PubMed Central

    Zulkowski, Patrick R.; Sivak, David A.; DeWeese, Michael R.

    2013-01-01

    Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines. PMID:24386112

  19. Optimal control of information epidemics modeled as Maki Thompson rumors

    NASA Astrophysics Data System (ADS)

    Kandhway, Kundan; Kuri, Joy

    2014-12-01

    We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.

  20. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    Athans, M. (Editor); Willsky, A. S. (Editor)

    1982-01-01

    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.

  1. Parameter optimization in AQM controller design to support TCP traffic

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Yang, Oliver W.

    2004-09-01

    TCP congestion control mechanism has been widely investigated and deployed on Internet in preventing congestion collapse. We would like to employ modern control theory to specify quantitatively the control performance of the TCP communication system. In this paper, we make use of a commonly used performance index called the Integral of the Square of the Error (ISE), which is a quantitative measure to gauge the performance of a control system. By applying the ISE performance index into the Proportional-plus-Integral controller based on Pole Placement (PI_PP controller) for active queue management (AQM) in IP routers, we can further tune the parameters for the controller to achieve an optimum control minimizing control errors. We have analyzed the dynamic model of the TCP congestion control under this ISE, and used OPNET simulation tool to verify the derived optimized parameters of the controllers.

  2. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  3. Monotonically convergent optimization in quantum control using Krotov's method.

    PubMed

    Reich, Daniel M; Ndong, Mamadou; Koch, Christiane P

    2012-03-14

    The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont. (Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control theory from the linear to the non-linear Schrödinger equation [S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically convergent algorithms are obtained for a large class of quantum control problems. It includes, in addition to nonlinear equations of motion, control problems that are characterized by non-unitary time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets, and optimization functionals that depend to higher than second order on the time-evolving states. We furthermore show that the nonlinear (second order) contribution can be estimated either analytically or numerically, yielding readily applicable optimization algorithms. We demonstrate monotonic convergence for an optimization functional that is an eighth-degree polynomial in the states. For the "standard" quantum control problem of a convex final-time functional, linear equations of motion and linear dependency of the Hamiltonian on the field, the second-order contribution is not required for monotonic convergence but can be used to speed up convergence. We demonstrate this by comparing the performance of first- and second-order algorithms for two examples.

  4. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE.

  5. Solving bi-objective optimal control problems with rectangular framing

    NASA Astrophysics Data System (ADS)

    Wijaya, Karunia Putra; Götz, Thomas

    2016-06-01

    Optimization problems, e.g. arising from epidemiology models, often ask for solutions minimizing multi-criteria objective functions. In this paper we discuss a novel approach for solving bi-objective optimal control problems. The set of non-dominated points is constructed via a decreasing sequence of rectangles. Particular attention is paid to a problem with disconnected set of non-dominated points. Several examples from epidemiology are investigated and show the applicability of the method.

  6. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.

  7. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  8. Optimal periodic control for spacecraft pointing and attitude determination

    NASA Technical Reports Server (NTRS)

    Pittelkau, Mark E.

    1993-01-01

    A new approach to autonomous magnetic roll/yaw control of polar-orbiting, nadir-pointing momentum bias spacecraft is considered as the baseline attitude control system for the next Tiros series. It is shown that the roll/yaw dynamics with magnetic control are periodically time varying. An optimal periodic control law is then developed. The control design features a state estimator that estimates attitude, attitude rate, and environmental torque disturbances from Earth sensor and sun sensor measurements; no gyros are needed. The state estimator doubles as a dynamic attitude determination and prediction function. In addition to improved performance, the optimal controller allows a much smaller momentum bias than would otherwise be necessary. Simulation results are given.

  9. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    SciTech Connect

    Waidyawansa, Dinayadura Buddhini

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  10. Continuous Control Artificial Potential Function Methods and Optimal Control

    DTIC Science & Technology

    2014-03-27

    Problem . . . . . . . . . . . . . . . . . . 32 NLP Nonlinear Programming . . . . . . . . . . . . . . . . . . . 33 VDSVAPF Variable Direction and Speed...parameterize the controls and/or states and then trans- late the OCP into a nonlinear programming ( NLP ) problem [28]. In the so-called direct shooting... NLP problem. For each guessed control sequence, the state dynamics are integrated numerically, and the cost and constraint values calculated. The NLP

  11. A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    1996-01-01

    Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.

  12. Advanced launch system trajectory optimization using suboptimal control

    NASA Technical Reports Server (NTRS)

    Shaver, Douglas A.; Hull, David G.

    1993-01-01

    The maximum-final mass trajectory of a proposed configuration of the Advanced Launch System is presented. A model for the two-stage rocket is given; the optimal control problem is formulated as a parameter optimization problem; and the optimal trajectory is computed using a nonlinear programming code called VF02AD. Numerical results are presented for the controls (angle of attack and velocity roll angle) and the states. After the initial rotation, the angle of attack goes to a positive value to keep the trajectory as high as possible, returns to near zero to pass through the transonic regime and satisfy the dynamic pressure constraint, returns to a positive value to keep the trajectory high and to take advantage of minimum drag at positive angle of attack due to aerodynamic shading of the booster, and then rolls off to negative values to satisfy the constraints. Because the engines cannot be throttled, the maximum dynamic pressure occurs at a single point; there is no maximum dynamic pressure subarc. To test approximations for obtaining analytical solutions for guidance, two additional optimal trajectories are computed: one using untrimmed aerodynamics and one using no atmospheric effects except for the dynamic pressure constraint. It is concluded that untrimmed aerodynamics has a negligible effect on the optimal trajectory and that approximate optimal controls should be able to be obtained by treating atmospheric effects as perturbations.

  13. Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng

    2009-10-01

    The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.

  14. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  15. Theory and Applications of Optimal Control in Aerospace Systems,

    DTIC Science & Technology

    1981-07-01

    CONTROL OF LINEAR QUADRATIC SYSTEM. Consider, as a particular case of the general problem defined in section 2, a lineal , system with quadratic cost... LARSON Proceeding of the IFAC Stochastic Control Symposium, Budapest, 1974. [36] G. CAMPION "Optimal control of non-linear stochastic systems by...dynamics, an r-component algebraic (or transcendental) equation representing the output, and an r-component equation representing the observation: dx (t

  16. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  17. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  18. Optimal control of large space structures via generalized inverse matrix

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Fang, Xiaowen

    1987-01-01

    Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.

  19. An optimal performance control scheme for a 3D crane

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Mohammad Javad; Mohamed, Z.; Husain, A. R.; Tokhi, M. O.

    2016-01-01

    This paper presents an optimal performance control scheme for control of a three dimensional (3D) crane system including a Zero Vibration shaper which considers two control objectives concurrently. The control objectives are fast and accurate positioning of a trolley and minimum sway of a payload. A complete mathematical model of a lab-scaled 3D crane is simulated in Simulink. With a specific cost function the proposed controller is designed to cater both control objectives similar to a skilled operator. Simulation and experimental studies on a 3D crane show that the proposed controller has better performance as compared to a sequentially tuned PID-PID anti swing controller. The controller provides better position response with satisfactory payload sway in both rail and trolley responses. Experiments with different payloads and cable lengths show that the proposed controller is robust to changes in payload with satisfactory responses.

  20. On the use of consistent approximations in the solution of semi-infinite optimization, optimal control, and shape optimization problems

    SciTech Connect

    Polak, E.

    1994-12-31

    Unlike the situation with most other problems, the concept of a solution to an optimization problem is not unique, since it includes global solutions, local solutions, and stationary points. Earlier definitions of a consistent approximation to an optimization problem were in terms of properties that ensured that the global minimizers of the approximating problems (as well as uniformly strict local minimizers) converge only to global minimizers (local minimizers) of the original problems. Our definition of a consistent approximation addresses the properties not only of global and local solutions of the approximating problems, but also of their stationary points. Hence we always consider a pair, consisting of an optimization problem and its optimality function, (P, {theta}), with the zeros of the optimality function being the stationary points of P. We define consistency of approximating problem-optimality function pairs, (P{sub N}, {theta}{sub N}) to (P, {theta}), in terms of the epigraphical convergence of the P{sub N} to P, and the hypographical convergence of the optimality functions {theta}{sub N} to {theta}. As a companion to the characterization of consistent approximations, we will present two types of {open_quotes}diagonalization{close_quotes} techniques for using consistent approximations and {open_quotes}hot starts{close_quotes} in obtaining an approximate solution of the original problems. The first is a {open_quotes}filter{close_quotes} type technique, similar to that used in conjunction with penalty functions, the second one is an adaptive discretization technique with nicer convergence properties. We will illustrate the use of our concept of consistent approximations with examples from semi-infinite optimization, optimal control, and shape optimization.

  1. Integrated controls-structures optimization of a large space structure

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Walsh, Joanne L.; Sandridge, Chris A.; Haftka, Raphael T.

    1990-01-01

    A technique for the simultaneous optimization of structural and control elements of a large space structure is developed and demonstrated for a test problem, the NASA COFS-I Mast Flight System. General-purpose control and structural-analysis codes are applied directly to a large detailed model, with realistic objective and constraint functions. The steps in the process (structural optimization, control optimization, and system coordination) are described and illustrated with diagrams; the numerical implementation (using different computers for different steps) is discussed; and results showing significant design improvements in three COFS-I configurations are presented in graphs. When the weights of both structure and power-generating equipment are taken into account, a 40-bay truss design is found to be better than designs with 42 or 44 bays.

  2. A duality framework for stochastic optimal control of complex systems

    DOE PAGES

    Malikopoulos, Andreas A.

    2016-01-01

    In this study, we address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations having constraints consistent with those studied here, our results imply that the Pareto control policy may be of value when we seek to derivemore » online the optimal control policy in complex systems.« less

  3. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  4. An optimal control approach to probabilistic Boolean networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiuli

    2012-12-01

    External control of some genes in a genetic regulatory network is useful for avoiding undesirable states associated with some diseases. For this purpose, a number of stochastic optimal control approaches have been proposed. Probabilistic Boolean networks (PBNs) as powerful tools for modeling gene regulatory systems have attracted considerable attention in systems biology. In this paper, we deal with a problem of optimal intervention in a PBN with the help of the theory of discrete time Markov decision process. Specifically, we first formulate a control model for a PBN as a first passage model for discrete time Markov decision processes and then find, using a value iteration algorithm, optimal effective treatments with the minimal expected first passage time over the space of all possible treatments. In order to demonstrate the feasibility of our approach, an example is also displayed.

  5. A multiple objective optimization approach to quality control

    NASA Technical Reports Server (NTRS)

    Seaman, Christopher Michael

    1991-01-01

    The use of product quality as the performance criteria for manufacturing system control is explored. The goal in manufacturing, for economic reasons, is to optimize product quality. The problem is that since quality is a rather nebulous product characteristic, there is seldom an analytic function that can be used as a measure. Therefore standard control approaches, such as optimal control, cannot readily be applied. A second problem with optimizing product quality is that it is typically measured along many dimensions: there are many apsects of quality which must be optimized simultaneously. Very often these different aspects are incommensurate and competing. The concept of optimality must now include accepting tradeoffs among the different quality characteristics. These problems are addressed using multiple objective optimization. It is shown that the quality control problem can be defined as a multiple objective optimization problem. A controller structure is defined using this as the basis. Then, an algorithm is presented which can be used by an operator to interactively find the best operating point. Essentially, the algorithm uses process data to provide the operator with two pieces of information: (1) if it is possible to simultaneously improve all quality criteria, then determine what changes to the process input or controller parameters should be made to do this; and (2) if it is not possible to improve all criteria, and the current operating point is not a desirable one, select a criteria in which a tradeoff should be made, and make input changes to improve all other criteria. The process is not operating at an optimal point in any sense if no tradeoff has to be made to move to a new operating point. This algorithm ensures that operating points are optimal in some sense and provides the operator with information about tradeoffs when seeking the best operating point. The multiobjective algorithm was implemented in two different injection molding scenarios

  6. A stochastic optimal feedforward and feedback control methodology for superagility

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.

    1992-01-01

    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.

  7. Optimal pulse design in quantum control: A unified computational method

    PubMed Central

    Li, Jr-Shin; Ruths, Justin; Yu, Tsyr-Yan; Arthanari, Haribabu; Wagner, Gerhard

    2011-01-01

    Many key aspects of control of quantum systems involve manipulating a large quantum ensemble exhibiting variation in the value of parameters characterizing the system dynamics. Developing electromagnetic pulses to produce a desired evolution in the presence of such variation is a fundamental and challenging problem in this research area. We present such robust pulse designs as an optimal control problem of a continuum of bilinear systems with a common control function. We map this control problem of infinite dimension to a problem of polynomial approximation employing tools from geometric control theory. We then adopt this new notion and develop a unified computational method for optimal pulse design using ideas from pseudospectral approximations, by which a continuous-time optimal control problem of pulse design can be discretized to a constrained optimization problem with spectral accuracy. Furthermore, this is a highly flexible and efficient numerical method that requires low order of discretization and yields inherently smooth solutions. We demonstrate this method by designing effective broadband π/2 and π pulses with reduced rf energy and pulse duration, which show significant sensitivity enhancement at the edge of the spectrum over conventional pulses in 1D and 2D NMR spectroscopy experiments. PMID:21245345

  8. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  9. Quadratic Optimization in the Problems of Active Control of Sound

    NASA Technical Reports Server (NTRS)

    Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).

  10. Thermoelectric effects of the single-spin state in the ferromagnetic-normal junction with artificial magnetic impurities

    NASA Astrophysics Data System (ADS)

    Xu, Li; Li, Zhi-Jian; Hou, Hai-Yan; Niu, Pengbin; Nie, Yi-Hang

    2016-10-01

    We theoretically analyze the thermoelectric properties of the single-spin state based on the resonant tunneling of electron in the ferromagnetic-normal junction with artificial magnetic impurities. The thermoelectric coefficients, such as electrical conductance G, thermal conductance K, thermopower S and effective figure of merit Y, have been calculated using the nonequilibrium Green function in the linear regime. It is found that the thermoelectric coefficients can achieve considerable values by adjusting key parameters of the hybrid mesoscopic structure, such as the level detuning, the interdot hopping coefficient, the external magnetic field and the angle θ. When the level detuning changes, the spectra of electrical conductance and thermal conductance exhibit the electronic Dicke-like effect in the low temperature. Two valleys of electrical conductance and thermal conductance are always located at the single-spin level of QD2 ({{\\varepsilon}2\\uparrow} and ~{{\\varepsilon}2\\downarrow} ), and can achieve the antiresonant point by adjusting the interdot hopping coefficient. Thermoelectric coefficients can achieve considerable values near valleys because the Wiedemann-Franz law is strongly violated. Thermopower S and effective figure of merit Y can get larger values in the vicinity of {{\\varepsilon}2\\uparrow} by adjusting key parameters of the hybrid mesoscopic structure, such as the level detuning, the interdot hopping coefficient and the polarization. But the thermoelectric effect is reversed by changing the angle θ. When the angle θ increases, S and Y are suppressed in the vicinity of {{\\varepsilon}2\\uparrow}, meanwhile, S and Y are enhanced in the vicinity of {{\\varepsilon}2\\downarrow}. {χ+}=\\cos \\fracθ{2}|\\uparrow >+\\sin \\fracθ{2}|\\downarrow > shows that an electron in the state {χ+} can virtually tunnel into the spin-up (or spin-down) state of the ferromagnet. The amplitude of electron tunneling is \\cos \\fracθ{2} (or \\sin \\fracθ{2

  11. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  12. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  13. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing

    PubMed Central

    Yeo, Sang-Hoon; Wolpert, Daniel M.

    2016-01-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role. PMID:27973566

  14. Optimal Control Strategy of Plasmodium vivax Malaria Transmission in Korea

    PubMed Central

    Kim, Byul Nim; Nah, Kyeongah; Chu, Chaeshin; Ryu, Sang Uk; Kang, Yong Han; Kim, Yongkuk

    2012-01-01

    Objective To investigate the optimal control strategy for Plasmodium vivax malaria transmission in Korea. Methods A Plasmodium vivax malaria transmission model with optimal control terms using a deterministic system of differential equations is presented, and analyzed mathematically and numerically. Results If the cost of reducing the reproduction rate of the mosquito population is more than that of prevention measures to minimize mosquito-human contacts, the control of mosquito-human contacts needs to be taken for a longer time, comparing the other situations. More knowledge about the actual effectiveness and costs of control intervention measures would give more realistic control strategies. Conclusion Mathematical model and numerical simulations suggest that the use of mosquito-reduction strategies is more effective than personal protection in some cases but not always. PMID:24159504

  15. Optimization-based design of control systems for flexible structures

    NASA Technical Reports Server (NTRS)

    Polak, E.; Baker, T. E.; Wuu, T-L.; Harn, Y-P.

    1988-01-01

    The purpose of this presentation is to show that it is possible to use nonsmooth optimization algorithms to design both closed-loop finite dimensional compensators and open-loop optimal controls for flexible structures modeled by partial differential equations. An important feature of our approach is that it does not require modal decomposition and hence is immune to instabilities caused by spillover effects. Furthermore, it can be used to design control systems for structures that are modeled by mixed systems of coupled ordinary and partial differential equations.

  16. Searching for pathways involving dressed states in optimal control theory.

    PubMed

    von den Hoff, Philipp; Kowalewski, Markus; de Vivie-Riedle, Regina

    2011-01-01

    Selective population of dressed states has been proposed as an alternative control pathway in molecular reaction dynamics [Wollenhaupt et al., J. Photochem. Photobiol. A: Chem., 2006, 180, 248]. In this article we investigate if, and under which conditions, this strong field pathway is included in the search space of optimal control theory. For our calculations we used the proposed example of the potassium dimer, in which the different target states can be reached via dressed states by resonant transition. Especially, we investigate whether the optimization algorithm is able to find the route involving the dressed states although the target state lies out of resonance in the bare state picture.

  17. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  18. Unlocking Flexibility: Integrated Optimization and Control of Multienergy Systems

    SciTech Connect

    Dall'Anese, Emiliano; Mancarella, Pierluigi; Monti, Antonello

    2017-01-01

    Electricity, natural gas, water, and dis trict heating/cooling systems are predominantly planned and operated independently. However, it is increasingly recognized that integrated optimization and control of such systems at multiple spatiotemporal scales can bring significant socioeconomic, operational efficiency, and environmental benefits. Accordingly, the concept of the multi-energy system is gaining considerable attention, with the overarching objectives of 1) uncovering fundamental gains (and potential drawbacks) that emerge from the integrated operation of multiple systems and 2) developing holistic yet computationally affordable optimization and control methods that maximize operational benefits, while 3) acknowledging intrinsic interdependencies and quality-of-service requirements for each provider.

  19. Optimal control of underactuated mechanical systems: A geometric approach

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela

    2010-08-01

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  20. Control and structural optimization for maneuvering large spacecraft

    NASA Technical Reports Server (NTRS)

    Chun, H. M.; Turner, J. D.; Yu, C. C.

    1990-01-01

    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment.

  1. Digital robust control law synthesis using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1989-01-01

    Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.

  2. Automated design of multiphase space missions using hybrid optimal control

    NASA Astrophysics Data System (ADS)

    Chilan, Christian Miguel

    A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving the associated continuous optimal control problem. This strategy, however, will most likely yield a sub-optimal solution, as the problem is sophisticated for several reasons. For example, the number of events in the optimal mission structure is not known a priori and the system equations of motion change depending on what event is current. In this work a framework for the automated design of multiphase space missions is presented using hybrid optimal control (HOC). The method developed uses two nested loops: an outer-loop that handles the discrete dynamics and finds the optimal mission structure in terms of the categorical variables, and an inner-loop that performs the optimization of the corresponding continuous-time dynamical system and obtains the required control history. Genetic algorithms (GA) and direct transcription with nonlinear programming (NLP) are introduced as methods of solution for the outer-loop and inner-loop problems, respectively. Automation of the inner-loop, continuous optimal control problem solver, required two new technologies. The first is a method for the automated construction of the NLP problems resulting from the use of a direct solver for systems with different structures, including different numbers of categorical events. The method assembles modules, consisting of parameters and constraints appropriate to each event, sequentially according to the given mission structure. The other new technology is for a robust initial guess generator required by the inner-loop NLP problem solver. Two new methods were developed for cases including low-thrust trajectories. The first method, based on GA

  3. Application of a Nonlinear Optimal Control Algorithm to Spacecraft and Airship Control

    NASA Astrophysics Data System (ADS)

    Fujii, Hironori A.; Kusagaya, Tairo; Watanabe, Takeo; An, Andrew

    This paper presents a synthetic method that is based on both the algorithm of the geometry nonlinear feedback and nonlinear system optimal control of hierarchical differential feedback regulation. This method enables us to solve optimal feedback control problems without solving the Riccati Equations or adjoint vectors. Also, the method takes into consideration the avoidance of conjugate points, which is a important aspect of research in optimal control of nonlinear system. The present method is applied to two examples, one is a nonlinear attitude maneuver of spacecraft and the other is an airship optimal feedback tracking control. These applications have been studied numerically in order to show the performance of the present method applied to nonlinear optimal control for aerospace application.

  4. Optimization and Control of Cyber-Physical Vehicle Systems.

    PubMed

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  5. Optimization and Control of Cyber-Physical Vehicle Systems

    PubMed Central

    Bradley, Justin M.; Atkins, Ella M.

    2015-01-01

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541

  6. Optimal control in NMR spectroscopy: numerical implementation in SIMPSON.

    PubMed

    Tosner, Zdenek; Vosegaard, Thomas; Kehlet, Cindie; Khaneja, Navin; Glaser, Steffen J; Nielsen, Niels Chr

    2009-04-01

    We present the implementation of optimal control into the open source simulation package SIMPSON for development and optimization of nuclear magnetic resonance experiments for a wide range of applications, including liquid- and solid-state NMR, magnetic resonance imaging, quantum computation, and combinations between NMR and other spectroscopies. Optimal control enables efficient optimization of NMR experiments in terms of amplitudes, phases, offsets etc. for hundreds-to-thousands of pulses to fully exploit the experimentally available high degree of freedom in pulse sequences to combat variations/limitations in experimental or spin system parameters or design experiments with specific properties typically not covered as easily by standard design procedures. This facilitates straightforward optimization of experiments under consideration of rf and static field inhomogeneities, limitations in available or desired rf field strengths (e.g., for reduction of sample heating), spread in resonance offsets or coupling parameters, variations in spin systems etc. to meet the actual experimental conditions as close as possible. The paper provides a brief account on the relevant theory and in particular the computational interface relevant for optimization of state-to-state transfer (on the density operator level) and the effective Hamiltonian on the level of propagators along with several representative examples within liquid- and solid-state NMR spectroscopy.

  7. Risk-Reliability Programming for Optimal Water Quality Control

    NASA Astrophysics Data System (ADS)

    Simonovic, Slobodan P.; Orlob, Gerald T.

    1984-06-01

    A risk-reliability programming approach is developed for optimal allocation of releases for control of water quality downstream of a multipurpose reservoir. Additionally, the approach allows the evaluation of optimal risk/reliability values. Risk is defined as a probability of not satisfying constraints given in probabilistic form, e.g., encroachment of water quality reservation on that for flood control. The objective function includes agricultural production losses that are functions of water quality, and risk-losses associated with encroachment of the water quality control functions on reservations for flood control, fisheries, and irrigation. The approach is demonstrated using data from New Melones Reservoir on the Stanislaus River in California. Results indicate that an optimum water quality reservation exists for a given set of quality targets and loss functions. Additional analysis is presented to determine the sensitivity of optimization results to agricultural production loss functions and the influence of statistically different river flows on the optimal reservoir storage for water quality control. Results indicate the dependence of an optimum water quality reservation on agricultural production losses and hydrologic conditions.

  8. Neural network based optimal control of HVAC&R systems

    NASA Astrophysics Data System (ADS)

    Ning, Min

    Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the

  9. Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

    NASA Astrophysics Data System (ADS)

    Sardesai, Chetan R.

    The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the

  10. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Liu, Jin; Wavrik, Kathryn

    1999-09-27

    This report describes work performed during the first year of the project, ''Using Chemicals to Optimize Conformance Control in Fractured Reservoirs.'' This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. Our work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

  11. Forward Neutral Pion Transverse Single Spin Asymmetries in p+p Collisions at sqrt s = 200 GeV

    SciTech Connect

    STAR Coll

    2008-11-26

    We report precision measurements of the Feynman-x (x{sub F}) dependence, and first measurements of the transverse momentum (p{sub T}) dependence, of transverse single spin asymmetries for the production of {pi}{sup 0} mesons from polarized proton collisions at {radical}s = 200 GeV. The x{sub F} dependence of the results are in fair agreement with perturbative QCD (pQCD) model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p{sub T} dependence at fixed x{sub F} are not consistent with these same pQCD-based calculations.

  12. Optimizing the control of disease infestations at the landscape scale

    PubMed Central

    Forster, Graeme A.; Gilligan, Christopher A.

    2007-01-01

    Using a contact-process model for the spread of crop disease over a regional scale, we examine the importance of the time scale for control with respect to the cost of the epidemic. The costs include the direct cost of treating infected sites as well as the indirect costs incurred through lost yield. We first use a mean-field approximation to derive analytical results for the optimal treatment regimes that minimize the total cost of the epidemic. We distinguish short- and long-term epidemics. and show that seasonal control (short time scale) requires extreme treatment, either treating all sites or none or switching between the two at some stage during the season. The optimal long-term strategy requires an intermediate level of control that results in near eradication of the disease. We also demonstrate the importance of incorporating economic constraints by deriving a critical relationship between the epidemiological and economic parameters that determine the qualitative nature of the optimal treatment strategy. The set of optimal strategies is summarized in a policy plot, which can be used to determine the nature of the optimal treatment regime given prior knowledge of the epidemiological and economic parameters. Finally, we test the robustness of the analytical results, derived from the mean-field approximation, on the spatially explicit contact process and demonstrate robustness to implementation errors and misestimation of crucial parameters. PMID:17360397

  13. Optimization of a photovoltaic pumping system based on the optimal control theory

    SciTech Connect

    Betka, A.; Attali, A.

    2010-07-15

    This paper suggests how an optimal operation of a photovoltaic pumping system based on an induction motor driving a centrifugal pump can be realized. The optimization problem consists in maximizing the daily pumped water quantity via the optimization of the motor efficiency for every operation point. The proposed structure allows at the same time the minimization the machine losses, the field oriented control and the maximum power tracking of the photovoltaic array. This will be attained based on multi-input and multi-output optimal regulator theory. The effectiveness of the proposed algorithm is described by simulation and the obtained results are compared to those of a system working with a constant air gap flux. (author)

  14. Topology optimization of embedded piezoelectric actuators considering control spillover effects

    NASA Astrophysics Data System (ADS)

    Gonçalves, Juliano F.; De Leon, Daniel M.; Perondi, Eduardo A.

    2017-02-01

    This article addresses the problem of active structural vibration control by means of embedded piezoelectric actuators. The topology optimization method using the solid isotropic material with penalization (SIMP) approach is employed in this work to find the optimum design of actuators taken into account the control spillover effects. A coupled finite element model of the structure is derived assuming a two-phase material and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The undesirable effects of the feedback control on the residual modes are limited by including a spillover constraint term containing the residual controllability Gramian eigenvalues. The optimization of the shape and placement of the conventionally embedded piezoelectric actuators are performed using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the additional constraint.

  15. Riccati-less optimal control of bluff-body wakes

    NASA Astrophysics Data System (ADS)

    Pralits, Jan Oscar; Luchini, Paolo

    In this paper we propose a new method to solve the optimal control problem in which the feedback matrix K is computed in an efficient way for complex flows, with large number of degrees of freedom, using an approach similar to adjoint-based control optimization. The idea is to consider the direct-adjoint system as an input-output problem where the input is given by the current state and the output is the control. Since the control has much smaller dimension than the state, the feedback matrix K can be efficiently obtained from the solution of the adjoint of the direct-adjoint system. It can further be shown using the symplectic product that the direct-adjoint system is self adjoint. As a consequence the new adjoint system is equivalent to the direct-adjoint system with suitable initial and terminal conditions. With this method the optimal control problem can be solved efficiently for any value of the control penalty l 2. Results are presented of this novel technique as applied to suppressing the vortex shedding behind a circular cylinder, and compared to the minimal-energy feedback control presented in [4].

  16. Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III

    2012-01-01

    In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.

  17. Stochastic real-time optimal control: A pseudospectral approach for bearing-only trajectory optimization

    NASA Astrophysics Data System (ADS)

    Ross, Steven M.

    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is presented, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed recursively using Radau pseudospectral collocation methods and sequential quadratic programming for the optimal path and an Unscented Kalman Filter for the target position estimate. The underlying real-time optimal control (RTOC) algorithm is developed, specifically addressing limitations of current techniques that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. System integration, variable timing methods, and discontinuity management techniques are provided for actual hardware implementation. Validation is accomplished with both simulation and flight test, autonomously landing a quadrotor helicopter on a wire.

  18. Laboratory transferability of optimally shaped laser pulses for quantum control

    SciTech Connect

    Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel

    2014-02-21

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed.

  19. Quantum optimal control theory applied to transitions in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lysebo, Marius; Veseth, Leif

    2014-12-01

    Quantum optimal control theory is applied to control electric dipole transitions in a real multilevel system. The specific system studied in the present work is comprised of a multitude of hyperfine levels in the electronic ground state of the OH molecule. Spectroscopic constants are used to obtain accurate energy eigenstates and electric dipole matrix elements. The goal is to calculate the optimal time-dependent electric field that yields a maximum of the transition probability for a specified initial and final state. A further important objective was to study the detailed quantum processes that take place during such a prescribed transition in a multilevel system. Two specific transitions are studied in detail. The computed optimal electric fields as well as the paths taken through the multitude of levels reveal quite interesting quantum phenomena.

  20. Optimal control of systems with intermediate phase constraints

    SciTech Connect

    Kirichenko, S.B.

    1995-03-01

    In this paper, we derive necessary conditions of minimum for the general optimal control problem with the following characteristics: the trajectory is corrected at intermediate time instants using matching relationships; the system dynamics may vary in each time interval; the optimand functional and the functional constraints depend on the intermediate time instants, the momenta, and the phase coordinates of the trajectories. The result is derived by the methods of modern optimization theory and nonsmooth analysis. It is presented in the form of a maximum principle. The specific solution scheme for this problem has been developed in greater detail elsewhere for systems of the form x{sub i}={line_integral}{sub i}(t, x{sub i}). Much of the previous manipulations and results on the structure of the conjugate cone and the form of the directional derivatives are used also in this paper. This is legitimate because the optimized parameters and controls are independent.

  1. Quantum optimal control of photoelectron spectra and angular distributions

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  2. Numerical Solution of Some Types of Fractional Optimal Control Problems

    PubMed Central

    Sweilam, Nasser Hassan; Al-Ajami, Tamer Mostafa; Hoppe, Ronald H. W.

    2013-01-01

    We present two different approaches for the numerical solution of fractional optimal control problems (FOCPs) based on a spectral method using Chebyshev polynomials. The fractional derivative is described in the Caputo sense. The first approach follows the paradigm “optimize first, then discretize” and relies on the approximation of the necessary optimality conditions in terms of the associated Hamiltonian. In the second approach, the state equation is discretized first using the Clenshaw and Curtis scheme for the numerical integration of nonsingular functions followed by the Rayleigh-Ritz method to evaluate both the state and control variables. Two illustrative examples are included to demonstrate the validity and applicability of the suggested approaches. PMID:24385874

  3. Numerical aspects of optimal control of penicillin production.

    PubMed

    Pčolka, Matej; Celikovský, Sergej

    2014-01-01

    Since their discovery, fermentation processes have gone along not only with the industrial beverages production and breweries, but since the times of Alexander Fleming, they have become a crucial part of the health care due to antibiotics production. However, complicated dynamics and strong nonlinearities cause that the production with the use of linear control methods achieves only suboptimal yields. From the variety of nonlinear approaches, gradient method has proved the ability to handle these issues--nevertheless, its potential in the field of fermentation processes has not been revealed completely. This paper describes constant vaporization control strategy based on a double-input optimization approach with a successful reduction to a single-input optimization task. To accomplish this, model structure used in the previous work is modified so that it corresponds with the new optimization strategy. Furthermore, choice of search step is explored and various alternatives are evaluated and compared.

  4. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

    SciTech Connect

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2016-07-01

    This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules for cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.

  5. Improved Sensitivity Relations in State Constrained Optimal Control

    SciTech Connect

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-04-15

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  6. Health benefit modelling and optimization of vehicular pollution control strategies

    NASA Astrophysics Data System (ADS)

    Sonawane, Nayan V.; Patil, Rashmi S.; Sethi, Virendra

    2012-12-01

    This study asserts that the evaluation of pollution reduction strategies should be approached on the basis of health benefits. The framework presented could be used for decision making on the basis of cost effectiveness when the strategies are applied concurrently. Several vehicular pollution control strategies have been proposed in literature for effective management of urban air pollution. The effectiveness of these strategies has been mostly studied as a one at a time approach on the basis of change in pollution concentration. The adequacy and practicality of such an approach is studied in the present work. Also, the assessment of respective benefits of these strategies has been carried out when they are implemented simultaneously. An integrated model has been developed which can be used as a tool for optimal prioritization of various pollution management strategies. The model estimates health benefits associated with specific control strategies. ISC-AERMOD View has been used to provide the cause-effect relation between control options and change in ambient air quality. BenMAP, developed by U.S. EPA, has been applied for estimation of health and economic benefits associated with various management strategies. Valuation of health benefits has been done for impact indicators of premature mortality, hospital admissions and respiratory syndrome. An optimization model has been developed to maximize overall social benefits with determination of optimized percentage implementations for multiple strategies. The model has been applied for sub-urban region of Mumbai city for vehicular sector. Several control scenarios have been considered like revised emission standards, electric, CNG, LPG and hybrid vehicles. Reduction in concentration and resultant health benefits for the pollutants CO, NOx and particulate matter are estimated for different control scenarios. Finally, an optimization model has been applied to determine optimized percentage implementation of specific

  7. Accelerated monotonic convergence of optimal control over quantum dynamics.

    PubMed

    Ho, Tak-San; Rabitz, Herschel

    2010-08-01

    The control of quantum dynamics is often concerned with finding time-dependent optimal control fields that can take a system from an initial state to a final state to attain the desired value of an observable. This paper presents a general method for formulating monotonically convergent algorithms to iteratively improve control fields. The formulation is based on a two-point boundary-value quantum control paradigm (TBQCP) expressed as a nonlinear integral equation of the first kind arising from dynamical invariant tracking control. TBQCP is shown to be related to various existing techniques, including local control theory, the Krotov method, and optimal control theory. Several accelerated monotonic convergence schemes for iteratively computing control fields are derived based on TBQCP. Numerical simulations are compared with the Krotov method showing that the new TBQCP schemes are efficient and remain monotonically convergent over a wide range of the iteration step parameters and the control pulse lengths, which is attributable to the trap-free character of the transition probability quantum dynamics control landscape.

  8. Optimal control of an aluminum casting furnace: Part II. Fuel optimization

    NASA Astrophysics Data System (ADS)

    Bui, R. T.; Ouellet, R.

    1990-06-01

    In this second of a two-article series, the simplified model of the aluminum casting furnace presented in Part I is used to solve a fuel-optimal control problem. Basically a Lagrange problem with equality and inequality constraints, it is formulated through variational calculus into a two-point boundary-value problem with known initial and final conditions and specified final time. It yields an optimal solution with a time-vary ing fuel flow rate that gives 10.9 pct fuel economy over the conventional nonoptimal constant fuel flow rate. This shows that variational calculus can be used to solve optimal control problems for the aluminum casting furnace and for other similar thermal systems commonly encountered in the metallurgical industry.

  9. H-Infinity-Optimal Control for Distributed Parameter Systems

    DTIC Science & Technology

    1991-02-28

    F. Callier and C.A. Desoer , "An Algebra of Transfer Functions for Distributed Linear Time-Invariant Systems," IEEE Trans. Circuits Syst., Sept. 1978...neeuey and -f by blog* nu"bM) This report describes progress in the development and application of H-infinity-optimal control theory to distributed...parameter systems. This research is intended to develop both theory and algorithms capable of providing realistic control systems for physical plants which

  10. Discover for Yourself: An Optimal Control Model in Insect Colonies

    ERIC Educational Resources Information Center

    Winkel, Brian

    2013-01-01

    We describe the enlightening path of self-discovery afforded to the teacher of undergraduate mathematics. This is demonstrated as we find and develop background material on an application of optimal control theory to model the evolutionary strategy of an insect colony to produce the maximum number of queen or reproducer insects in the colony at…

  11. The Relationship between Pupil Control Ideology and Academic Optimism

    ERIC Educational Resources Information Center

    Gilbert, Michael J.

    2012-01-01

    This study investigates the relationship between pupil control ideology and academic optimism. Information was generated through responses to a questionnaire emailed to teachers in two school districts in Central New Jersey. The districts were categorized GH, as determined by the State's district factor grouping. The research concludes that there…

  12. Approximated analytical solution to an Ebola optimal control problem

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.

    2016-11-01

    An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.

  13. Lie Algebroids in Classical Mechanics and Optimal Control

    NASA Astrophysics Data System (ADS)

    Martínez, Eduardo

    2007-03-01

    We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

  14. An historical survey of computational methods in optimal control.

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  15. Optimal pulse shaping for coherent control by the penalty algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pièrre; Bandrauk, André D.

    1994-04-01

    We use penalty methods coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schrödinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  16. Time optimal control of pendulum-cart system

    SciTech Connect

    Turnau, A.; Korytowski, A.

    1994-12-31

    We consider the synthesis of time optimal control which steers a pendulum hinged to a cart to a given state (e.g., the upright position), starting from arbitrary initial conditions. The control of the pendulum can system has attracted attention of many authors because of its relatively simple structure and at the same time, nontrivial nonlinearity. Various heuristic approaches combined with 1q stabilization in the vicinity of the target state were used to swing the pendulum up to the upright position and to keep it there. However, time-optimality was not achieved. We construct the time optimal control using a sequence of fixed horizon problems in which the norms of terminal states are minimized. The problems with fixed horizons are solved numerically by means of gradient optimization, with gradients determined from the solution of adjoint equations. Due to embedding the synthesis algorithms in the Matlab - Simulink environment, it is possible to track and visualize the control process as well as the results of simulation experiments.

  17. Quasivelocities and Optimal Control for underactuated Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Colombo, L.; de Diego, D. Martín

    2010-07-01

    This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.

  18. Optimal digital redesign of continuous-time controllers

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Zhang, Jian L.; Coleman, Norman P.

    1991-01-01

    This paper proposes a new optimal digital redesign technique for finding a dynamic digital control law from the available analog counterpart and simultaneously minimizing a quadratic performance index. The proposed technique can be applied to a system with a more general class of reference inputs, and the developed digital regulator can be implemented using low cost microcomputers.

  19. Optimizing a mobile robot control system using GPU acceleration

    NASA Astrophysics Data System (ADS)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  20. Pipeline length optimization in a digital asynchronous trigger controller

    NASA Astrophysics Data System (ADS)

    D'Antone, I.

    2000-09-01

    This report describes the pipelined architecture of an asynchronous controller designed for a trigger board. To evaluate the suitable depth of the pipelines, the controller has been modelled as a priority queuing system. Some useful parameters have been introduced to estimate the optimal configuration in the static and dynamic priority cases. Nowadays, the hardware controllers are realised into programmable components where, usually, the internal memory resources are limited; to save space the design has been addressed towards the pipeline length optimization. Some analytic results have been reported for the static priority queueing system and, furthermore, the dynamic control of the priorities has been added. The implemented service discipline is a rate-controlled priority queueing discipline; the service rate is controlled with a negative feedback. The stability of this control system has been investigated and some parameters have been highlighted to solve the compromise between the minimum average length of the controlled queues and a suitable margin from the instability. The dynamic scheme requires the design of a more sophisticated system controller, but it shows better performances; it allows to reduce the pipeline depth with the same input rate.

  1. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  2. The optimal control frequency response problem in manual control. [of manned aircraft systems

    NASA Technical Reports Server (NTRS)

    Harrington, W. W.

    1977-01-01

    An optimal control frequency response problem is defined within the context of the optimal pilot model. The problem is designed to specify pilot model control frequencies reflective of important aircraft system properties, such as control feel system dynamics, airframe dynamics, and gust environment, as well as man machine properties, such as task and attention allocation. This is accomplished by determining a bounded set of control frequencies which minimize the total control cost. The bounds are given by zero and the neuromuscular control frequency response for each control actuator. This approach is fully adaptive, i.e., does not depend upon user entered estimates. An algorithm is developed to solve this optimal control frequency response problem. The algorithm is then applied to an attitude hold task for a bare airframe fighter aircraft case with interesting dynamic properties.

  3. Multi Objective Controller Design for Linear System via Optimal Interpolation

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay

    1996-01-01

    We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.

  4. Optimal nonsingular control of fed-batch fermentation.

    PubMed

    Kurtanjek, Z

    1991-04-15

    Presented is a new simple method for multidimensional optimization of fed-batch fermentations based on the use of the orthogonal collocation technique. Considered is the problem of determination of optimal programs for fermentor temperature, substrate concentration in feed, feeding profile, and process duration. By reformulation of the state and control variables is obtained a nonsingular form of the optimization problem which has considerable advantage over the singular case since a complicated procedure for determination of switching times for feeding is avoided. The approximation of the state variables by Lagrange polynomials enables simple incorporation of split boundary conditions in the approximation, and the use of orthogonal collocations provides stability for integration of state and costate variables. The interpolation points are selected to obtain highest accuracy for approximation of the objective functional by the Radau-Lobatto formula. The control variables are determined by optimization of the Hamiltonian at the collocation points with the DFP method. Constraints are imposed on state and control variables.The method is applied for a homogeneous model of fermentation with volume, substrate, biomass, and product concentrations as the state variables. Computer study shows considerable simplicity of the method, its high accuracy for low order of approximation, and efficient convergence.

  5. Optimal control in a model of malaria with differential susceptibility

    NASA Astrophysics Data System (ADS)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.

  6. Optimal control for Rydberg quantum technology building blocks

    NASA Astrophysics Data System (ADS)

    Müller, Matthias M.; Pichler, Thomas; Montangero, Simone; Calarco, Tommaso

    2016-04-01

    We consider a platform for quantum technology based on Rydberg atoms in optical lattices where each atom encodes one qubit of information and external lasers can manipulate their state. We demonstrate how optimal control theory enables the functioning of two specific building blocks on this platform: We engineer an optimal protocol to perform a two-qubit phase gate and to transfer the information within the lattice among specific sites. These two elementary operations allow to design very general operations like storage of atoms and entanglement purification as, for example, needed for quantum repeaters.

  7. Optimization of the control of contamination at nuclear power plants

    SciTech Connect

    Khan, T.A.; Baum, J.W.

    1988-05-01

    A methodology is described for the optimization of the actions taken to control contamination. It deals with many aspects of contamination, such as the monetary value assigned to a unit of radiation dose, the treatment of skin and extremity dose, and the inefficiencies introduced from working in a contaminated environemnt. The optimization method is illustrated with two case studies based on cleanup projects at nuclear power plants. Guidelines for the use of protective apparel, and for monitoring radiation and contamination at various levels of contamination are presented. The report concludes that additional research is required to quantify the effect of a contaminated environment on work efficiencies.

  8. Optimal Load Control via Frequency Measurement and Neighborhood Area Communication

    SciTech Connect

    Zhao, CH; Topcu, U; Low, SH

    2013-11-01

    We propose a decentralized optimal load control scheme that provides contingency reserve in the presence of sudden generation drop. The scheme takes advantage of flexibility of frequency responsive loads and neighborhood area communication to solve an optimal load control problem that balances load and generation while minimizing end-use disutility of participating in load control. Local frequency measurements enable individual loads to estimate the total mismatch between load and generation. Neighborhood area communication helps mitigate effects of inconsistencies in the local estimates due to frequency measurement noise. Case studies show that the proposed scheme can balance load with generation and restore the frequency within seconds of time after a generation drop, even when the loads use a highly simplified power system model in their algorithms. We also investigate tradeoffs between the amount of communication and the performance of the proposed scheme through simulation-based experiments.

  9. Optimal control of Formula One car energy recovery systems

    NASA Astrophysics Data System (ADS)

    Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.

    2014-10-01

    The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.

  10. A forward method for optimal stochastic nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1988-01-01

    A computational approach is taken to solve the optimal nonlinear stochastic control problem. The approach is to systematically solve the stochastic dynamic programming equations forward in time, using a nested stochastic approximation technique. Although computationally intensive, this provides a straightforward numerical solution for this class of problems and provides an alternative to the usual dimensionality problem associated with solving the dynamic programming equations backward in time. It is shown that the cost degrades monotonically as the complexity of the algorithm is reduced. This provides a strategy for suboptimal control with clear performance/computation tradeoffs. A numerical study focusing on a generic optimal stochastic adaptive control example is included to demonstrate the feasibility of the method.

  11. Multigrid methods for parabolic distributed optimal control problems

    NASA Astrophysics Data System (ADS)

    Borzì, Alfio

    2003-08-01

    Multigrid schemes that solve parabolic distributed optimality systems discretized by finite differences are investigated. Accuracy properties of finite difference approximation are discussed and validated. Two multigrid methods are considered which are based on a robust relaxation technique and use two different coarsening strategies: semicoarsening and standard coarsening. The resulting multigrid algorithms show robustness with respect to changes of the value of [nu], the weight of the cost of the control, is sufficiently small. Fourier mode analysis is used to investigate the dependence of the linear twogrid convergence factor on [nu] and on the discretization parameters. Results of numerical experiments are reported that demonstrate sharpness of Fourier analysis estimates. A multigrid algorithm that solves optimal control problems with box constraints on the control is considered.

  12. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  13. Towards single-molecule NMR detection and spectroscopy using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hall, L. T.; Simpson, D. A.; Hill, C. D.; Hollenberg, L. C. L.

    2014-02-01

    Nanomagnetometry using the nitrogen-vacancy (NV) center in diamond has attracted a great deal of interest due to its unique combination of room temperature operation, nanoscale resolution, and high sensitivity. One of the important goals for nanomagnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis details a method by which a single molecule on the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV center on a time scale of an order of seconds with nanometer precision. We perform spatiotemporal resolution optimization and subsequently outline paths to greater sensitivity. Our method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.

  14. Optimal control of spin stabilized spacecraft with telescoping appendages

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1976-01-01

    The control of a spin-stabilized spacecraft consisting of a rigid central hub and one or two movable offset telescoping booms (with end masses) is considered. The equations of rotational motion are linearized about either of two desired final states. A control law for the boom and mass position is sought such that a quadratic cost functional involving the weighted components of angular velocity plus the control is minimized when the final time is unspecified and involves the solution of the matrix Riccati algebraic equation. For three-axis control more than one offset boom (orthogonal to each other) is required. For two-axis control with a single boom offset from a symmetrical hub, an analytic solution is obtained; when this system is used for nutation decay the time constant is one order of magnitude smaller than previously achieved using non-optimal control logic. For the general case results are obtained numerically.

  15. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  16. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  17. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  18. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  19. Control design variable linking for optimization of structural/control systems

    NASA Technical Reports Server (NTRS)

    Jin, Ik Min; Schmit, Lucien A.

    1993-01-01

    A method is presented to integrate the design space of structural/control system optimization problems in the case of linear state feedback control. Conventional structural sizing variables and elements of the feedback gain matrix are both treated as strictly independent design variables in optimization by extending design variable linking concepts to the control gains. Several approximation concepts including new control design variable linking schemes are used to formulate the integrated structural/control optimization problem as a sequence of explicit nonlinear mathematical programming problems. Examples which involve a variety of behavior constraints, including constraints on dynamic stability, damped frequencies, control effort, peak transient displacement, acceleration, and control force limits, are effectively solved by using the method presented.

  20. Engineering adiabaticity at an avoided crossing with optimal control

    NASA Astrophysics Data System (ADS)

    Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.

    2015-04-01

    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.

  1. Vision-based stereo ranging as an optimal control problem

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Sridhar, B.; Chatterji, G. B.

    1992-01-01

    The recent interest in the use of machine vision for flight vehicle guidance is motivated by the need to automate the nap-of-the-earth flight regime of helicopters. Vision-based stereo ranging problem is cast as an optimal control problem in this paper. A quadratic performance index consisting of the integral of the error between observed image irradiances and those predicted by a Pade approximation of the correspondence hypothesis is then used to define an optimization problem. The necessary conditions for optimality yield a set of linear two-point boundary-value problems. These two-point boundary-value problems are solved in feedback form using a version of the backward sweep method. Application of the ranging algorithm is illustrated using a laboratory image pair.

  2. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system

    NASA Astrophysics Data System (ADS)

    Li, Yezi; Xiao, Cheng; Sun, Jinhao

    2013-03-01

    PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.

  3. A Nonlinear Fuel Optimal Reaction Jet Control Law

    SciTech Connect

    Breitfeller, E.; Ng, L.C.

    2002-06-30

    We derive a nonlinear fuel optimal attitude control system (ACS) that drives the final state to the desired state according to a cost function that weights the final state angular error relative to the angular rate error. Control is achieved by allowing the pulse-width-modulated (PWM) commands to begin and end anywhere within a control cycle, achieving a pulse width pulse time (PWPT) control. We show through a MATLAB{reg_sign} Simulink model that this steady-state condition may be accomplished, in the absence of sensor noise or model uncertainties, with the theoretical minimum number of actuator cycles. The ability to analytically achieve near-zero drift rates is particularly important in applications such as station-keeping and sensor imaging. Consideration is also given to the fact that, for relatively small sensor and model errors, the controller requires significantly fewer actuator cycles to reach the final state error than a traditional proportional-integral-derivative (PID) controller. The optimal PWPT attitude controller may be applicable for a high performance kinetic energy kill vehicle.

  4. Self-Contained Automated Methodology for Optimal Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, Roy A.; Erlebacherl, Gordon; Hussaini, M. Yousuff

    1997-01-01

    This paper describes a self-contained, automated methodology for active flow control which couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields and controls (e.g., actuators), may be determined. The problem of boundary layer instability suppression through wave cancellation is used as the initial validation case to test the methodology. Here, the objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc. The present methodology has been extended to three dimensions and may potentially be applied to separation control, re-laminarization, and turbulence control applications using one to many sensors and actuators.

  5. Optimization of control laws for damage detection in smart structures

    NASA Astrophysics Data System (ADS)

    Ray, Laura R.; Marini, Solomon

    2000-06-01

    A prevalent method of damage detection is based on identifying changes in modal characteristics due to damage induced variations in stiffness or mass along a structure. It is known that modal frequencies can be insensitive to damage, and the open-loop sensitivity itself depends on modal properties and damage location. Here, we develop methods of designing control laws that enhance the sensitivity of modal characteristics to damage. Sensitivity enhancing control exploits the relationship between control gains and closed-loop dynamics in order to increase the observability of damage. The design methods are based on optimization of cost functions that involve the dependence of classic measures of sensitivity on design variables, which include placement of sensors and actuators and state feedback control gains. Due to the size of the design space and the unknown nature of the cost surface, genetic algorithms are used to find control laws that maximize sensitivity to specific damage types subject to control effort and stability constraints. Optimized control laws designed for sensitivity enhancement of stiffness damage in a cantilevered beam are demonstrated by numerical simulation.

  6. Optimization of removal function in computer controlled optical surfacing

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Guo, Peiji; Ren, Jianfeng

    2010-10-01

    The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high

  7. Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    PubMed Central

    Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method. PMID:23766721

  8. Divertor Optimization via Control at DIII-D

    NASA Astrophysics Data System (ADS)

    Kolemen, E.; Allen, S. L.; Makowski, M. A.; Soukhanovskii, V. A.; Bray, B. D.; Humphreys, D. A.; Johnson, R.; Leonard, A. W.; Liu, C.; Penaflor, B. G.; Petrie, T. W.; Eldon, D.; McLean, A. G.; Unterberg, E. A.

    2014-10-01

    DIII-D divertor performance and heat-handling capabilities are optimized using advanced control techniques. The world's first real-time snowflake divertor detection and control system was implemented on DIII-D in order to stabilize and optimize this configuration. A new control system was implemented to regulate and study detachment and radiation, since future fusion reactors will require detached or partially detached plasmas to achieve acceptable divertor target heat fluxes. The algorithm regulates the D2 and impurity gas injection level by using the divertor temperature measurements from real-time Thomson diagnostics to compute the detachment level, and the real-time bolometer diagnostics to determine core and divertor radiation. This control allows the optimization of the detachment and radiation from the core and the divertor to achieve high core performance compatible with reduced heat-flux to the divertor. Work supported by the US DOE under DE-AC02-09CH11466, DE-AC52-07NA27344, DE-FC02-04ER54698 and DE-AC05-00OR22725.

  9. Optimal control law for classical and multiconjugate adaptive optics.

    PubMed

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

  10. Optimal filtering correction for marine dynamical positioning control system

    NASA Astrophysics Data System (ADS)

    Veremey, Evgeny; Sotnikova, Margarita

    2016-12-01

    The paper focuses on the problem of control law optimization for marine vessels working in a dynamical positioning (DP) regime. The approach proposed here is based on the use of a special unified multipurpose control law structure constructed on the basis of nonlinear asymptotic observers, that allows the decoupling of a synthesis into simpler particular optimization problems. The primary reason for the observers is to restore deficient information concerning the unmeasured velocities of the vessel. Using a number of separate items in addition to the observers, it is possible to achieve desirable dynamical features of the closed loop connection. The most important feature is the so-called dynamical corrector, and this paper is therefore devoted to solving its optimal synthesis in marine vessels controlled by DP systems under the action of sea wave disturbances. The problem involves the need for minimal intensity of the control action determined by high frequency sea wave components. A specialized approach for designing the dynamical corrector is proposed and the applicability and effectiveness of the approach are illustrated using a practical example of underwater DP system synthesis.

  11. Nonlinear Burn Control and Operating Point Optimization in ITER

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  12. Optimal Parametric Discrete Event Control: Problem and Solution

    SciTech Connect

    Griffin, Christopher H

    2008-01-01

    We present a novel optimization problem for discrete event control, similar in spirit to the optimal parametric control problem common in statistical process control. In our problem, we assume a known finite state machine plant model $G$ defined over an event alphabet $\\Sigma$ so that the plant model language $L = \\LanM(G)$ is prefix closed. We further assume the existence of a \\textit{base control structure} $M_K$, which may be either a finite state machine or a deterministic pushdown machine. If $K = \\LanM(M_K)$, we assume $K$ is prefix closed and that $K \\subseteq L$. We associate each controllable transition of $M_K$ with a binary variable $X_1,\\dots,X_n$ indicating whether the transition is enabled or not. This leads to a function $M_K(X_1,\\dots,X_n)$, that returns a new control specification depending upon the values of $X_1,\\dots,X_n$. We exhibit a branch-and-bound algorithm to solve the optimization problem $\\min_{X_1,\\dots,X_n}\\max_{w \\in K} C(w)$ such that $M_K(X_1,\\dots,X_n) \\models \\Pi$ and $\\LanM(M_K(X_1,\\dots,X_n)) \\in \\Con(L)$. Here $\\Pi$ is a set of logical assertions on the structure of $M_K(X_1,\\dots,X_n)$, and $M_K(X_1,\\dots,X_n) \\models \\Pi$ indicates that $M_K(X_1,\\dots,X_n)$ satisfies the logical assertions; and, $\\Con(L)$ is the set of controllable sublanguages of $L$.

  13. Applications of the theory of optimal control of distributed-parameter systems to structural optimization

    NASA Technical Reports Server (NTRS)

    Armand, J. P.

    1972-01-01

    An extension of classical methods of optimal control theory for systems described by ordinary differential equations to distributed-parameter systems described by partial differential equations is presented. An application is given involving the minimum-mass design of a simply-supported shear plate with a fixed fundamental frequency of vibration. An optimal plate thickness distribution in analytical form is found. The case of a minimum-mass design of an elastic sandwich plate whose fundamental frequency of free vibration is fixed. Under the most general conditions, the optimization problem reduces to the solution of two simultaneous partial differential equations involving the optimal thickness distribution and the modal displacement. One equation is the uniform energy distribution expression which was found by Ashley and McIntosh for the optimal design of one-dimensional structures with frequency constraints, and by Prager and Taylor for various design criteria in one and two dimensions. The second equation requires dynamic equilibrium at the preassigned vibration frequency.

  14. Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching

    NASA Astrophysics Data System (ADS)

    Heydari, Ali

    Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems.

  15. Time-optimal chaos control by center manifold targeting.

    PubMed

    Starrett, John

    2002-10-01

    Ott-Grebogi-Yorke control and its map-based variants work by targeting the (linear) stable subspace of the target orbit so that after one application of the control the system will be in this subspace. I propose an n-step variation, where n is the dimension of the system, that sends any initial condition in a controllable region directly to the target orbit instead of its stable subspace. This method is time optimal, in that, up to modeling and measurement error, the system is completely controlled after n iterations of the control procedure. I demonstrate the procedure using a piecewise linear and a nonlinear two-dimensional map, and indicate how the technique may be extended to maps and flows of higher dimension.

  16. Effect of active control on optimal structures in wall turbulence

    NASA Astrophysics Data System (ADS)

    Deng, BingQing; Xu, ChunXiao; Huang, WeiXi; Cui, GuiXiang

    2013-02-01

    The effect of active control imposed at the wall on optimal structures in wall turbulence is studied by using a linear transient growth model. When the detection plane of the control is located in the buffer layer, the influence of the control on the transient growth of large scale motion becomes negligible as Reynolds number increases. However, if the control signal is detected at the plane located in the logarithm region, the transient growth at large scale can be greatly suppressed. New peak values of transient growth resulting from the strong blowing and suction on the wall exist. The study indicates that a proper selection of control imposed on the wall can suppress the large scale motion in the logarithmic region.

  17. Flight control systems research. [optimization of F-8 aircraft control system

    NASA Technical Reports Server (NTRS)

    Whitaker, H. P.; Baram, Y.; Cheng, Y.

    1973-01-01

    Theoretical development is reported for the parameter optimization design technique needed for digital flight control system design. The results of an example case study applying the optimization technique for continuous systems to an F-8 aircraft feedback control system are presented. The concept of evolving the simplest system configuration that is capable of meeting a specified set of performance requirements is illustrated in this work.

  18. Safe microburst penetration techniques: A deterministic, nonlinear, optimal control approach

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1987-01-01

    A relatively large amount of computer time was used for the calculation of a optimal trajectory, but it is subject to reduction with moderate effort. The Deterministic, Nonlinear, Optimal Control algorithm yielded excellent aircraft performance in trajectory tracking for the given microburst. It did so by varying the angle of attack to counteract the lift effects of microburst induced airspeed variations. Throttle saturation and aerodynamic stall limits were not a problem for the case considered, proving that the aircraft's performance capabilities were not violated by the given wind field. All closed loop control laws previously considered performed very poorly in comparison, and therefore do not come near to taking full advantage of aircraft performance.

  19. A model for HIV/AIDS pandemic with optimal control

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2015-05-01

    Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.

  20. Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Bodson, Marc

    2012-01-01

    Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.

  1. Multilevel control optimization using subsystem relative performance index sensitivity

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.; Lehtinen, F. B.

    1974-01-01

    A method is presented for the design of optimal feedback controllers for large multivariable systems with subsystem sensitivity constraints. The weighted sum of subsystem and/or operational mode relative performance index sensitivities is defined as the overall performance index. The method is developed for linear systems with quadratic performance criteria and either full or partial state feedback. An example concerning the design of a stability augmentation system for a VTOL aircraft in the transition mode demonstrates the effectiveness of the design method.

  2. Characterizations of Overtaking Optimality for Controlled Diffusion Processes

    SciTech Connect

    Jasso-Fuentes, Hector Hernandez-Lerma, Onesimo

    2008-06-15

    In this paper we give conditions for (the existence and) several characterizations of overtaking optimal policies for a general class of controlled diffusion processes. Our characterization results are of a lexicographical type; namely, first we identify the class of so-called canonical policies, and then within this class we search for policies with some special feature-for instance, canonical policies that in addition maximize the bias.

  3. Implicit methods for efficient musculoskeletal simulation and optimal control

    PubMed Central

    van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983

  4. A piecewise linear approximation scheme for hereditary optimal control problems

    NASA Technical Reports Server (NTRS)

    Cliff, E. M.; Burns, J. A.

    1977-01-01

    An approximation scheme based on 'piecewise linear' approximations of L2 spaces is employed to formulate a numerical method for solving quadratic optimal control problems governed by linear retarded functional differential equations. This piecewise linear method is an extension of the so called averaging technique. It is shown that the Riccati equation for the linear approximation is solved by simple transformation of the averaging solution. Thus, the computational requirements are essentially the same. Numerical results are given.

  5. Implicit methods for efficient musculoskeletal simulation and optimal control.

    PubMed

    van den Bogert, Antonie J; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers.

  6. Optimal cooperative control synthesis applied to a control-configured aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Innocenti, M.

    1984-01-01

    A multivariable control augmentation synthesis method is presented that is intended to enable the designer to directly optimize pilot opinion rating of the augmented system. The approach involves the simultaneous solution for the augmentation and predicted pilot's compensation via optimal control techniques. The methodology is applied to the control law synthesis for a vehicle similar to the AFTI F16 control-configured aircraft. The resulting dynamics, expressed in terms of eigenstructure and time/frequency responses, are presented with analytical predictions of closed loop tracking performance, pilot compensation, and other predictors of pilot acceptance.

  7. Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs

    NASA Technical Reports Server (NTRS)

    Hyland, D. C.; Bernstein, D. S.

    1987-01-01

    The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated.

  8. Optimal control in microgrid using multi-agent reinforcement learning.

    PubMed

    Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin

    2012-11-01

    This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode.

  9. An hp symplectic pseudospectral method for nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  10. Spin system trajectory analysis under optimal control pulses

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2013-08-01

    Several methods are proposed for the analysis, visualization and interpretation of high-dimensional spin system trajectories produced by quantum mechanical simulations. It is noted that expectation values of specific observables in large spin systems often feature fast, complicated and hard-to-interpret time dynamics and suggested that populations of carefully selected subspaces of states are much easier to analyze and interpret. As an illustration of the utility of the proposed methods, it is demonstrated that the apparent "noisy" appearance of many optimal control pulses in NMR and EPR spectroscopy is an illusion - the underlying spin dynamics is shown to be smooth, orderly and very tightly controlled.

  11. Optimizing aircraft performance with adaptive, integrated flight/propulsion control

    NASA Technical Reports Server (NTRS)

    Smith, R. H.; Chisholm, J. D.; Stewart, J. F.

    1991-01-01

    The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

  12. Distributed Optimal Generation Control of Shipboard Power Systems

    DTIC Science & Technology

    2012-05-01

    address the needs of SPSs, a fully-distributed, multi - agent system (MAS)-based solution is proposed to optimize the control references of distributed...Transactions on Power Systems, Vol.27, No.1, pp.233-242, Feb. 2012. [4] J. M. Solanki and N. N. Schulz, “Using intelligent multi - agent systems for shipboard...D 2005/2006, pp. 562-567, May 21-24, 2006. [11] J. A. Momoh, K. Alfred and Y. Xia, “Framework for Multi - Agent System (MAS) Detection and Control

  13. Distributed Optimal Generation Control of Shipboard Power Systems

    DTIC Science & Technology

    2012-05-01

    address the needs of SPSs, a fully-distributed, multi - agent system (MAS)-based solution is proposed to optimize the control references of distributed...Systems, Vol.27, No.1, pp.233-242, Feb. 2012. [4] J. M. Solanki and N. N. Schulz, “Using intelligent multi - agent systems for shipboard power...pp. 562-567, May 21-24, 2006. [11] J. A. Momoh, K. Alfred and Y. Xia, “Framework for Multi - Agent System (MAS) Detection and Control of Arcing of

  14. Age-structured optimal control in population economics.

    PubMed

    Feichtinger, Gustav; Prskawetz, Alexia; Veliov, Vladimir M

    2004-06-01

    This paper brings both intertemporal and age-dependent features to a theory of population policy at the macro-level. A Lotka-type renewal model of population dynamics is combined with a Solow/Ramsey economy. We consider a social planner who maximizes an aggregate intertemporal utility function which depends on per capita consumption. As control policies we consider migration and saving rate (both age-dependent). By using a new maximum principle for age-structured control systems we derive meaningful results for the optimal migration and saving rate in an aging population. The model used in the numerical calculations is calibrated for Austria.

  15. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian

    1992-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  16. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.

    1993-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  17. A Sliding Mode Control with Optimized Sliding Surface for Aircraft Pitch Axis Control System

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Kim, Kwangjin; Kim, Youdan

    A sliding mode controller with an optimized sliding surface is proposed for an aircraft control system. The quadratic type of performance index for minimizing the angle of attack and the angular rate of the aircraft in the longitudinal motion is used to design the sliding surface. For optimization of the sliding surface, a Hamilton-Jacobi-Bellman (HJB) equation is formulated and it is solved through a numerical algorithm using a Generalized HJB (GHJB) equation and the Galerkin spectral method. The solution of this equation denotes a nonlinear sliding surface, on which the trajectory of the system approximately satisfies the optimality condition. Numerical simulation is performed for a nonlinear aircraft model with an optimized sliding surface and a simple linear sliding surface. The simulation result demonstrates that the proposed controller can be effectively applied to the longitudinal maneuver of an aircraft.

  18. Multigrid one shot methods for optimal control problems: Infinite dimensional control

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Taasan, Shlomo

    1994-01-01

    The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.

  19. Infinite horizon optimal impulsive control with applications to Internet congestion control

    NASA Astrophysics Data System (ADS)

    Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi

    2015-04-01

    We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.

  20. Violation of a temporal bell inequality for single spins in a diamond defect center.

    PubMed

    Waldherr, G; Neumann, P; Huelga, S F; Jelezko, F; Wrachtrup, J

    2011-08-26

    Quantum nonlocality has been experimentally investigated by testing different forms of Bell's inequality, yet a loophole-free realization has not been achieved up to now. Much less explored are temporal Bell inequalities, which are not subject to the locality assumption, but impose a constraint on the system's time correlations. In this Letter, we report on the experimental violation of a temporal Bell's inequality using a nitrogen-vacancy (NV) defect in diamond and provide a novel quantitative test of quantum coherence. Such a test requires strong control over the system, and we present a new technique to initialize the electronic state of the NV with high fidelity, a necessary requirement also for reliable quantum information processing and/or the implementation of protocols for quantum metrology.

  1. Solution to automatic generation control problem using firefly algorithm optimized I(λ)D(µ) controller.

    PubMed

    Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul

    2014-03-01

    Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations.

  2. Comparative study of flare control laws. [optimal control of b-737 aircraft approach and landing

    NASA Technical Reports Server (NTRS)

    Nadkarni, A. A.; Breedlove, W. J., Jr.

    1979-01-01

    A digital 3-D automatic control law was developed to achieve an optimal transition of a B-737 aircraft between various initial glid slope conditions and the desired final touchdown condition. A discrete, time-invariant, optimal, closed-loop control law presented for a linear regulator problem, was extended to include a system being acted upon by a constant disturbance. Two forms of control laws were derived to solve this problem. One method utilized the feedback of integral states defined appropriately and augmented with the original system equations. The second method formulated the problem as a control variable constraint, and the control variables were augmented with the original system. The control variable constraint control law yielded a better performance compared to feedback control law for the integral states chosen.

  3. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  4. Performance Optimizing Multi-Objective Adaptive Control with Time-Varying Model Reference Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.

  5. Study of sequential optimal control algorithm smart isolation structure based on Simulink-S function

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohuan; Liu, Yanhui

    2017-01-01

    The study of this paper focuses on smart isolation structure, a method for realizing structural vibration control by using Simulink simulation is proposed according to the proposed sequential optimal control algorithm. In the Simulink simulation environment, A smart isolation structure is used to compare the control effect of three algorithms, i.e., classical optimal control algorithm, linear quadratic gaussian control algorithm and sequential optimal control algorithm under the condition of sensor contaminated with noise. Simulation results show that this method can be applied to the simulation of sequential optimal control algorithm and the proposed sequential optimal control algorithm has a good ability of resisting the noise and better control efficiency.

  6. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    PubMed

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-07

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  7. Perturbing engine performance measurements to determine optimal engine control settings

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  8. On representation formulas for long run averaging optimal control problem

    NASA Astrophysics Data System (ADS)

    Buckdahn, R.; Quincampoix, M.; Renault, J.

    2015-12-01

    We investigate an optimal control problem with an averaging cost. The asymptotic behaviour of the values is a classical problem in ergodic control. To study the long run averaging we consider both Cesàro and Abel means. A main result of the paper says that there is at most one possible accumulation point - in the uniform convergence topology - of the values, when the time horizon of the Cesàro means converges to infinity or the discount factor of the Abel means converges to zero. This unique accumulation point is explicitly described by representation formulas involving probability measures on the state and control spaces. As a byproduct we obtain the existence of a limit value whenever the Cesàro or Abel values are equicontinuous. Our approach allows to generalise several results in ergodic control, and in particular it allows to cope with cases where the limit value is not constant with respect to the initial condition.

  9. Optimal placement of actuators and sensors in control augmented structural optimization

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Schmit, L. A., Jr.

    1990-01-01

    A control-augmented structural synthesis methodology is presented in which actuator and sensor placement is treated in terms of (0,1) variables. Structural member sizes and control variables are treated simultaneously as design variables. A multiobjective utopian approach is used to obtain a compromise solution for inherently conflicting objective functions such as strucutal mass control effort and number of actuators. Constraints are imposed on transient displacements, natural frequencies, actuator forces and dynamic stability as well as controllability and observability of the system. The combinatorial aspects of the mixed - (0,1) continuous variable design optimization problem are made tractable by combining approximation concepts with branch and bound techniques. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  10. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  11. Multiresolution strategies for the numerical solution of optimal control problems

    NASA Astrophysics Data System (ADS)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a

  12. Predictions for Sivers single spin asymmetries in one- and two-hadron electroproduction at CLAS12 and EIC

    SciTech Connect

    Matevosyan, Hrayr H.; Kotzinian, Aram; Aschenauer, Elke -Caroline; Avakian, Harut A.; Thomas, Anthony W.

    2015-09-23

    The study of the Sivers effect, describing correlations between the transverse polarization of the nucleon and its constituent (unpolarized) parton's transverse momentum, has been the topic of a great deal of experimental, phenomenological and theoretical effort in recent years. Semi-Inclusive Deep Inelastic Scattering measurements of the corresponding single spin asymmetries (SSA) at the upcoming CLAS12 experiment at JLab and the proposed Electron-Ion Collider will help to pinpoint the flavor structure and the momentum dependence of the Sivers parton distribution function describing this effect. Here we describe a modified version of the $\\tt{PYTHIA}$ Monte Carlo event generator that includes the Sivers effect. Then we use it to estimate the size of these SSAs, in the kinematics of these experiments, for both one and two hadron final states of pions and kaons. For this purpose we utilize the existing Sivers parton distribution function (PDF) parametrization extracted from HERMES and COMPASS experiments. Furthermore, we also show that the the leading order approximation commonly used in such extractions provides significantly underestimated values of Sivers PDFs, as the omitted parton showers and non-DIS processes play an important role in these SSAs at lower light-cone momentum fraction, for example in the COMPASS kinematics.

  13. Transverse single-spin asymmetries of weak boson, Drell-Yan and prompt photon production at STAR

    NASA Astrophysics Data System (ADS)

    Fazio, Salvatore

    2017-03-01

    Accessing the Sivers TMD function in proton+proton collisions through the measurement of transverse single spin asymmetries (TSSAs) in Drell-Yan and weak boson production is an effective path to test the fundamental QCD prediction of the non-universality of the Sivers function. Furthermore, it provides data to study the spin-flavor structure of valence and sea quarks inside the proton and to test TMD evolution of parton distributions. The TSSA amplitude, AN, has been measured at STAR in proton+proton collisions at √{s }=500 GeV , with a recorded integrated luminosity of 25 pb-1. Within relatively large statistical uncertainties, the current data favor theoretical models that include a change of sign for the Sivers function relative to observations in SIDIS measurements, if TMD evolution effects on the AN are small. RHIC plans to run collisions of transversely polarized proton+proton beams at √{s }=500 GeV in 2017, delivering an integrated luminosity of 400 pb-1. This will allow STAR to perform a precise measurement of TSSAs in both Drell-Yan and weak boson production, as well as other observables sensitive to the non-universality of the Sivers function via the Twist-3 formalism, e.g. the TSSA of prompt photons.

  14. Measurement of W+/- single spin asymmetries in polarized p + p collisions at √{ s} = 510 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Gunarathne, Devika; STAR Collaboration

    2017-01-01

    The STAR experiment at RHIC has provided significant contributions to our understanding of the structure of the proton. The STAR experiment is well equipped to measure W+/- ->+/- + ν in √{ s } = 510 GeV longitudinally polarized p + p collisions. The longitudinal single spin asymmetry in W production, AL, measured as a function of decay positron (electron) pseudo-rapidity η for W+ (W-) is sensitive to the individual helicity polarizations of u and d (d and u) quarks. Due to maximal violation of parity during the production, W bosons couple to left-handed quarks and right-handed anti-quarks and hence offer direct probes of their respective helicity distributions in the nucleon. The published STAR AL results (2011, 2012 data combined) have been used by several theoretical analyses suggesting a significant impact in constraining the helicity distributions of u , and d quarks. In 2013 STAR collected a dataset at √{ s} = 510 GeV with a total integrated luminosity of 300 pb-1 with an average beam polarization of 54%, a figure of merit three times larger than the dataset used by previous analyses. We will present preliminary results of STAR 2013 W AL measurement at mid-rapidity (| η | < 1) region. (for the STAR collaboration).

  15. First Measurement of the Beam Normal Single Spin Asymmetry in $Δ$ Resonance Production by $Q_{\\rm weak}$

    SciTech Connect

    Nuruzzaman, nfn

    2016-08-01

    The beam normal single spin asymmetry ($B_{\\rm n}$) is generated in the scattering of transversely polarized electrons from unpolarized nuclei. The asymmetry arises from the interference of the imaginary part of the two-photon exchange with the one-photon exchange amplitude. The $Q_{\\rm weak}$ experiment has made the first measurement of $B_{\\rm n}$ in the production of the $\\Delta$(1232) resonance, using the $Q_{\\rm weak}$ apparatus in Hall-C at the Thomas Jefferson National Accelerator Facility. The final transverse asymmetry, corrected for backgrounds and beam polarization, is $B_{\\rm n}$ = 43 $\\pm$ 16 ppm at beam energy 1.16 GeV at an average scattering angle of about 8.3 degrees, and invariant mass of 1.2 GeV. The measured preliminary $B_{\\rm n}$ agrees with a preliminary theoretical calculation. $B_{\\rm n}$ for the $\\Delta$ is the only known observable that is sensitive to the $\\Delta$ elastic form-factors ($\\gamma$*$\\Delta\\Delta$) in addition to the generally studied transition form-factors ($\\gamma$*N$\\Delta$), but extracting this information will require significant theoretical input.

  16. Predictions for Sivers single spin asymmetries in one- and two-hadron electroproduction at CLAS12 and EIC

    DOE PAGES

    Matevosyan, Hrayr H.; Kotzinian, Aram; Aschenauer, Elke -Caroline; ...

    2015-09-23

    The study of the Sivers effect, describing correlations between the transverse polarization of the nucleon and its constituent (unpolarized) parton's transverse momentum, has been the topic of a great deal of experimental, phenomenological and theoretical effort in recent years. Semi-Inclusive Deep Inelastic Scattering measurements of the corresponding single spin asymmetries (SSA) at the upcoming CLAS12 experiment at JLab and the proposed Electron-Ion Collider will help to pinpoint the flavor structure and the momentum dependence of the Sivers parton distribution function describing this effect. Here we describe a modified version of themore » $$\\tt{PYTHIA}$$ Monte Carlo event generator that includes the Sivers effect. Then we use it to estimate the size of these SSAs, in the kinematics of these experiments, for both one and two hadron final states of pions and kaons. For this purpose we utilize the existing Sivers parton distribution function (PDF) parametrization extracted from HERMES and COMPASS experiments. Furthermore, we also show that the the leading order approximation commonly used in such extractions provides significantly underestimated values of Sivers PDFs, as the omitted parton showers and non-DIS processes play an important role in these SSAs at lower light-cone momentum fraction, for example in the COMPASS kinematics.« less

  17. Dynamics of a Single Spin-1/2 Coupled to x- and y-Spin Baths: Algorithm and Results

    NASA Astrophysics Data System (ADS)

    Novotny, M. A.; Guerra, Marta L.; De Raedt, Hans; Michielsen, Kristel; Jin, Fengping

    The real-time dynamics of a single spin-1/2 particle, called the central spin, coupled to the x(y)-components of the spins of one or more baths is simulated. The bath Hamiltonians contain interactions of x(y)-components of the bath spins only but are general otherwise. An efficient algorithm is described which allows solving the time-dependent Schr'odinger equation for the central spin, even if the x(y) baths contain hundreds of spins. The algorithm requires storage for 2 × 2 matrices only, no matter how many spins are in the baths. We calculate the expectation value of the central spin, as well as its von Neumann entropy S(t), the quantum purity P(t), and the off-diagonal elements of the quantum density matrix. In the case of coupling the central spin to both x- and y- baths the relaxation of S(t) and P(t) with time is a power law, compared to an exponential if the central spin is only coupled to an x-bath. The effect of different initial states for the central spin and bath is studied. Comparison with more general spin baths is also presented.

  18. Single spin asymmetries of inclusive hadrons produced in electron scattering from a transversely polarized 3 He target

    DOE PAGES

    Allada, K.; Zhao, Y. X.; Aniol, K.; ...

    2014-04-07

    We report the first measurement of target single-spin asymmetries (AN) in the inclusive hadron production reaction, e + 3He↑→h+X, using a transversely polarized 3 He target. This experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons (π±, K± and proton) were detected in the transverse hadron momentum range 0.54 < pT < 0.74 GeV/c. The range of xF for pions was -0.29 < xF< -0.23 and for kaons -0.25 < xF<-0.18. The observed asymmetry strongly depends on the type of hadron. A positive asymmetry is observed for π+ and K+. Amore » negative asymmetry is observed for π–. The magnitudes of the asymmetries follow |Aπ –|<|Aπ +|<|AK +|. The K– and proton asymmetries are consistent with zero within the experimental uncertainties. The π+ and π– asymmetries measured for the 3He target and extracted for neutrons are opposite in sign with a small increase observed as a function of pT.« less

  19. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  20. Optimal planning of LEO active debris removal based on hybrid optimal control theory

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Chen, Xiao-qian; Chen, Li-hu

    2015-06-01

    The mission planning of Low Earth Orbit (LEO) active debris removal problem is studied in this paper. Specifically, the Servicing Spacecraft (SSc) and several debris exist on near-circular near-coplanar LEOs. The SSc should repeatedly rendezvous with the debris, and de-orbit them until all debris are removed. Considering the long-duration effect of J2 perturbation, a linear dynamics model is used for each rendezvous. The purpose of this paper is to find the optimal service sequence and rendezvous path with minimum total rendezvous cost (Δv) for the whole mission, and some complex constraints (communication time window constraint, terminal state constraint, and time distribution constraint) should be satisfied meanwhile. Considering this mission as a hybrid optimal control problem, a mathematical model is proposed, as well as the solution method. The proposed approach is demonstrated by a typical active debris removal problem. Numerical experiments show that (1) the model and solution method proposed in this paper can effectively address the planning problem of LEO debris removal; (2) the communication time window constraint and the J2 perturbation have considerable influences on the optimization results; and (3) under the same configuration, some suboptimal sequences are equivalent to the optimal one since their difference in Δv cost is very small.

  1. Optimal control of systems with discontinuous differential equations.

    SciTech Connect

    Stewart, D. E.; Anitescu, M.; Mathematics and Computer Science; Univ. of Iowa

    2010-02-01

    In this paper we discuss the problem of verifying and computing optimal controls of systems whose dynamics is governed by differential systems with a discontinuous right-hand side. In our work, we are motivated by optimal control of mechanical systems with Coulomb friction, which exhibit such a right-hand side. Notwithstanding the impressive development of nonsmooth and set-valued analysis, these systems have not been closely studied either computationally or analytically. We show that even when the solution crosses and does not stay on the discontinuity, differentiating the results of a simulation gives gradients that have errors of a size independent of the stepsize. This means that the strategy of 'optimize the discretization' will usually fail for problems of this kind. We approximate the discontinuous right-hand side for the differential equations or inclusions by a smooth right-hand side. For these smoothed approximations, we show that the resulting gradients approach the true gradients provided that the start and end points of the trajectory do not lie on the discontinuity and that Euler's method is used where the step size is 'sufficiently small' in comparison with the smoothing parameter. Numerical results are presented for a crude model of car racing that involves Coulomb friction and slip showing that this approach is practical and can handle problems of moderate complexity.

  2. Quantum optimal control theory in the linear response formalism

    SciTech Connect

    Castro, Alberto; Tokatly, I. V.

    2011-09-15

    Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green's functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.

  3. Optimal control and cold war dynamics between plant and herbivore.

    PubMed

    Low, Candace; Ellner, Stephen P; Holden, Matthew H

    2013-08-01

    Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control.

  4. Fundamental role of bistability in optimal homeostatic control

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu

    2013-03-01

    Bistability is a fundamental phenomenon in nature and has a number of fine properties. However, these properties are consequences of bistability at the physiological level, which do not explain why it had to emerge during evolution. Using optimal homeostasis as the first principle and Pontryagin's Maximum Principle as the optimization approach, I find that bistability emerges as an indispensable control mechanism. Because the mathematical model is general and the result is independent of parameters, it is likely that most biological systems use bistability to control homeostasis. Glucose homeostasis represents a good example. It turns out that bistability is the only solution to a dilemma in glucose homeostasis: high insulin efficiency is required for rapid plasma glucose clearance, whereas an insulin sparing state is required to guarantee the brain's safety during fasting. This new perspective can illuminate studies on the twin epidemics of obesity and diabetes and the corresponding intervening strategies. For example, overnutrition and sedentary lifestyle may represent sudden environmental changes that cause the lose of optimality, which may contribute to the marked rise of obesity and diabetes in our generation.

  5. Optimal digital control of a Stirling cycle cooler

    NASA Technical Reports Server (NTRS)

    Feeley, J.; Feeley, P.; Langford, G.

    1990-01-01

    This short paper describes work in progress on the conceptual design of a control system for a cryogenic cooler intended for use aboard spacecraft. The cooler will produce 5 watts of cooling at 65 K and will be used to support experiments associated with the following: earth observation; atmospheric measurements; infrared, x-ray, and gamma-ray astronomy; and magnetic field characterization. The cooler has been designed and constructed for NASA/GSFC by Philips Laboratories and is described in detail. The cooler has a number of unique design features intended to enhance long life and maintenance free operation in space including use of the high efficiency Stirling thermodynamic refrigeration cycle, linear magnetic motors, clearance-seals, and magnetic bearings. The proposed control system design is based on optimal control theory and is targeted for custom integrated circuit implementation. The resulting control system will meet the following mission requirements: efficiency, reliability, optimal thermodynamic, electrical, and mechanical performance; freedom from operator intervention; light weight; and small size.

  6. Multivariable norm optimal and parameter optimal iterative learning control: a unified formulation

    NASA Astrophysics Data System (ADS)

    Owens, D. H.

    2012-08-01

    This article investigates the two paradigms of norm optimal iterative learning control (NOILC) and parameter optimal iterative learning control (POILC) for multivariable (MIMO) ℓ-input, m-output linear discrete-time systems. The main result is a proof that, despite their algebraic and conceptual differences, they can be unified using linear quadratic multi-parameter optimisation techniques. In particular, whilst POILC has been naturally regarded as an approximation to NOILC, it is shown that the NOILC control law can be generated from a suitable choice of control law parameterisation and objective function in a multi-parameter MIMO POILC problem. The form of this equivalence is used to propose a new general approach to the construction of POILC problems for MIMO systems that approximates the solution of a given NOILC problem. An infinite number of such approximations exist. This great diversity is illustrated by the derivation of new convergent algorithms based on time interval and gradient partition that extend previously published work.

  7. Existence of the time optimal control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, J.; Desrochers, A.

    1986-01-01

    Using Filipov's Theorem, it is shown that the conditions oif nonfinite escape of trajectories, reachability, and convexity of the dynamics over all admissible controls are needed for the existence of a time optimal solution for the robotic equation. With a lower bound for the finite-escape time established using a Liapunov approach, and an upper bound for the time to reach the target established using the exact linearization idea, a single inequality is found which is closely related to the coriolis and the centrifugal terms, the absence of which implies that the domain of existence of the optimal solution can be made arbitrarily large with a large torque constraint. As the work space is finite, this is essentially a global result in practical situations.

  8. Optimization and Planning of Emergency Evacuation Routes Considering Traffic Control

    PubMed Central

    Zhang, Lijun; Wang, Zhaohua

    2014-01-01

    Emergencies, especially major ones, happen fast, randomly, as well as unpredictably, and generally will bring great harm to people's life and the economy. Therefore, governments and lots of professionals devote themselves to taking effective measures and providing optimal evacuation plans. This paper establishes two different emergency evacuation models on the basis of the maximum flow model (MFM) and the minimum-cost maximum flow model (MC-MFM), and proposes corresponding algorithms for the evacuation from one source node to one designated destination (one-to-one evacuation). Ulteriorly, we extend our evaluation model from one source node to many designated destinations (one-to-many evacuation). At last, we make case analysis of evacuation optimization and planning in Beijing, and obtain the desired evacuation routes and effective traffic control measures from the perspective of sufficiency and practicability. Both analytical and numerical results support that our models are feasible and practical. PMID:24991636

  9. Optimization and planning of emergency evacuation routes considering traffic control.

    PubMed

    Li, Guo; Zhang, Lijun; Wang, Zhaohua

    2014-01-01

    Emergencies, especially major ones, happen fast, randomly, as well as unpredictably, and generally will bring great harm to people's life and the economy. Therefore, governments and lots of professionals devote themselves to taking effective measures and providing optimal evacuation plans. This paper establishes two different emergency evacuation models on the basis of the maximum flow model (MFM) and the minimum-cost maximum flow model (MC-MFM), and proposes corresponding algorithms for the evacuation from one source node to one designated destination (one-to-one evacuation). Ulteriorly, we extend our evaluation model from one source node to many designated destinations (one-to-many evacuation). At last, we make case analysis of evacuation optimization and planning in Beijing, and obtain the desired evacuation routes and effective traffic control measures from the perspective of sufficiency and practicability. Both analytical and numerical results support that our models are feasible and practical.

  10. Optimal finite horizon control in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiuli

    2013-06-01

    As a paradigm for modeling gene regulatory networks, probabilistic Boolean networks (PBNs) form a subclass of Markov genetic regulatory networks. To date, many different stochastic optimal control approaches have been developed to find therapeutic intervention strategies for PBNs. A PBN is essentially a collection of constituent Boolean networks via a probability structure. Most of the existing works assume that the probability structure for Boolean networks selection is known. Such an assumption cannot be satisfied in practice since the presence of noise prevents the probability structure from being accurately determined. In this paper, we treat a case in which we lack the governing probability structure for Boolean network selection. Specifically, in the framework of PBNs, the theory of finite horizon Markov decision process is employed to find optimal constituent Boolean networks with respect to the defined objective functions. In order to illustrate the validity of our proposed approach, an example is also displayed.

  11. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    NASA Astrophysics Data System (ADS)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  12. Optimal control of diarrhea transmission in a flood evacuation zone

    NASA Astrophysics Data System (ADS)

    Erwina, N.; Aldila, D.; Soewono, E.

    2014-03-01

    Evacuation of residents and diarrhea disease outbreak in evacuation zone have become serious problem that frequently happened during flood periods. Limited clean water supply and infrastructure in evacuation zone contribute to a critical spread of diarrhea. Transmission of diarrhea disease can be reduced by controlling clean water supply and treating diarrhea patients properly. These treatments require significant amount of budget, which may not be fulfilled in the fields. In his paper, transmission of diarrhea disease in evacuation zone using SIRS model is presented as control optimum problem with clean water supply and rate of treated patients as input controls. Existence and stability of equilibrium points and sensitivity analysis are investigated analytically for constant input controls. Optimum clean water supply and rate of treatment are found using optimum control technique. Optimal results for transmission of diarrhea and the corresponding controls during the period of observation are simulated numerically. The optimum result shows that transmission of diarrhea disease can be controlled with proper combination of water supply and rate of treatment within allowable budget.

  13. Optimal control of complex networks based on matrix differentiation

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Ding, Jie; Wen, Changyun; Pei, Jing

    2016-09-01

    Finding the key node set to be connected to external control sources so as to minimize the energy for controlling a complex network, known as the minimum-energy control problem, is of critical importance but remains open. We address this critical problem where matrix differentiation is involved. To this end, the differentiation of energy/cost function with respect to the input matrix is obtained based on tensor analysis, and the Hessian matrix is compressed from a fourth-order tensor. Normalized projected gradient method (NPGM) normalized projected trust-region method (NPTM) are proposed with established convergence property. We show that NPGM is more computationally efficient than NPTM. Simulation results demonstrate satisfactory performance of the algorithms, and reveal important insights as well. Two interesting phenomena are observed. One is that the key node set tends to divide elementary paths equally. The other is that the low-degree nodes may be more important than hubs from a control point of view, indicating that controlling hub nodes does not help to lower the control energy. These results suggest a way of achieving optimal control of complex networks, and provide meaningful insights for future researches.

  14. An optimal control problem for ovine brucellosis with culling.

    PubMed

    Nannyonga, B; Mwanga, G G; Luboobi, L S

    2015-01-01

    A mathematical model is used to study the dynamics of ovine brucellosis when transmitted directly from infected individual, through contact with a contaminated environment or vertically through mother to child. The model developed by Aïnseba et al. [A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn. 4 (2010), pp. 2-11. Available at http://www.math.u-bordeaux1.fr/∼pmagal100p/papers/BBM-JBD09.pdf. Accessed 3 July 2012] was modified to include culling and then used to determine important parameters in the spread of human brucellosis using sensitivity analysis. An optimal control analysis was performed on the model to determine the best way to control such as a disease in the population. Three time-dependent controls to prevent exposure, cull the infected and reduce environmental transmission were used to set up to minimize infection at a minimum cost.

  15. Parameters optimization and control in precision laser scribing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiu'e.; Li, Yongda; Li, Yongzheng

    2005-01-01

    The positional precision of laser scribing and laser marking in precision metrological tools, such as scale plate and scale dial, is of the order of μm. The control of scribing must be very accurate. The laser beam parameters, focal length of the lens, and the position of the focal spot must be carefully selected and accurately controlled. The workpiece must also be accurately and repeatedly positioned. Any deviation from the required parameters would seriously affect the product quality. This paper studied an Nd:YAG laser scribing system specially designed for scribing of extremely high precision dial scale used in petroleum drilling machine. The relevant parameters were carefully selected and optimized. CAD, CAM, NC and automatic control technology were employed in the system. The integration of optics, mechanics, electronics and computer ensured high precision laser scribing.

  16. Optimal control of CPR procedure using hemodynamic circulation model

    DOEpatents

    Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok

    2007-12-25

    A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

  17. Hybrid intelligent control concepts for optimal data fusion

    NASA Astrophysics Data System (ADS)

    Llinas, James

    1994-02-01

    In the post-Cold War era, Naval surface ship operations will be largely conducted in littoral waters to support regional military missions of all types, including humanitarian and evacuation activities, and amphibious mission execution. Under these conditions, surface ships will be much more isolated and vulnerable to a variety of threats, including maneuvering antiship missiles. To deal with these threats, the optimal employment of multiple shipborne sensors for maximum vigilance is paramount. This paper characterizes the sensor management problem as one of intelligent control, identifies some of the key issues in controller design, and presents one approach to controller design which is soon to be implemented and evaluated. It is argued that the complexity and hierarchical nature of problem formulation demands a hybrid combination of knowledge-based methods and scheduling techniques from 'hard' real-time systems theory for its solution.

  18. Finite element solution of optimal control problems with inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1990-01-01

    A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.

  19. Optimal feedback control of a bioreactor with a remote sensor

    NASA Technical Reports Server (NTRS)

    Niranjan, S. C.; San, K. Y.

    1988-01-01

    Sensors used to monitor bioreactor conditions directly often perform poorly in the face of adverse nonphysiological conditions. One way to circumvent this is to use a remote sensor block. However, such a configuration usually causes a significant time lag between measurements and the actual state values. Here, the problem of implementing feedback control strategies for such systems, described by nonlinear equations, is addressed. The problem is posed as an optimal control problem with a linear quadratic performance index. The linear control law so obtained is used to implement feedback. A global linearization technique as well as an expansion using Taylor series is used to linearize the nonlinear system, and the feedback is subsequently implemented.

  20. Quantum gate and quantum state preparation through neighboring optimal control

    NASA Astrophysics Data System (ADS)

    Peng, Yuchen

    Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ˜ 10-4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10-4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |beta 01> = 1/√2(|01> + |10>). I show that for ideal (non-ideal) control, an approximate |beta01> state could be prepared with error probability epsilon ˜ 10-6 (10-5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |beta 01> state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4